

| Applicant | Kyocera             |
|-----------|---------------------|
| FCC ID:   | V65C5155            |
| Report #: | CT-C5155-9D-0412-R0 |

## EXHIBIT 9 APPENDIX D: SAR DIPOLE CALIBRATION CERTIFICATE

Total pages including cover page = 28

# 467 # 5d016 # 776 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Kyocera USA

Certificate No: D835V2-467\_Sep10

#### **CALIBRATION CERTIFICATE** Object D835V2 - SN: 467 QA CAL-05.v7 Calibration procedure(s) Calibration procedure for dipole validation kits September 02, 2010 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-09 (No. 217-01086) Oct-10 06-Oct-09 (No. 217-01086) Power sensor HP 8481A US37292783 Oct-10 Reference 20 dB Attenuator SN: 5086 (20g) 30-Mar-10 (No. 217-01158) Mar-11 Type-N mismatch combination SN: 5047.2 / 06327 30-Mar-10 (No. 217-01162) Mar-11 Reference Probe ES3DV3 SN: 3205 30-Apr-10 (No. ES3-3205\_Apr10) Apr-11 DAE4 SN: 601 10-Jun-10 (No. DAE4-601\_Jun10) Jun-11 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-09) In house check: Oct-10 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: September 3, 2010 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S

С

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura Servizio Servico

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### Additional Documentation:

d) DASY4/5 System Handbook

## Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY5                     | V52.2                                                                          |
|---------------------------|--------------------------------------------------------------------------------|
| Advanced Extrapolation    |                                                                                |
| Modular Flat Phantom V4.9 |                                                                                |
| 15 mm                     | with Spacer                                                                    |
| dx, dy, dz = 5 mm         |                                                                                |
| 835 MHz ± 1 MHz           |                                                                                |
|                           | Advanced Extrapolation   Modular Flat Phantom V4.9   15 mm   dx, dy, dz = 5 mm |

Head TSL parameters The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters      | 22.0 °C         | 41.5         | 0.90 mho/m       |
| Measured Head TSL parameters     | (22.0 ± 0.2) °C | 42.0 ± 6 %   | 0.89 mho/m ± 6 % |
| Head TSL temperature during test | (22.2 ± 0.2) °C |              |                  |

## SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                           |
|-------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                          | 250 mW input power | 2.39 mW / g               |
| SAR normalized                                        | normalized to 1W   | 9.56 mW / g               |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 9.67 mW /g ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 250 mW input power | 1.56 mW / g               |
| SAR normalized                                          | normalized to 1W   | 6.24 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 6.29 mW /g ± 16.5 % (k=2) |

Body TSL parameters The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters      | 22.0 °C         | 55.2         | 0.97 mho/m       |
| Measured Body TSL parameters     | (22.0 ± 0.2) °C | 55.0 ± 6 %   | 0.98 mho/m ± 6 % |
| Body TSL temperature during test | (22.4 ± 0.2) °C |              |                  |

## SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 250 mW input power | 2.51 mW / g                |
| SAR normalized                                        | normalized to 1W   | 10.0 mW / g                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 9.95 mW / g ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                            |
|---------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                            | 250 mW input power | 1.64 mW / g                |
| SAR normalized                                          | normalized to 1W   | 6.56 mW / g                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 6.52 mW / g ± 16.5 % (k=2) |

#### Appendix

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 49.8 Ω - 1.4 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 37.1 dB       |  |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 45.9 Ω - 3.6 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 24.9 dB       |  |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.392 ns |
|----------------------------------|----------|
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

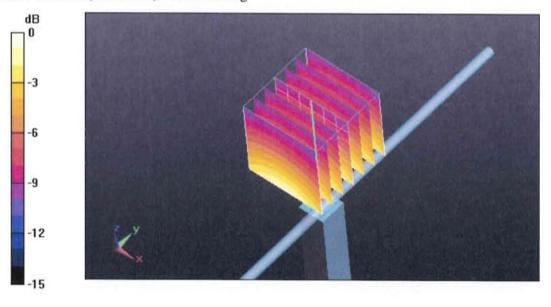
| Manufactured by | SPEAG           |
|-----------------|-----------------|
| Manufactured on | August 27, 2002 |

#### **DASY5 Validation Report for Head TSL**

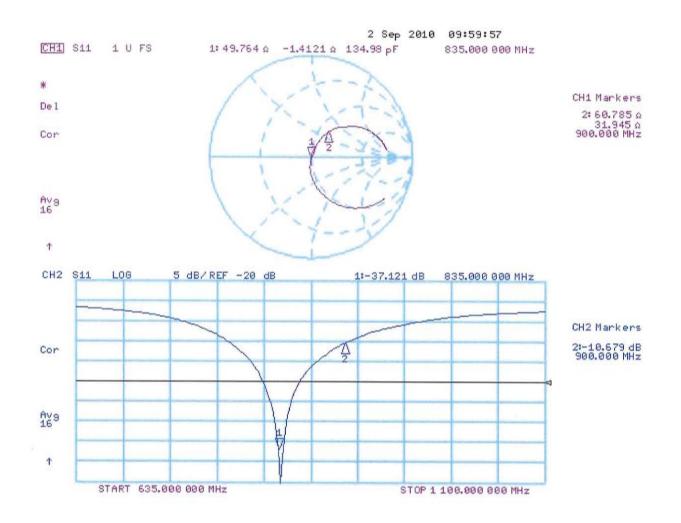
Date/Time: 02.09.2010 11:06:42

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:467


Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL900 Medium parameters used: f = 835 MHz;  $\sigma$  = 0.89 mho/m;  $\varepsilon_r$  = 42.1;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY5 Configuration:


- Probe: ES3DV3 SN3205; ConvF(6.03, 6.03, 6.03); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)
- Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

#### Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.4 V/m; Power Drift = 0.011 dB Peak SAR (extrapolated) = 3.6 W/kg SAR(1 g) = 2.39 mW/g; SAR(10 g) = 1.56 mW/g Maximum value of SAR (measured) = 2.79 mW/g



 $0 \, dB = 2.79 \, mW/g$ 

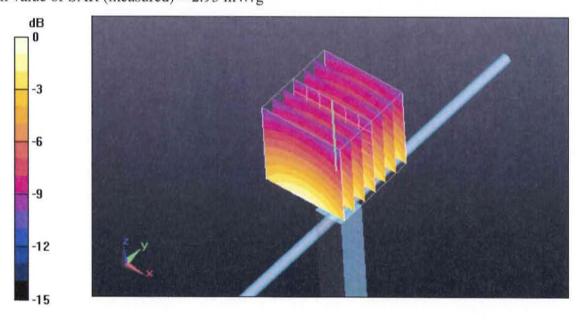


#### **DASY5 Validation Report for Body**

Date/Time: 02.09.2010 14:41:12

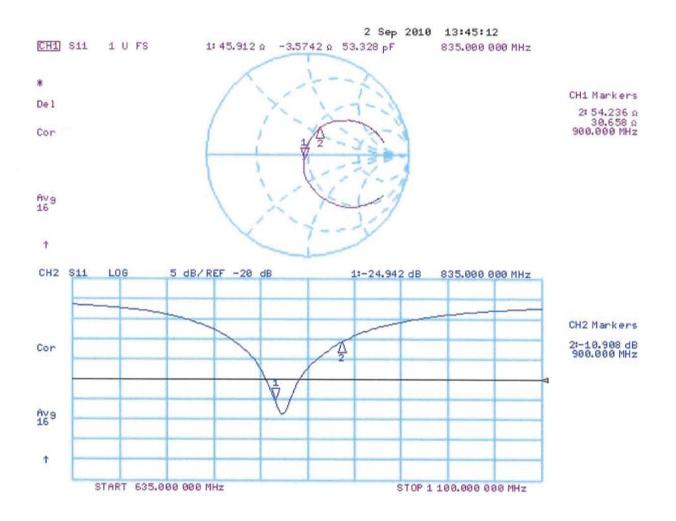
Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:467


Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: MSL900 Medium parameters used: f = 835 MHz;  $\sigma = 0.98$  mho/m;  $\epsilon_r = 55$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.86, 5.86, 5.86); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)
- Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)


#### Pin250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.5 V/m; Power Drift = 0.011 dB Peak SAR (extrapolated) = 3.72 W/kg SAR(1 g) = 2.51 mW/g; SAR(10 g) = 1.64 mW/g Maximum value of SAR (measured) = 2.93 mW/g



 $0 \, dB = 2.93 \, mW/g$ 

#### Impedance Measurement Plot for Body TSL



Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Certificate No: D1900V2-5d016\_Sep10

Accreditation No.: SCS 108

S

С

S

88I

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

client Kyocera USA

## CALIBRATION CERTIFICATE

| Object                                | D1900V2 - SN: 5                   | d016                                                       |                                                                                                                                         |
|---------------------------------------|-----------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Calibration procedure(s)              | QA CAL-05.v7<br>Calibration proce | dure for dipole validation kits                            |                                                                                                                                         |
|                                       |                                   |                                                            |                                                                                                                                         |
| Calibration date:                     | September 07, 20                  | D10                                                        |                                                                                                                                         |
|                                       |                                   |                                                            |                                                                                                                                         |
|                                       |                                   |                                                            |                                                                                                                                         |
| This calibration certificate docume   | ents the traceability to natio    | onal standards, which realize the physical u               | nits of measurements (SI).                                                                                                              |
| The measurements and the unce         | rtainties with confidence p       | robability are given on the following pages a              | ing are part of the certificate.                                                                                                        |
| All calibrations have been conduc     | cted in the closed laborator      | y facility: environment temperature (22 $\pm$ 3)           | °C and humidity < 70%.                                                                                                                  |
| Calibration Equipment used (M&1       | FE critical for calibration)      |                                                            |                                                                                                                                         |
| Primary Standards                     | ID #                              | Cal Date (Certificate No.)                                 | Scheduled Calibration                                                                                                                   |
| Power meter EPM-442A                  | GB37480704                        | 06-Oct-09 (No. 217-01086)                                  | Oct-10                                                                                                                                  |
| Power sensor HP 8481A                 | US37292783                        | 06-Oct-09 (No. 217-01086)                                  | Oct-10                                                                                                                                  |
| Reference 20 dB Attenuator            | SN: 5086 (20g)                    | 30-Mar-10 (No. 217-01158)                                  | Mar-11                                                                                                                                  |
| Type-N mismatch combination           | SN: 5047.2 / 06327                | 30-Mar-10 (No. 217-01162)                                  | Mar-11                                                                                                                                  |
| Reference Probe ES3DV3                | SN: 3205                          | 30-Apr-10 (No. ES3-3205_Apr10)                             | Apr-11                                                                                                                                  |
| DAE4                                  | SN: 601                           | 10-Jun-10 (No. DAE4-601_Jun10)                             | Jun-11                                                                                                                                  |
|                                       |                                   | Chack Data (in house)                                      | Scheduled Check                                                                                                                         |
| Secondary Standards                   | ID #                              | Check Date (in house)<br>18-Oct-02 (in house check Oct-09) | In house check: Oct-11                                                                                                                  |
| Power sensor HP 8481A                 | MY41092317                        | 4-Aug-99 (in house check Oct-09)                           | In house check: Oct-11                                                                                                                  |
| RF generator R&S SMT-06               | 100005                            |                                                            | In house check: Oct-10                                                                                                                  |
| Network Analyzer HP 8753E             | US37390585 S4206                  | 18-Oct-01 (in house check Oct-09)                          |                                                                                                                                         |
|                                       | Name                              | Function                                                   | Signature                                                                                                                               |
| Calibrated by:                        | Jeton Kastrati                    | Laboratory Technician                                      | $ \gamma \gamma$ |
|                                       |                                   |                                                            |                                                                                                                                         |
| Approved by:                          | Katja Pokovic                     | Technical Manager                                          | 1 Alin                                                                                                                                  |
|                                       |                                   |                                                            | perellez                                                                                                                                |
|                                       |                                   |                                                            | Issued: September 7, 2010                                                                                                               |
| This calibration certificate shall no | ot be reproduced except in        | full without written approval of the laborato              | ry.                                                                                                                                     |

## Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

C Service suisse d etaloritage Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### Additional Documentation:

d) DASY4/5 System Handbook

## Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                     | V52.2                |
|------------------------------|---------------------------|----------------------|
| Extrapolation                | Advanced Extrapolation    | ··· notr. no         |
| Phantom                      | Modular Flat Phantom V5.0 |                      |
| Distance Dipole Center - TSL | 10 mm                     | with Spacer          |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm         |                      |
| Frequency                    | 1900 MHz ± 1 MHz          | ALANGU AL LUL I MANA |

#### Head TSL parameters

The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters      | 22.0 °C         | 40.0         | 1.40 mho/m       |
| Measured Head TSL parameters     | (22.0 ± 0.2) °C | 39.6 ± 6 %   | 1.41 mho/m ± 6 % |
| Head TSL temperature during test | (22.4 ± 0.2) °C |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                           |
|-------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                          | 250 mW input power | 9.98 mW / g               |
| SAR normalized                                        | normalized to 1W   | 39.9 mW / g               |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 39.6 mW /g ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 250 mW input power | 5.19 mW / g               |
| SAR normalized                                          | normalized to 1W   | 20.8 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 20.7 mW /g ± 16.5 % (k=2) |

Body TSL parameters The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters      | 22.0 °C         | 53.3         | 1.52 mho/m       |
| Measured Body TSL parameters     | (22.0 ± 0.2) °C | 53.1 ± 6 %   | 1.54 mho/m ± 6 % |
| Body TSL temperature during test | (21.9 ± 0.2) °C |              |                  |

## SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 250 mW input power | 10.1 mW / g                |
| SAR normalized                                        | normalized to 1W   | 40.4 mW / g                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 40.1 mW / g ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          | ,                          |
|---------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                            | 250 mW input power | 5.34 mW / g                |
| SAR normalized                                          | normalized to 1W   | 21.4 mW / g                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.3 mW / g ± 16.5 % (k=2) |

#### Appendix

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 51.2 Ω + 4.4 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 27.0 dB       |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 46.7 Ω + 4.6 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.6 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) |          |
|----------------------------------|----------|
| Electrical Delay (one direction) | 1.197 ns |
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

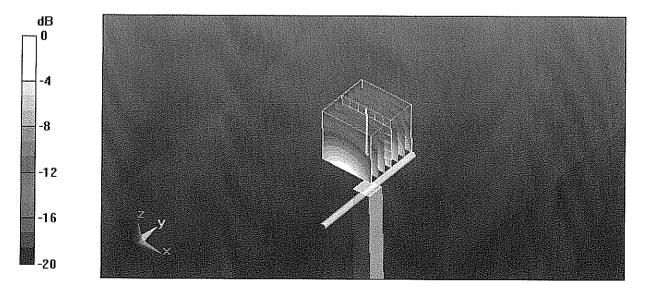
| Manufactured by | SPEAG         |
|-----------------|---------------|
| Manufactured on | June 04, 2002 |

#### **DASY5 Validation Report for Head TSL**

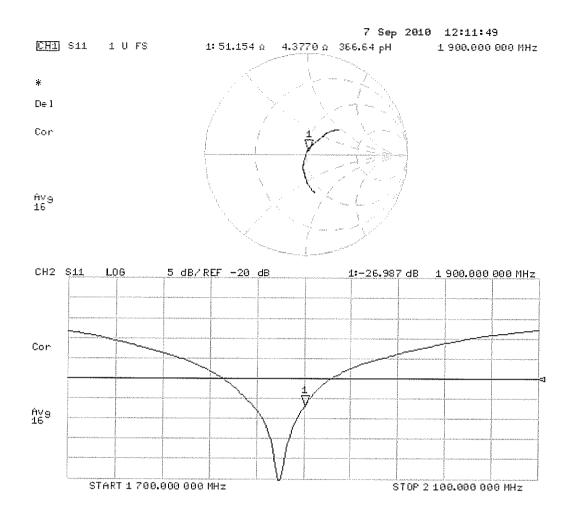
Date/Time: 07.09.2010 13:04:41

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d016


Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL U12 BB Medium parameters used: f = 1900 MHz;  $\sigma$  = 1.41 mho/m;  $\epsilon_r$  = 39.6;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY5 Configuration:


- Probe: ES3DV3 SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)
- Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

## Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.8 V/m; Power Drift = 0.036 dB Peak SAR (extrapolated) = 18.3 W/kg SAR(1 g) = 9.98 mW/g; SAR(10 g) = 5.19 mW/g Maximum value of SAR (measured) = 12.3 mW/g



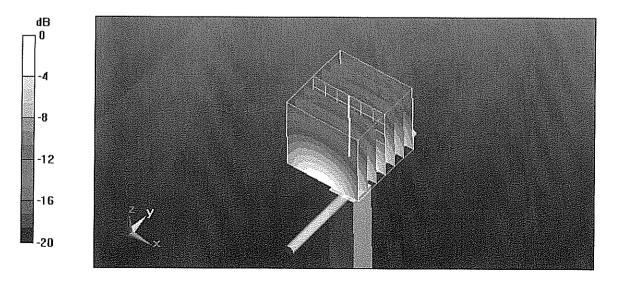
0 dB = 12.3 mW/g



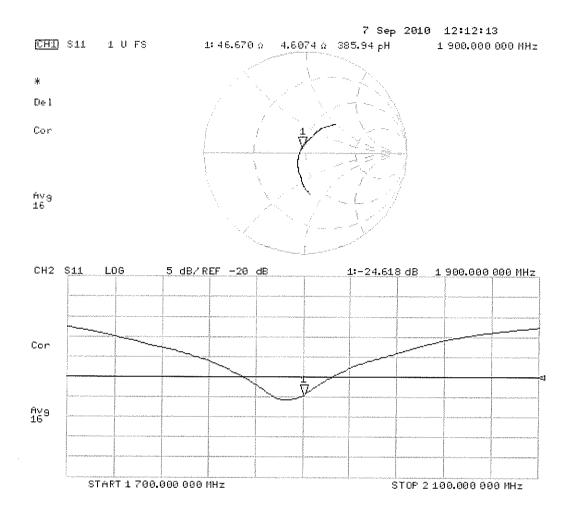
Date/Time: 07.09.2010 13:46:48

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d016


Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL U11 BB Medium parameters used: f = 1900 MHz;  $\sigma$  = 1.54 mho/m;  $\epsilon_r$  = 53.1;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY5 Configuration:


- Probe: ES3DV3 SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)
- Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

## Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.3 V/m; Power Drift = -0.013 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.34 mW/gMaximum value of SAR (measured) = 12.7 mW/g



 $0~\mathrm{dB}=12.7\mathrm{mW/g}$ 



Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Kyocera USA

Certificate No: D2450V2-776\_Aug10

# CALIBRATION CERTIFICATE

| Object                                 | D2450V2 - SN: 7                     | 76                                                                                                                                            |                                                                                                                |
|----------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Calibration procedure(s)               | QA CAL-05.v7<br>Calibration proce   | dure for dipole validation kits                                                                                                               |                                                                                                                |
| Calibration date:                      | August 19, 2010                     |                                                                                                                                               |                                                                                                                |
| The measurements and the uncer         | tainties with confidence p          | onal standards, which realize the physical t<br>robability are given on the following pages a<br>y facility: environment temperature (22 ± 3) | and are part of the certificate.                                                                               |
| Calibration Equipment used (M&T        |                                     | ,                                                                                                                                             |                                                                                                                |
| Primary Standards                      | ID #                                | Cal Date (Certificate No.)                                                                                                                    | Scheduled Calibration                                                                                          |
| Power meter EPM-442A                   | GB37480704                          | 06-Oct-09 (No. 217-01086)                                                                                                                     | Oct-10                                                                                                         |
| Power sensor HP 8481A                  | US37292783                          | 06-Oct-09 (No. 217-01086)                                                                                                                     | Oct-10                                                                                                         |
| Reference 20 dB Attenuator             | SN: 5086 (20g)                      | 30-Mar-10 (No. 217-01158)                                                                                                                     | Mar-11                                                                                                         |
| Type-N mismatch combination            | SN: 5047.2 / 06327                  | 30-Mar-10 (No. 217-01162)                                                                                                                     | Mar-11                                                                                                         |
| Reference Probe ES3DV3                 | SN: 3205                            | 30-Apr-10 (No. ES3-3205_Apr10)                                                                                                                | Apr-11                                                                                                         |
| DAE4                                   | SN: 601                             | 10-Jun-10 (No. DAE4-601_Jun10)                                                                                                                | Jun-11                                                                                                         |
|                                        | i.                                  |                                                                                                                                               |                                                                                                                |
| Secondary Standards                    | ID #                                | Check Date (in house)                                                                                                                         | Scheduled Check                                                                                                |
| Power sensor HP 8481A                  | MY41092317                          | 18-Oct-02 (in house check Oct-09)                                                                                                             | In house check: Oct-11                                                                                         |
| RF generator R&S SMT-06                | 100005                              | 4-Aug-99 (in house check Oct-09)                                                                                                              | In house check: Oct-11                                                                                         |
| Network Analyzer HP 8753E              | US37390585 S4206                    | 18-Oct-01 (in house check Oct-09)                                                                                                             | In house check: Oct-10                                                                                         |
|                                        | Name                                | Function                                                                                                                                      | Signature                                                                                                      |
| Calibrated by:                         | Jeton Kastrati                      | Laboratory Technician                                                                                                                         | nie wierzen er der beziehen Gesten in er er der besteren er 🖌 er eine 🖓 er |
| - and a by:                            |                                     |                                                                                                                                               |                                                                                                                |
|                                        | ene a ser men men hydrigen (* 1998) |                                                                                                                                               |                                                                                                                |
| Approved by:                           | Katja Pokovic                       | Technical Manager                                                                                                                             | JEE leg                                                                                                        |
|                                        |                                     |                                                                                                                                               | Issued: August 23, 2010                                                                                        |
| This calibration certificate shall not | ne reproduced except in             | full without written approval of the laborator                                                                                                | у.                                                                                                             |

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

С Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossarv:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

## Additional Documentation:

d) DASY4/5 System Handbook

## Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end 0 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed 8 point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole 0 positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. 0 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. ۲
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna 0 connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the • nominal SAR result.

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                     | V52.2                                                                                                           |
|------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------|
| Extrapolation                | Advanced Extrapolation    |                                                                                                                 |
| Phantom                      | Modular Flat Phantom V5.0 |                                                                                                                 |
| Distance Dipole Center - TSL | 10 mm                     | with Spacer                                                                                                     |
| Zoom Scan Resolution         | dx, $dy$ , $dz = 5 mm$    | n na san sa a sa an san san san sa an s |
| Frequency                    | 2450 MHz ± 1 MHz          |                                                                                                                 |

#### Head TSL parameters

The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters      | 22.0 °C         | 39.2         | 1.80 mho/m       |
| Measured Head TSL parameters     | (22.0 ± 0.2) °C | 39.2 ± 6 %   | 1.77 mho/m ± 6 % |
| Head TSL temperature during test | (22.6 ± 0.2) °C |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          | ····                      |
|-------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                          | 250 mW input power | 13.2 mW / g               |
| SAR normalized                                        | normalized to 1W   | 52.8 mW / g               |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 53.2 mW /g ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          | ·····                     |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 250 mW input power | 6.23 mW / g               |
| SAR normalized                                          | normalized to 1W   | 24.9 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 25.0 mW /g ± 16.5 % (k=2) |

Body TSL parameters The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters      | 22.0 °C         | 52.7         | 1.95 mho/m       |
| Measured Body TSL parameters     | (22.0 ± 0.2) °C | 52.4 ± 6 %   | 1.95 mho/m ± 6 % |
| Body TSL temperature during test | (21.5 ± 0.2) °C |              |                  |

#### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          | · · · · · · · · · · · · · · · · · · · |
|-------------------------------------------------------|--------------------|---------------------------------------|
| SAR measured                                          | 250 mW input power | 13.6 mW / g                           |
| SAR normalized                                        | normalized to 1W   | 54.4 mW / g                           |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 54.3 mW / g ± 17.0 % (k=2)            |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                            |
|---------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                            | 250 mW input power | 6.50 mW / g                |
| SAR normalized                                          | normalized to 1W   | 26.0 mW / g                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 26.0 mW / g ± 16.5 % (k=2) |

#### Appendix

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 53.7 Ω - 0.7 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 28.9 dB       |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 51.5 Ω + 8.7 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 21.2 dB       |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.130 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

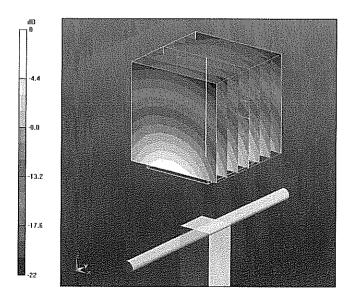
#### Additional EUT Data

| Manufactured by | SPEAG          |
|-----------------|----------------|
| Manufactured on | April 04, 2005 |

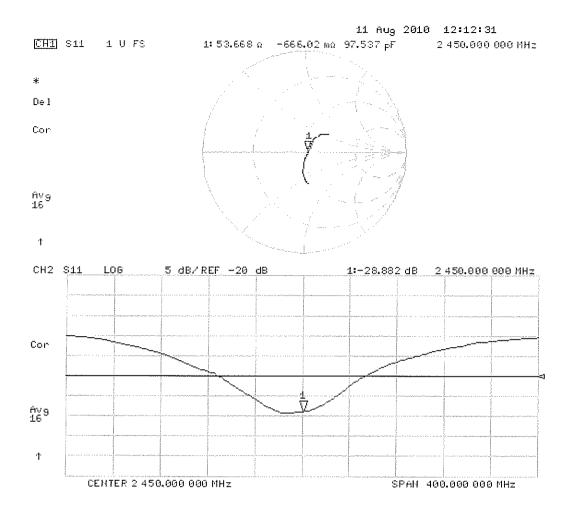
#### **DASY5 Validation Report for Head TSL**

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:776


Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL U12 BB Medium parameters used: f = 2450 MHz;  $\sigma = 1.77$  mho/m;  $\epsilon_r = 39.1$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY5 Configuration:


- Probe: ES3DV3 SN3205; ConvF (4.53, 4.53, 4.53); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)
- Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

#### Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.9 V/m; Power Drift = 0.035 dB Peak SAR (extrapolated) = 26.9 W/kg SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.23 mW/g Maximum value of SAR (measured) = 17.1 mW/g

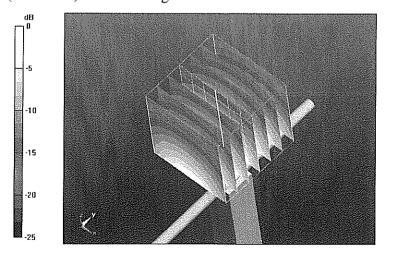


 $0 \, dB = 17.1 \, mW/g$ 

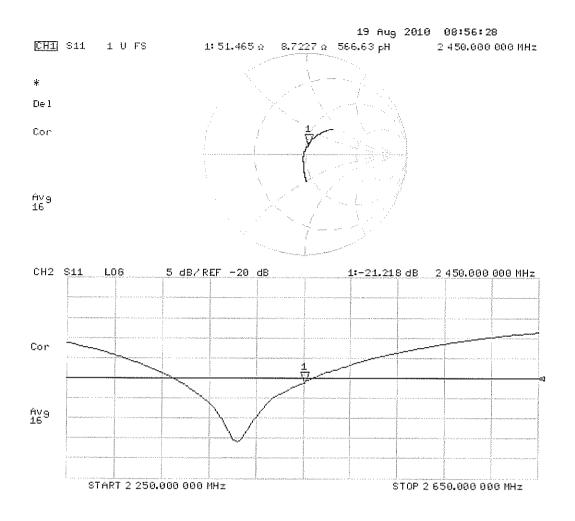


Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:776


Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL U11 BB Medium parameters used: f = 2450 MHz;  $\sigma = 1.96$  mho/m;  $\epsilon_r = 52.5$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:


- Probe: ES3DV3 SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)
- Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98 V/m; Power Drift = -0.022 dB Peak SAR (extrapolated) = 27.4 W/kg SAR(1 g) = 13.6 mW/g; SAR(10 g) = 6.5 mW/g Maximum value of SAR (measured) = 17.7 mW/g



 $0 \, dB = 17.7 \, mW/g$ 

