

Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

RF Emissions Test Report

FCC Part 15.247 (WLAN)

For

Kyocera Corporation c/o Kyocera Communication Inc.

Product:	CDMA Phone
Model:	C5133

Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

TABLE OF CONTENTS

1	SUMMARY OF TESTING	4
2	EQUIPMENT UNDER TEST INFORMATION	4
3	TEST FACILITIES	5
4	TEST SETUP	5
-	ANTENNA REQUIREMENTS	6
-	6dB Bandwidth	7
	Peak OUTPUT POWER	1
	POWER SPECTRAL DENSITY (PSD) 1 .1 Test Configuration 1 .2 Results and Limits: 1	5
-	BANDEDGE 1 .1 Test Configuration .2 Results: Bandedge	9
1	SPURIOUS RF CONDUCTED EMISSIONS 2 0.1 Test Configuration 2 0.2 Results: Conducted Spurious Emissions 2	23
	AC POWER LINE CONDUCTED EMISSIONS	
	RADIATED EMISSIONS 3 2.1 Test Configuration & Results 3	
	SAR TEST	
14	TEST EQUIPMENT	33

Applicant:KyoceraFCC ID:V65C5133Report #:CT-C5133-0912-R0

ATTESTATION

The tested device complies with the requirements in respect of all parameters subject to the test.

The test results and statements relate only to the items tested.

The test equipment used was suitable for the tests performed and within manufacturer's published specifications and operating parameters.

The test methods were consistent with the methods described in the relevant standards.

Product:	CDMA Cellular Phone with Bluetooth & WLAN
Model #:	C5133
FCC ID:	V65C5133
Tested in accordance with:	FCC Part 15.247
Test performed by:	Comptest Services LLC
Test Requested by:	KYOCERA Corporation
	C/o KYOCERA Communication Inc
	8611 Balboa Avenue
	San Diego, CA92121
Date of Test:	September 24 -27, 2012

Responsible Engineer

Benjamin Nguyen

Benjamin Nguyen Test Engineer Reviewed and approved by:

Tammy To Quality Manager

Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

1 SUMMARY OF TESTING

Section #	Rule Part	Test Description	Verdict
6	FCC § 15.247 a2, IC RSS-210 §A8.2 (1)	6 dB Bandwidth	Pass
7	FCC § 15.247 b3, IC RSS-210 §8.4(4)	Output Power	Pass
8	FCC § 15.247 e, IC RSS-210 §8.2(2)	Power Spectral Density	Pass
9 FCC § 15.247 d, IC RSS-210 §A8.5		Band-edge Compliance of Conducted Emissions	Pass
		Spurious RF Conducted Emissions	Pass
11 FCC § 15.107 § 15.207, IC RSS-210 §6.6		AC Power Line Conducted Emissions	Pass
12	FCC § 15.109, § 15.209, IC RSS-210 §A2.9(2)	Spurious Radiated Emissions	Pass
13	FCC § 2.1091/2.1093	SAR Tests	Pass

2 EQUIPMENT UNDER TEST INFORMATION

EUT Serial Number:	268435457816728225			
Туре:	[] Prototype, [X] Pre-Production, [] Production			
Equipment Category:	Portable			
TX Frequency (MHz):	2412 to 2462			
Modulation Technology:	DSSS, OFDM			
Modulation:	DSSS: CCK, DQPSK, DBPSK			
	OFDM: 64QAM, 16QAM, QPSK, BPSK			
Channel Numbers:	11			
Mode/Data Rate:	⊠ 802.11b: 11/5/2/1 Mbps			
	⊠ 802.11g: 54/48/36/24/18/12/9/6 Mbps			
	⊠ 802.11n: 7/6/5/4/3/2/1/0 MCS			
Max. Output Power (dBm)	18.12 dBm			
WLAN Antenna:	Internal			
Antenna Gain (dBi):	-1.0 (Peak)			

Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

3 TEST FACILITIES

The test sites and measurement facilities used to collect data are located at 8611 Balboa Ave., San Diego, CA 92123, USA

4 TEST SETUP

The WLAN RF output of the equipment under test (EUT) was connected to the input of the spectrum analyzer through a RF cable with a specialized RF connector. The amplitude of the spectrum analyzer is corrected for the cable insertion loss and any other applicable losses. A fully charged battery was used as power supply voltage.

Applicant:	Kyocera	
FCC ID:	V65C5133	
Report #:	CT-C5133-0912-R0	

5 ANTENNA REQUIREMENTS

5.1 Requirements

FCC: § 15.203

IC: RSS-210

1) For intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached atenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2) According to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

5.2 Antenna Information

- a) The Antennas used in this product are permanently attached
- b) There are no provisions for connection to an external antenna

This phone unit complies with the requirement of 15.203

Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

6 6dB BANDWIDTH

6.1 Test Configuration

FCC: § 15.247 a2

IC: RSS-210 §A8.2 (a)

The RF output port of the EUT was directly connected to the input of the spectrum analyzer with sufficient attenuation. Subsequently, the low, mid and high channels of transmitter were enabled separately to investigate the 6 dB-bandwidth for each channel. A fully charged battery was used as supply voltage.

Spectrum Analyzer Parameters:

RBW = 100kHz, VBW = 300kHz, Span=40MHz, Sweep Time = 20mS

Frequencies of Interest: Spectrum was investigated from 2412 MHz – 2462 MHz.

Figure	802.11 Mode	Channel	Frequency	Data Rate (Mbps)	Measured BW (MHz)
6-1a		1	2412	1	12.84
6-1b	b	6	2437	1	12.79
6-1c		11	2462	1	12.83
6-2a		1	2412	6	16.37
6-2b	g	6	2437	6	16.44
6-2c		11	2462	6	16.34
6-3a		1	2412	6.5/7.2 (MCS0)	17.41
6-3b	n	6	2437	6.5/7.2 (MCS0)	17.52
6-3c]	11	2462	6.5/7.2 (MCS0)	17.46

Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

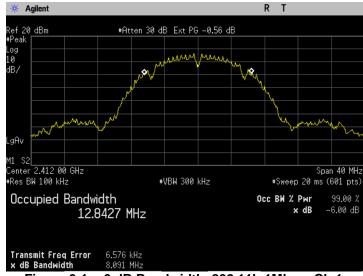


Figure 6-1a: 6 dB Bandwidth, 802.11b 1Mbps, Ch 1.

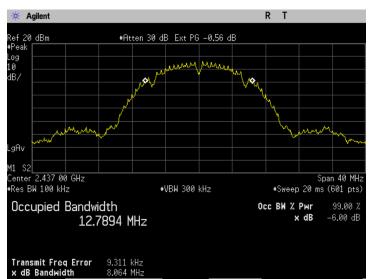
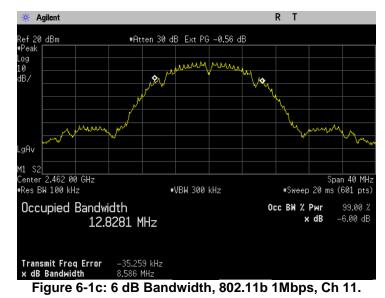



Figure 6-1b: 6 dB Bandwidth, 802.11b 1Mbps, Ch 6.

Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

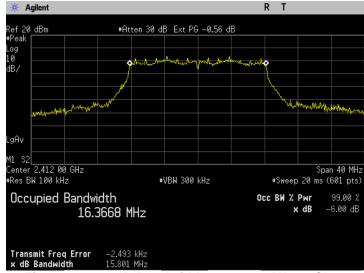
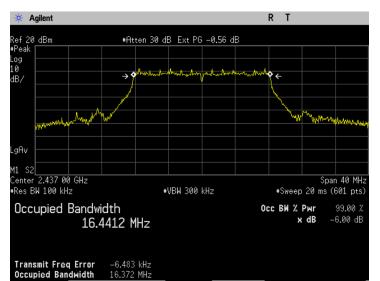
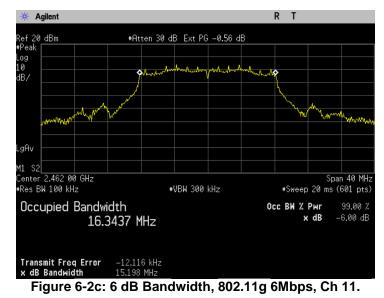




Figure 6-2a: 6 dB Bandwidth, 802.11g 6Mbps, Ch 1.

© 2012 Comptest Services LLC Page 9 of 33 WLAN Report This report shall not be reproduced except in full, without the written consent of CompTest Services LLC.

Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

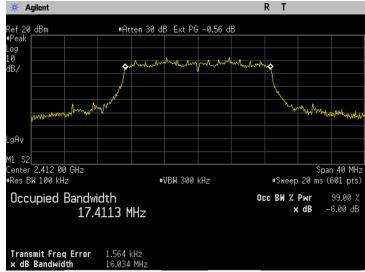
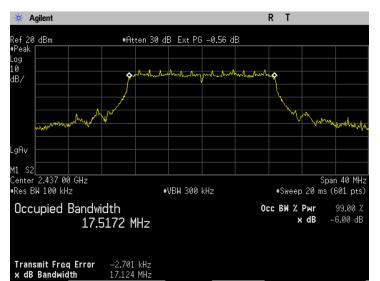
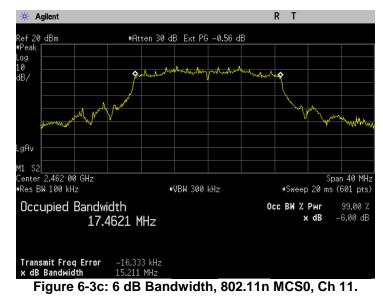




Figure 6-3a: 6 dB Bandwidth, 802.11n MCS0, Ch 1.

© 2012 Comptest Services LLC Page 10 of 33 WLAN Report This report shall not be reproduced except in full, without the written consent of CompTest Services LLC.

Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

7 Peak OUTPUT POWER

7.1 Test Configuration

FCC: § 15.247 b3

IC: RSS-210 §8.4(4)

The RF output port of the EUT was directly connected to the input of the spectrum analyzer with sufficient attenuation. Subsequently, the low, mid and high channels of transmitter were enabled separately to investigate the peak output power for each channel. A fully charged battery was used as supply voltage.

Spectrum Analyzer Parameters:

RBW = 1MHz, VBW = 8MHz, Span=40MHz, Sweep Time = Auto

Frequencies of Interest: Spectrum was investigated from 2412 MHz – 2462 MHz.

Mode	Data Rate	CONDUCTED POWER (dBm)		
	(Mbps)	Ch 01	Ch 06	Ch 11
		2412 MHz	2437 MHz	2462 MHz
802.11b	1	17.38	16.89	17.50
	2	17.46	16.98	17.81
	5.5	17.55	17.07	18.02
	11	17.65	17.25	18.12
802.11g	6	17.56	17.22	17.78
	9	17.36	16.88	17.37
	12	17.30	16.39	17.38
	18	17.01	15.62	17.16
	24	16.44	14.96	17.02
	36	16.06	14.20	16.67
	48	15.21	13.92	16.13
	54	14.63	13.39	15.96
802.11n	MCS0	16.38	15.81	16.35
	MCS1	15.95	15.47	16.29
	MCS2	15.85	15.12	15.90
	MCS3	15.12	14.62	15.59
	MCS4	14.38	14.24	14.83
	MCS5	13.86	13.72	13.93
	MCS6	13.32	13.37	13.27
	MCS7	13.01	12.45	12.46

Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

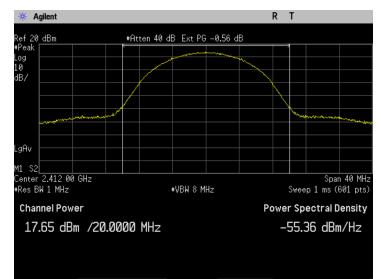
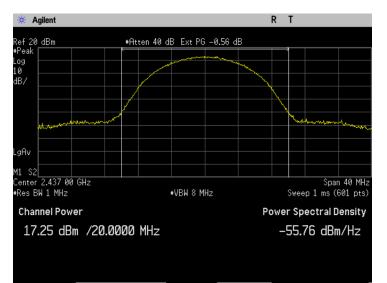
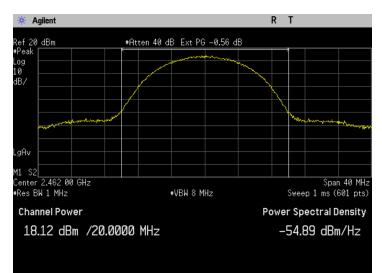




Figure 7-1: Output Power 802.11b, 11Mbps, Ch 1

Figure 7-3: Output Power 802.11b, 11Mbps, Ch 11

Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

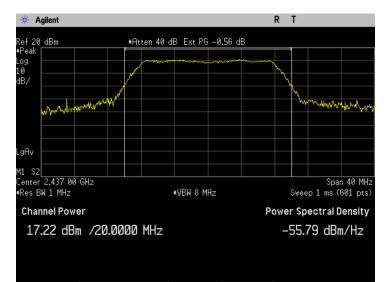
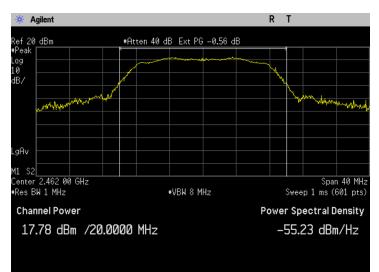




Figure 7-4: Output Power 802.11g, 6Mbps, Ch 1

Figure 7-6: Output Power 802.11g, 6 Mbps, Ch 11

Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

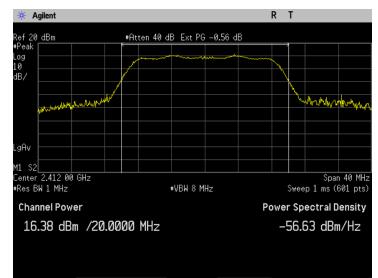
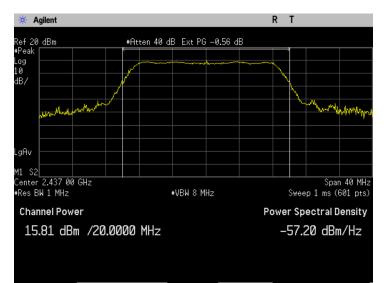



Figure 7-7: Output Power 802.11n, MSC0, Ch 1

Figure 7-9: Output Power 802.11n, MSC0, Ch 11

Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

8 POWER SPECTRAL DENSITY (PSD)

8.1 Test Configuration

FCC: § 15.247 e

IC: RSS-210 §A8.2(2)

The RF output port of the EUT was directly connected to the input of the spectrum analyzer with sufficient attenuation. Subsequently, the transmitter was set in transmission mode at appropriate frequency. A fully charged battery was used as supply voltage.

Spectrum Analyzer Parameters:

RBW = 3kHz, VBW = 10kHz, Span=300kHz, Sweep Time = 100sec, DL=8dBm

Frequencies of Interest: Spectrum was investigated from 2412 MHz – 2462 MHz.

Figure	Mode	Channel	Frequency	Measured PSD (dBm)
8-1a		1	2412	-12.36
8-1b	802.11 b	6	2437	-13.52
8-1c		11	2462	-12.46
8-2a		1	2412	-15.25
8-2b	802.11 g	6	2437	-17.51
8-2c		11	2462	-16.61
8-3a		1	2412	-17.09
8-3b	802.11 n	6	2437	-18.17
8-3c		11	2462	-18.47

Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

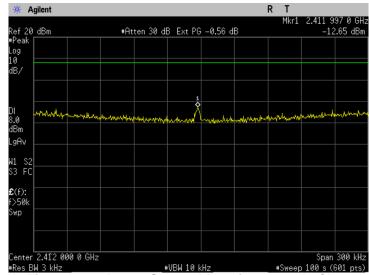


Figure 8-1a: Power Spectral Density, 802.11b, Ch 1.

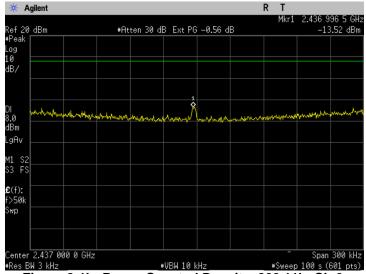
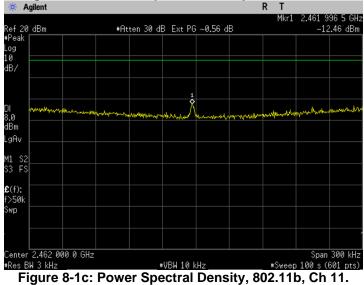



Figure 8-1b: Power Spectral Density, 802.11b, Ch 6.

Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

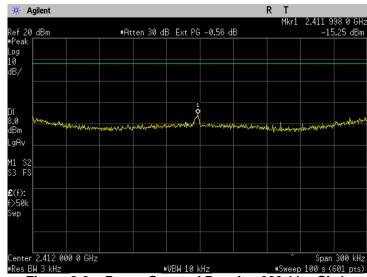


Figure 8-2a: Power Spectral Density, 802.11g, Ch 1.

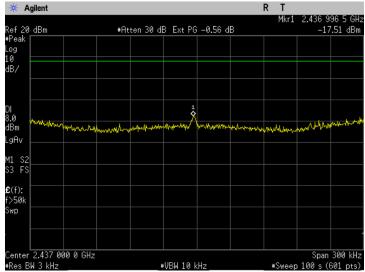
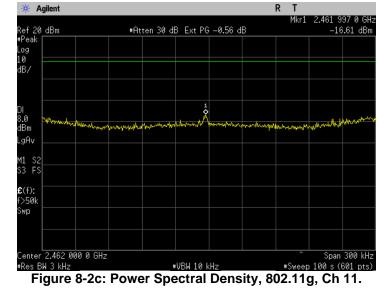



Figure 8-2b: Power Spectral Density, 802.11g, Ch 6.

© 2012 Comptest Services LLC Page 17 of 33 WLAN Report This report shall not be reproduced except in full, without the written consent of CompTest Services LLC.

Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

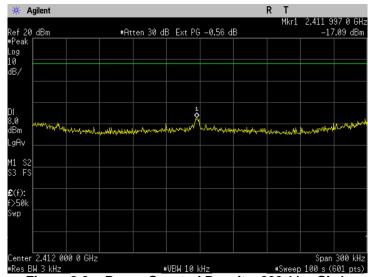


Figure 8-3a: Power Spectral Density, 802.11n, Ch 1.

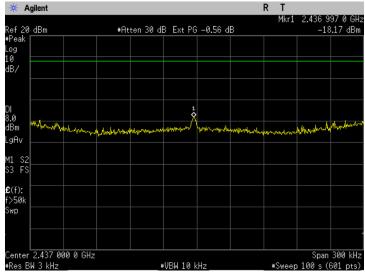
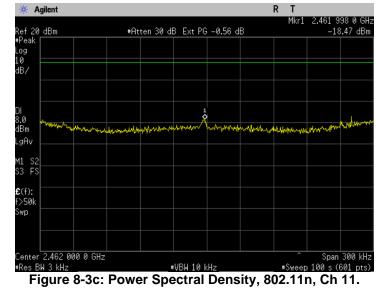



Figure 8-3b: Power Spectral Density, 802.11n, Ch 6.

© 2012 Comptest Services LLC Page 18 of 33 WLAN Report This report shall not be reproduced except in full, without the written consent of CompTest Services LLC.

Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

9 BANDEDGE

9.1 Test Configuration

FCC:	§ 15.247 d
IC:	RSS-210 §A8.5

The RF output port of the EUT was directly connected to the input of the spectrum analyzer with sufficient attenuation. Subsequently, the low and high channels of transmitter were enabled separately to investigate the band-edge compliance of conducted emissions. To ensure the band-edge compliance when the channels are hopping, measurements were also conducted at low and high channels in this mode. A fully charged battery was used as supply voltage.

Spectrum Analyzer Parameters:

RBW = 100kHz, VBW = 300kHz, Span=50MHz, Sweep Time = Auto, DL=-20dBc CF=2390MHz or 2483.5MHz

Frequencies of Interest: Spectrum was investigated from 2412 MHz – 2462 MHz.

9.2 Results: Bandedge				
Figure	802.11 Mode	Channel	Frequency	Plot Description
9-1a	h (1Mhna)	1	2412	Low ch band edge
9-1b	b (1Mbps)	11	2462	High ch band edge
9-2a	a (CMbaa)	1	2412	Low ch band edge
9-2b	g (6Mbps)	11	2462	High ch band edge
9-3a	n (6 5/7 2 Mbna)	1	2412	Low ch band edge
9-3b	n (6.5/7.2 Mbps)	11	2462	High ch band edge

Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

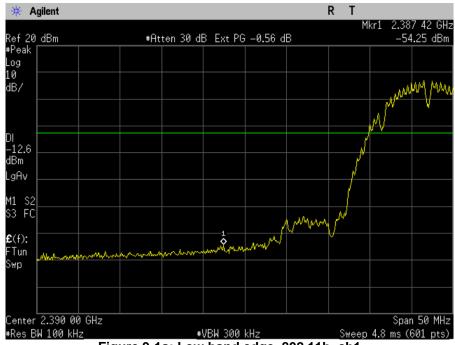
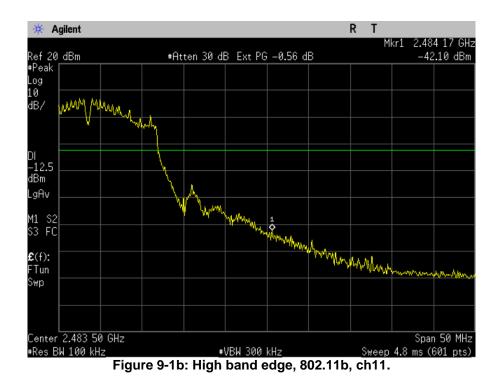



Figure 9-1a: Low band edge, 802.11b, ch1

Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

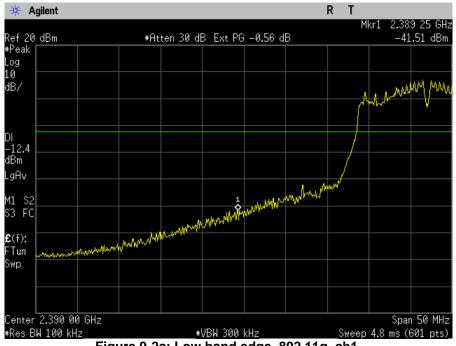


Figure 9-2a: Low band edge, 802.11g, ch1.

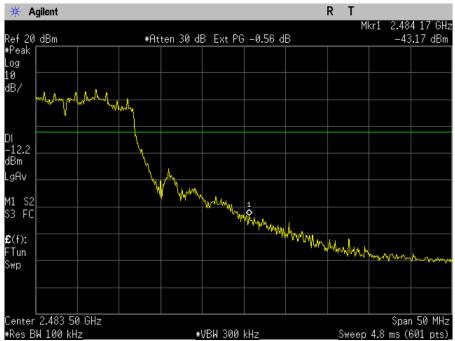


Figure 9-2b: High band edge, 802.11g, ch11.

Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

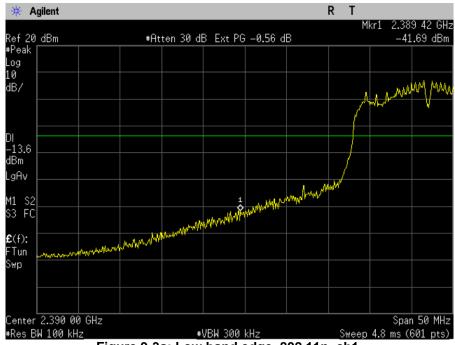
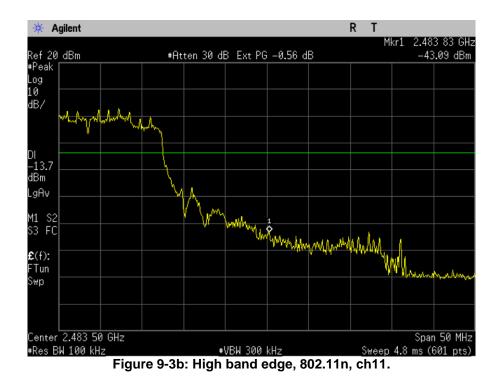



Figure 9-3a: Low band edge, 802.11n, ch1.

Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

10 SPURIOUS RF CONDUCTED EMISSIONS

10.1	Test	Confia	uration

 FCC:
 § 15.247 d

 IC:
 RSS-210 §A8.5

The RF output port of the EUT was directly connected to the input of the spectrum analyzer with sufficient attenuation. Subsequently, the low, mid and high channels of Bluetooth transmitter were enabled separately and the frequency spectrum was investigated for any spurious emissions. A fully charged battery was used as supply voltage.

Spectrum Analyzer Parameters:

RBW = 100kHz, VBW = 300kHz, Sweep Time = Auto, DL=-20dBc

Frequencies of Interest: Spectrum was investigated from 30MHz – 25 GHz.

10.2 Results: Conducted Spurious Emissions				
Figure	Mode	Channel	Frequency	Plot Description
10-1a		1	2412	Low ch bandedge, 30MHz to 25GHz
10-1b	b	6	2437	Mid ch bandedge, 30MHz to 25GHz
10-1c		11	2462	High ch bandedge, 30MHz to 25GHz
10-2a		1	2412	Low ch bandedge, 30MHz to 25GHz
10-2b	g	6	2437	Mid ch bandedge, 30MHz to 25GHz
10-2c		11	2462	High ch bandedge, 30MHz to 25GHz
10-3a		1	2412	Low ch bandedge, 30MHz to 25GHz
10-3b	n	6	2437	Mid ch bandedge, 30MHz to 25GHz
10-3c		11	2462	High ch bandedge, 30MHz to 25GHz
Comment	s:			

Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

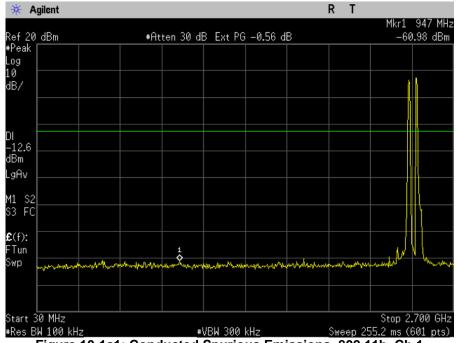
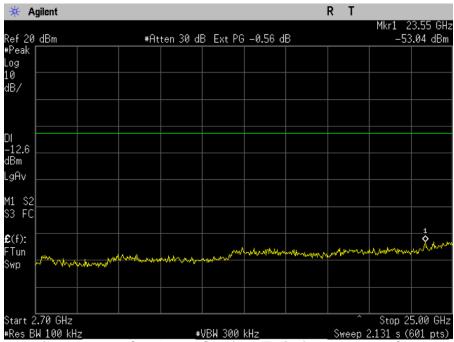
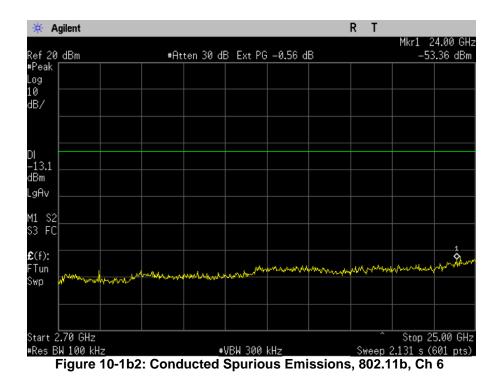


Figure 10-1a1: Conducted Spurious Emissions, 802.11b, Ch 1

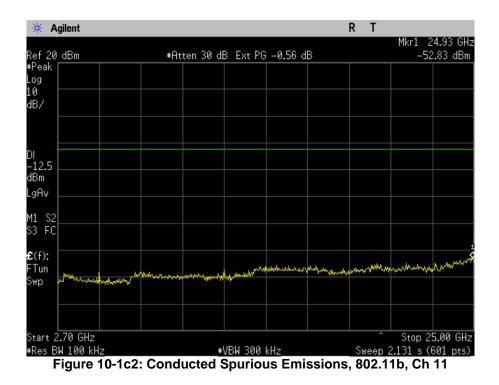



Figure 10-1a2: Conducted Spurious Emissions, 802.11b, Ch 1

Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

🔆 Agilent						RT		E10.0
ef 20 dBm	*0+	ten 30 dE		-056/	18		Mkr1 1	516 G 0.12 dB
Peak	*n(D EALFO	-0.30 (-00	9.12 UD
og								
)								
37								
24								
.3.1 3m								
iAv								
L S2								
FC FC								,
							1 1	11 11
(f):								11 11
Tun							1 1)	IUI –
P	when when when	Warn's along a	Mana	manthe	www.har	whereburn	mond	- MAR
Mod Linear and Linear								
art 30 MHz							Stop 2	.700 G
es BW 100 kHz		#1	/BW 300	kHz —		Sween 2	55.2 ms (

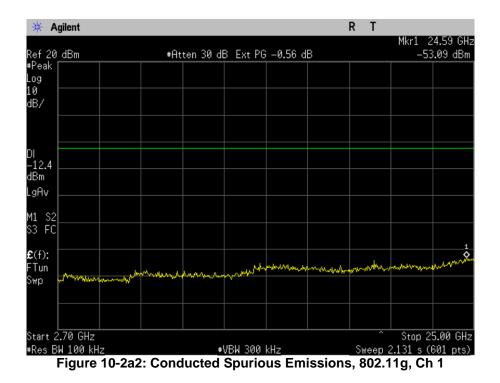
Figure 10-1b1: Conducted Spurious Emissions, 802.11b, Ch 6



Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

🤄 Agilent				RT	ML-1 EQ2 M
ef 20 dBm	#Atton 3	30 dB Ext PG -	-056 dB		Mkr1 502 M -57.74 dB
Peak			0.30 00		37.74 QD
ig 🛛					
)					
37					l.
.2.5					
3m					
iAv					
					Ц
<u>\$2</u>					
FC					a
(f):					
Tun K					(J \)
	happen and the second second	an an an tradition of the second	Mar when when when when when when when when	he de anna an an abhailte	Mutana Mar
PDACE AND A CONTRACT OF A C		McCurrent and a second	a Molle and a Landon and	2001 QV-0-1-1-1-10	
art 30 MHz					Stop 2.700 G
es BW 100 kHz		#VBW 300 kH	Iz	Sweep 25	5.2 ms (601 pt

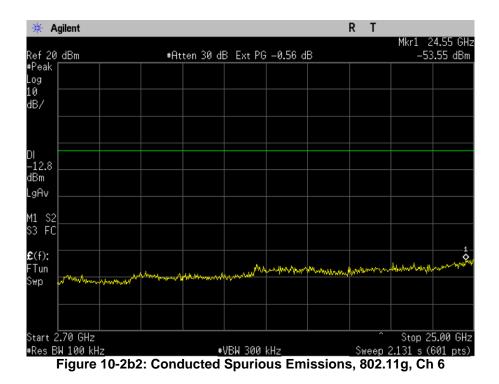
Figure 10-1c1: Conducted Spurious Emissions, 802.11b, Ch 11



Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

🔆 Agilent									226 M
ef 20 dBm		#At	ten 30 di	B Ext PG	-0.56 d	В		-61	L.04 dB
Peak 🔤									
)g									
2.									
37									
								1	
24									
12.4 3m									
1Av									
s2									
FC FC									
									1.6
(f):									11
Fun	1								111
vp		11						· · · · ·	M
www.	will-warder the former of the	a service and	n share a share	w.mm.www.	ertendigi gilgetegendigi filmen	an load of the loa	Party and a second second second	CONVENDO.	Teron
								<u> </u>	700.0
art 30 MH: es BW 100				VBW 300				2 Stop ای 55.2 ms	

Figure 10-2a1: Conducted Spurious Emissions, 802.11g, Ch 1



Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

									533 M
ef 20_dBm		#Atte	n 30 dl	B Ext PG	6 −0.56 c	IB		-61	1.51 dB
Peak									
)g									
0									
B/									
									Ì.
									1
12.8									
3m									
βAν									
									11
1 \$2									Щ
3 FC									Щ.
									14
(f):								10	-UI
Tun	1								141
np	man Summer	man	Americh	www.	mault	- Margan and the sea	month	molection	how
a de la compañía de la									
art 30 MHz								Stop 2	700 G
lart 30 Mil2 Res BW 100 kHz_				VBW 300	LU-		Succes 1	255.2 ms (

Figure 10-2b1: Conducted Spurious Emissions, 802.11g, Ch 6

Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

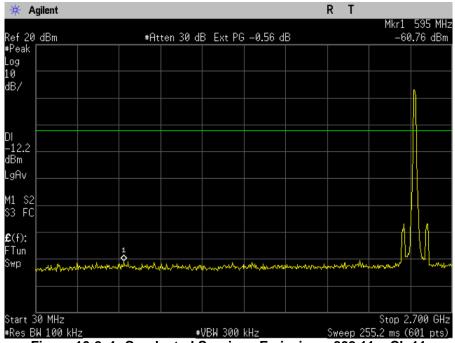


Figure 10-2c1: Conducted Spurious Emissions, 802.11g, Ch 11

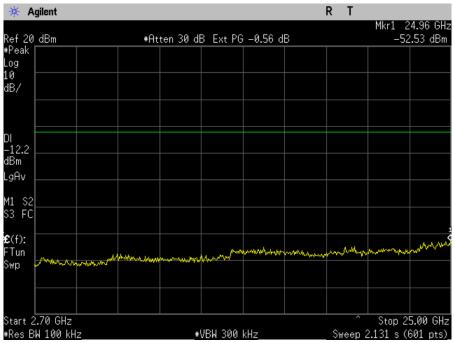
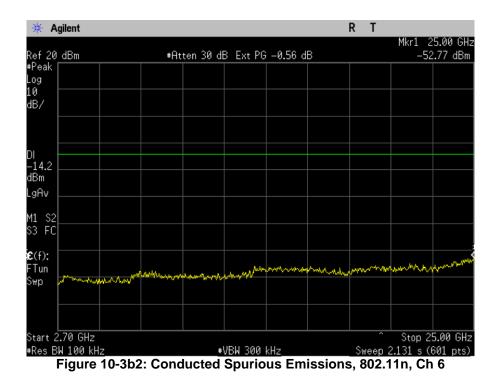



Figure 10-2c2: Conducted Spurious Emissions, 802.11g, Ch 11

Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

🔆 Agilent							Mkr1	324 M
ef 20 dBm	#At	ten 30 dE	3 Ext PG	6 –0.56 c	IB		-61	0.51 dB
Peak								
g								
37								
13.6								
3m								
iAv								
1 \$2							1 (
FC								
							1 (1.6
(f):								t) –
Fun 1							1	U1
1P ambet and the strengt	and a start water and a start	work water have	month	and a start and a start and a start and a start	mound	and marine	maran and	ma
art 30 MHz							Stop 2	.700 G
les BW 100 kHz			VBW 300	kH→		Swaan 2	55.2 ms (

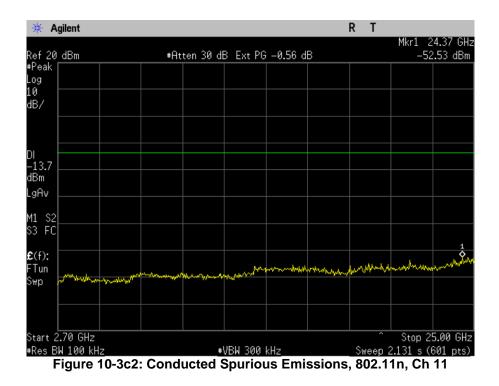
Figure 10-3a1: Conducted Spurious Emissions, 802.11n, Ch 1



Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

🔆 Agilent							Mkr1	524 M
ef 20 dBm		#Atten 30)dB Ext P	PG -0.56	dB		-6	0.61 dB
Peak 🛛 👘								
og 🛛								
)								
37								
								k
								+
14.2								n
3m								
;Av								
1 \$2								ff l
3 FC								11
								1 8
(f):							Ő.	
Fun	1							111
4p	manne	marchen	Marchant	American	non when we	month	monunder	"Mm
aller a second sec								
art 30 MHz							Stop 2	2.700 G
art 30 MHZ Res BW 100 kHz			#VBW 300	5 LU_		Ô	255.2 ms (

Figure 10-3b1: Conducted Spurious Emissions, 802.11n, Ch 6



Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

🔆 Agilent						RT	Mkr1	417 M
ef 20 dBm	#At	ten 30 dE	3 Ext PG	i -0.56 d	IB			.30 dB
Peak 👘 👘								
)g								
2,								
3/								
								1
								1
13.7								
3m								11
;Av								Ц
1 \$2								
3 FC								Η.
(1).							Å 1	
(f): Tun :								
			w. Martha March			Mananana	N N	W)
the all the second second	Walan and a state of the second state of	whent	w.~.Julanteralling	en aleman and the second	mounderry	V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	WW VIEW	
art 30 MHz							Stop 2.	700 G
les BW 100 kHz			/BW 300	レロラ		Sucon 25	5.2 ms (6	

Figure 10-3c1: Conducted Spurious Emissions, 802.11n, Ch 11

Applicant:	Kyocera
FCC ID:	V65C5133
Report #:	CT-C5133-0912-R0

11 AC POWER LINE CONDUCTED EMISSIONS

11.1 Test Configuration & Results

FCC: § 15.107 § 15.207

IC: RSS-210 §6.6

See separate report

12 RADIATED EMISSIONS

12.1 Test Configuration & Results

FCC: § 15.109 § 15.209

IC: RSS-210 §A2.9 (2)

See separate report

13 SAR TEST

13.1 Te	est Configuration & Results
FCC:	§ 2.1091/2.1093
IC:	RSS-102
See sepa	rate report

14 TEST EQUIPMENT

The test equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

Description	Manufacturer	Model No.	Serial No.	Cal Due Date
Spectrum Analyzer	Agilent	E4440A	MY44303130	12/14/12