

ACCREDITED certificate 4346.01

Report No.: JYTSZ-R12-2200158

FCC RF Test Report

(Bluetooth)

Applicant: PAX Technology Limited

Address of Applicant: Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour, Hong

Kong

Equipment Under Test (EUT)

Product Name: Smart Kiosk

Model No.: SK300

Trade mark: PAX

FCC ID: V5PSK300

Applicable standards: FCC CFR Title 47 Part 15C (§15.247)

Date of sample receipt: 24 Jan., 2022

Date of Test: 25 Jan., to 03 Mar., 2022

Date of report issued: 04 Mar., 2022

Test Result: PASS

Tested by: _____ Date: ____ 04 Mar., 2022

Reviewed by: Date: 04 Mar., 2022

Approved by: Date: 04 Mar., 2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Report No.: JYTSZ-R12-2200158

2 Version

Version No.	Date	Description
00	04 Mar., 2022	Original

3 Contents

			Page
1	COVI	ER PAGE	1
2	VERS	SION	2
3	CON.	TENTS	3
4	GENI	ERAL INFORMATION	4
	4.2 4.3 4.4 4.5 4.6 4.7 4.8	CLIENT INFORMATION GENERAL DESCRIPTION OF E.U.T. TEST MODE AND TEST ENVIRONMENT DESCRIPTION OF SUPPORT UNITS MEASUREMENT UNCERTAINTY ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD LABORATORY FACILITY LABORATORY LOCATION TEST INSTRUMENTS LIST	
5	MEAS	SUREMENT SETUP AND PROCEDURE	8
6	5.2 5.3	TEST CHANNELTEST SETUPTEST PROCEDURETESULTS	8 10
	6.1.1 6.1.2 6.2 6.3 6.4 6.5		11 12 13 14 16

4 General Information

4.1 Client Information

Applicant:	PAX Technology Limited
Address:	Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour, Hong Kong
Manufacturer:	PAX Computer Technology (Shenzhen) Co., Ltd.
Address:	401 and 402, Building 3, Shenzhen Software Park, Nanshan District, Shenzhen City, Guangdong Province, P.R.C

4.2 General Description of E.U.T.

Product Name:	Smart Kiosk
Model No.:	SK300
Operation Frequency:	2402 MHz - 2480 MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	1.5 dBi
AC adapter:	Model: G065A1-240002700
	Input: AC100-240V, 50/60Hz,1.5A
	Output: DC 24.0V, 2.7A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Report No.: JYTSZ-R12-2200158

4.3 Test Mode and Test Environment

Test Modes:						
Non-hopping mode: Keep the EUT in continuous transmitting mode.						
Hopping mode:	Keep the EUT in hopping mode.					
•	Remark: For AC power line conducted emission and radiated spurious emission, pre-scan GFSK, π /4-DQPSK, 8DPSK Modulation mode, found GFSK was worse case mode. The report only reflects the test data of worst mode.					
Operating Environment:						
Temperature: 15° C ~ 35° C						
Humidity: 20 % ~ 75 % RH						
Atmospheric Pressure:	1010 mbar					

4.4 Description of Support Units

The EUT has been tested as an independent unit.

4.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Conducted Emission for LISN (9kHz ~ 150kHz)	±3.11 dB
Conducted Emission for LISN (150kHz ~ 30MHz)	±2.62 dB
Radiated Emission (30MHz ~ 1GHz) (3m SAC)	±4.45 dB
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	±5.34 dB
Radiated Emission (18GHz ~ 40GHz) (3m SAC)	±5.34 dB

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

4.6 Additions to, Deviations, or Exclusions From the Method

No

4.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

■ ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

4.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-149-C No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

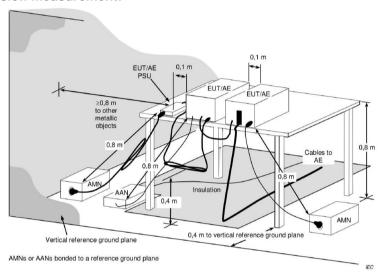
4.9 Test Instruments list

Radiated Emission(3m SAC):						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal.Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	ETS	9m*6m*6m	WXJ001-1	01-19-2021	01-18-2024	
DiCaril on Antonna	Cabusambaak	\/LIL D0400	WV 1000	03-03-2021	03-02-2022	
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	02-17-2022	02-16-2023	
Biconical Antenna	Schwarzbeck	VUBA9117	WXJ002-1	06-20-2021	06-19-2022	
Llawa Antonna	Cabusambaak	DDLIAGADOD	WV 1000 0	03-03-2021	03-02-2022	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	02-17-2022	02-16-2023	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-3	06-18-2021	06-17-2022	
Pre-amplifier	Cabusanhaak	DD\/0740D	WYC004 7	03-07-2021	03-06-2022	
(30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXG001-7	02-17-2022	02-16-2023	
Pre-amplifier	SKET	LNDA 0110C F0	WYC004 2	03-07-2021	03-06-2022	
(1GHz ~ 18GHz)	SKET	LNPA_0118G-50	WXG001-3	02-17-2022	02-16-2023	
Pre-amplifier	DE Cyatam	TRLA-	WXG001-9	03-07-2021	03-06-2022	
(18GHz ~ 40GHz)	RF System	180400G45B	WAG001-9	02-17-2022	02-16-2023	
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	03-03-2021	03-02-2022	
Elvii Test Receivei	Ronde & Schwarz	ESRP1	VV XJUU3-1	02-17-2022	02-16-2023	
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ004-2	11-27-2021	11-26-2022	
Coaxial Cable	IVT07	JYT3M-1G-NN-8M	WVC004 4	03-07-2021	03-06-2022	
(30MHz ~ 1GHz)	JYTSZ	JY 13IVI-TG-ININ-8IVI	WXG001-4	02-17-2022	02-16-2023	
Coaxial Cable	JYTSZ	JYT3M-18G-NN-	WXG001-5	03-07-2021	03-06-2022	
(1GHz ~ 18GHz)	J115Z	8M	WAG001-5	02-17-2022	02-16-2023	
Coaxial Cable	JYTSZ	JYT3M-40G-SS-	WVC004 7	03-07-2021	03-06-2022	
(18GHz ~ 40GHz)	JIIOZ	8M	WXG001-7	02-17-2022	02-16-2023	
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N/A		
Test Software	Tonscend	TS+		Version: 3.0.0.1		

Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Manage No.	Cal.Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Dobdo & Cobworz	ESCI 3	WV 1002	03-03-2021	03-02-2022		
Elvii Test Receivei	Receiver Rohde & Schwarz ESCI 3 WXJ003	W X J U U 3	02-17-2022	02-16-2023			
RF Switch	TOP PRECISION	RSU0301	WXG003	03-03-2021	03-02-2022		
KF SWILCH	TOP PRECISION RS00301 WAG003	WAG003	02-17-2022	02-16-2023			
LISN	0 -	Schwarzbeck NSLK 8127 QCJ	00 1004 40	03-18-2021	03-17-2022		
LISIN	Schwarzbeck		QCJ001-13	02-17-2022	02-16-2023		
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	06-18-2021	06-17-2022		
LISN Coaxial Cable	IVTOZ	IVTOE 40 NIN OM	WXG003-1	03-03-2021	03-02-2022		
(9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M		02-17-2022	02-16-2023		
Test Software	AUDIX	E3	Version: 6.110919b				

Conducted Method:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
Spectrum Analyzer	Keysight	N9010B	WXJ004-3	10-25-2021	10-24-2022	
Vector Signal Generator	Keysight	N5182B	WXJ006-6	10-25-2021	10-24-2022	
Signal Generator	Keysight	N5173B	WXJ006-4	10-25-2021	10-24-2022	
Wireless Connectivity Tester	Rohde & Schwarz	CMW270	WXJ008-7	10-25-2021	10-24-2022	
DC Power Supply	Keysight	E3642A	WXJ025-2	10-25-2021	10-24-2022	
Temperature Humidity Chamber	HONG ZHI	CZ-A-80D	WXJ032-3	03-19-2021	03-18-2022	
Power Detector Box	MWRFTEST	MW100-PSB	WXJ007-4	10-25-2021	10-24-2022	
RF Control Unit	MWRFTEST	MW100-RFCB	WXG006	N	/A	
Test Software	MWRFTEST	MTS 8310	Version: 2.0.0.0			

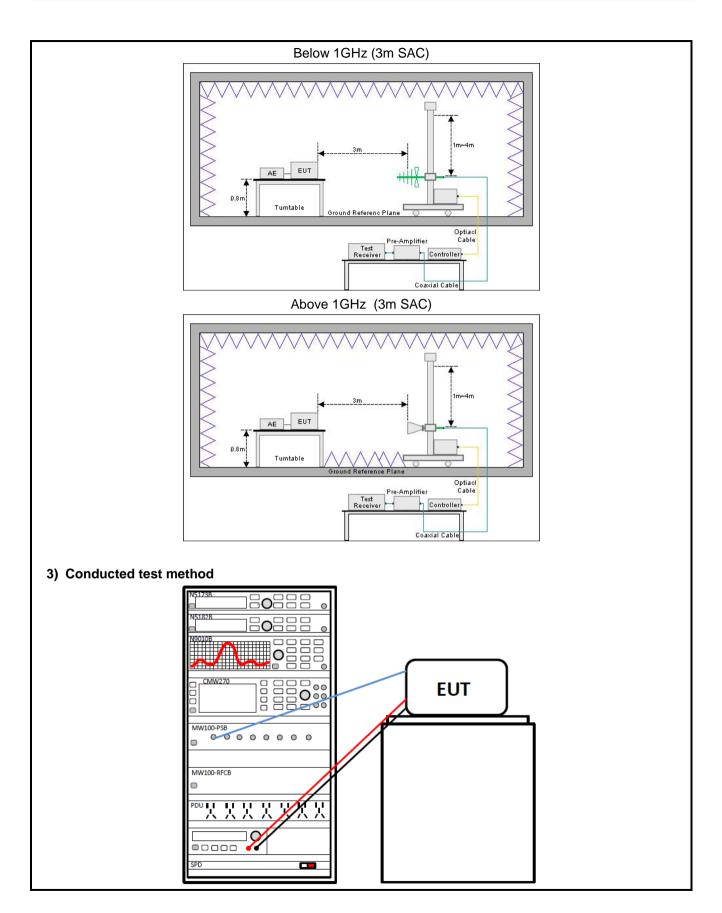
5 Measurement setup and procedure


5.1 Test channel

According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowest channel		Midd	le channel	Highe	est channel
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	39	2441	78	2480

5.2 Test setup


1) Conducted emission measurement:

Note: The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be >0.8 m.

2) Radiated emission measurement:

5.3 Test procedure

5.3 Test procedure)
Test method	Test step
Conducted emission	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
Radiated emission	For below 1GHz:
	1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.
	 EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
	For chave 4CHT.
	For above 1GHz: 1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m.
	2. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4
	m in vertical and horizontal polarizations.
	3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
Conducted test method	The Bluetooth antenna port of EUT was connected to the test port of the test system through an RF cable.
	The EUT is keeping in continuous transmission mode and tested in all modulation modes.
	3. Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through the test software.

6 Test Results

6.1 Summary

6.1.1 Clause and data summary

Test Items	FCC Part Section(s)	Test Data	Result
Antenna Requirement	15.203 15.247 (b)(4)	See Section 6.2	Pass
AC Power Line Conducted Emission	15.207	See Section 6.3	Pass
Conducted Peak Output Power	15.247 (b)(1)	Appendix – BT	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Appendix – BT	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Appendix – BT	Pass
Hopping Channel Number	5.247 (a)(1)(iii)	Appendix – BT	Pass
Dwell Time	15.247 (a)(1)(iii)	Appendix – BT	Pass
Pseudorandom Frequency Hopping Sequence	15.247 (a)(1)	See Section 6.4	Pass
Band Edge (Conducted Method)	15.247 (d)	Appendix – BT	Pass
Band Edge (Radiated Method)	15.205 15.209	See Section 6.5	Pass
Spurious Emission (Conducted Method)	45.047/-1\	Appendix – BT	Pass
Spurious Emission (Radiated Method)	15.247(d)	See Section 6.6	Pass

Remark:

Test Method:

ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

^{1.} Pass: The EUT complies with the essential requirements in the standard.

^{2.} The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

6.1.2 Test Limit

6.1.2 Test Limit						
Items	Limit					
	Г	Frequency range (MHz)	Limit ((dBuV)	7	
			Quasi-peak	Average		
AC Power Line Conducted	<u> </u>	0.15-0.5	66 to 56*	56 to 46*	_	
Emission	-	0.5-5 5-30	56 60	46 50	-	
	*	Decreases with the logar		30		
Conducted Peak Output Power	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.					
20dB Occupied Bandwidth	Within	authorization band				
Carrier Frequencies	a) 0.0	25MHz or the 20dB ba	ndwidth (whichever is	greater).		
Separation	b) 0.0	25MHz or two-thirds of	the 20dB bandwidth	(whichever is greater).	
Hopping Channel Number	At leas	st 15 channels.				
Dwell Time	Not be	greater than 0.4 secon	nds.			
Conducted Band Edge and Conducted Spurious Emission	spectri freque dB bel highes radiate the pe power permit this pa limits s which	100 kHz bandwidth ou um or digitally modulate ncy power that is produ ow that in the 100 kHz at level of the desired pe at measurement, provious ak conducted power ling limits based on the use ted under paragraph (but aragraph shall be 30 dB specified in §15.209(a) fall in the restricted bar e radiated emission lim	ed intentional radiator uced by the intentional bandwidth within the ower, based on either ded the transmitter denits. If the transmitter of RMS averaging of (3) of this section, the instead of 20 dB. Attention at the content of the content of the content of the content of the instead of 20 dB. Attention of the content	is operating, the radi I radiator shall be at I band that contains th an RF conducted or monstrates complian complies with the cor ver a time interval, as e attenuation require enuation below the g dition, radiated emiss .205(a), must also co	io east 20 e a a ace with nducted a d under eneral ions omply	
		Frequency	Limit (dBuV/m @3m)	Remark		
Radiated Band Edge		Above 1GHz	54.0 74.0	Average Value Peak Value		
	D .	1011 (11		r can value		
	Below	1GHz (Measurement				
		Frequency	Limit (dBuV/m @3m)	Remark		
		30MHz-88MHz	40.0	Quasi-peak Value		
		88MHz-216MHz	43.5	Quasi-peak Value		
Radiated Spurious		216MHz-960MHz	46.0	Quasi-peak Value		
Emission		960MHz-1GHz	54.0	Quasi-peak Value		
	Above	e 1GHz (Measurement	-			
		Frequency	Limit (dBuV/m @3m)	Remark		
		Above 1GHz	54.0	Average Value		
			74.0	Peak Value		

Report No.: JYTSZ-R12-2200158

6.2 Antenna Requirement

Standard requirement:

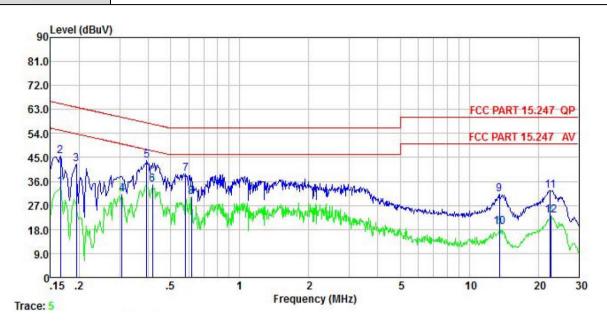
FCC Part 15 C Section 15.203 & 247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

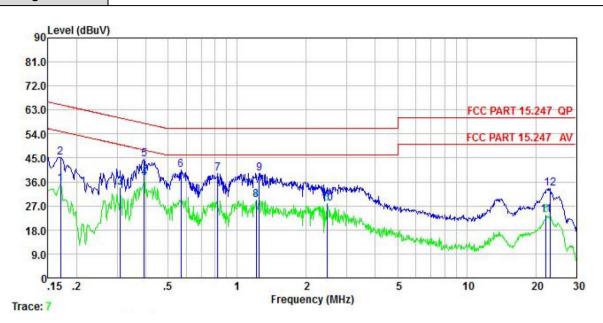
(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


E.U.T Antenna:

The Bluetooth antenna is an Internal antenna which permanently attached, and the best case gain of the antenna is1.5dBi. See product internal photos for details.

6.3 Conducted Emissions

Product name:	Smart Kiosk	Product model:	SK300
Test by:	Mike	Test mode:	BT Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz		


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>dB</u>		dBu₹	dBu∇	<u>dB</u>	
1 2 3 4 5	0.166	33.74	0.04	0.01	33.79			Average
2	0.166	45.52	0.04	0.01	45.57		-19.59	- X - T - C - C - C - C - C - C - C - C - C
3	0.194	42.40	0.04	0.03	42.47		-21.37	
4	0.307	31.04	0.04	0.03	31.11			Average
5	0.393	43.80	0.04	0.04	43.88	57.99	-14.11	QP
6	0.417	34.76	0.04	0.04	34.84	47.51	-12.67	Average
7	0.582	38.81	0.04	0.02	38.87		-17.13	
8	0.617	30.24	0.04	0.02	30.30			Average
8	13.551	30.84	0.25	0.12	31.21		-28.79	
10	13.623	18.69	0.26	0.12	19.07			Average
11	22.535	32.17	0.34	0.16	32.67		-27.33	
12	22.655	22.72	0.34	0.16	23.22			Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

Product name:	Smart Kiosk	Product model:	SK300
Test by:	Mike	Test mode:	BT Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz		

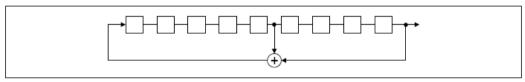
	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
}	MHz	dBu₹	dB	₫B	dBu₹	dBu₹	<u>dB</u>	
1	0.170 0.170	35.29 45.02	0.05 0.05	0.01 0.01	35.35 45.08		-19.59 -19.86	Average
3	0.310	33.75	0.04	0.03	33.82	49.97	-16.15	Average
1 2 3 4 5 6 7 8 9	0.393 0.393	37.46 44.54	0.04 0.04	0.04 0.04	37.54 44.62		-10.45 -13.37	Average QP
6	0.570 0.822	40.35	0.04	0.02 0.03	40.41		-15.59 -16.67	
8	1.210	29.16	0.05	0.09	29.30	46.00	-16.70	Average
10	1.249 2.461	39.17 27.60	0.05 0.07	0.10 0.14	39.32 27.81	46.00		Average
11 12	22.180 23.018	22.96 33.09	0.33 0.33	0.16 0.16	23.45 33.58		-26.55 -26.42	Average QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

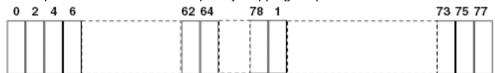
6.4 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part 15 C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

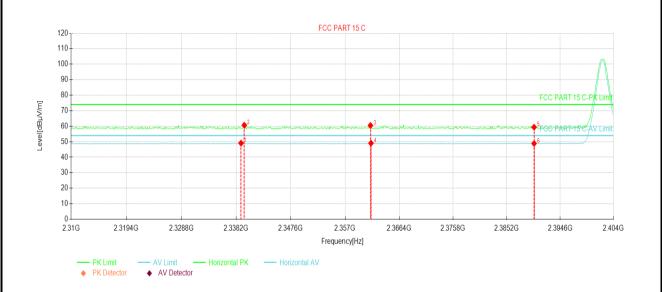
An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.5 Band Edge (Radiated Method)

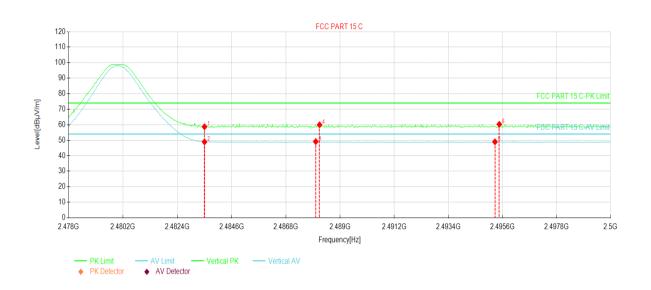
Product Name:	Smart Kiosk	Product Model:	SK300
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		


NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2323.53	24.36	59.73	35.37	74.00	14.27	PK	Vertical
2	2323.72	13.61	48.98	35.37	54.00	5.02	AV	Vertical
3	2350.70	23.84	59.40	35.56	74.00	14.60	PK	Vertical
4	2351.36	13.75	49.31	35.56	54.00	4.69	AV	Vertical
5	2390.00	23.14	58.98	35.84	74.00	15.02	PK	Vertical
6	2390.00	12.97	48.81	35.84	54.00	5.19	AV	Vertical

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

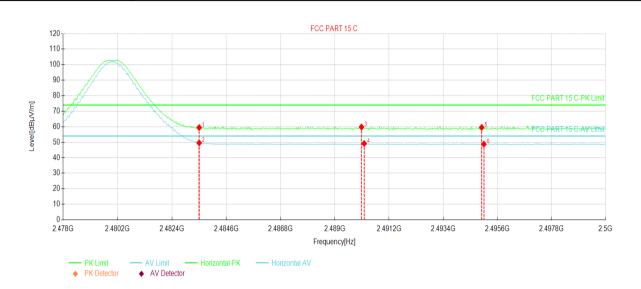
Product Name:	Smart Kiosk	Product Model:	SK300
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		



NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2339.04	13.60	49.08	35.48	54.00	4.92	AV	Horizontal
2	2339.61	25.17	60.65	35.48	74.00	13.35	PK	Horizontal
3	2361.41	24.84	60.48	35.64	74.00	13.52	PK	Horizontal
4	2361.51	13.41	49.05	35.64	54.00	4.95	AV	Horizontal
5	2390.00	23.53	59.37	35.84	74.00	14.63	PK	Horizontal
6	2390.00	13.02	48.86	35.84	54.00	5.14	AV	Horizontal

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Smart Kiosk	Product Model:	SK300
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		

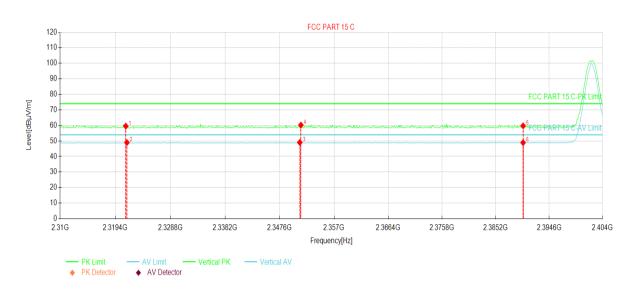


NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	22.95	58.67	35.72	74.00	15.33	PK	Vertical
2	2483.50	13.21	48.93	35.72	54.00	5.07	AV	Vertical
3	2488.01	13.42	49.13	35.71	54.00	4.87	AV	Vertical
4	2488.16	24.25	59.96	35.71	74.00	14.04	PK	Vertical
5	2495.29	13.27	48.96	35.69	54.00	5.04	AV	Vertical
6	2495.46	24.59	60.28	35.69	74.00	13.72	PK	Vertical

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Smart Kiosk	Product Model:	SK300
Test By:	Mike	Test mode:	DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	_	

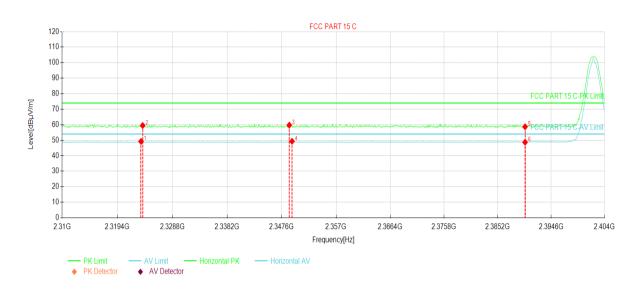
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	23.74	59.46	35.72	74.00	14.54	PK	Horizontal
2	2483.50	13.84	49.56	35.72	54.00	4.44	AV	Horizontal
3	2490.07	24.11	59.81	35.70	74.00	14.19	PK	Horizontal
4	2490.18	13.46	49.16	35.70	54.00	4.84	AV	Horizontal
5	2494.96	23.83	59.52	35.69	74.00	14.48	PK	Horizontal
6	2495.05	13.09	48.78	35.69	54.00	5.22	AV	Horizontal


Remark.

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

π/4-DQPSK mode

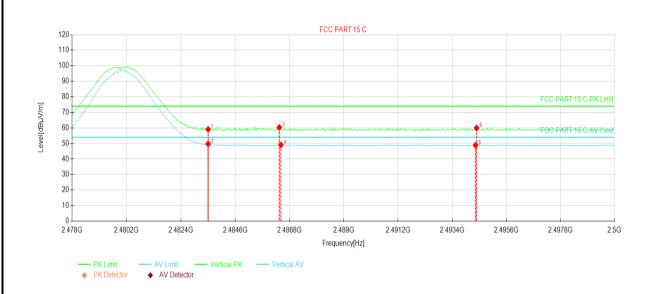
Product Name:	Smart Kiosk	Product Model:	SK300
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		


NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2321.18	24.18	59.53	35.35	74.00	14.47	PK	Vertical
2	2321.37	13.61	48.96	35.35	54.00	5.04	AV	Vertical
3	2351.07	13.47	49.03	35.56	54.00	4.97	AV	Vertical
4	2351.26	24.66	60.22	35.56	74.00	13.78	PK	Vertical
5	2390.00	23.88	59.72	35.84	74.00	14.28	PK	Vertical
6	2390.00	13.06	48.90	35.84	54.00	5.10	AV	Vertical

Remark:

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

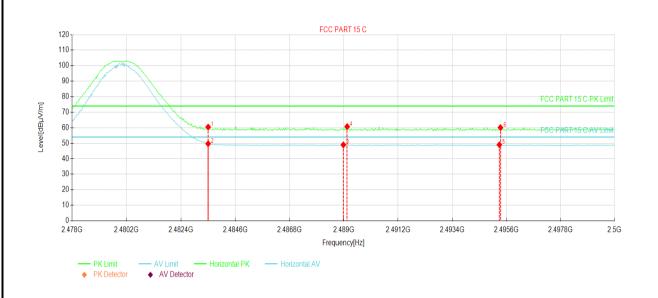
Product Name:	Smart Kiosk	Product Model:	SK300
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		



NO.	Freq. [MHz]	Reading	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2323.44	13.84	49.21	35.37	54.00	4.79	AV	Horizontal
2	2323.72	24.11	59.48	35.37	74.00	14.52	PK	Horizontal
3	2348.91	24.18	59.73	35.55	74.00	14.27	PK	Horizontal
4	2349.38	13.77	49.32	35.55	54.00	4.68	AV	Horizontal
5	2390.00	22.84	58.68	35.84	74.00	15.32	PK	Horizontal
6	2390.00	12.85	48.69	35.84	54.00	5.31	AV	Horizontal

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Smart Kiosk	Product Model:	SK300
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		



NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	23.36	59.08	35.72	74.00	14.92	PK	Vertical
2	2483.50	14.01	49.73	35.72	54.00	4.27	AV	Vertical
3	2486.38	24.61	60.32	35.71	74.00	13.68	PK	Vertical
4	2486.44	13.38	49.09	35.71	54.00	4.91	AV	Vertical
5	2494.34	13.18	48.87	35.69	54.00	5.13	AV	Vertical
6	2494.39	24.25	59.94	35.69	74.00	14.06	PK	Vertical

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

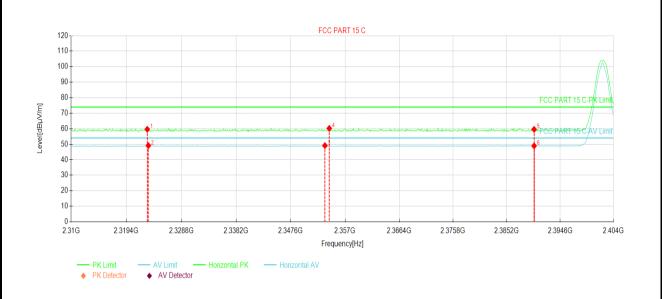
Product Name:	Smart Kiosk	Product Model:	SK300
Test By:	Mike	Test mode:	2DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		


NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	24.70	60.42	35.72	74.00	13.58	PK	Horizontal
2	2483.50	13.97	49.69	35.72	54.00	4.31	AV	Horizontal
3	2488.97	13.22	48.93	35.71	54.00	5.07	AV	Horizontal
4	2489.13	25.04	60.74	35.70	74.00	13.26	PK	Horizontal
5	2495.31	13.32	49.01	35.69	54.00	4.99	AV	Horizontal
6	2495.35	24.39	60.08	35.69	74.00	13.92	PK	Horizontal

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

8DPSK mode

Product Name:	Smart Kiosk	Product Model:	SK300
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		


NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2326.63	24.37	59.76	35.39	74.00	14.24	PK	Vertical
2	2326.63	13.65	49.04	35.39	54.00	4.96	AV	Vertical
3	2357.28	13.50	49.11	35.61	54.00	4.89	AV	Vertical
4	2357.65	24.46	60.07	35.61	74.00	13.93	PK	Vertical
5	2390.00	23.58	59.42	35.84	74.00	14.58	PK	Vertical
6	2390.00	12.99	48.83	35.84	54.00	5.17	AV	Vertical

Remark:

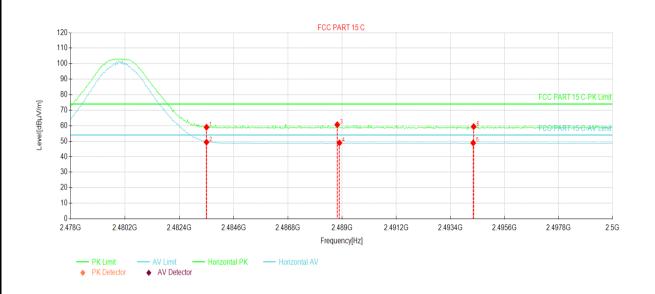
- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Smart Kiosk	Product Model:	SK300
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2322.97	24.27	59.63	35.36	74.00	14.37	PK	Horizontal
2	2323.16	13.77	49.13	35.36	54.00	4.87	AV	Horizontal
3	2353.52	13.55	49.13	35.58	54.00	4.87	AV	Horizontal
4	2354.27	24.62	60.21	35.59	74.00	13.79	PK	Horizontal
5	2390.00	23.74	59.58	35.84	74.00	14.42	PK	Horizontal
6	2390.00	13.10	48.94	35.84	54.00	5.06	AV	Horizontal

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Smart Kiosk	Product Model:	SK300
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		

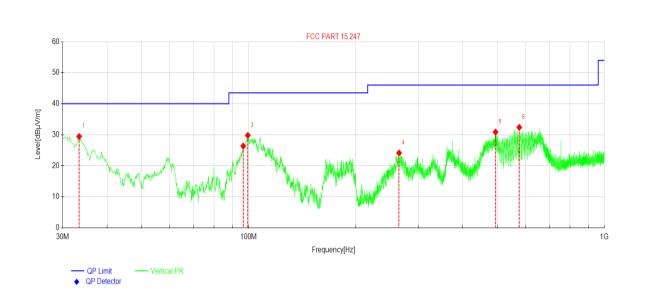


NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	23.31	59.03	35.72	74.00	14.97	PK	Vertical
2	2483.50	13.23	48.95	35.72	54.00	5.05	AV	Vertical
3	2489.41	13.20	48.90	35.70	54.00	5.10	AV	Vertical
4	2489.50	24.60	60.30	35.70	74.00	13.70	PK	Vertical
5	2494.78	23.95	59.64	35.69	74.00	14.36	PK	Vertical
6	2494.85	13.30	48.99	35.69	54.00	5.01	AV	Vertical

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Smart Kiosk	Product Model:	SK300
Test By:	Mike	Test mode:	3DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		

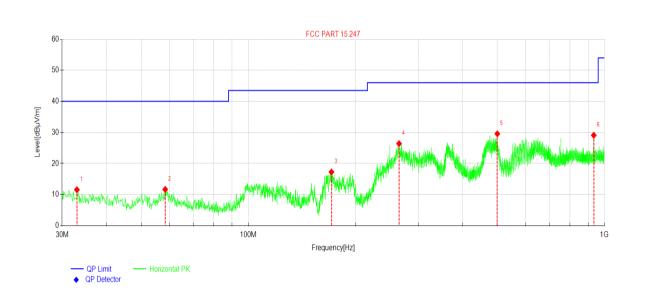
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	23.30	59.02	35.72	74.00	14.98	PK	Horizontal
2	2483.50	13.67	49.39	35.72	54.00	4.61	AV	Horizontal
3	2488.80	24.97	60.68	35.71	74.00	13.32	PK	Horizontal
4	2488.89	13.22	48.93	35.71	54.00	5.07	AV	Horizontal
5	2494.32	13.20	48.89	35.69	54.00	5.11	AV	Horizontal
6	2494.34	23.74	59.43	35.69	74.00	14.57	PK	Horizontal


- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

6.6 Spurious Emission (Radiated Method)

Below 1GHz:

Product Name:	Smart Kiosk	Product Model:	SK300
Test By:	Mike	Test mode:	BT Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		


NO.	Freq. [MHz]	Reading[d BuV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	33.3953	44.83	29.45	-15.38	40.00	10.55	PK	Vertical
2	96.5487	43.16	26.35	-16.81	43.50	17.15	PK	Vertical
3	99.4589	46.05	29.78	-16.27	43.50	13.72	PK	Vertical
4	264.666	37.69	24.13	-13.56	46.00	21.87	PK	Vertical
5	493.997	38.05	30.87	-7.18	46.00	15.13	PK	Vertical
6	576.067	38.48	32.38	-6.10	46.00	13.62	PK	Vertical

Remark:

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Smart Kiosk	Product Model:	SK300
Test By:	Mike	Test mode:	BT Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		

NO.	Freq. [MHz]	Reading[d BuV/m]	Level [dBuV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	33.0073	27.03	11.56	-15.47	40.00	28.44	PK	Horizontal
2	58.4238	26.55	11.66	-14.89	40.00	28.34	PK	Horizontal
3	171.149	34.26	17.26	-17.00	43.50	26.24	PK	Horizontal
4	264.957	39.97	26.41	-13.56	46.00	19.59	PK	Horizontal
5	500.109	36.53	29.57	-6.96	46.00	16.43	PK	Horizontal
6	933.063	30.27	29.10	-1.17	46.00	16.90	PK	Horizontal

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Above 1GHz:

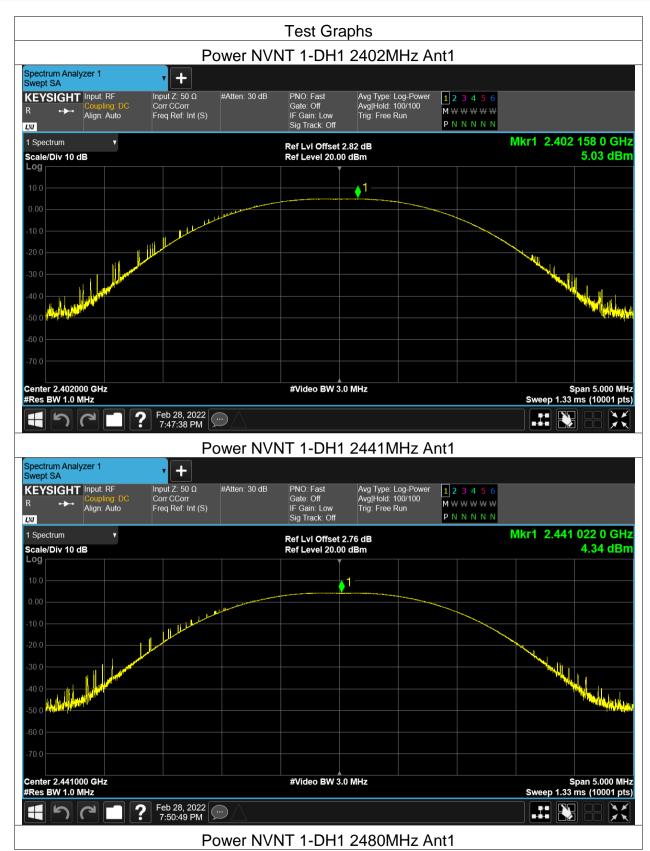
		Test o	hannel: Lowest c	hannel			
Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization	
4804.00	56.71	-9.60	47.11	74.00	26.89	Vertical	
4804.00	56.72	-9.60	47.12	74.00	26.88	Horizontal	
		Det	ector: Average Va	alue			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization	
4804.00	48.92	-9.60	39.32	54.00	14.68	Vertical	
4804.00	48.81	-9.60	39.21	54.00	14.79	Horizonta	
			channel: Middle ch				
Frequency (MHz)	Read Level (dBuV)		channel: Middle chector: Peak Value Level (dBuV/m)		Margin (dB)	Polarizatio	
		D	etector: Peak Val	ue Limit	_	Polarizatio Vertical	
(MHz)	(dBuV)	D Factor(dB)	etector: Peak Val Level (dBuV/m)	ue Limit (dBuV/m)	(dB)	Vertical	
(MHz) 4882.00	(dBuV) 56.71	Pactor(dB) -9.05 -9.05	etector: Peak Val Level (dBuV/m) 47.66	Limit (dBuV/m) 74.00 74.00	(dB) 26.34	Vertical	
(MHz) 4882.00	(dBuV) 56.71	Pactor(dB) -9.05 -9.05	etector: Peak Value Level (dBuV/m) 47.66 47.79	Limit (dBuV/m) 74.00 74.00	(dB) 26.34	Vertical Horizonta	
(MHz) 4882.00 4882.00 Frequency	(dBuV) 56.71 56.84 Read Level	Pactor(dB) -9.05 -9.05 Def	Level (dBuV/m) 47.66 47.79 ector: Average Value	Limit (dBuV/m) 74.00 74.00 alue Limit	(dB) 26.34 26.21 Margin		

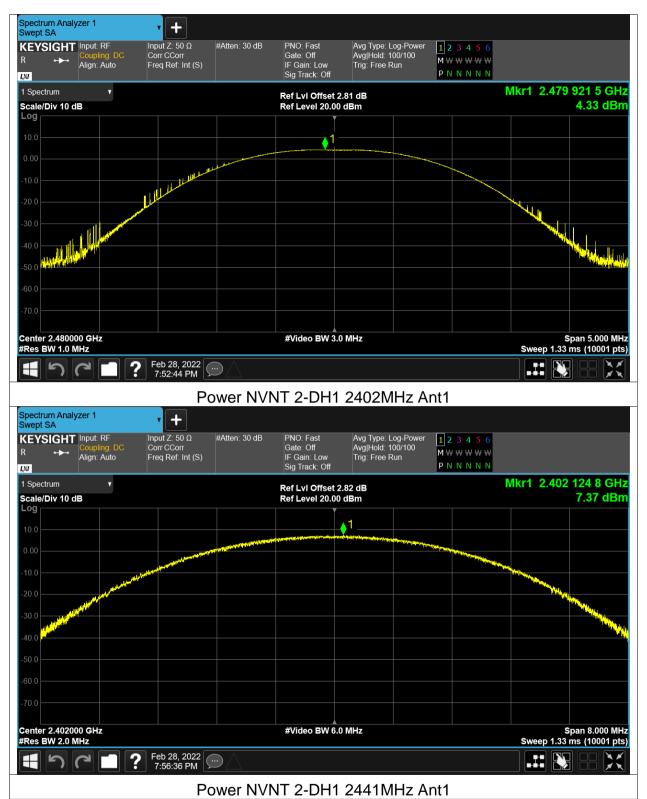
	Test channel: Highest channel									
	Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization				
4960.00	56.53	-8.45	48.08	74.00	25.92	Vertical				
4960.00	56.57	-8.45	48.12	74.00	25.88	Horizontal				
		Det	tector: Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization				
4960.00	48.41	-8.45	39.96	54.00	14.04	Vertical				
4960.00	49.09	-8.45	40.64	54.00	13.36	Horizontal				
Damanto										

Remark:

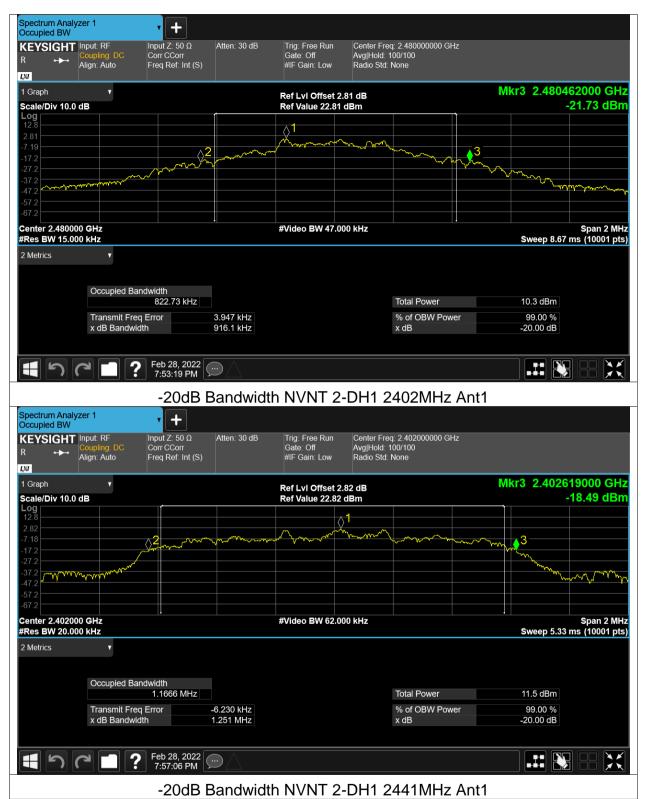
^{1.} Final Level =Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.




Appendix - BT Maximum Conducted Output Power

Condition	Mode	Frequency	Antenna	Conducted Power	Duty Factor	Total Power	Limit	Verdict
		(MHz)		(dBm)	(dB)	(dBm)	(dBm)	
NVNT	1-DH1	2402	Ant1	5.033	0	5.033	30	Pass
NVNT	1-DH1	2441	Ant1	4.343	0	4.343	30	Pass
NVNT	1-DH1	2480	Ant1	4.33	0	4.33	30	Pass
NVNT	2-DH1	2402	Ant1	7.374	0	7.374	21	Pass
NVNT	2-DH1	2441	Ant1	5.918	0	5.918	21	Pass
NVNT	2-DH1	2480	Ant1	6.04	0	6.04	21	Pass
NVNT	3-DH1	2402	Ant1	8.108	0	8.108	21	Pass
NVNT	3-DH1	2441	Ant1	6.628	0	6.628	21	Pass
NVNT	3-DH1	2480	Ant1	6.634	0	6.634	21	Pass


-20dB Bandwidth

Condition	Mode	Frequency	Antenna	-20 dB Bandwidth	Limit -20 dB Bandwidth	Verdict
		(MHz)		(MHz)	(MHz)	
NVNT	1-DH1	2402	Ant1	0.869	0	Pass
NVNT	1-DH1	2441	Ant1	0.872	0	Pass
NVNT	1-DH1	2480	Ant1	0.916	0	Pass
NVNT	2-DH1	2402	Ant1	1.251	0	Pass
NVNT	2-DH1	2441	Ant1	1.256	0	Pass
NVNT	2-DH1	2480	Ant1	1.272	0	Pass
NVNT	3-DH1	2402	Ant1	1.22	0	Pass
NVNT	3-DH1	2441	Ant1	1.226	0	Pass
NVNT	3-DH1	2480	Ant1	1.225	0	Pass

