

JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZ-R12-2201946

FCC RF Test Report

Applicant: PAX Technology Limited

Address of Applicant: Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour, Hong

Kong

Equipment Under Test (EUT)

Product Name: Mobile Payment Terminal

Model No.: S920

Trade Mark: PAX

FCC ID: V5PS920LBW

Applicable Standards: FCC CFR Title 47 Part 15C (§15.247)

Date of Sample Receipt: 23 Sep., 2022

Date of Test: 24 Sep., to 23 Nov., 2022

Date of Report Issued: 24 Nov., 2022

Test Result: PASS

Reviewed by: Date: 24 Nov., 2022

Approved by: Date: 24 Nov., 2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

1 Version

Version No.	Date	Description
00	24 Nov., 2022	Original

2 Contents

			Page
С	over Pa	gege	1
1	Vers	sion	3
2	Con	tents	4
3	Gen	eral Information	5
	3.1	Client Information	5
	3.2	General Description of E.U.T.	5
	3.3	Test Mode and Test Environment	
	3.4	Description of Test Auxiliary Equipment	6
	3.5	Measurement Uncertainty	
	3.6	Additions to, Deviations, or Exclusions from the Method	6
	3.7	Laboratory Facility	6
	3.8	Laboratory Location	6
	3.9	Test Instruments List	7
4	Mea	surement Setup and Procedure	8
	4.1	Test Channel	8
	4.2	Test Setup	8
	4.3	Test Procedure	10
5	Test	Results	11
	5.1	Summary	11
	5.1.1	Clause and Data Summary	11
	5.1.2	2 Test Limit	12
	5.2	Antenna requirement	13
	5.3	AC Power Line Conducted Emission	14
	5.4	Emissions in Restricted Frequency Bands	16
	5.5	Emissions in Non-restricted Frequency Bands	20
Α	ppendix	(A – BLE-1M PHY	23

3 General Information

3.1 Client Information

Applicant:	PAX Technology Limited			
Address:	Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour, Hong Kong			
Manufacturer:	PAX Computer Technology (Shenzhen) Co., Ltd.			
Address:	401 and 402, Building 3, Shenzhen Software Park, Nanshan District, Shenzhen City, Guangdong Province, P.R.C			

3.2 General Description of E.U.T.

3.2 General Descrip	
Product Name:	Mobile Payment Terminal
Model No.:	S920
Operation Frequency:	2402 MHz - 2480 MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Technology:	GFSK
Data Speed:	1 Mbps (LE 1M PHY)
Antenna Type:	Internal Antenna
Antenna Gain:	1.14 dBi (declare by applicant)
Antenna transmit mode:	SISO (1TX, 1RX)
Power Supply:	Rechargeable Li-ion Battery DC3.63V, 3250mAh
AC Adapter:	Model: A18A-050100U-US2
	Input: AC100-240V, 50/60Hz, Max. 0.2A
	Output: DC 5.0V, 1A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Report No.: JYTSZ-R12-2201946

3.3 Test Mode and Test Environment

Test Mode:					
Transmitting mode	Keep the EUT in continuous transmitting with modulation				
Remark: For AC power line cond	lucted emission and radiated spurious emission (below 1GHz), pre-scan all data speed,				
found 1 Mbps (LE 1M PHY) was	worse case mode. The report only reflects the test data of worst mode.				
Operating Environment:	Operating Environment:				
Temperature:	Temperature: 15° C ~ 35° C				
Humidity: 20 % ~ 75 % RH					
Atmospheric Pressure:	1008 mbar				

3.4 Description of Test Auxiliary Equipment

The EUT has been tested as an independent unit.

3.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Conducted Emission for LISN (9kHz ~ 150kHz)	±3.11 dB
Conducted Emission for LISN (150kHz ~ 30MHz)	±2.62 dB
Radiated Emission (30MHz ~ 1GHz) (3m SAC)	±4.45 dB
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	±5.34 dB
Radiated Emission (18GHz ~ 40GHz) (3m SAC)	±5.34 dB

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

3.6 Additions to, Deviations, or Exclusions from the Method

No

3.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

3.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xingiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-148-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

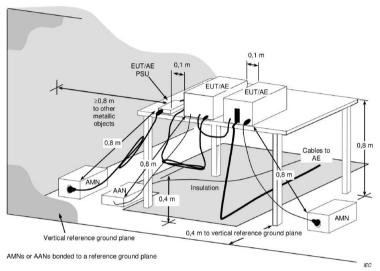
3.9 Test Instruments List

Radiated Emission(3m SAC):						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	ETS	9m*6m*6m	WXJ001-1	04-14-2021	04-13-2024	
Loop Antenna	Schwarzbeck	FMZB 1519 B	WXJ002-4	03-07-2022	03-06-2023	
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	03-08-2022	03-07-2023	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	03-08-2022	03-07-2023	
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-5	04-07-2022	04-06-2023	
Pre-amplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXJ001-2	01-20-2022	01-19-2023	
Pre-amplifier (1GHz ~ 18GHz)	SKET	LNPA_0118G-50	WXJ001-3	01-20-2022	01-19-2023	
Pre-amplifier (18GHz ~ 40GHz)	RF System	TRLA-180400G45B	WXJ002-7	03-30-2022	03-29-2023	
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	03-05-2022	03-04-2023	
Spectrum Analyzer	Rohde & Schwarz	FSP 30	WXJ004	01-20-2022	01-19-2023	
Connector on American	KEVOLOUT	NOOAOD	WXJ004-2	10-27-2021	10-26-2022	
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ004-2	10-17-2022	10-16-2023	
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	01-20-2022	01-19-2023	
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN-8M	WXG001-5	01-20-2022	01-19-2023	
Coaxial Cable (18GHz ~ 40GHz)	JYTSZ	JYT3M-40G-SS-8M	WXG001-7	01-20-2022	01-19-2023	
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N/A		
Test Software	Tonscend	TS+		Version: 3.0.0.1		

Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESR3	WXJ003-2	07-12-2022	07-11-2023		
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	02-24-2022	02-23-2023		
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	03-30-2022	03-29-2023		
LISN Coaxial Cable (9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M	WXG003-1	02-24-2022	02-23-2023		
RF Switch	TOP PRECISION RSU0301 WXG003 N		N/A				
Test Software	AUDIX	E3	V	Version: 6.110919b			

Conducted Method:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
Chaetrum Analyzar	Anglyzon Koygight N0040D W/V 1004.2	10-27-2021	10-26-2022			
Spectrum Analyzer	Keysight	N9010B WXJ004-3	10-17-2022	10-16-2023		
Temperature Humidity Chamber	ZHONG ZHI	CZ-A-80D	WXJ032-3	03-19-2021	03-18-2023	
Dawar Datastar Day	MAADETECT	MW400 DCD	W/V 1007 4	11-19-2021	11-18-2022	
Power Detector Box	MWRFTEST MW100	MW100-PSB	1W100-PSB WXJ007-4	11-19-2022	11-18-2023	
DC Power Supply	Keysight	E3642A	WXJ025-2	N/A		
RF Control Unit	MWRFTEST	MW100-RFCB	WXG006	N/A		
Test Software	MWRFTEST	MTS 8310		Version: 2.0.0.0		

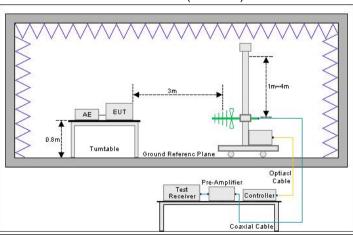
4 Measurement Setup and Procedure


4.1 Test Channel

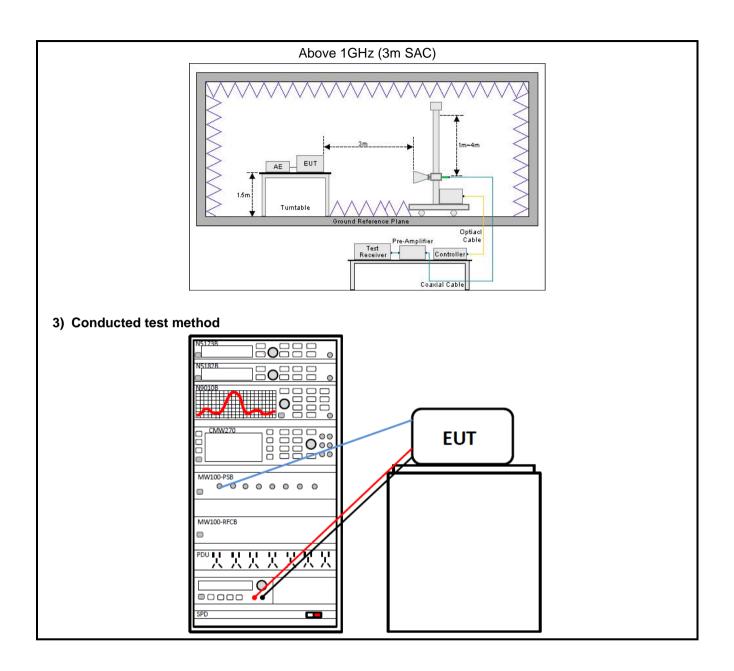
According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowest channel		Midd	le channel	Highe	st channel
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	20	2442	39	2480

4.2 Test Setup


1) Conducted emission measurement:

Note: The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be >0.8 m.


2) Radiated emission measurement:

Below 1GHz (3m SAC)

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-148-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

4.3 Test Procedure

Test method	Test step
Conducted emission	The E.U.T and simulators are connected to the main power through a line
Conducted Cimission	impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH
	coupling impedance for the measuring equipment.
	The peripheral devices are also connected to the main power through a LISN
	that provides a 50ohm/50uH coupling impedance with 50ohm termination.
	(Please refer to the block diagram of the test setup and photographs).
	3. Both sides of A.C. line are checked for maximum conducted interference. In
	order to find the maximum emission, the relative positions of equipment and
	all of the interface cables must be changed according to ANSI C63.10 on
	conducted measurement.
Radiated emission	For below 1GHz:
	The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a
	3 m semi anechoic chamber. The measurement distance from the EUT to the
	receiving antenna is 3 m.
	2. EUT works in each mode of operation that needs to be tested, and having
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and
	considered typical configuration to obtain worst position. The highest signal
	levels relative to the limit shall be determined by rotating the EUT from 0° to
	360° and with varying the measurement antenna height between 1 m and 4
	m in vertical and horizontal polarizations.
	3. Open the test software to control the test antenna and test turntable. Perform
	the test, save the test results, and export the test data.
	For above 1GHz:
	1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a
	3 m fully anechoic room. The measurement distance from the EUT to the
	receiving antenna is 3 m.
	2. EUT works in each mode of operation that needs to be tested, and having
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and
	considered typical configuration to obtain worst position. The highest signal
	levels relative to the limit shall be determined by rotating the EUT from 0° to
	360° and with varying the measurement antenna height between 1 m and 4
	m in vertical and horizontal polarizations.
	3. Open the test software to control the test antenna and test turntable. Perform
Conducted test mathed	the test, save the test results, and export the test data.
Conducted test method	 The BLE antenna port of EUT was connected to the test port of the test system through an RF cable.
	2. The EUT is keeping in continuous transmission mode and tested in all
	modulation modes.
	Open the test software, prepare a test plan, and control the system through
	the software. After the test is completed, the test report is exported through
	the test software.

5 Test Results

5.1 Summary

5.1.1 Clause and Data Summary

Test items	Standard clause Test data		Result
Antenna Requirement	15.203 15.247 (b)(4)	See Section 5.2	Pass
AC Power Line Conducted Emission	15.207	See Section 5.3	Pass
Conducted Output Power	15.247 (b)(3)	Appendix A – BLE 1M PHY	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	15.247 (a)(2) Appendix A – BLE 1M PHY	
Power Spectral Density	15.247 (e)	Appendix A – BLE 1M PHY	Pass
Band-edge Emission Conduction Spurious Emission	15.247 (d)	Appendix A – BLE 1M PHY	Pass
Emissions in Restricted Frequency Bands	15.205 15.247 (d)	See Section 5.4	Pass
Emissions in Non-restricted Frequency Bands	15.209 15.247(d)	See Section 5.5	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

5.1.2 Test Limit

dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). Frequency	Test items			Lin	nit		
AC Power Line Conducted Emission Conducted Cutput Power September Septe			Frequency		Limit (dE	βμV)	
Emission Description Conducted Cond				Quas	si-Peak	Average	
Emission S - 5 56 46 50 50	AC Power Line Conducted		0.15 - 0.5	66 to	56 Note 1	56 to 46 Note 1	
So Note 1: The limit level in dBpV decreases linearly with the logarithm of frequency. Note 2: The more stringent limit applies at transition frequencies.			0.5 – 5		56	46	
Conducted Output Power For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. The minimum 6 dB bandwidth shall be at least 500 kHz. Power Spectral Density For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). Frequency Limit (dBµV/m) Detector (MHz)							
and 5725-5850 MHz bands: 1 Watt. GdB Emission Bandwidth Power Spectral Density For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)). Frequency (MHz) Gam (10m) (MHz) What (MHz) Detector (MHz) 10 - 88					-	of frequency.	
Power Spectral Density For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). Frequency Limit (dBµV/m) Detector	Conducted Output Power				the 902-928 M	MHz, 2400-2483.5 MHz	Ζ,
For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)). Frequency	6dB Emission Bandwidth	The	e minimum 6 dB bandw	idth shall be a	at least 500 kH	łz.	
intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter omplies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)). Frequency Limit (dBpV/m) Detector	99% Occupied Bandwidth	N/A	1				
Spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)). Prequency Limit (dBµV/m) Detector	Power Spectral Density	inte	entional radiator to the	antenna shall	not be greater	than 8 dBm in any 3 k	
Company	Conduction Spurious	spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply					
30 - 88 40.0 30.0 Quasi-peak 88 - 216 43.5 33.5 Quasi-peak 216 - 960 46.0 36.0 Quasi-peak 960 - 1000 54.0 44.0 Quasi-peak Note: The more stringent limit applies at transition frequencies. Compared to the property of t						Detector	
Emissions in Restricted 88 - 216		 				Quasi-peak	1
216 - 960	Emissions in Restricted	 				i i	1
Emissions in Non-restricted Frequency Bands 960 – 1000 54.0 44.0 Quasi-peak Note: The more stringent limit applies at transition frequencies. Frequency Average Above 1 GHz 54.0 44.0 Quasi-peak Limit (dBμV/m) @ 3m Feake Above 1 GHz 54.0 74.0						·	1
Emissions in Non-restricted Frequency Bands Note: The more stringent limit applies at transition frequencies. Frequency Average Above 1 GHz Note: The more stringent limit applies at transition frequencies. Average Peake 74.0	. requeriey Barras						1
Frequency Bands Frequency Above 1 GHz Limit (dBµV/m) @ 3m Average Peake Above 1 GHz 54.0 74.0	Emissions in New restricts of	National Control of the Control of t					
Frequency Average Peake Above 1 GHz 54.0 74.0		issions in non-restricted					
Above 1 GHz 54.0 74.0	Frequency bands		Frequency			i i	1
							1
Note: The measurement bandwidth shall be 1 MHz or greater.			Note: The measurement band	dwidth shall be 1 M	Hz or greater.	ı	1

Report No.: JYTSZ-R12-2201946

5.2 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)(4)

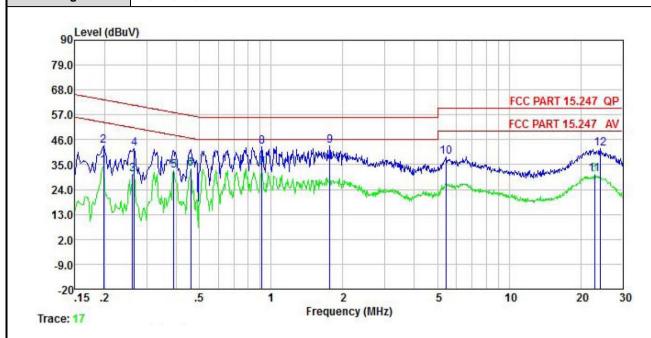
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:


The BLE antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.14 dBi. See product internal photos for details.

5.3 AC Power Line Conducted Emission

Product name:	Mobile Payment Terminal	Product model:	S920
Test by:	Mike	Test mode:	BLE Tx (LE 1M PHY)
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz		

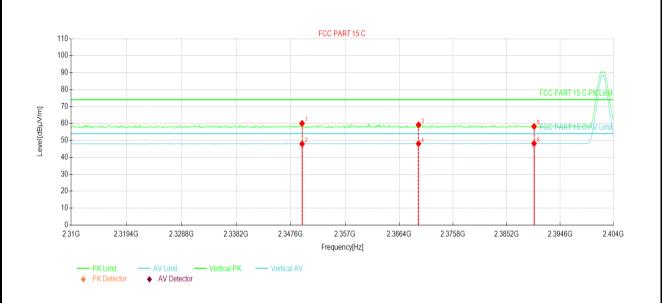

	Freq	Read Level	LISN Factor	Cable Loss	Aux2 Factor	Level	Limit Line	Over Limit	Remark
8.	MHz	dBu∇	<u>ab</u>		<u>dB</u>	dBu₹	−−dBuV	<u>dB</u>	
1 2 3 4 5 6 7 8 9	0.198	23.62	0.05	0.04	10.50	34.21			Average
2	0.198	32.86	0.05	0.04	10.50	43.45		-20.26	
3	0.262	20.13	0.06	0.01	10.50	30.70	51.38	-20.68	Average
4	0.266	31.42	0.06	0.02	10.50	42.00	61.25	-19.25	QP
5	0.389	21.75	0.05	0.04	10.50	32.34	48.08	-15.74	Average
6	0.459	22.44	0.05	0.03	10.50	33.02			Average
7	0.914	23.00	0.07	0.04	10.50	33.61			Average
8	0.914	32.32	0.07	0.04	10.50	42.93		-13.07	
9	1.762	32.42	0.08	0.18	10.50	43.18	56.00	-12.82	QP
10	5.419	27.77		0.09	10.50	38.49		-21.51	
11	22.896	19.53	0.36	0.16		30.55			Average
12	24.142	31.16	0.37	0.17	10.50	42.20		-17.80	

Remark:

1. Level = Read level + LISN Factor + Cable Loss.

Product name:	Mobile Payment Terminal	Product model:	S920
Test by:	Mike	Test mode:	BLE Tx (LE 1M PHY)
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz		

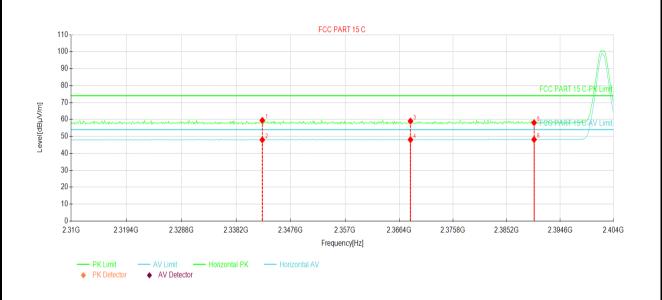
	Freq	Read Level	LISN Factor	Cable Loss	Aux2 Factor	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∇	<u>dB</u>		<u>d</u> B	dBu₹	dBu₹	<u>dB</u>	
1	0.198 0.198	19.56 30.80	0.05 0.05	0.04 0.04	10.50 10.50	30.15 41.39		-23.56 -22.32	Average
1 2 3 4 5 6 7 8 9	0.266	18.92	0.05	0.02	10.50	29.49	51.25	-21.76	Average
5	0.266 0.327	30.85 21.47	0.05 0.05	0.02 0.02	10.50	41.42 32.04	49.53		Average
6 7	0.461 0.471	24.46 32.38	0.04 0.04	0.03 0.03		35.03 42.95		-11.64 -13.54	Average QP
8 9	0.585 0.589	31.22	0.05 0.05	0.02 0.02		41.79		-14.21	QP Average
10 11	0.654 0.792	20.35 30.06	0.06	0.03	10.50	30.94 40.65	46.00		Average
12	21.715	24.84	0.36	0.16		35.86		-24.14	


Remark:

1. Level = Read level + LISN Factor + Cable Loss.

5.4 Emissions in Restricted Frequency Bands

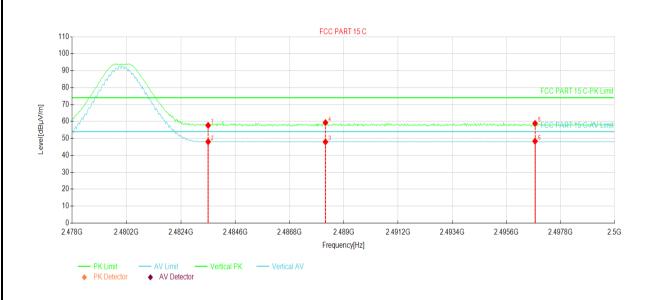
Product Name:	Mobile Payment Terminal	Product Model:	S920
Test By:	Mike	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		


Suspe	Suspected Data List							
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2349.57	24.73	35.29	60.02	74.00	13.98	PK	Vertical
2	2349.57	12.64	35.29	47.93	54.00	6.07	AV	Vertical
3	2369.78	23.73	35.44	59.17	74.00	14.83	PK	Vertical
4	2369.78	12.63	35.44	48.07	54.00	5.93	AV	Vertical
5	2390.00	22.63	35.60	58.23	74.00	15.77	PK	Vertical
6	2390.00	12.56	35.60	48.16	54.00	5.84	AV	Vertical

Remark

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

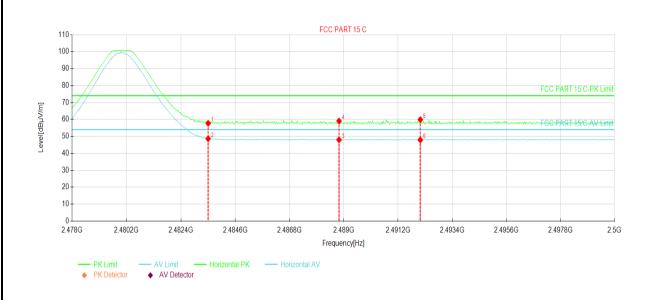
Product Name:	Mobile Payment Terminal	Product Model:	S920
Test By:	Mike	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		


Suspe	Suspected Data List							
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2342.71	24.23	35.24	59.47	74.00	14.53	PK	Horizontal
2	2342.71	12.76	35.24	48.00	54.00	6.00	AV	Horizontal
3	2368.37	23.61	35.43	59.04	74.00	14.96	PK	Horizontal
4	2368.37	12.65	35.43	48.08	54.00	5.92	AV	Horizontal
5	2390.00	22.49	35.60	58.09	74.00	15.91	PK	Horizontal
6	2390.00	12.55	35.60	48.15	54.00	5.85	AV	Horizontal

Remark

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Product Name:	Mobile Payment Terminal	Product Model:	S920
Test By:	Mike	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		


Suspe	Suspected Data List							
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	22.18	35.51	57.69	74.00	16.31	PK	Vertical
2	2483.50	12.52	35.51	48.03	54.00	5.97	AV	Vertical
3	2488.25	12.45	35.50	47.95	54.00	6.05	AV	Vertical
4	2488.25	23.82	35.50	59.32	74.00	14.68	PK	Vertical
5	2496.76	23.34	35.49	58.83	74.00	15.17	PK	Vertical
6	2496.76	12.86	35.49	48.35	54.00	5.65	AV	Vertical

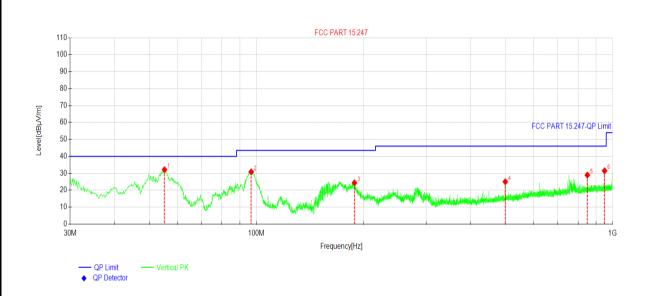
Remark

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Product Name:	Mobile Payment Terminal	Product Model:	S920
Test By:	Mike	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		

Suspe	Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity	
1	2483.50	22.21	35.51	57.72	74.00	16.28	PK	Horizontal	
2	2483.50	13.12	35.51	48.63	54.00	5.37	AV	Horizontal	
3	2488.80	12.51	35.50	48.01	54.00	5.99	AV	Horizontal	
4	2488.80	23.59	35.50	59.09	74.00	14.91	PK	Horizontal	
5	2492.10	24.40	35.50	59.90	74.00	14.10	PK	Horizontal	
6	2492.10	12.44	35.50	47.94	54.00	6.06	AV	Horizontal	

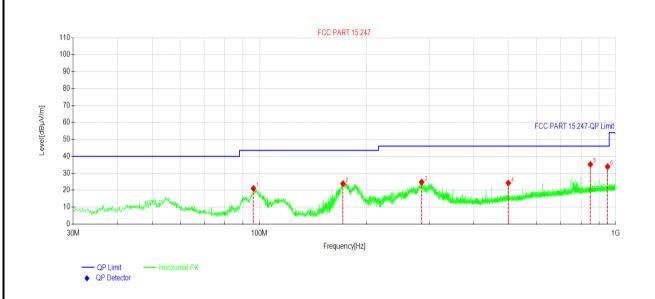
Remark


1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

5.5 Emissions in Non-restricted Frequency Bands

Below 1GHz:

Product Name:	Mobile Payment Terminal	Product Model:	S920
Test By:	Mike	Test mode:	BLE Tx (LE 1M PHY)
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		


Suspe	Suspected Data List									
NO.	Freq. [MHz]	Reading[d BµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity		
1	55.2225	45.40	32.15	-13.25	40.00	7.85	PK	Vertical		
2	96.7427	45.95	30.85	-15.10	43.50	12.65	PK	Vertical		
3	188.610	40.52	24.41	-16.11	43.50	19.09	PK	Vertical		
4	500.012	34.03	25.04	-8.99	46.00	20.96	PK	Vertical		
5	850.023	32.23	28.96	-3.27	46.00	17.04	PK	Vertical		
6	950.040	33.72	31.49	-2.23	46.00	14.51	PK	Vertical		

Remark.

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Product Name:	Mobile Payment Terminal	Product Model:	S920
Test By:	Mike	Test mode:	BLE Tx (LE 1M PHY)
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		

Suspe	ected Data	List						
NO.	Freq. [MHz]	Reading[d BµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	96.2576	36.22	21.06	-15.16	43.50	22.44	PK	Horizontal
2	171.731	41.35	23.86	-17.49	43.50	19.64	PK	Horizontal
3	285.620	38.16	24.79	-13.37	46.00	21.21	PK	Horizontal
4	500.012	33.23	24.24	-8.99	46.00	21.76	PK	Horizontal
5	850.023	38.52	35.25	-3.27	46.00	10.75	PK	Horizontal
6	950.040	36.16	33.93	-2.23	46.00	12.07	PK	Horizontal

Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Above 1GHz:

bove 1GHZ:										
	BLE Tx (LE 1M PHY)									
	Test channel: Lowest channel									
Detector: Peak Value										
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization				
4804.00	53.86	-9.60	44.26	74.00	29.74	Vertical				
4804.00 54.03 -9.60 44.43 74.00 29.57										
Detector: Average Value										
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization				
4804.00	46.75	-9.60	37.15	54.00	16.85	Vertical				
4804.00	47.75	-9.60	38.15	54.00	15.85	Horizontal				
		Test o	channel: Middle cl	nannel						
		D	etector: Peak Val	ue						
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization				
4884.00	53.40	-9.04	44.36	74.00	29.64	Vertical				

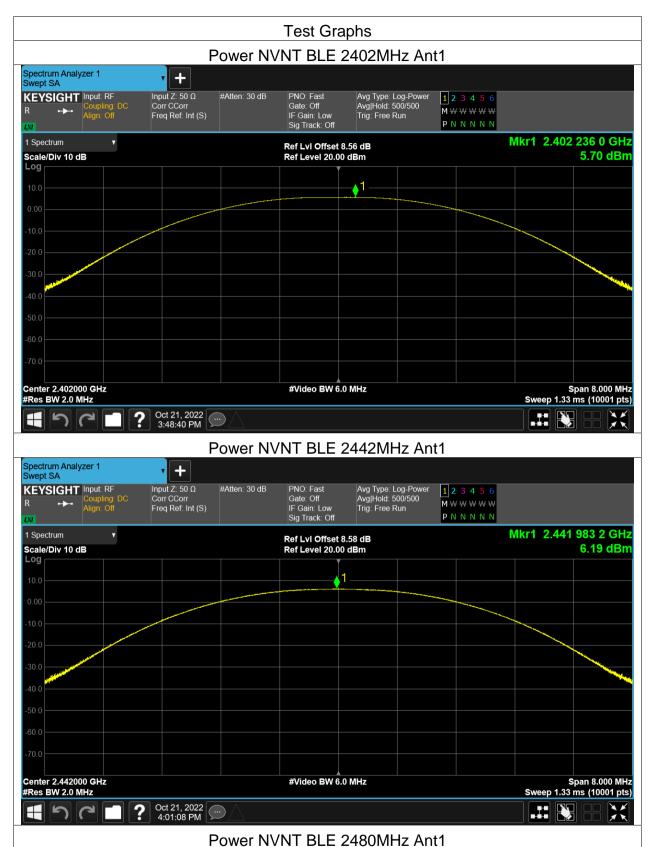
	Test channel: Middle channel									
	Detector: Peak Value									
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization				
4884.00	53.40	-9.04	44.36	74.00	29.64	Vertical				
4884.00	53.97	-9.04	44.93	74.00	29.07	Horizontal				
		Det	ector: Average V	alue						
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization				
4884.00	46.47	-9.04	37.43	54.00	16.57	Vertical				
4884.00	48.15	-9.04	39.11	54.00	14.89	Horizontal				

	Test channel: Highest channel									
	Detector: Peak Value									
Frequency Read Level Factor Level L (MHz) (dBµV) (dB) (dBµV/m) (dE					Margin (dB)	Polarization				
4960.00	53.16	-8.45	44.71	74.00	29.29	Vertical				
4960.00	53.55	-8.45	45.10	74.00	28.90	Horizontal				
		Det	ector: Average Va	alue						
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization				
4960.00	46.33	-8.45	37.88	54.00	16.12	Vertical				
4960.00	48.47	-8.45	40.02	54.00	13.98	Horizontal				

Remark:

^{1.} Level = Reading + Factor.

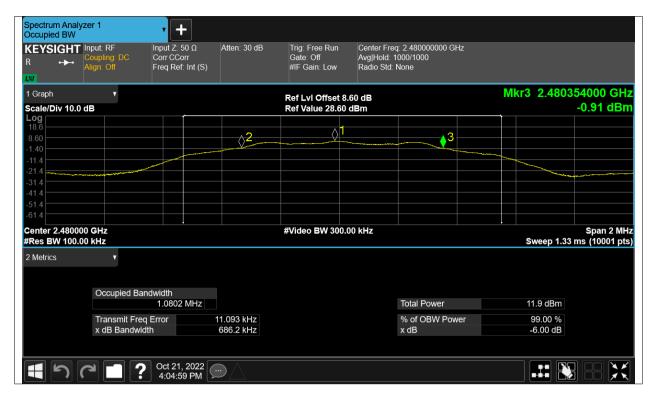
^{2.} Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.



Appendix A – BLE-1M PHY Maximum Conducted Output Power

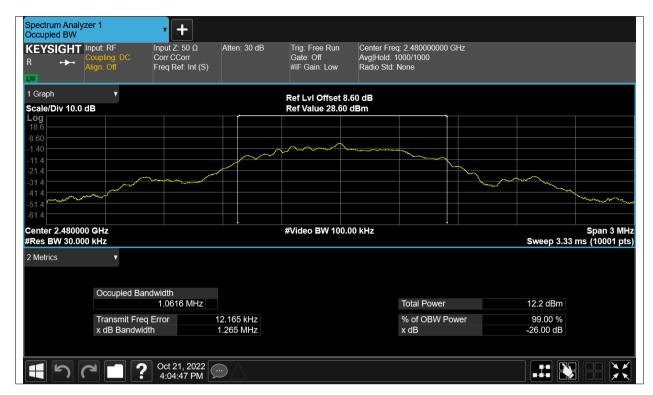
Condition	Mode	Frequency	Antenna	Conducted Power	Limit	Verdict
		(MHz)		(dBm)	(dBm)	
NVNT	BLE	2402	Ant1	5.705	30	Pass
NVNT	BLE	2442	Ant1	6.195	30	Pass
NVNT	BLE	2480	Ant1	5.968	30	Pass

Report No.: JYTSZ-R12-2201946


-6dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	limit	Verdic
NVNT	BLE	2402	Ant1	0.73	0.5	Pass
NVNT	BLE	2442	Ant1	0.685	0.5	Pass
NVNT	BLE	2480	Ant1	0.686	0.5	Pass

Report No.: JYTSZ-R12-2201946

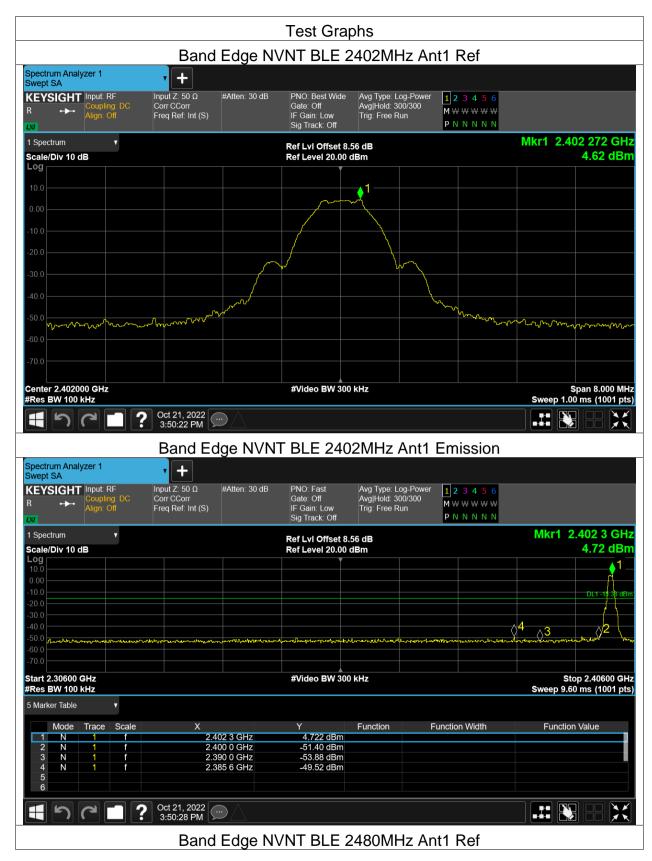

Occupied Channel Bandwidth

	1					
Condition Mode		Frequency (MHz)	Antenna	99% OBW (MHz)		
NVNT	BLE	2402	Ant1	1.077		
NVNT BLE		2442	Ant1	1.062		
NVNT	BLE	2480	Ant1	1.062		

Report No.: JYTSZ-R12-2201946

Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	-10.744	8	Pass
NVNT	BLE	2442	Ant1	-8.174	8	Pass
NVNT	BLE	2480	Ant1	-8.449	8	Pass


Report No.: JYTSZ-R12-2201946

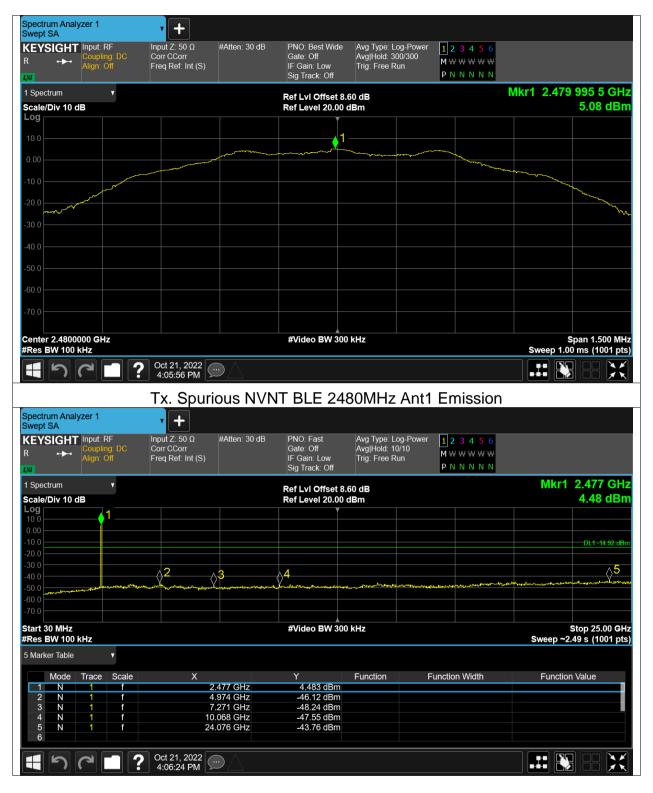
Band Edge


Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-54.14	-20	Pass
NVNT	BLE	2480	Ant1	-54.6	-20	Pass

Report No.: JYTSZ-R12-2201946

Conducted RF Spurious Emission

	Condition	Mada	Fraguency (MH=)	Antonno	May Value (dDa)	Limit (dDa)	Vardiet
ŀ	Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
	NVNT	BLE	2402	Ant1	-48.36	-20	Pass
	NVNT	BLE	2442	Ant1	-47.95	-20	Pass
	NVNT	BLE	2480	Ant1	-48.84	-20	Pass



-----End of report-----