

FCC RF Test Report

APPLICANT	: PAX Technology Limited
EQUIPMENT	: UNATTENDED PAYMENT TERMINAL
BRAND NAME	: PAX
MODEL NAME	: IM25
FCC ID	: V5PIM254GBW
STANDARD	: FCC Part 15 Subpart C §15.247
CLASSIFICATION	: (DSS) Spread Spectrum Transmitter
TEST DATE(S)	: Jun. 06, 2024 ~ Jun. 19, 2024

We, Sporton International Inc. (Shenzhen), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Shenzhen), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Sporton International Inc. (ShenZhen) 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China

TABLE OF CONTENTS

RE	VISION	N HISTORY	.3
SU	MMAR	Y OF TEST RESULT	.4
1	GENE	ERAL DESCRIPTION	.5
	1.1	Applicant	.5
	1.2	Manufacturer	.5
	1.3	Product Feature of Equipment Under Test	.5
	1.4	Product Specification of Equipment Under Test	.5
	1.5	Modification of EUT	.6
	1.6	Testing Location	.6
	1.7	Test Software	.6
	1.8	Applicable Standards	.7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	.8
	2.1	Carrier Frequency Channel	.8
	2.2	Test Mode	.9
	2.3	Connection Diagram of Test System	10
	2.4	Support Unit used in test configuration and system	11
	2.5	EUT Operation Test Setup	11
	2.6	Measurement Results Explanation Example	11
3	TEST	RESULT	12
	3.1	Number of Channel Measurement	12
	3.2	Hopping Channel Separation Measurement	14
	3.3	Dwell Time Measurement	20
	3.4	20dB and 99% Bandwidth Measurement	22
	3.5	Output Power Measurement	33
	3.6	Conducted Band Edges Measurement	34
	3.7	Conducted Spurious Emission Measurement	41
	3.8	Radiated Band Edges and Spurious Emission Measurement	51
	3.9	AC Conducted Emission Measurement	
	3.10	Antenna Requirements	57
4	LIST	OF MEASURING EQUIPMENT	58
5	MEAS	SUREMENT UNCERTAINTY	59
AP	PENDI	X A. CONDUCTED TEST RESULTS	
AP	PENDI	X B. AC CONDUCTED EMISSION TEST RESULT	
AP	PENDI	X C. RADIATED SPURIOUS EMISSION	
AP	PENDI	X D. DUTY CYCLE PLOTS	
AP	PENDI	X E. SETUP PHOTOGRAPHS	

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR452701A	Rev. 01	Initial issue of report	Jul. 04, 2024

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(1)	Number of Channels	≥ 15Chs	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	-	Report only	-
3.4	-	99% Bandwidth	-	Report only	-
3.5	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	-
3.6	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 12.67 dB at 70.74 MHz
3.9	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 20.31 dB at 1.04 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	15.203 & 15.247(b)	Pass	-

Conformity Assessment Condition:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty"

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

1 General Description

1.1 Applicant

PAX Technology Limited

Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour Road, Wanchai, Hong Kong

1.2 Manufacturer

PAX Computer Technology (Shenzhen) Co., Ltd.

Room 701, PAX Technology Building, Shanxia Community, Pinghu Sub-district, Longgang District, Shenzhen, China

1.3 Product Feature of Equipment Under Test

Product Feature					
Equipment	UNATTENDED PAYMENT TERMINAL				
Brand Name PAX					
Model Name	IM25				
FCC ID	V5PIM254GBW				
IMEI Code	Conducted: 868862041173125 Conduction: 868862041175229 Radiation: 868862041177571				
HW Version	NA				
SW Version	NA				
EUT Stage	Production Unit				

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification					
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz				
Number of Channels	79				
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78				
Maximum Output Power to Antenna	Bluetooth BR(1Mbps) : 6.83 dBm (0.0048 W) Bluetooth EDR (2Mbps) : 5.83 dBm (0.0038 W) Bluetooth EDR (3Mbps) : 5.93 dBm (0.0039 W)				
99% Occupied Bandwidth	Bluetooth BR(1Mbps) : 0.919MHz Bluetooth EDR (2Mbps) : 1.221MHz Bluetooth EDR (3Mbps) : 1.223MHz				
Antenna Type / Gain FPC Antenna with gain -1.83 dBi					
Type of Modulation	Bluetooth BR (1Mbps) : GFSK Bluetooth EDR (2Mbps) :π/4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK				

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International Inc. (Shenzhen) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

Test Firm	Sporton International Inc. (Shenzhen)						
Test Site Location	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China TEL: +86-755-86379589 FAX: +86-755-86379595						
Test Site No.	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.				
	CO01-SZ TH01-SZ	CN1256	421272				
	Sporton International Inc. (Shenzhen)						
Test Firm	Sporton International Inc.	(Shenzhen)					
Test Firm Test Site Location	101, 1st Floor, Block B, B	Building 1, No. 2, Tengfeng 4 et, Baoan District, Shenzhe					
	101, 1st Floor, Block B, E Community, Fuyong Stre Province 518103 People' TEL: +86-755-86066985	suilding 1, No. 2, Tengfeng det, Baoan District, Shenzhe s Republic of China					
	101, 1st Floor, Block B, B Community, Fuyong Stre Province 518103 People'	Building 1, No. 2, Tengfeng 4 et, Baoan District, Shenzhe	en City, Guangdong				

1.7 Test Software

lte	em	Site	Manufacturer	Name	Version
1	Ι.	03CH01-SZ	AUDIX	E3	6.2009-8-24
2	2.	CO01-SZ	AUDIX	E3	6.120613b

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

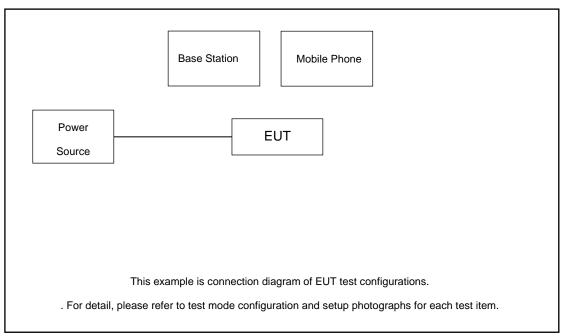
2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

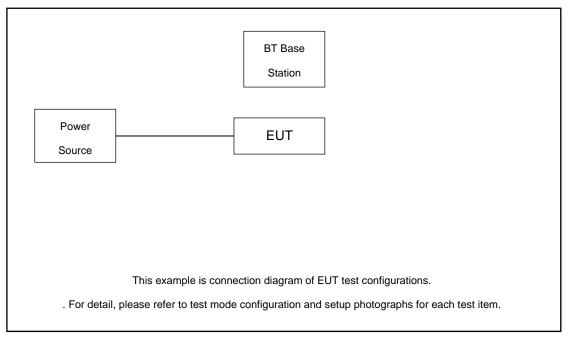
2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

	Summa	ry table of Test Cases					
	Data Rate / Modulation						
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps				
	GFSK	π/4-DQPSK	8-DPSK				
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz				
	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz				
Test Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz				
		Bluetooth BR 1Mbps GFSK					
Radiated		Mode 1: CH00_2402 MHz					
Test Cases		Mode 2: CH39_2441 MHz					
		Mode 3: CH78_2480 MHz					
AC							
Conducted	Mode 1 : WCDMA Band5+A	NT1+ Idle + Bluetooth Link +	Adapter +MDB Port				
Emission							
Remark:							
1. For radiate	ed test cases, the worst mode	data rate 1Mbps was reported	only, because this data rate				
has the hig	hest RF output power at prelir	minary tests, and no other sign	ificantly frequencies found in				
conducted	spurious emission.						


The following summary table is showing all test modes to demonstrate in compliance with the standard.

2. For Radiated Test Cases, The tests were performed with Adapter.



2.3 Connection Diagram of Test System

AC Conducted Emission:

Radiated Emission:

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Base Station	Anritsu	MT8820C	N/A	N/A	Unshielded,1.8m
2.	Bluetooth Base Station	R&S	СВТ	N/A	N/A	Unshielded,1.8m
3.	Mobile Phone	N/A	N/A	N/A	N/A	N/A
4.	AC Adapter	N/A	ADS-65HI-19A-2 24065E	N/A	N/A	N/A

2.4 Support Unit used in test configuration and system

2.5 EUT Operation Test Setup

For Bluetooth function, the engineering test program was provided and enabled to make EUT connect with Bluetooth base station to continuous transmit.

For AC power line conducted emissions, the EUT was set to connect with the Mobile Phone under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 1.30 dB and 10dB attenuator.

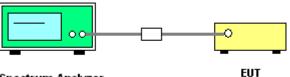
 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$ = 1.30 + 10 = 11.30 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.


3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup



Spectrum Analyzer

3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

691 pts

Number of Hopping Channel Plot on Channel 00 - 78

Date: 11.JUN.2024 15:14:42

-60 dBm

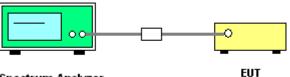
Start 2.441 GHz

Stop 2.4835 GHz

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

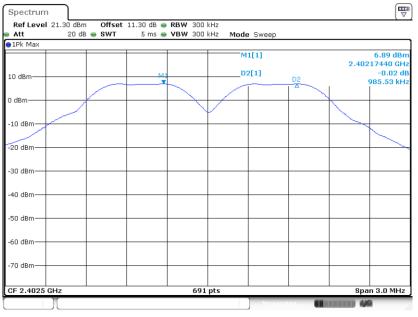
The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

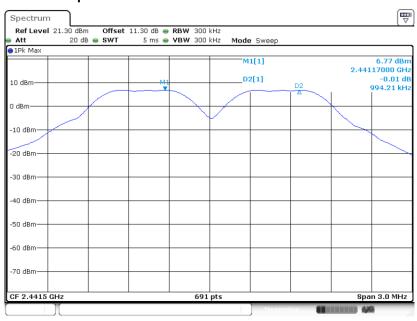
- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

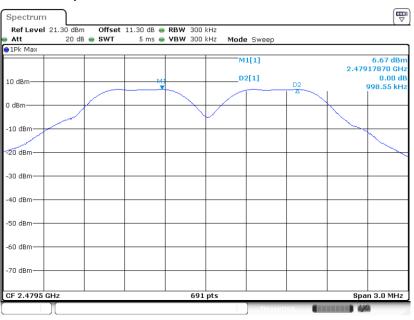
Spectrum Analyzer


3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.

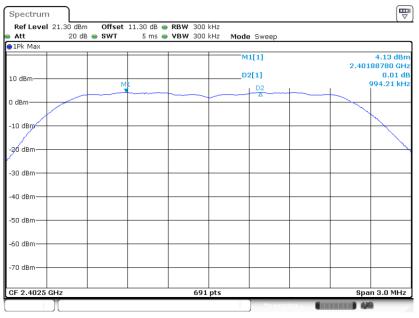

<1Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 11.JUN.2024 15:16:07

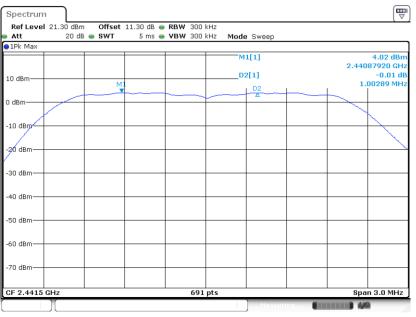
Channel Separation Plot on Channel 39 - 40

Date: 11.JUN.2024 15:19:39



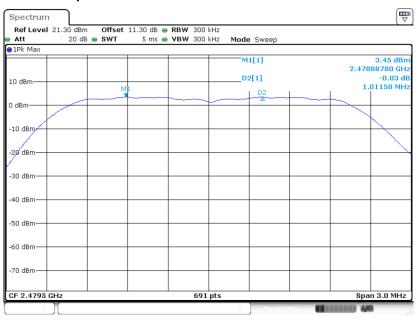
Channel Separation Plot on Channel 77 - 78

Date: 11.JUN.2024 15:23:51


<2Mbps>

Channel Separation Plot on Channel 00 - 01

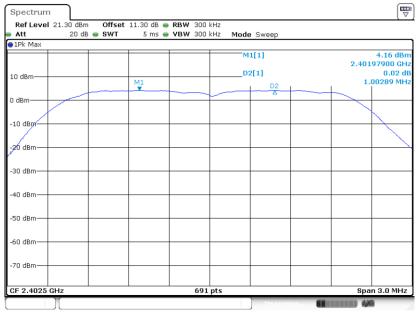
Date: 11.JUN.2024 15:29:27



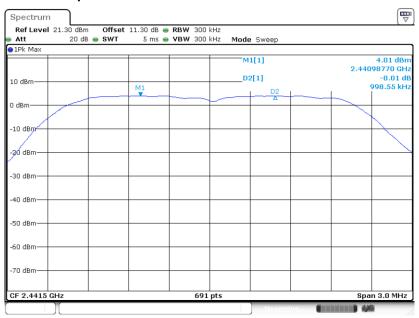
Channel Separation Plot on Channel 39 - 40

Date: 11.JUN.2024 15:40:16

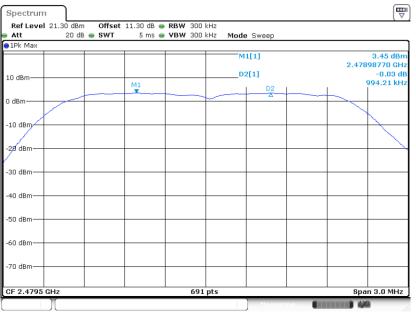
Channel Separation Plot on Channel 77 - 78



Date: 11.JUN.2024 15:38:14


<3Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 11.JUN.2024 15:44:16

Channel Separation Plot on Channel 39 - 40

Date: 11.JUN.2024 15:49:04

Channel Separation Plot on Channel 77 - 78

Date: 11.JUN.2024 15:53:28

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

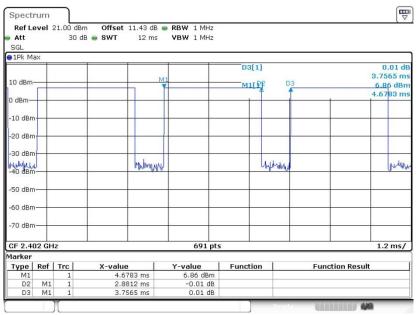

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup



Spectrum Analyzer

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

Package Transfer Time Plot

Date: 6.JUN.2024 14:05:32

Remark:

 In normal mode, hopping rate is 1600 hops/s with 6 slots (5 Transmit and 1 Receive slot) in 79 hopping channels.

With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels.
 With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s),
 Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

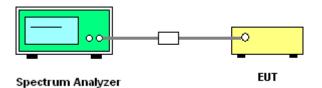
3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

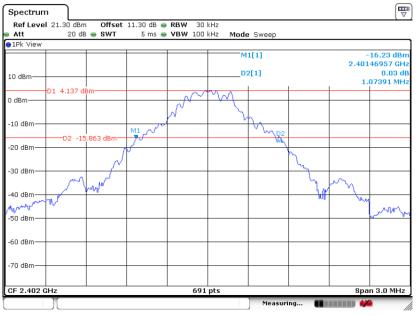

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; The RBW is set to 1% to 5% of the 99% OBW, the VBW is set to 3 times the RBW;
 Sweep = auto; Detector function = peak; Trace = max hold.
- 5. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel; The RBW is set to 1% to 5% of the 99% OBW, the VBW is set to 3 times the RBW; Sweep = auto; Detector function = peak;

Trace = max hold.

6. Measure and record the results in the test report.

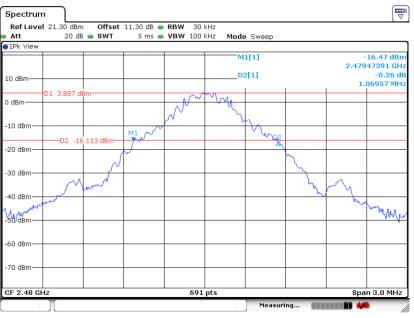
3.4.4 Test Setup


3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

<1Mbps>

20 dB Bandwidth Plot on Channel 00

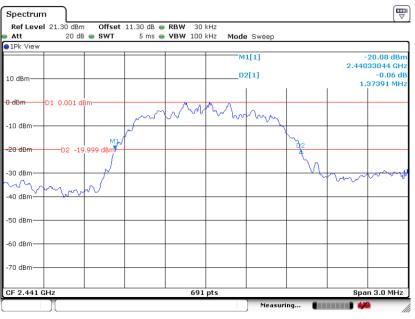

Date: 11.JUN.2024 15:09:12

Date: 11.JUN.2024 15:17:19



20 dB Bandwidth Plot on Channel 78

Date: 11.JUN.2024 15:21:44


<2Mbps>

20 dB Bandwidth Plot on Channel 00

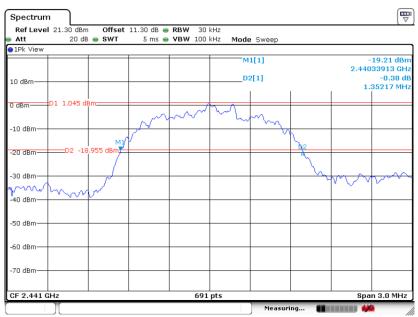
Date: 11.JUN.2024 15:26:53

20 dB Bandwidth Plot on Channel 39

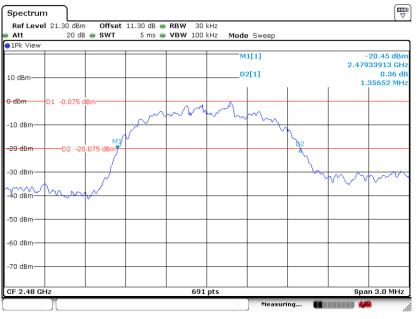
Date: 11.JUN.2024 15:31:29

20 dB Bandwidth Plot on Channel 78

Date: 11.JUN.2024 15:34:03


<3Mbps>

20 dB Bandwidth Plot on Channel 00


Date: 11.JUN.2024 15:42:22

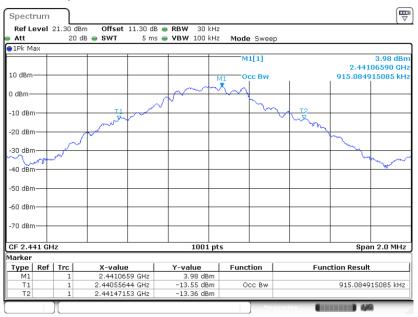
Date: 11.JUN.2024 15:46:54

20 dB Bandwidth Plot on Channel 78

Date: 11.JUN.2024 15:51:19



3.4.6 Test Result of 99% Occupied Bandwidth


Please refer to Appendix A.

<1Mbps>

99% Occupied Bandwidth Plot on Channel 00

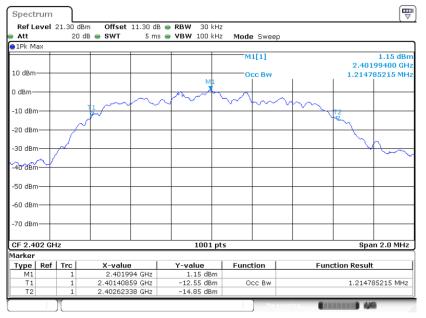
Date: 11.JUN.2024 15:08:23

99% Occupied Bandwidth Plot on Channel 39

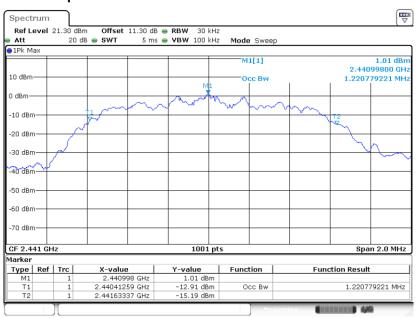
Date: 11.JUN.2024 15:16:55

Sporton International Inc. (ShenZhen) TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: V5PIM254GBW Page Number : 28 of 59 Report Issued Date : Jul. 04, 2024 Report Version : Rev. 01 Report Template No.: BU5-FR15CBT Version 2.0

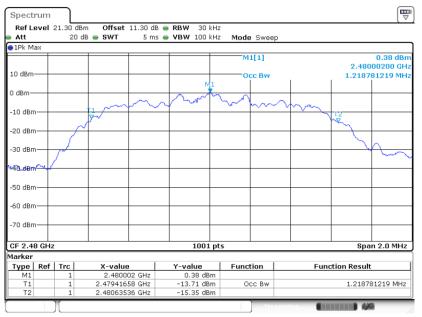
Spectr		1.30 dB	0//	set 11.30 de		30 kHz					
Att	ver 2		m OTT: B = SW		5 👄 KBW 1 5 👄 VBW 1			O			
1Pk Ma		20 0	B 🖶 5W	1 5 m		.00 KH2	Mode	Sweep			
) трк ма	×		_			_		L[1]			3.85 dBn
							IVI.	[1]		2 490	3.85 UBR 306990 GH:
10 dBm-							0	c Bw			919081 kH
						M		LOW	1	919.000	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
) dBm—						$\sim \sim$	$2 - \alpha$				
/ dbm					_N _			han a start and a start			
10 dBm-				T1	\sim			m	T2		
10 000				Ju -					V Lat		
20 dBm-			J~						- man		
20 0000			\sim							m	
30 dBm-		\sim								- man	
		\sim									
40 dBm-	some s										m
40 ubiii-											
50 dBm-											
SO GRU-											
60 dBm-											
on anu-											
-70 dBm-											
-70 aBm-											
CF 2.48	GHz				1	001 pts	;			Spa	an 2.0 MHz
1arker											
Туре	Ref	Trc	X-v	alue	Y-valu	e	Funct	ion	Fund	tion Result	t
M1		1		00699 GHz		5 dBm					
Τ1		1		55844 GHz	-13.75		00	c Bw		919.0809	919081 kHz
T2		1	2.480	47752 GHz	-13.40) dBm					


99% Occupied Bandwidth Plot on Channel 78

Date: 11.JUN.2024 15:20:55


<2Mbps>

99% Occupied Bandwidth Plot on Channel 00

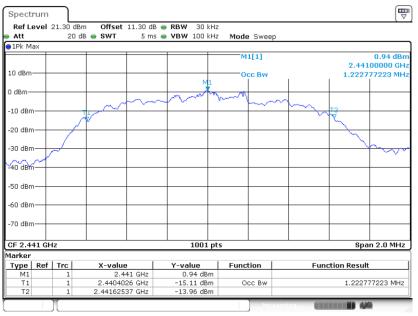

Date: 11.JUN.2024 15:26:09

99% Occupied Bandwidth Plot on Channel 39

Date: 11.JUN.2024 15:31:10

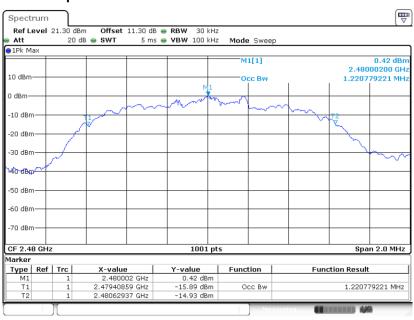
99% Occupied Bandwidth Plot on Channel 78

Date: 11.JUN.2024 15:33:09


<3Mbps>

99% Occupied Bandwidth Plot on Channel 00

Date: 11.JUN.2024 15:41:26



99% Occupied Bandwidth Plot on Channel 39

Date: 11.JUN.2024 15:46:38

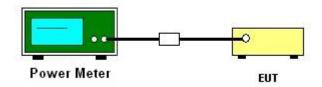
Date: 11.JUN.2024 15:50:30

Note : The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.


3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

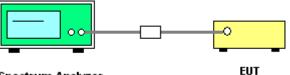
3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

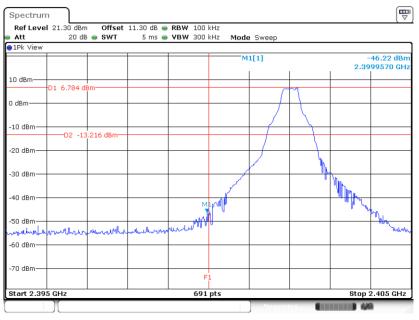

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup


Spectrum Analyzer

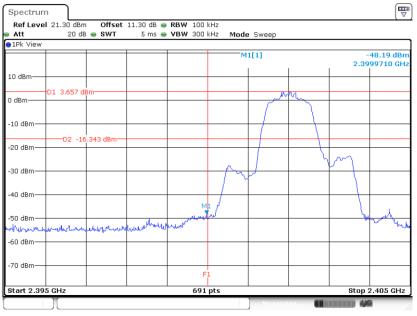
3.6.5 Test Result of Conducted Band Edges


<1Mbps>

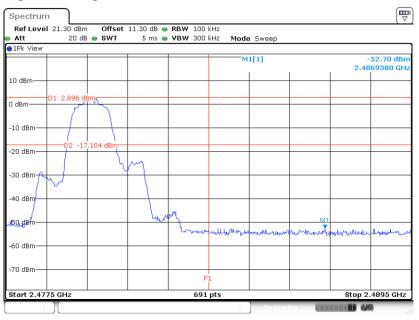
Low Band Edge Plot on Channel 00

Date: 11.JUN.2024 15:08:53

High Band Edge Plot on Channel 78



Date: 11.JUN.2024 15:21:25


<2Mbps>

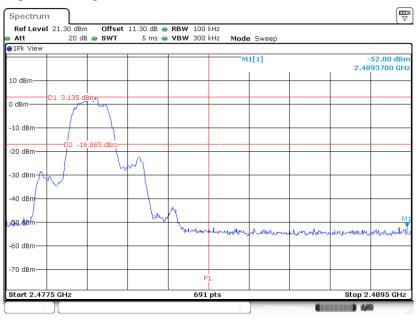
Low Band Edge Plot on Channel 00

Date: 11.JUN.2024 15:26:39

High Band Edge Plot on Channel 78



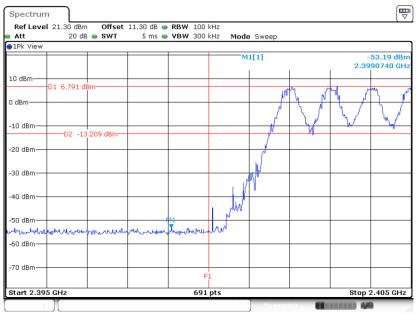
Date: 11.JUN.2024 15:33:42


<3Mbps>

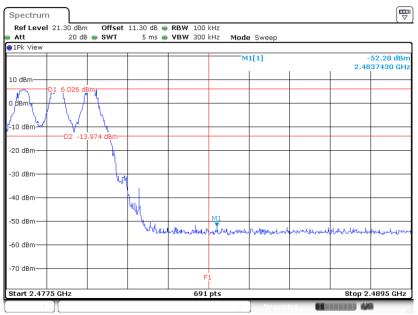
Low Band Edge Plot on Channel 00

Date: 11.JUN.2024 15:42:00

High Band Edge Plot on Channel 78


Date: 11.JUN.2024 15:51:02

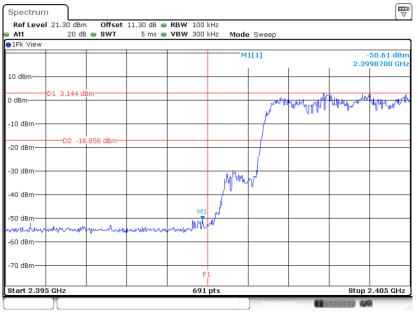
3.6.6 Test Result of Conducted Hopping Mode Band Edges


<1Mbps>

Hopping Mode Low Band Edge Plot

Date: 11.JUN.2024 15:12:39

Hopping Mode High Band Edge Plot



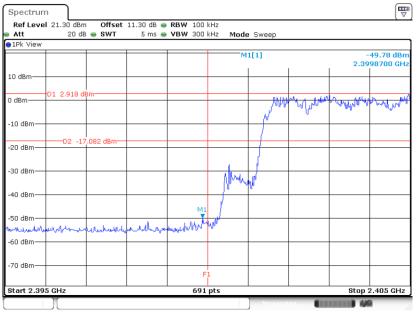
Date: 11.JUN.2024 15:24:35


<2Mbps>

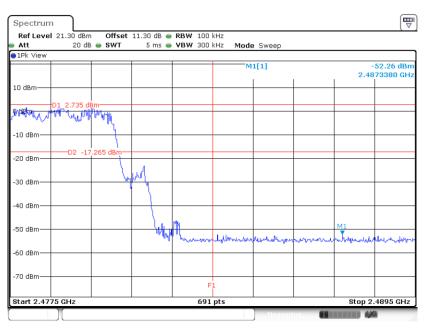
Hopping Mode Low Band Edge Plot

Date: 11.JUN.2024 15:30:23

Hopping Mode High Band Edge Plot



Date: 11.JUN.2024 15:39:03


<3Mbps>

Hopping Mode Low Band Edge Plot

Date: 11.JUN.2024 15:44:57

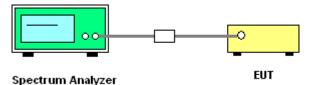
Hopping Mode High Band Edge Plot

Date: 11.JUN.2024 15:45:49

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

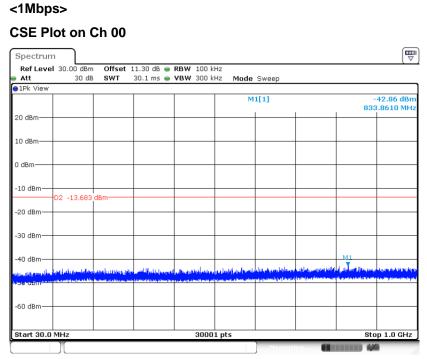
In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.7.2 Measuring Instruments

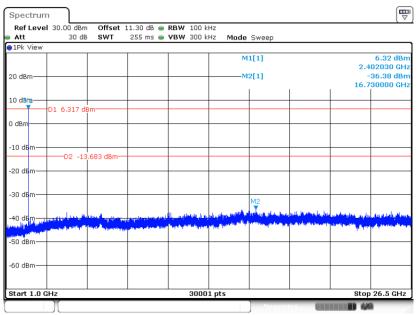
The measuring equipment is listed in the section 4 of this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


3.7.4 Test Setup

Sporton International Inc. (ShenZhen) TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: V5PIM254GBW



3.7.5 Test Result of Conducted Spurious Emission

Date: 11.JUN.2024 15:10:19

CSE Plot on Ch 00

Date: 11.JUN.2024 15:09:50

Ref Level	30.00 dBm	Offset	11.30 dB 👄	RBW 100 k	:Hz				(
Att	30 dB	SWT	30.1 ms 👄	VBW 300 k	Hz Mode	Sweep			
1Pk View									
					м	1[1]			42.88 dBm
20 dBm									
10 dBm									
D dBm									
-10 dBm		10							
-20 dBm)2 -14.263	dBm							
-30 dBm									
-40 dBm									м
burnel as provide		and the particulation	a denditricologia	and the second	weet the planet life	مالك وإفريط مرابع	بالمار والماري المرار	doorgeolige (411)	polyges (example)
sootabin ^{ety, a.d.}	n within a photo dist	Ulfke Loonship (Line)	ىدەرمەتلىسە <mark>لىلەمەر</mark> ى.	a dha baad iy ahad as a bi	a a stand in the participant in the	and the second			
-60 dBm									
Start 30.0 M	1Hz			3000	1 pts			Sto	p 1.0 GHz
	1					Moncur			64

Date: 11.JUN.2024 15:18:20

CSE Plot on Ch 39

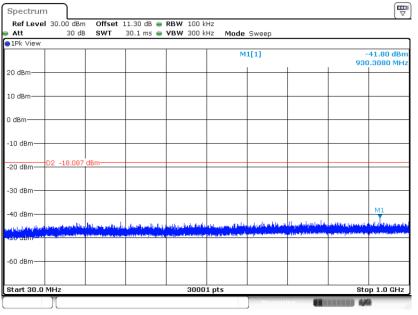
Spectrum Ref Level 30.1		11.30 dB 👄	DDW 100 k	U.a.				
Att	30 dB SWT		VBW 300 ki		Sweep			
1Pk View								
				М	1[1]		2.4	5.74 dBn 41130 GH
20 dBm				M	2[1]	1		35.90 dBn 16580 GH
	5.737 dBm							
D dBm								
-10 dBm								
-20 dBm	D2 -14.263 dBm-							
-30 dBm				M2				
40 dBm - htt.	Marker of the bolt of the start	and the second	han bergere		anta ay calaigh. Antaise	anteralisate, ist a testeristere ates		and the second second
50 dBm		area falta en la jana en el ser						
60 dBm								
Start 1.0 GHz			3000	1 pts			Stop	26.5 GHz

Date: 11.JUN.2024 15:17:51

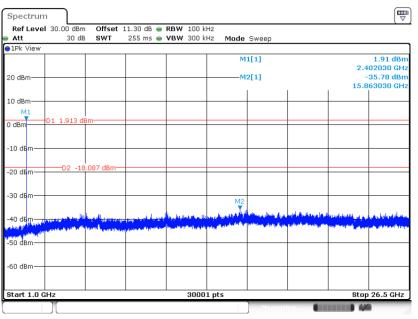
20 dBm	-42.55 dBr 829.2370 MH
20 dBm M1[1] 10 dBm	
20 dBm- 10 dBm- 10 dBm- 20	
20 dBm	
0 dBm 02 -14.149 dBm0 02 -14.149 dBm	
-10 dBm D2 -14.149 dBm	
D2 -14.149 dBm	
-20 dBm	
-30 dBm	
40 dBm	
والمرابع والمرابعة والمرابع والم	الألبار والأميار والوالي والأولالية. والمعر والالتعال والمري أولار والم
-60 dBm	
Start 30.0 MHz 30001 pts	Stop 1.0 GHz

Date: 11.JUN.2024 15:22:43

CSE Plot on Ch 78


Ref Level 3				RBW 100 k					
Att	30 dB	SWT	255 ms 👄	VBW 300 k	Hz Mode	Sweep			
20 dBm						1[1] 2[1]		-	5.85 dBn 80230 GH: 36.09 dBn 63030 GH:
10 dBm									
0 dBm	1 5.851 de	m							
-10 dBm	—D2 -14	.149 dBm							
-20 dBm									
-30 dBm					M2				
-40 dBm		and the party		hannen	s (million in the	يوره والاقترار أتغر	والمرودية والمرود والمرود	a Maraha a kata	والأواف والمعالية
-50 dBm	a se a construction de la construcción de la construcción de la construcción de la construcción de la construc	and and approximately and		n paratan paratan paratan.					
-60 dBm									
Start 1.0 GH	z			3000	1 pts			Stop	0 26.5 GHz

Date: 11.JUN.2024 15:22:17


<2Mbps>

CSE Plot on Ch 00

Date: 11.JUN.2024 15:27:57

CSE Plot on Ch 00

Date: 11.JUN.2024 15:27:31

Spectrun Ref Leve	I 30.00 dBm	Offset	11.30 dB 👄	RBW 100 k	Hz				(~
Att	30 dE			VBW 300 k		Sweep			
1Pk View									
					м	1[1]			-42.08 dBm 5.2310 MHz
20 dBm									+
10 dBm									
) dBm									
-10 dBm—									
-20 dBm	-D2 -16.699	dBm							
-30 dBm—									
-40 dBm					M1				
and a list of the			يەلىيەلىقىلىلىلىكى ئەلكى يېرىمىدىسىيە بىرىمىيە				the house of the second		lan kanalari Kanalari
denabiti ^{r and}									
-60 dBm—									
Start 30.0	MHz			3000	1 pts			Sto	p 1.0 GHz
	T					Measur			4

Date: 11.JUN.2024 15:32:29

CSE Plot on Ch 39

Ref Level 30.00 dB	m Offset	11.30 dB 👄	RBW 100 k	Hz				(*
Att 30 d	IB SWT	255 ms 👄	VBW 300 k	Hz Mode	Sweep			
1Pk View								
				M	1[1]		2.4	3.30 dBn 41130 GH;
20 dBm				M	2[1]			36.73 dBn
							19.2	07670 GH
LO dBm								
M1								
D1 3.301	dBm							
, abiii								
10 dBm								
20 dBm D2 -1	.6.699 dBm-							
20 000								
30 dBm								
-50 ubiii						M2		
40 dBm	Here in the		بلاريد التعليد بداريك	R. S. B. S. L. B. B. B.	بالأتوريان والاستأماره	and the distribution of the	وروين الأفعا بأوارية	ويعطينا المعنو
40 dBm	in the state of the state of the	a general second se	-	margh, data with the	Marile & Bergham	مار مطالعات العارية	Section Office August	and a survey of the star
50 dBm	1.							
SU UBIII								
60 d0m								
-60 dBm								
Start 1.0 GHz			3000	1 pts			Stop	26.5 GHz

Date: 11.JUN.2024 15:32:02

Att 30 dB SWT 30.1 ms VBW 300 kHz Mode Sweep 91Pk View M1[1] -42.80 dB 634.7590 MI 634.7590 MI 20 dBm 0 dBm 0 0 634.7590 MI 634.7590 MI 10 dBm 0 0 0 0 0 0 0 -10 dBm 0 0 0 0 0 0 0 0 0 -20 dBm 0	Ref Level	I 30.00 dBm	Offset	11.30 dB 👄	RBW 100	Hz				
20 dBm M1[1] -42.80 dB 20 dBm 634.7590 MI 10 dBm 0 0 dBm 0 -10 dBm 0 -20 dBm 0 -30 dBm 0 -40 dBm 0 -30 dBm 0 -40 dBm 0 -30 dBm 0 -30 dBm 0 -40 dBm 0		30 dE	SWT	30.1 ms 👄	VBW 300 k	Hz Mode	Sweep			
20 dBm 634.7590 MI 10 dBm 10 dBm 0 dBm 10 dBm -10 dBm 10 dBm -20 dBm 10 dBm -10 dBm	1Pk View									
20 dBm						M	1[1]			
20 dBm	20 dBm								034	- 7390 MH2
-10 dBm -20 dBm -30 dBm -40	10 dBm									
20 dBm) dBm									
-20 dBm	-10 dBm									
40 dBm	-20 dBm	D2 -17.273	dBm							
	-30 dBm									
CONTRACT, and and a second	-40 dBm						MI			
	وفللعلد مراعد									and the second second second
60 dBm	mabine.	alatik dina pamahila da	an a	ang di dan santik di sika di san pangan	and a second spile, involved	aliye darak serakarkan	a la serie de l La serie de la s	an de second d'ann an a saoch	and its second is the factoring of the	
	∙60 dBm—									
Start 30.0 MHz 30001 pts Stop 1.0 GH	Start 30.0	MHz			3000	11 pts			Sto	p 1.0 GHz

Date: 11.JUN.2024 15:36:39

CSE Plot on Ch 78

Ref Level 30	.00 dBm Offse	t 11.30 dB 👄	RBW 100 k	Hz				('
Att	30 dB SWT	255 ms 👄	VBW 300 k	Hz Mode	Sweep			
1Pk View								
				М	1[1]		2 /	2.73 dBn 180230 GH:
20 dBm				м	2[1]			-36.05 dBn
								50600 GH
10 dBm								
M1								
0 dBm	2.727 dBm							
-10 dBm								
10 0.0.11								
-20 dBm	-D2 -17.273 dBm	1						
-20 0011								
-30 dBm								
-50 0011					M2			
-40 dBm	and the second second	Luna	and the state of the state	واللغطاء والتربي	initia and in	والأور ومرود الكالم وحد	ورية وأقافأ وماصال	وحلكاته ليتبعل وبارول
-40 ubit	يني بالبعرين والعريديين		(in the line of the last of th	No. Colorester	and the star franches and	معلو والمرسا معالما معاري	and the second second	and the state of the state
-50 dBm								
-30 UBIII								
-60 dBm								
-00 dBm								
Start 1.0 GHz	·		3000	1 pts		•	Stop	26.5 GHz

Date: 11.JUN.2024 15:36:12

<3Mbps>

CSE Plot on Ch 00

Spectrum	<u> </u>								
Ref Level Att	30.00 dBm 30 dB		11.30 dB 👄	RBW 100 k		Sweep			
1Pk View	30 UB	3141	30.1 IIIS 🖶	YDW SUUK	H2 MOUE	Sweep			
IFK VIGW					м	1[1]			42.56 dBm 3.4120 MHz
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm	D2 -17.609	dBm							
-30 dBm									
-40 dBm						N,	1		
أنبط أروابة يتمرز بارة	Interallidualidu	adding a physical	مربعه حارية أطعته	disagramiterani	الالعداد ومرجاعين	philosophard alog	handahataba	al da se la d'And (rend).	Superior States and
oð að hr	al-any Alinkanika	a distanti any many and a	d ale, this ale the film () - () - () -	a and a second fill alternation of the second	and Colored Sector	a sector sector			
-60 dBm									
Start 30.0	MHz			3000	1 pts			Sto	p 1.0 GHz
						Manau			64

Date: 11.JUN.2024 15:43:21

CSE Plot on Ch 00

Ref Level	30.00 dBm	Offset	11.30 dB 👄	RBW 100 k	Hz				
Att	30 dB	SWT		VBW 300 k		Sweep			
1Pk View									
					M	1[1]			2.39 dBm
						0141			02030 GH: 35.55 dBn
20 dBm					M	2[1]			35.55 dBn 29590 GH:
10 dBm									
	1 2.391 dB	m							
) dBm									
10 dBm									
		609 dBm—							
-20 dBm		000 0011							
-30 dBm							M2		
						aton taka			
40 dBm	and a state of the	a ta ang ang ang ang ang ang ang ang ang an	wite a strength lite		al de la contrata	tages of the stage of the	a assument to reason	Names Ne <u>tselse</u>	Contraction of the
and a second pro-	and a state of the state of	and the second second	in the second point of				- 1 - P		
50 dBm									
60 dBm									
tart 1.0 GH	7			3000	1 nts			Stor	26.5 GHz
itart 110 ar	1			0000	1 pt5	Monomi		010	a and a second s

Date: 11.JUN.2024 15:42:54

SWT		RBW 100 k	m2				
awl	30.1 ms 👄	VBW 300 k	Hz Mode	Sweep			
			M	1[1]			42.92 dBn 1.4080 MH:
						009	.4000 MH
dBm							
					1	T	diatal alford these
						nan series de la constant de	Aprenie management parties Later de la Maniferent de
	1	3000	1 pts		1	Sto	p 1.0 GHz
		ukante na populara dela den populara del	til Millers om fra silde kriger til og se som fra sile silverkerte Sin der som en sind fra der som en sind sinder som en sind side som en sind side som en som en som en som en so	dBm	เมืองสังกระบบการมีสังสังกระบบการการแรกโรงไรส่วยให้เสียงใหญ่ เป็นขึ้นกระบบการมีสังสังกระบบการการแรกโรงไรส่วยให้เสียงใหญ่ เสียงสังกระบบการมีการมีการการการการการการการการการการการการการก	Image: state	B89 Image: Constraint of the second of the

Date: 11.JUN.2024 15:47:59

CSE Plot on Ch 39

Spectrum								
RefLevel 30.00	dBm Offset DdB SWT	11.30 dB 👄 F 255 ms 👄 V			Sweep			
1Pk View	o do o mi	200 110 -	BH 000 K	in mode	3466b			
20 dBm					1[1] 2[1]		-	1.40 dBm 41130 GHz 36.64 dBm
					1	I	17.9	09760 GH:
10 dBm								
0 dBm D1 1.40	11 dBm							
-10 dBm								
-20 dBmD2	-18.599 dBm							
-30 dBm					M2			
-40 dBm	A dealer and the second		مالاخلا الحمالي	and a first first state	المعمد أنقص أنوابا است	الأمر وحدائل والكاري		and had a set
A Distance of the Distance of	and part former	(Demonstration of	in an ann an Antaine an An	the part of the second s	and the state of the	and a distribution of the	and the bad of by the sec	patent de la com
-50 dBm								
-60 dBm								
Start 1.0 GHz			3000	1 pts			Stop	26.5 GHz
					Measuri	19-1- U	44	

Date: 11.JUN.2024 15:47:27

Ref Level 30.00 dBm	Offset	11.30 dB 👄	RBW 100	kHz				\
Att 30 dB	SWT	30.1 ms 👄	VBW 300	kHz Mode	Sweep			
1Pk View								
				м	1[1]			-42.21 dBn 5.6230 MH;
0 dBm								
0 dBm								
dBm								
10 dBm								
D2 -16.863	dBm							
30 dBm								
40 dBm						M1		
	al lipite filiped	م بنا بالانهمانية	المراجعة الوحية	al debag and a second debag and a s	Hade house the form	http://www.com/www.	and a state of the	and the second
Statistican in the second s								
60 dBm								
tart 30.0 MHz			300	01 pts			Ste	p 1.0 GHz

Date: 11.JUN.2024 15:52:21

CSE Plot on Ch 78

Ref Level 30.0 Att	30 dBm Offset 30 dB SWT	11.30 dB 👄 255 ms 👄	VBW 300 k		Sweep			
1Pk View								
				M	1[1]		2.4	3.14 dBm 80230 GHz
20 dBm				M	2[1]		-	36.36 dBm
					1	1	20.1	04390 GH
10 dBm								
M1 T D1 3	.137 dBm							
) dBm								
-10 dBm								
-20 dBm	D2 -16.863 dBm-							
20 0011								
-30 dBm								
					l	M2		
40 dBm	and a shirt of the state	and the second strengthere and		augutan biling	terrent filmely	and a state of a state of the s	والمعادية المحاجلة	الر کې مالکې پولې ا
State and a state of the	A COMPANY OF COMPANY OF	ing to down with the ball					and the second star	
-50 dBm								
-60 dBm								
Start 1.0 GHz			3000	1 pts			Stop	26.5 GHz

Date: 11.JUN.2024 15:51:56

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

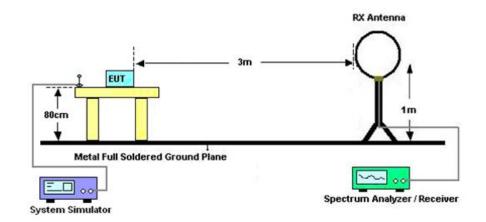
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

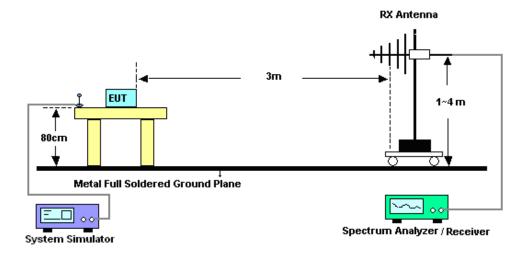
3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

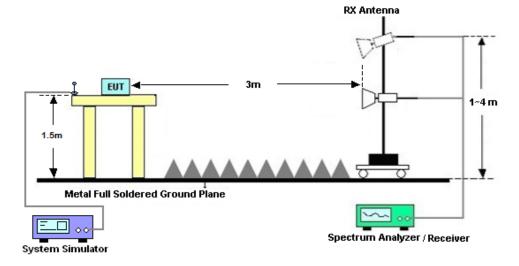
3.8.3 Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW \ge RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.8.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

Sporton International Inc. (ShenZhen) TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: V5PIM254GBW Page Number : 53 of 59 Report Issued Date : Jul. 04, 2024 Report Version : Rev. 01 Report Template No.: BU5-FR15CBT Version 2.0

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.8.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix C.

3.8.8 Duty cycle correction factor for average measurement

Please refer to Appendix D.

3.9 AC Conducted Emission Measurement

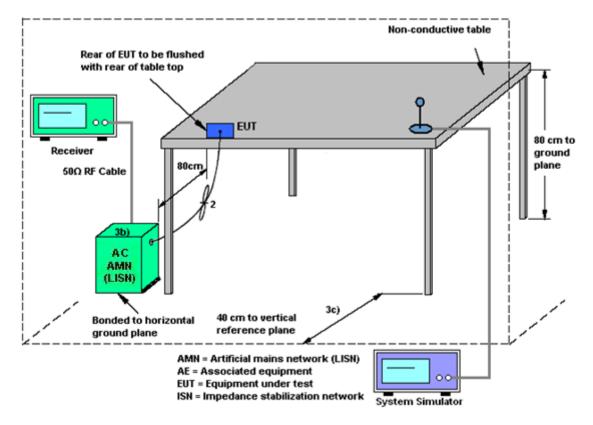
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of omission (MHz)	Conducted limit (dBµV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101078	10Hz~40GHz	Apr. 09, 2024	Jun. 06, 2024~ Jun. 11, 2024	Apr. 08, 2025	Conducted (TH01-SZ)
Pulse Power Senor	Anritsu	MA2411B	1339473	30MHz~40GHz	Dec. 29, 2023	Jun. 06, 2024~ Jun. 11, 2024	Dec. 28, 2024	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1218010	50MHz Bandwidth	Aug. 21, 2023	Jun. 06, 2024~ Jun. 11, 2024	Aug. 20, 2024	Conducted (TH01-SZ)
Thermo meter	Anymetre	JR593	#7	- 10℃ ~ 50℃ 10%RH~99%R H	Apr. 09, 2024	Jun. 06, 2024~ Jun. 11, 2024	Apr. 08, 2025	Conducted (TH01-SZ)
EMI Test Receiver&SA	Agilent	N9038A	MY522601 85	20Hz~26.5GHz	Dec. 27, 2023	Jun. 13, 2024	Dec. 26, 2024	Radiation (03CH01-SZ)
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY551502 13	10Hz~44GHz	Jul. 07, 2023	Jun. 13, 2024	Jul. 06, 2024	Radiation (03CH01-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	Jul. 28, 2022	Jun. 13, 2024	Jul. 27, 2024	Radiation (03CH01-SZ)
Bilog Antenna	TeseQ	CBL6112D	35407	30MHz-2GHz	Oct. 24, 2023	Jun. 13, 2024	Oct. 23, 2025	Radiation (03CH01-SZ)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00119436	1GHz~18GHz	Jul. 08, 2023	Jun. 13, 2024	Jul. 07, 2024	Radiation (03CH01-SZ)
SHF-EHF Horn	com-power	AH-840	101071	18Ghz-40GHz	Apr. 09,2024	Jun. 13, 2024	Apr. 08,2025	Radiation (03CH01-SZ)
LF Amplifier	Burgeon	BPA-530	102209	0.01~3000Mhz	Apr. 09, 2024	Jun. 13, 2024	Apr. 08,2025	Radiation (03CH01-SZ)
HF Amplifier	MITEQ	AMF-7D-0010 1800-30-10P- R	1943528	1GHz~18GHz	Oct. 18,2023	Jun. 13, 2024	Oct. 17,2024	Radiation (03CH01-SZ)
HF Amplifier	KEYSIGHT	83017A	MY532701 05	0.5GHz~26.5Gh z	Oct. 18,2023	Jun. 13, 2024	Oct. 17,2024	Radiation (03CH01-SZ)
HF Amplifier	MITEQ	TTA1840-35- HG	1871923	18GHz~40GHz	Jul. 07, 2023	Jun. 13, 2024	Jul. 06, 2024	Radiation (03CH01-SZ)
AC Power Source	Chroma	61601	616010001 985	N/A	Oct. 18,2023	Jun. 13, 2024	Oct. 17,2024	Radiation (03CH01-SZ)
Turn Table	EM	EM1000	N/A	0~360 degree	NCR	Jun. 13, 2024	NCR	Radiation (03CH01-SZ)
Antenna Mast	EM	EM1000	N/A	1 m~4 m	NCR	Jun. 13, 2024	NCR	Radiation (03CH01-SZ)
EMI Receiver	R&S	ESR7	101630	9kHz~7GHz;	Jul. 06, 2023	Jun. 19, 2024	Jul. 05, 2024	Conduction (CO01-SZ)
AC LISN	R&S	ENV216	100063	9kHz~30MHz	Aug. 21, 2023	Jun. 19, 2024	Aug. 20, 2024	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Oct. 16, 2023	Jun. 19, 2024	Oct. 15, 2024	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000 891	100Vac~250Vac	Jul. 07, 2023	Jun. 19, 2024	Jul. 06, 2024	Conduction (CO01-SZ)

NCR: No Calibration Required

5 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Measurement

Test Item	Uncertainty
Conducted Spurious Emission & Bandedge	±1.34 dB
Occupied Channel Bandwidth	±0.012 MHz
Conducted Power	±1.34 dB
Conducted Power Spectral Density	±1.32 dB
Frequency	±1.3 Hz

Uncertainty of AC Conducted Emission Measurement (0.15 MHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.5 dB
of 95% (U = 2Uc(y))	

Uncertainty of Radiated Emission Measurement (9 KHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.8 dB
of 95% (U = 2Uc(y))	2.0 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4.2 dB
of 95% (U = 2Uc(y))	4.2 u B

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of Confidence	5.0 dB
of 95% (U = 2Uc(y))	

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of Confidence	4.3 dB
of 95% (U = 2Uc(y))	4.3 UB

----- THE END ------

Appendix A. Conducted Test Results

Report Number : FR452701A

Appendix A. Test Result of Conducted Test Items

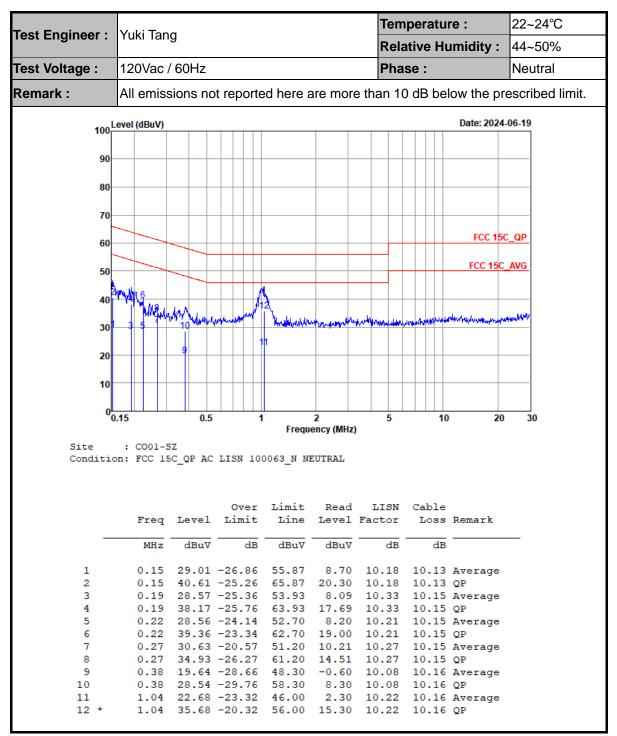
Test Engineer:	Wen Shi Wei	Temperature:	21~25	°C
Test Date:	2024/6/6~2024/6/11	Relative Humidity:	51~54	%

	<u>TEST RESULTS DATA</u> 20dB and 99% Occupied Bandwidth and Hopping Channel Separation											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20dB BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail			
DH	1Mbps	1	0	2402	1.074	0.899	0.986	0.7159	Pass			
DH	1Mbps	1	39	2441	1.074	0.915	0.994	0.7159	Pass			
DH	1Mbps	1	78	2480	1.070	0.919	0.999	0.7130	Pass			
2DH	2Mbps	1	0	2402	1.365	1.215	0.994	0.9101	Pass			
2DH	2Mbps	1	39	2441	1.374	1.221	1.003	0.9159	Pass			
2DH	2Mbps	1	78	2480	1.370	1.219	1.012	0.9130	Pass			
3DH	3Mbps	1	0	2402	1.348	1.219	1.003	0.8985	Pass			
3DH	3Mbps	1	39	2441	1.352	1.223	0.999	0.9014	Pass			
3DH	3Mbps	1	78	2480	1.357	1.221	0.994	0.9043	Pass			

			<u>TES</u>	T RESULTS Dwell Time		
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail
Nomal	79	106.67	2.88	0.31	0.4	Pass
AFH	20	53.33	2.88	0.15	0.4	Pass

	<u>TEST RESULTS DATA</u> Peak Power Table										
DH	CH.	NTX	Peak Power (dBm)	Power Level	Power Limit (dBm)	Test Result					
	0	1	6.83	Default	20.97	Pass					
DH5	39	1	6.65	Default	20.97	Pass					
	78	1	6.48	Default	20.97	Pass					
	0	1	5.83	Default	20.97	Pass					
2DH5	39	1	5.38	Default	20.97	Pass					
	78	1	4.96	Default	20.97	Pass					
	0	1	5.93	Default	20.97	Pass					
3DH5	39	1	5.53	Default	20.97	Pass					
	78	1	5.06	Default	20.97	Pass					

<u>TEST RESULTS DATA</u> <u>Average Power Table</u> (Reporting Only)									
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)					
	0	1	6.73	1.15					
DH5	39	1	6.55	1.15					
	78	1	6.38	1.15					
	0	1	3.81	1.13					
2DH5	39	1	3.55	1.13					
	78	1	3.09	1.13					
	0	1	3.79	1.15					
3DH5	39	1	3.54	1.15					
	78	1	3.05	1.15					


<u>TEST RESULTS DATA</u> Number of Hopping Frequency							
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail				
79	20	> 15	Pass				

Appendix B. AC Conducted Emission Test Results

Tost Engineer	Vuki Too	a				Ten	nperatu	re :	22~24°C	
Test Engineer :	Yuki Tan	y				Rel	ative H	umidity :	44~50%	
Test Voltage :	120Vac	/ 60Hz			Pha	ise :		Line		
Remark :	All emise	sions no	t reporte	ed here a	are more	e than 1	0 dB be	low the pr	escribed limi	
	-									
Data: 1	Level (dBuV)							Date: 2024-	06-19	
100										
90-										
50										
80										
70										
								F 22 4 5 5		
60-								FCC 150	<u>- up</u>	
								FCC 15C	AVG	
50								Tee Ise	AVG	
	Minin 9		1	4						
40	1 141	M.		i2(
20	<u> </u>	withdraw	when have	manham	When he was	willow and not	who have been a	an thread a share with	Wornster	
30										
20		9								
20										
10										
0	0.15	0.5	1		2	5	10) 20	30	
,	.15	0.5			ency (MHz)	-	I.	20	50	
Site	: CO01-S	Z								
Site Conditio	: CO01-S on: FCC 15		LISN 10	0063_L L:	INE					
			LISN 10	0063_L L	INE					
			LISN 10	0063_L L:	INE					
	on: FCC 15	SC_QP AC	Over	- Limit	Read	LISN	Cable			
	on: FCC 15		Over	- Limit	Read			Remark		
	on: FCC 15 Freq	C_QP AC Level	Over Limit	Limit Line	Read Level	LISN Factor	Loss	Remark		
	on: FCC 15	SC_QP AC	Over	- Limit	Read Level	LISN Factor	Loss	Remark		
	on: FCC 15 Freq MHz	Level	Over Limit dB	Limit Line dBuV	Read Level dBuV	LISN Factor dB	Loss 	Remark 		
Conditio — 1 2	on: FCC 15 Freq MHz 0.15 0.15	Level 	Over Limit 	Limit Line dBuV 55.91 65.91	Read Level dBuV 7.50	LISN Factor dB 10.38 10.38	Loss dB 10.13 10.13	Average QP		
Conditio 	on: FCC 15 Freq MHz 0.15 0.15 0.18	Level dBuV 28.01 40.31 28.29	Over Limit 	Limit Line dBuV 55.91 65.91 54.37	Read Level dBuV 7.50 19.80 7.81	LISN Factor dB 10.38 10.38 10.34	Loss dB 10.13 10.13 10.14	Average QP Average		
Conditio 	on: FCC 15 Freq MHz 0.15 0.15 0.18 0.18	Level 	Over Limit 	Limit Line dBuV 55.91 65.91 54.37 64.37	Read Level dBuV 7.50 19.80 7.81 18.21	LISN Factor dB 10.38 10.38 10.34 10.34	Loss dB 10.13 10.13 10.14 10.14	Average QP Average QP		
Conditio 	Freq MHz 0.15 0.15 0.18 0.21	Level dBuV 28.01 40.31 28.29 38.69 28.05	Over Limit 	Limit Line dBuV 55.91 65.91 54.37 64.37 53.14	Read Level dBuV 7.50 19.80 7.81 18.21 7.50	LISN Factor dB 10.38 10.38 10.34 10.34 10.34	Loss dB 10.13 10.13 10.14 10.14 10.15	Average QP Average QP Average		
Conditio 	Freq MHz 0.15 0.15 0.18 0.21 0.21	Level dBuV 28.01 40.31 28.29 38.69 28.05 40.75	Over Limit 	Limit Line dBuV 55.91 65.91 54.37 64.37 53.14 63.14	Read Level dBuV 7.50 19.80 7.81 18.21 7.50 20.20	LISN Factor dB 10.38 10.38 10.34 10.34 10.40 10.40	Loss dB 10.13 10.13 10.14 10.14 10.15 10.15	Average QP Average QP Average QP		
Conditio 	Freq MHz 0.15 0.15 0.18 0.18 0.21 0.21 0.26	Level dBuV 28.01 40.31 28.29 38.69 28.05 40.75 29.76	Over Limit dB -27.90 -25.60 -26.08 -25.68 -25.09 -22.39 -21.66	Limit Line dBuV 55.91 65.91 54.37 64.37 53.14 63.14 51.42	Read Level dBuV 7.50 19.80 7.81 18.21 7.50 20.20 9.50	LISN Factor dB 10.38 10.38 10.34 10.34 10.40 10.40 10.11	Loss dB 10.13 10.13 10.14 10.14 10.15 10.15 10.15	Average QP Average QP Average QP Average		
Conditio 	Freq MHz 0.15 0.15 0.18 0.21 0.21 0.26 0.26	Level dBuV 28.01 40.31 28.29 38.69 28.05 40.75 29.76 35.86	Over Limit dB -27.90 -25.60 -26.08 -25.68 -25.09 -22.39 -21.66 -25.56	Limit Line dBuV 55.91 65.91 54.37 64.37 53.14 63.14	Read Level dBuV 7.50 19.80 7.81 18.21 7.50 20.20 9.50	LISN Factor dB 10.38 10.34 10.34 10.34 10.40 10.40 10.11	Loss dB 10.13 10.13 10.14 10.14 10.15 10.15 10.15 10.15	Average QP Average QP Average QP Average QP		
Conditio 	Freq MHz 0.15 0.15 0.18 0.18 0.21 0.21 0.26 0.26 0.39	Level dBuV 28.01 40.31 28.29 38.69 28.05 40.75 29.76 35.86 21.15	Over Limit 	Limit Line dBuV 55.91 65.91 54.37 64.37 53.14 63.14 51.42 61.42	Read Level dBuV 7.50 19.80 7.81 18.21 7.50 20.20 9.50 15.60 0.60	LISN Factor dB 10.38 10.34 10.34 10.40 10.40 10.11 10.11 10.39	Loss dB 10.13 10.13 10.14 10.14 10.15 10.15 10.15 10.15	Average QP Average QP Average QP Average QP Average		
Conditio 	Freq MHz 0.15 0.15 0.18 0.21 0.21 0.21 0.26 0.26 0.39 0.39 1.04	Level dBuV 28.01 40.31 28.05 40.75 29.76 35.86 21.15 31.65 22.69	Over Limit dB -27.90 -25.60 -25.68 -25.09 -22.39 -21.66 -25.56 -27.02 -26.52 -23.31	Limit Line dBuV 55.91 65.91 54.37 64.37 53.14 63.14 51.42 61.42 48.17	Read Level dBuV 7.50 19.80 7.81 18.21 7.50 20.20 9.50 15.60 0.60 11.10 2.30	LISN Factor dB 10.38 10.34 10.34 10.34 10.40 10.40 10.11 10.11 10.39 10.39 10.23	Loss dB 10.13 10.14 10.14 10.15 10.15 10.15 10.15 10.16 10.16 10.16	Average QP Average QP Average QP Average QP Average		

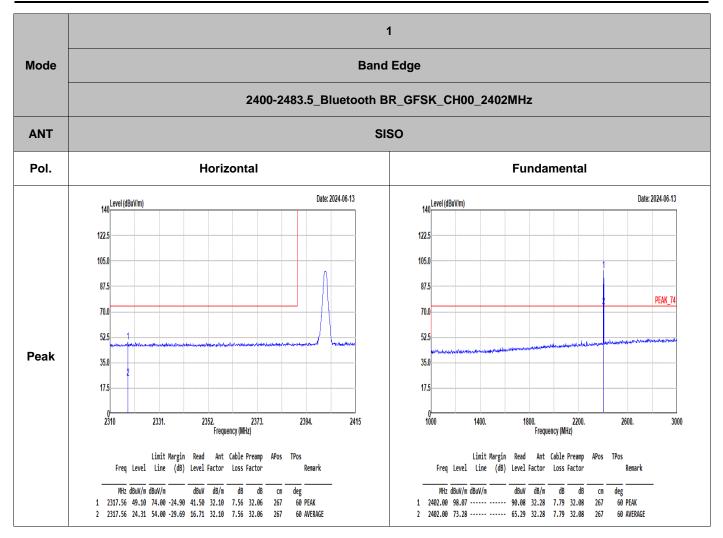
Note:

1. Level(dBµV) = Read Level(dBµV) + LISN Factor(dB) + Cable Loss(dB)

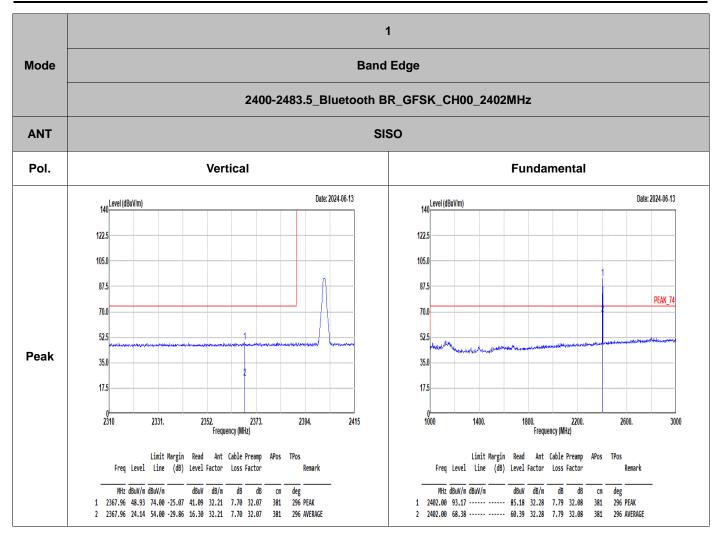
2. Over Limit(dB) = Level(dBµV) – Limit Line(dBµV)

Appendix C. Radiated Spurious Emission Test Data

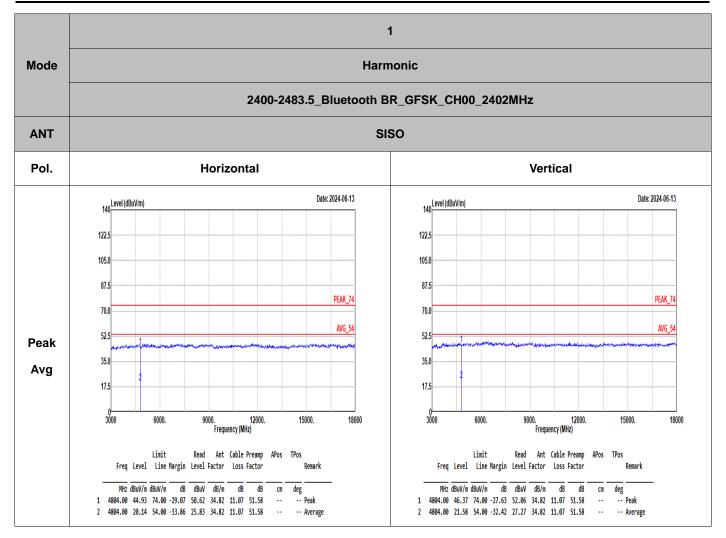
Test Engineer :	Zhaohui Liang	Relative Humidity :	48-49%
rest Engineer.		Temperature :	24-25 ℃

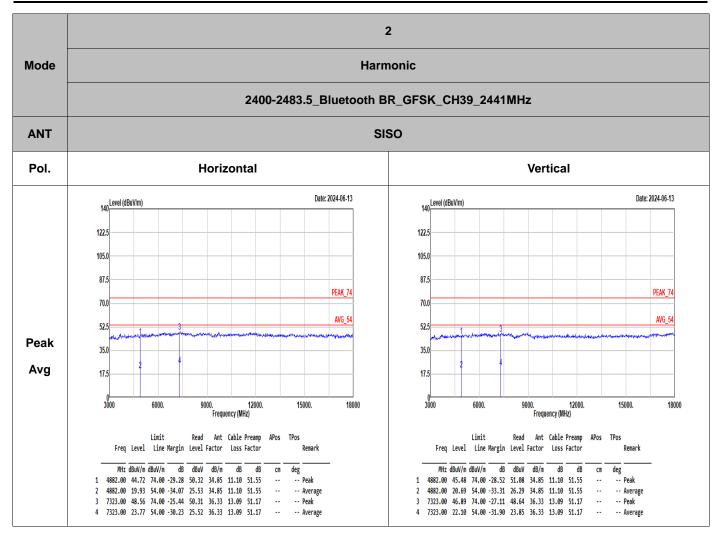

Radiated Spurious Emission Test Modes

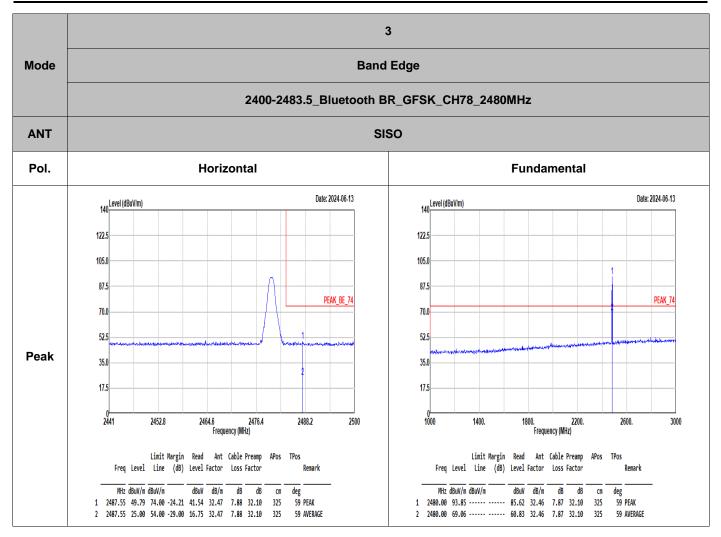
Mode	Band (MHz)	Antenna	Modulation	Channel	Frequency	Data Rate	RU	Remark
Mode 1	2400-2483.5	SISO	Bluetooth BR_GFSK	00	2402	1DH5	-	-
Mode 2	2400-2483.5	SISO	Bluetooth BR_GFSK	39	2441	1DH5	-	-
Mode 3	2400-2483.5	SISO	Bluetooth BR_GFSK	78	2480	1DH5	-	-
Mode 4	2400-2483.5	SISO	Bluetooth BR_GFSK_LF	78	2480	1DH5	-	-

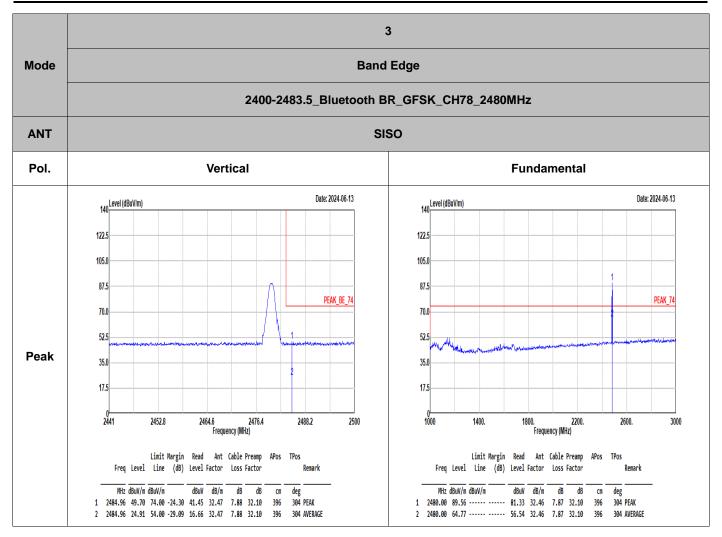

Summary of each worse mode

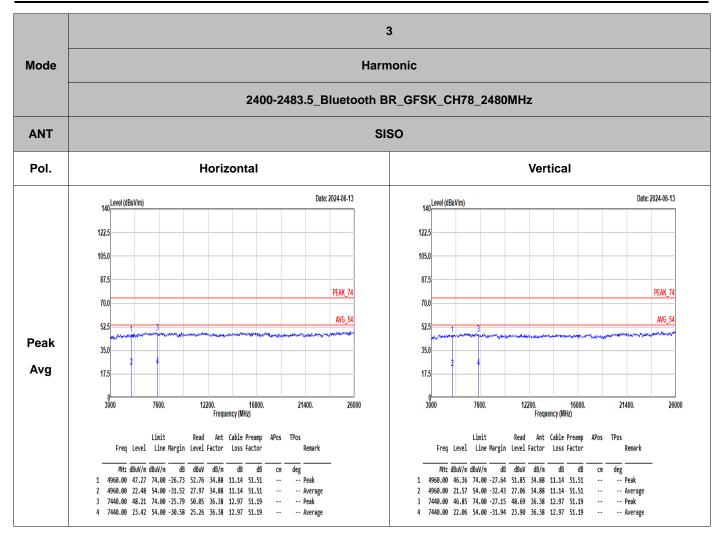
Mode	Modulation	Ch.	Freq. (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol.	Peak Avg.	Result	Remark
1	Bluetooth BR_GFSK	00	2317.56	49.10	74.00	-24.90	Н	PEAK	Pass	Band Edge
1	Bluetooth BR_GFSK	00	4804.00	46.37	74.00	-27.63	V	Peak	Pass	Harmonic
2	Bluetooth BR_GFSK	39	-	-	-	-	-	-	-	Band Edge
2	Bluetooth BR_GFSK	39	7323.00	48.56	74.00	-25.44	Н	Peak	Pass	Harmonic
3	Bluetooth BR_GFSK	78	2487.55	49.79	74.00	-24.21	Н	PEAK	Pass	Band Edge
3	Bluetooth BR_GFSK	78	7440.00	48.21	74.00	-25.79	Н	Peak	Pass	Harmonic
4	Bluetooth BR_GFSK_LF	78	70.74	27.33	40.00	-12.67	V	Peak	Pass	LF

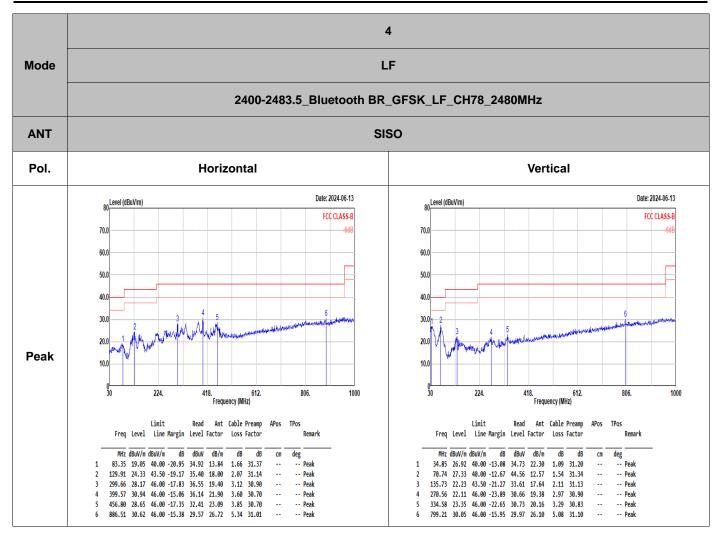


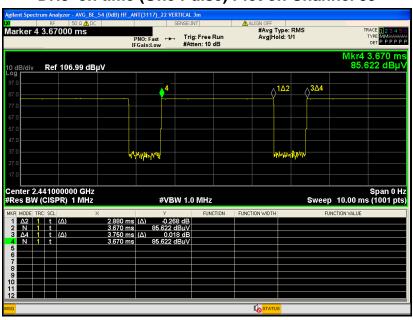


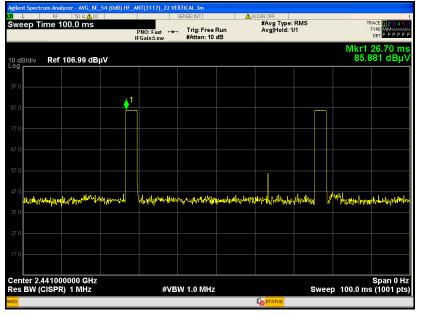












Appendix D. Duty Cycle Plots

DH5 on time (One Pulse) Plot on Channel 39

DH5 on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.88 / 100 = 5.76 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. DH5 has the highest duty cycle worst case and is reported.