

JianYan Testing Group Shenzhen Co., Ltd.

ACCREDITED certificate 4346.01

Report No.: JYTSZ-R12-2200896

FCC RF Test Report

Applicant: PAX Technology Limited

Address of Applicant: Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour Road,

Wanchai, Hong Kong

Equipment Under Test (EUT)

Product Name: Integrated Smart Terminal

Model No.: E770

Trade Mark: PAX

FCC ID: V5PE770

Applicable Standards: FCC CFR Title 47 Part 15C (§15.225)

Date of Sample Receipt: 26 Apr., 2022

Date of Test: 27 Apr., to 23 Jun., 2022

Date of Report Issue: 24 Jun., 2022

Test Result: PASS

Tested by: Date: 24 Jun., 2022

Reviewed by: Date: 24 Jun., 2022

Approved by: Date: 24 Jun., 2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	24 Jun., 2022	Original

3 Contents

			Page
1	Co	over Page	
2	Ve	ersion	2
3	Co	ontents	3
4		eneral Information	
	4.1	Client Information	
	4.2	General Description of E.U.T.	
	4.3	Test Mode and Environment	
	4.4	Description of Test Auxiliary Equipment	
	4.5	Measurement Uncertainty	
	4.6	Additions to, Deviations, or Exclusions From the Method	5
	4.7	Laboratory Facility	5
	4.8	Laboratory Location	
	4.9	Test Instruments List	6
5	Ме	easurement Setup and Procedure	7
	5.1	Test Setup	7
	5.2	Test Procedure	
6	Tes	st Results	9
	6.1	Summary	9
	6.2	Antenna Requirement	11
	6.3	AC Power Line Conducted Emission	
	6.4	20dB Bandwidth	
	6.5	Field Strength of Fundamental	
	6.6	Field Strength of Spurious Emissions	
	67	Frequency Tolerance	21

4 General Information

4.1 Client Information

Applicant:	PAX Technology Limited
Address:	Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour Road, Wanchai, Hong Kong
Manufacturer:	PAX Computer Technology (Shenzhen) Co., Ltd.
Address:	401 and 402, Building 3, Shenzhen Software Park, Nanshan District, Shenzhen City, Guangdong Province, P.R.C

4.2 General Description of E.U.T.

Product Name:	Integrated Smart Terminal
Model No.:	E770
Operation Frequency:	13.56MHz
Channel Numbers:	1
Modulation Type:	ASK
Antenna Type:	Loop Antenna
Power Supply:	Rechargeable Li-ion polymer Battery DC3.7V, 1100mAh
AC Adapter:	Model: G024A090250ZZUD
	Input: AC100-240V, 50/60Hz, 0.8A max
	Output: DC 9.0V, 2.5A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.
Remark:	This EUT has two versions, one is the fixed-line version, the other is the wall-mounted version. The only difference between the two versions is their base interface board is different.

Report No.: JYTSZ-R12-2200896

4.3 Test Mode and Environment

Test Mode:					
Transmitting mode: Keep the EUT in transmitting mode with modulation					
	Remark: Pre-scan The EUT was placed on three different polar directions tested: i.e. X axis, Y axis, Z axis, and found Y axis was worse case, so the report only reflects the worse axis tested data.				
Operating Environment:	Operating Environment:				
Temperature:	15℃ ~ 35℃				
Humidity: 20 % ~ 75 % RH					
Atmospheric Pressure: 1010 mbar					

4.4 Description of Test Auxiliary Equipment

ĺ	Manufacture	er Description	Model	Serial Number	FCC ID/DoC
I			N/A		

4.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Conducted Emission for LISN (9kHz ~ 150kHz)	±3.11 dB
Conducted Emission for LISN (150kHz ~ 30MHz)	±2.62 dB
Radiated Emission (9kHz ~ 30MHz) (3m SAC)	±3.13 dB
Radiated Emission (30MHz ~ 1GHz) (3m SAC)	±4.45 dB
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	±5.34 dB

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

4.6 Additions to, Deviations, or Exclusions From the Method

No

4.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

4.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

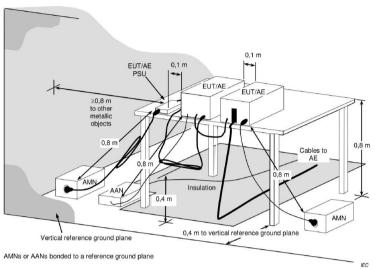
Email: info-JYTee@lets.com, Website: http://jvt.lets.com

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-154-C No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

4.9 Test Instruments List

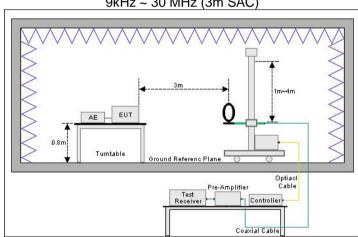
Radiated Emission(3m SAC):						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	ETS	9m*6m*6m	WXJ001-1	04-14-2021	04-13-2024	
Loop Antenna	Schwarzbeck	FMZB 1519 B	WXJ002-4	03-07-2022	03-06-2023	
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	03-08-2022	03-07-2023	
Pre-amplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXJ001-2	01-20-2022	01-19-2023	
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	03-05-2022	03-04-2023	
Coaxial Cable (9kHz ~ 30MHz)	JYT	JYT3M-1G-BB-5M	WXG001-6	01-20-2022	01-19-2023	
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	01-20-2022	01-19-2023	
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N	/A	
Test Software	Tonscend	TS+	Version: 3.0.0.1			
EMI Test Software	AUDIX	E3	Version: 6.110919b			

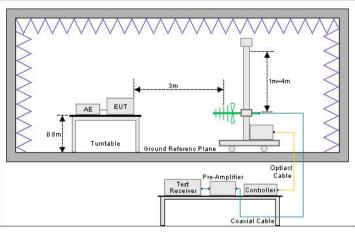
Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESR3	WXJ003-2	10-21-2021	10-20-2022	
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	02-24-2022	02-23-2023	
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	03-30-2022	03-29-2023	
LISN Coaxial Cable (9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M	WXG003-1	02-24-2022	02-23-2023	
RF Switch	TOP PRECISION	RSU0301	WXG003	1	N/A	
Test Software	AUDIX	E3	\	Version: 6.110919b		


Conducted Method:					
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date	Cal. Due date
rest Equipment	Manufacturer	wiodei No.	Manage No.	(mm-dd-yy)	(mm-dd-yy)
Spectrum Analyzer	Keysight	N9020B	WXJ081-1	07-02-2021	07-01-2022

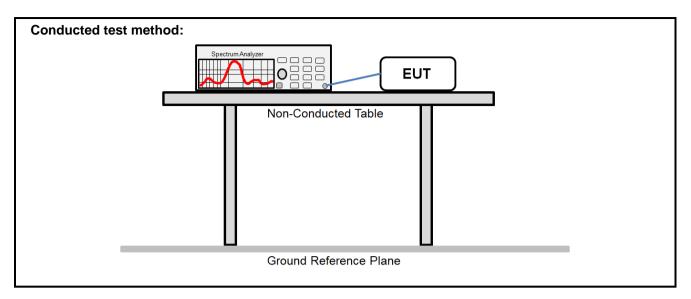
Measurement Setup and Procedure

5.1 Test Setup


1) Conducted emission measurement:


Note: The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be >0.8 m.

2) Radiated emission measurement:


9kHz ~ 30 MHz (3m SAC)

30 MHz ~ 1GHz (3m SAC)

5.2 Test Procedure

Test method	Test step
Conducted emission	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN
	that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on
	conducted measurement.
Radiated emission	1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.
	2. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
	3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
Conducted test method	The antenna port of EUT was connected to the RF port of the spectrum analyzer through an RF cable.
	The EUT is keeping in continuous transmission mode and tested in all modulation modes.
	3. The test data is saved by the screenshot function of the spectrum analyzer.

6 Test Results

6.1 Summary

6.1.1 Clause and Data Summary

orrive Oladoc and Data Callina)		
Test items	Standard clause	Test data	Result
Antenna Requirement	15.203	See Section 6.2	Pass
AC Power Line Conducted Emission	15.207	See Section 6.3	Pass
20dB Bandwidth	15.215(c)	See Section 6.4	Pass
Field Strength of Fundamental	15.225 (a)	See Section 6.5	Pass
Field Strongth of Spurious Emissions	15.209	See Section 6.6	Door
Field Strength of Spurious Emissions	15.225 (d)	See Section 6.6	Pass
Frequency Tolerance	15.225 (e)	See Section 6.7	Pass

Remark:

1. Pass: The EUT complies with the essential requirements in the standard.

2. N/A: Not Applicable.

Test Method: ANSI C63.4-2014 ANSI C63.10-2013

6.1.2 Test Limit

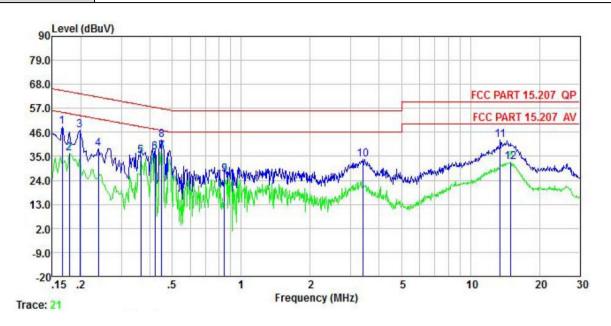
Items			Limit	
		Frequency	Limit (c	IBμV)
		(MHz)	Quasi-Peak	Average
AC Power Line Conducted		0.15 – 0.5	66 to 56 Note 1	56 to 46 Note 1
		0.5 – 5	56	46
Emission		5 – 30	60	50
			decreases linearly with the logarith applies at transition frequencies.	m of frequency.
20dB Bandwidth	N,	/A		
	(0	14.010 MHz band shall § 15.209.	ny emissions appearing o not exceed the general r	adiated emission limits i
Field Other with of Free down antal		Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
Field Strength of Fundamental		0.009 - 0.490	2400/F(kHz)	300
		0.490 – 1.705	24000/F(kHz)	30
Field Strength of Spurious		1.705 – 30.0	30	30
Emissions		30 – 88	100**	3
		88 – 216	150**	3
		216 – 960	200**	3
		Above 960	500	3
		operating under this section sha	aph (g), fundamental emissions fro Ill not be located in the frequency b However, operation within these fro , e.g., §§ 15.231 and 15.241.	ands 54-72 MHz, 76-88 MHz,
Frequency Tolerance	±0 de th te	0.01% of the operating froggrees to + 50 degrees Coeprimary supply voltage	f the carrier signal shall be equency over a temperatu at normal supply voltage from 85% to 115% of the C. For battery operated e sing a new battery.	ure variation of −20 e, and for a variation in e rated supply voltage at

Report No.: JYTSZ-R12-2200896

6.2 Antenna Requirement

Standard requirement: FCC Part15 C Section 15.203

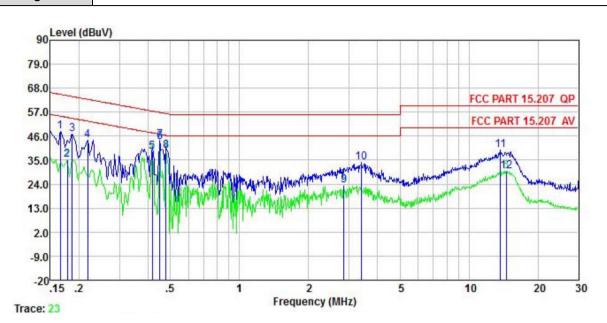
15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna: The EUT make use of an Loop antenna.

6.3 AC Power Line Conducted Emission

Product name:	Integrated Smart Terminal	Product model:	E770
Test by:	Janet	Test mode:	NFC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz		


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>		dBu₹	dBu₹	<u>dB</u>	
1	0.166	48.72	0.04	0.01	48.77	65.16	-16.39	QP
2	0.178	36.47	0.04	0.01	36.52	54.59	-18.07	Average
3	0.198	46.88	0.04	0.04	46.96	63.71	-16.75	QP
2 3 4 5 6	0.238	38.55	0.04	0.02	38.61	62.17	-23.56	QP
5	0.365	34.93	0.04	0.03	35.00	48.61	-13.61	Average
6	0.421	36.64	0.04	0.04	36.72	47.42	-10.70	Average
7	0.449	37.14	0.04	0.03	37.21	46.89	-9.68	Average
7 8 9	0.449	42.26	0.04	0.03	42.33	56.89	-14.56	QP
9	0.844	26.60	0.05	0.04	26.69	46.00	-19.31	Average
10	3.381	33.38	0.10	0.07	33.55		-22.45	
11	13.479	42.16	0.25	0.11	42.52	60.00	-17.48	QP
12	14.986	31.83	0.27	0.14	32.24	50.00	-17.76	Average

Remark:

- 1. Level = Read level + LISN Factor + Cable Loss.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product name:	Integrated Smart Terminal	Product model:	E770
Test by:	Janet	Test mode:	NFC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz		

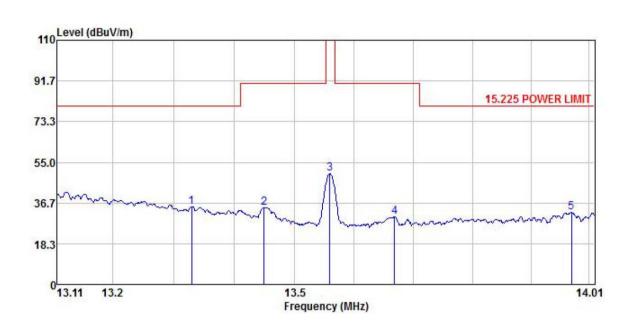
	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
2,700	MHz	dBu∜	<u>dB</u>	₫B	dBu∜	dBu∜	<u>dB</u>	
1	0.166	48.21	0.00	0.01	48.22	65.16	-16.94	QP
2	0.178	35.13	0.00	0.01	35.14	54.59	-19.45	Average
2	0.186	46.90	0.00	0.02	46.92	64.20	-17.28	QP
4	0.219	44.25	0.00	0.03	44.28	62.88	-18.60	QP
4 5 6 7	0.417	39.01	0.00	0.04	39.05	47.51	-8.46	Average
6	0.449	43.40	0.00	0.03	43.43	46.89		Average
7	0.449	43.97	0.00	0.03	44.00	56.89	-12.89	QP
8	0.479	39.10	0.00	0.03	39.13	46.36	-7.23	Average
8 9	2.854	23.42	0.00	0.09	23.51	46.00	-22.49	Average
10	3.399	33.72	0.00	0.07	33.79	56.00	-22.21	QP
11	13.695	39.50	0.00	0.12	39.62	60.00	-20.38	QP
12	14.517	29.87	0.00	0.13	30.00	50.00	-20.00	Average


- 1. Level = Read level + LISN Factor + Cable Loss.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

6.4 20dB Bandwidth

20dB bandwidth (kHz)	Limit (kHz)	Results
0.531	11.2	Passed
Note: For 13.56MHz, permitted Band is		

Test plot as follows:



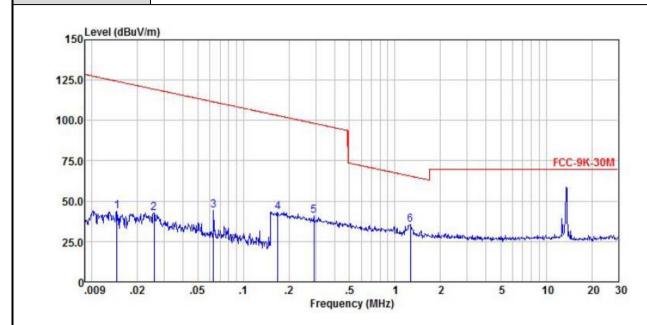
6.5 Field Strength of Fundamental

Product Name:	Integrated Smart Terminal	Product Model:	E770
Test By:	Janet	Test mode:	NFC Tx mode
Test Voltage:	DC 3.70V	Polarization:	Coxial

	Freq		Antenna Factor				Limit Line	Over Limit	Remark
_	MHz	dBu∀	dB/m	dB	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	*
1	13.329	15.08	19.63	0.40	0.00	35.11	80.50	-45.39	
2	13.449	14.59	19.61	0.41	0.00	34.61	90.50	-55.89	
2	13.559	30.10	19.59	0.41	0.00	50.10	124.00	-73.90	
4	13.668	10.34	19.57	0.42	0.00	30.33	90.50	-60.17	
4 5	13.970	12.43	19.50	0.44	0.00	32.37		-48.13	

Remark.

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

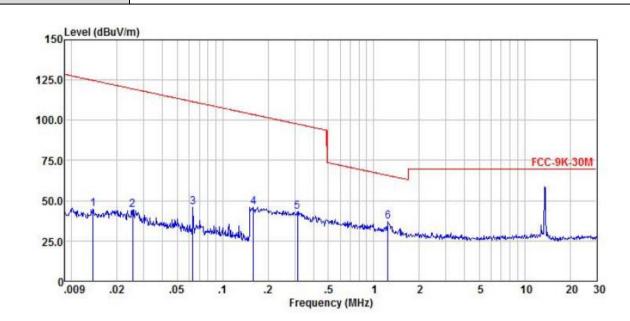

roduct Nan	ne:	ntegrated	Smart Tern	ninal		Produ	ct Model:	E770			
est By:		Janet				Test m	node:	NF	NFC Tx mode		
est Voltage): [OC 3.70V				Polaria	zation:	Cop	olanar		
Lev	el (dBuV/m)										
110											
NAME OF THE OWNER, THE											
91.7							1				
8							8	15.225	POWER LIMIT		
73.3									-		
					3						
55.0					$-\Lambda$						
1000000			4	2	//\		5				
36.7			A A	why		~~~	_				
30.7	many	www	1 1 1		W L		7/1	LMN	Jana and		
18.3											
0 13.1	11 13.2		10000	13.	5		<u> </u>		14.01		
					quency (M	Hz)			1000		
		Read	Antenna	Cable	Preamn		Limit	Over			
	Freq		Factor	Loss	Factor	Level			Remark		
	MHz	dBuV	<u>dB</u> /m	dB	<u>-</u>	dBuV/m	3577	<u>d</u> B			
	MHZ	apav	CED/ JR	Ф	Ф	abuv/m	and all	Ф			
1	13.345	20.87	19.63	0.40	0.00	40.90	80.50	-39.60			
2	13.461	21.67		0.41		41.69					
4	13.559	39.65		0.41		59.65					
3			10 57	0.42	0.00	40, 80	90.50	-49.70			
2 3 4 5	13.648 13.771	20.81	19.57 19.54	0.43	0.00			-38.27			

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

6.6 Field Strength of Spurious Emissions

Product Name:	Integrated Smart Terminal	Product Model:	E770
Test By:	Janet	Test mode:	NFC Tx mode
Test Frequency:	90 kHz – 30 MHz	Polarization:	Coxial
Test Voltage:	DC 3.70V		

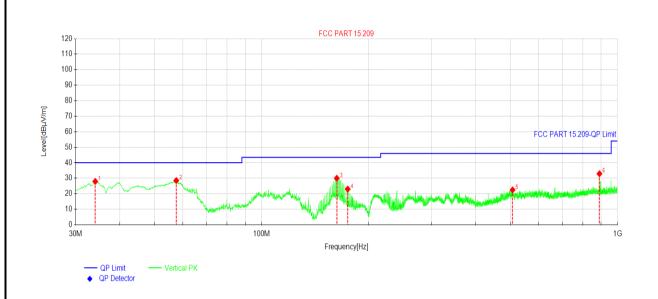
Freq						Limit Line	Over Limit	Remark
MHz	dBu∀	dB/m	₫B	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
0.015	23.32	20.40	0.01	0.00	43.73	124.27	-80.54	
0.026	22.22	20.24	0.01	0.00	42.47	119.41	-76.94	
0.064	23.91	20.53	0.02	0.00	44.46	111.52	-67.06	
0.168	22.99	20.26	0.03	0.00	43.28	103.10	-59.82	
0.292	20.49	20.53	0.06	0.00	41.08	98.30	-57.22	
1.268	15.02	20.48	0.17	0.00	35.67	65.56	-29.89	
	MHz 0.015 0.026 0.064 0.168 0.292	Freq Level MHz dBuV 0.015 23.32 0.026 22.22 0.064 23.91 0.168 22.99 0.292 20.49	Freq Level Factor MHz dBuV dB/m 0.015 23.32 20.40 0.026 22.22 20.24 0.064 23.91 20.53 0.168 22.99 20.26 0.292 20.49 20.53	Freq Level Factor Loss MHz dBuV dB/m dB 0.015 23.32 20.40 0.01 0.026 22.22 20.24 0.01 0.064 23.91 20.53 0.02 0.168 22.99 20.26 0.03 0.292 20.49 20.53 0.06	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 0.015 23.32 20.40 0.01 0.00 0.026 22.22 20.24 0.01 0.00 0.064 23.91 20.53 0.02 0.00 0.168 22.99 20.26 0.03 0.00 0.292 20.49 20.53 0.06 0.00	MHz dBuV dB/m dB dB dBuV/m 0.015 23.32 20.40 0.01 0.00 43.73 0.026 22.22 20.24 0.01 0.00 42.47 0.064 23.91 20.53 0.02 0.00 44.46 0.168 22.99 20.26 0.03 0.00 43.28 0.292 20.49 20.53 0.06 0.00 41.08	MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m 0.015 23.32 20.40 0.01 0.00 43.73 124.27 0.026 22.22 20.24 0.01 0.00 42.47 119.41 0.064 23.91 20.53 0.02 0.00 44.46 111.52 0.168 22.99 20.26 0.03 0.00 43.28 103.10 0.292 20.49 20.53 0.06 0.00 41.08 98.30	Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 0.015 23.32 20.40 0.01 0.00 43.73 124.27 -80.54 0.026 22.22 20.24 0.01 0.00 42.47 119.41 -76.94 0.064 23.91 20.53 0.02 0.00 44.46 111.52 -67.06 0.168 22.99 20.26 0.03 0.00 43.28 103.10 -59.82 0.292 20.49 20.53 0.06 0.00 41.08 98.30 -57.22


Remark:

^{1.} Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of 9 kHz~150 kHz are background noise and very lower than the limit, so not show in test report.

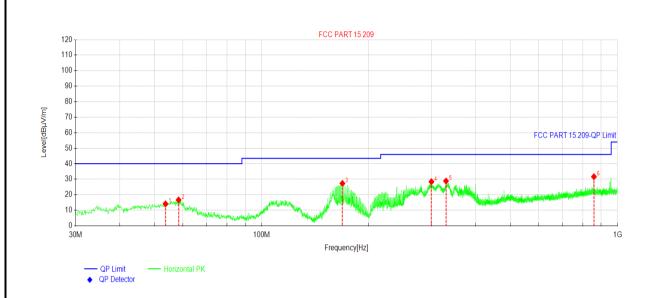
Product Name:	Integrated Smart Terminal	Product Model:	E770
Test By:	Janet	Test mode:	NFC Tx mode
Test Frequency:	90 kHz – 30 MHz	Polarization:	Coplanar
Test Voltage:	DC 3 70V		


	Freq		Antenna Factor				Limit Line		Remark
	MHz	dBu₹	$-\overline{dB/m}$	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	0.014	24.32	20.41	0.01	0.00	44.74	124.77	-80.03	
1 2 3 4 5	0.025	23.90	20.24	0.01	0.00	44.15	119.48	-75.33	
3	0.064	25.25	20.53	0.02	0.00	45.80	111.52	-65.72	
4	0.160	25.51	20.23	0.03	0.00	45.77	103.52	-57.75	
5	0.314	22.69	20.57	0.06	0.00	43.32	97.67	-54.35	
6	1.248	16.31		0.17			65.70	-28.74	

^{1.} Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of 9 kHz~150 kHz are background noise and very lower than the limit, so not show in test report.

Product Name:	Integrated Smart Terminal	Product Model:	E770
Test By:	Janet	Test mode:	NFC Tx mode
Test Frequency:	30 MHz – 1000 MHz	Polarization:	Vertical
Test Voltage:	DC 3.70V		



Suspe	Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Angle [°]	Polarity	
1	34.0744	43.17	27.95	-15.22	40.00	12.05	182	Vertical	
2	57.5508	43.35	28.53	-14.82	40.00	11.47	305	Vertical	
3	162.612	47.37	30.02	-17.35	43.50	13.48	223	Vertical	
4	174.544	40.04	23.06	-16.98	43.50	20.44	104	Vertical	
5	507.093	29.38	22.49	-6.89	46.00	23.51	259	Vertical	
6	889.603	34.31	32.92	-1.39	46.00	13.08	326	Vertical	

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Product Name:	Integrated Smart Terminal	Product Model:	E770	
Test By:	Janet	Test mode:	NFC Tx mode	
Test Frequency:	30 MHz – 1000 MHz	Polarization:	Horizontal	
Test Voltage:	DC 3.70V			

Suspe	Suspected Data List							
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Angle [°]	Polarity
1	53.6704	28.74	14.10	-14.64	40.00	25.90	206	Horizontal
2	58.4238	31.54	16.65	-14.89	40.00	23.35	171	Horizontal
3	168.626	44.37	27.31	-17.06	43.50	16.19	156	Horizontal
4	299.978	41.11	28.40	-12.71	46.00	17.60	156	Horizontal
5	329.663	40.63	28.84	-11.79	46.00	17.16	171	Horizontal
6	858.365	32.95	31.63	-1.32	46.00	14.37	85	Horizontal

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

6.7 Frequency Tolerance

Frequency Stability V.S. Temperature Measurement:

Voltage (Vdc)	Temperature (°C)	Frequency Tolerance (kHz)	Frequency Error (%)	Limit (%)	Results
	-20	0.109	0.001	±0.01	Pass
	-10	-0.206	-0.002	±0.01	Pass
	0	-0.182	-0.001	±0.01	Pass
3.70	+10	-0.186	-0.001	±0.01	Pass
3.70	+20	0.126	0.001	±0.01	Pass
	+30	0.166	0.001	±0.01	Pass
	+40	-0.111	-0.001	±0.01	Pass
	+50	0.129	0.001	±0.01	Pass

Frequency Stability V.S. Voltage Measurement:

-						
I	Temperature	Voltage	Frequency Tolerance	Frequency Error	Limit	Results
ı	(℃)	(Vdc)	(kHz)	(%)	(%)	Nesuits
		3.50	0.123	0.001	±0.01	Pass
	25.0	3.70	-0.109	-0.001	±0.01	Pass
		4.20	0.147	0.001	±0.01	Pass

-----End of report-----