

CFR 47 FCC PART 02 CFR 47 FCC PART 22 H CFR 47 FCC PART 24 E CFR 47 FCC PART 27 RSS-130, RSS-132, RSS-133 RSS-139

TEST REPORT

For

Integrated Smart Terminal

MODEL NUMBER: E700 Pro

REPORT NUMBER: 4790870870-1-RF-6

ISSUE DATE: July 14, 2023

FCC ID:V5PE700PRO IC:11689A-E700PRO

Prepared for

PAX Technology Limited Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour Road, Wanchai, Hong Kong

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	July 17,2023	Initial Issue	

Note:

1. This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

2. The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 22 H >< CFR 47 FCC PART 24 E>< CFR 47 FCC PART 27 > < RSS-130, RSS-132, RSS-133, RSS-139>when <Accuracy Method> decision rule is applied.

TABLE OF CONTENTS

1.	ΑΤΤ	ESTATION OF TEST RESULTS	5
2.	TES	T METHODOLOGY	6
3.	FAC	CILITIES AND ACCREDITATION	6
4.	CAL	IBRATION AND UNCERTAINTY	7
4	.1.	MEASURING INSTRUMENT CALIBRATION	
4	.2.	MEASUREMENT UNCERTAINTY	7
5.	EQU	JIPMENT UNDER TEST	8
5	.1.	DESCRIPTION OF EUT	8
5	.2.	TEST CHANNEL CONFIGURATION	8
5	.3.	MAXIMUM AVERAGE OUTPUT POWER	11
5	.4.	WORST-CASE CONFIGURATION AND MODE	14
5	.5.	DESCRIPTION OF AVAILABLE ANTENNAS	15
5	.6.	DESCRIPTION OF TEST SETUP	16
6.	ME	ASURING INSTRUMENT AND SOFTWARE USED	18
7.	ANT	ENNA TERMINAL TEST RESULTS	19
7.	.1.	EFFECTIVE (ISOTROPIC) RADIATED POWER OF TRANSMITTER	19
7.	.2.	PEAK TO AVERAGE RADIO	21
7	.3.	OCCUPIED BANDWIDTH	22
7.	.4.	BAND EDGE EMISSIONS	23
7.	.5.	SPURIOUS EMISSION AT ANTENNA TERMINAL	25
7.	.6.	FREQUENCY STABILITY	27
8.	APF	PENDIX	29
8	.1.	Appendix A: Effective (Isotropic) Radiated Power Output Data	29
8	.2.	Appendix B: Peak-to-Average Ratio(CCDF)	38
	8.2.		
8	.3.	Appendix C: 26dB Bandwidth and Occupied Bandwidth	
U	8.3.	1. Test Result	49
	8.3.2		
8	. <i>4.</i> 8.4.	Appendix D: Band Edge 1. Test Result	
	8.4.2		
8	.5.	Appendix E: Conducted Spurious Emission	
	8.5. 8.5.		

		Page 4 of 176
8	8.6. Appendix F: Frequency Stability	
	8.6.1. Test Result	152
9.	RADIATED SPURIOUS EMISSIONS	

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	PAX Technology Limited
Address:	Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour Road,
	Wanchai, Hong Kong

Manufacturer Information

Company Name:	PAX Computer Technology (Shenzhen) Co., Ltd.
Address:	401 and 402, Building 3, Shenzhen Software Park, Nanshan
	District, Shenzhen City, Guangdong Province, P.R.C

EUT Information

EUT Name:	Integrated Smart Terminal
Model:	E700 Pro
Brand:	PAX
Sample Received Date:	June 19, 2023
Sample Status:	Normal
Sample ID:	6201632
Date of Tested:	June 20, 2023 to July 14, 2023

APPLICABLE STANDARDS				
STANDARD	TEST RESULTS			
CFR 47 FCC PART 22 H	PASS			
CFR 47 FCC PART 24 E	PASS			
CFR 47 FCC PART 27	PASS			
RSS-132 Issue 4, RSS-133 Issue 6,	DASS			
RSS-130 Issue 2, RSS-139 Issue 4	PASS			

Prepared By:

Keloo.2

Kebo Zhang Senior Project Engineer

Approved By:

Spolventino

Stephen Guo Operations Manager

Checked By:

Venny Buany

Denny Huang Senior Project Engineer

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.26-2015, 971168 D01 Power Meas License Digital Systems v03r01, 971168 D02 Misc Rev Approv License Devices v02r01, 412172 D01 v01r01 Determining ERP and EIRP, CFR 47 FCC Part 2, Part 22 H, Part 24 E, Part 27, RSS-130, RSS-132, RSS-133, RSS-139

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01)				
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.				
	has been assessed and proved to be in compliance with A2LA.				
	FCC (FCC Designation No.: CN1187)				
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.				
	Has been recognized to perform compliance testing on equipment subject				
	to the Commission's Delcaration of Conformity (DoC) and Certification				
	rules				
	ISED (Company No.: 21320)				
Accreditation	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.				
Certificate	has been registered and fully described in a report filed with ISED.				
	The Company Number is 21320 and the test lab Conformity Assessment				
	Body Identifier (CABID) is CN0046.				
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)				
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.				
	has been assessed and proved to be in compliance with VCCI, the				
	Membership No. is 3793.				
	Facility Name:				
	Chamber D, the VCCI registration No. is G-20019 and R-20004				
	Shielding Room B, the VCCI registration No. is C-20012 and T-20011				

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty			
Conduction emission	3.62 dB			
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB			
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB			
	5.78 dB (1 GHz-18 GHz)			
Radiated Emission (Included Fundamental Emission) (1 GHz to 40 GHz)	5.23dB (18 GHz-26 GHz)			
() (5.64 dB (26 GHz-40 GHz)			
Bandwidth	1.1 %			
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.				

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	Integrated Smart Terminal
Model	E700 Pro
Normal Test Voltage:	AC 120 V, 60 Hz

5.2. TEST CHANNEL CONFIGURATION

Mode	ТΧ	Low	Middle	High
	TX (1.4 MHz)	18607	18900	19193
		1850.7 MHz	1880 MHz	1909.3 MHz
	TX (3 MHz)	18615	18900	19185
	TX (3 WI 12)	1851.5 MHz	1880 MHz	1908.5 MHz
	TX (5 MHz)	MHz) 18625 18	18900	19175
LTE Band 2		1852.5 MHz	1880 MHz	1907.5 MHz
	TX (10 MHz)	18650	18900	19150
		1855 MHz	1880 MHz	1905 MHz
	TX (15 MHz)	18675	18900	19125
	TX (T3 WI12)	1857.5 MHz	1880 MHz	1902.5 MHz
	TX (20 MHz)	18700	18900	19100
		1860 MHz	1880 MHz	1900 MHz

Solutions

REPORT NO.: 4790870870-1-RF-6

Page 9 of 176

Mode	TX/RX	Low	Middle	High
	TX (1.4 MHz)	19957	20175	20393
		1710.7 MHz	1732.5 MHz	1754.3 MHz
	TX (3 MHz)	19965	20175	20385
		1711.5 MHz	1732.5 MHz	1753.5 MHz
	TX (5 MHz)	19975	20175	20375
LTE Band 4		1712.5 MHz	1732.5 MHz	20393 1z 1754.3 MHz 20385 1z 1753.5 MHz 20375 1z 1752.5 MHz 20350 1z 1750 MHz 20325 1z 1747.5 MHz 20300
	TX (10 MHz)	20000	20175	
		1715 MHz	1732.5 MHz	1750 MHz
	TX (15 MHz)	20025	20175	20325
		1717.5 MHz	1732.5 MHz	20393 1754.3 MHz 20385 1753.5 MHz 20375 1752.5 MHz 20350 1750 MHz 20325 1747.5 MHz 20300
	TX (20 MHz)	20050	20175	20300
		1720 MHz	1732.5 MHz	1745 MHz

Mode	TX/RX	Low	Middle	High	
		20407	20525	20643	
	TX (1.4 MHz)	824.7 MHz	836.5 MHz	848.3 MHz	
		20415	20525	20635	
LTE Band 5	TX (3 MHz)	825.5 MHz	836.5 MHz	847.5 MHz	
LIE Dallu S		20425	20525	20625	
	TX (5 MHz)	826.5 MHz	836.5 MHz	846.5 MHz	
		20450	20525	20600	
	TX (10 MHz)	829.0 MHz	836.5 MHz	844.0 MHz	

Mode	TX/RX	Low	Middle	High
		23017	23095	23173
	TX (1.4 MHz)	699.7 MHz	707.5 MHz	715.3 MHz
		23025	23095	23165
LTE Band 12	TX (3 MHz)	700.5 MHz	707.5 MHz	714.5 MHz
LIE Danu 12		23035	23095	23155
	TX (5 MHz)	701.5 MHz	707.5 MHz	713.5 MHz
		23060	23095	23130
	TX (10 MHz)	704.0 MHz	707.5 MHz	711.0 MHz

Mode	TX/RX	Low	Middle	High
		23205	23230	23255
LTE Band 13	TX (5 MHz)	779.5 MHz	782.0 MHz	784.5 MHz
LIE Dallu 13		23230	23230	23230
	TX (10 MHz)	782.0 MHz	782.0 MHz	782.0 MHz

REPORT NO.: 4790870870-1-RF-6

Page 10 of 176

Mode	TX/RX	Low	Middle	High
	23755		23790	23825
LTE Band 17	TX (5 MHz)	706.5 MHz	710.0 MHz	713.5 MHz
		23780	23790	23800
	TX (10 MHz)	709.0 MHz	710.0 MHz	711.0 MHz

5.3. MAXIMUM AVERAGE OUTPUT POWER

LTE Band 2

Part 24/RSS	S-133							
EIRP Limit(W)	2						
Antenna Ga	ain (dBi)	2.45						
Bandwidth (MHz)	Modulation	Low Frequency (MHz)	Upper Frequency (MHz)	Conducted Average (dBm)	EIRP Average (dBm)	EIRP Average (W)	99% OBW (MHz)	Emission Designator
1.4	QPSK	1850.7	1909.3	20.6	23.05	0.20	1.085	1M09G7W
1.4	16QAM	1000.7	1909.5	19.64	22.09	0.16	1.083	1M08D7W
3	QPSK	1851.5	851.5 1908.5	20.42	22.87	0.19	2.686	2M69G7W
5	16QAM	1001.0	1900.5	19.29	21.74	0.15	2.685	2M69D7W
5	QPSK	1852.5	1852.5 1907.5	20.58	23.03	0.20	4.48	4M48G7W
	16QAM	1052.5	1907.5	19.3	21.75	0.15	4.478	4M48D7W
10	QPSK	1855.0	1905.0	20.41	22.86	0.19	8.966	8M97G7W
10	16QAM	1000.0	1905.0	19.39	21.84	0.15	8.965	8M97D7W
15	QPSK	1857.5	1902.5	20.33	22.78	0.19	13.456	13M5G7W
10	16QAM	C.7C01	1902.5	19.65	22.10	0.16	13.452	13M5D7W
20	QPSK	1860.0	1900.0	20.49	22.94	0.20	18.049	18M0G7W
20	16QAM	1000.0	1300.0	19.68	22.13	0.16	18.038	18M0D7W

LTE Band 4

Part 27/RSS-	139	7						
EIRP Limit(W)		1.00						
Antenna Gair	n (dBi)	1.75						
Bandwidth (MHz)	Modulation	Low Frequenc y (MHz)	Upper Frequency (MHz)	Conducted Average (dBm)	EIRP Avera ge (dBm)	EIRP Avera ge (W)	99% OBW (MHz)	Emission Designator
1.4	QPSK	1710 7	17510	21.08	22.83	0.19	1.09	1M10G7W
1.4	16QAM	1710.7	1754.3	20.71	22.46	0.18	1.09	1M10D7W
3	QPSK		11.5 1753.5	21.07	22.82	0.19	2.693	2M69G7W
3	16QAM	1711.5	1755.5	19.84	21.59	0.14	2.695	2M70D7W
5	QPSK	1712.5	1752.5	21.02	22.77	0.19	4.491	4M49G7W
5	16QAM	1712.5	1752.5	20.40	22.15	0.16	4.503	4M50D7W
10	QPSK	1715.0	1750.0	21.21	22.96	0.20	8.981	8M98G7W
10	16QAM	1715.0	1750.0	20.11	21.86	0.15	8.975	8M98D7W
15	QPSK	1717.5	1747 5	21.20	22.95	0.20	13.466	13M5G7W
GI	16QAM	G.1111	1747.5	20.83	22.58	0.18	13.457	13M5D7W
20	QPSK	1720.0	1745.0	21.36	23.11	0.20	18.021	18M0G7W
20	16QAM	1720.0	1743.0	20.38	22.13	0.16	18.026	18M0D7W

LTE Band 5

Part 22H/R	SS-132							
ERP Limit(V	V)	7.00						
Antenna Ga	ain (dBi)	1.7						
Bandwidth (MHz)	Modulation	Low Frequency (MHz)	Upper Frequenc y (MHz)	Conducted Average (dBm)	ERP Average (dBm)	ERP Average (W)	99% OBW (MHz)	Emission Designator
1.4	QPSK	824.7	848.3	21.78	21.33	0.14	1.086	1M09G7W
1.4	16QAM	024.7	040.3	20.78	20.33	0.11	1.088	1M09D7W
3	QPSK	825.5	847.5	21.61	21.16	0.13	2.697	2M70G7W
3	16QAM	020.0	047.5	20.88	20.43	0.11	2.689	2M69D7W
5	QPSK	826.5	016 E	21.77	21.32	0.14	4.492	4M49G7W
5	16QAM	020.0	.5 846.5	20.53	20.08	0.10	4.501	4M50D7W
10	QPSK	829.0	844.0	21.67	21.22	0.13	8.979	8M98G7W
10	16QAM	029.0	044.0	21.18	20.73	0.12	8.964	8M96D7W

LTE Band12

Part 27/RSS	-130							
ERP Limit(W	/)	3.00						
Antenna Gai	n (dBi)	1.23						
Bandwidth (MHz)	Modulation	Low Frequency (MHz)	Upper Frequency (MHz)	Conducted Average (dBm)	ERP Average (dBm)	ERP Average (W)	99% OBW (MHz)	Emission Designator
1.4	QPSK	COO 7 745 0	21.3	20.38	0.11	1.089	1M09G7W	
1.4	16QAM	699.7	715.3	20.45	19.53	0.09	1.089	1M09D7W
3	QPSK	700.5	714.5	21.46	20.54	0.11	2.695	2M70G7W
3	16QAM	700.5	714.5	20.48	19.56	0.09	2.69	2M69D7W
5	QPSK	701.5	713.5	21.59	20.67	0.12	4.49	4M50G7W
5	16QAM	701.5	713.5	20.33	19.41	0.09	4.503	4M50D7W
10	QPSK	704.0	711.0	21.45	20.53	0.11	8.954	8M95G7W
10	16QAM	704.0	711.0	20.82	19.90	0.10	8.953	8M95D7W

LTE Band 13

Part 27/RSS	5-130							
ERP Limit(W	/)	3.00						
Antenna Ga	in (dBi)	2.65						
Bandwidth (MHz)	Modulation	Low Frequency (MHz)	Upper Frequency (MHz)	Conducted Average (dBm)	ERP Average (dBm)	ERP Average (W)	99% OBW (MHz)	Emission Designator
5	QPSK	779.5	784.5	21.83	22.33	0.17	4.491	4M49G7W
5	16QAM	119.5	704.5	20.72	21.22	0.13	4.502	4M50D7W
10	QPSK	782	782	21.72	22.22	0.17	8.989	8M99G7W
10	16QAM	102	102	20.48	20.98	0.13	8.978	8M98G7W

LTE Band 17

Part 27/RSS	S-130							
ERP Limit(V	V)	3.00						
Antenna Ga	iin (dBi)	1.23						
Bandwidth (MHz)	Modulation	Low Frequency (MHz)	Upper Frequency (MHz)	Conducted Average (dBm)	ERP Average (dBm)	ERP Average (W)	99% OBW (MHz)	Emission Designator
5	QPSK	706.5	713.5	21.66	20.74	0.12	4.503	4M50G7W
5	16QAM	700.5	713.5	20.41	19.49	0.09	4.509	4M51D7W
10	QPSK	709.0	711.0	21.52	20.60	0.11	8.985	8M99G7W
10	16QAM	709.0	711.0	20.91	19.99	0.10	8.99	8M99D7W

5.4. WORST-CASE CONFIGURATION AND MODE

During all testing, EUT is in link mode with base station emulator at maximum power level. The worst-case scenario for all measurements is based on the average conducted output power measurement investigation results. Output power measurements were measured on QPSK, 16QAM. All testing was performed using QPSK and 16QAM modulations to represent the worst case.

The radiated spurious emissions measurements were carried out in semi-anechoic chamber with 3-meter test range, and EUT was investigated in three orthogonal orientations X,Y and Z. It was determined that X orientation was the worst-case.

Radiated spurious emissions were investigated below 30 MHz, 30 MHz - 1 GHz and above 1 GHz. There were no emissions found on below 1GHz and above 18 GHz, the emissions between 1 GHz – 18 GHz were tested the highest transmitting power channel and the worse configuration.

Test Items	Worst case test configuration					
Description	Modulation	Channel	Bandwidth (MHz)	RB Configuration		
Radiated Spurious Emissions	QPSK	L, M, H	Maximum BW	RB size=1, RB Location= Low		

Antenna	Band	Antenna Type	MAX Antenna Gain (dBi)	
1	LTE Band 2	FPC	2.45	
1	LTE Band 4	FPC	1.75	
1	LTE Band 5	FPC	1.7	
1	LTE Band 12	FPC	1.23	
1	LTE Band 13	FPC	2.65	
1	LTE Band 17	FPC	1.23	

5.5. DESCRIPTION OF AVAILABLE ANTENNAS

Band	Transmit and Receive Mode	Description
LTE Band 2	⊠1TX, 2RX	Main antenna can be used as transmitting/receiving antenna, DIV antenna can be used as receiving antenna
LTE Band 4	⊠1TX, 2RX	Main antenna can be used as transmitting/receiving antenna, DIV antenna can be used as receiving antenna
LTE Band 5	⊠1TX, 2RX	Main antenna can be used as transmitting/receiving antenna, DIV antenna can be used as receiving antenna
LTE Band 12	⊠1TX, 2RX	Main antenna can be used as transmitting/receiving antenna, DIV antenna can be used as receiving antenna
LTE Band 13	⊠1TX, 2RX	Main antenna can be used as transmitting/receiving antenna, DIV antenna can be used as receiving antenna
LTE Band 17	⊠1TX, 2RX	Main antenna can be used as transmitting/receiving antenna, DIV antenna can be used as receiving antenna

Note: The value of the antenna gain was declared by customer.

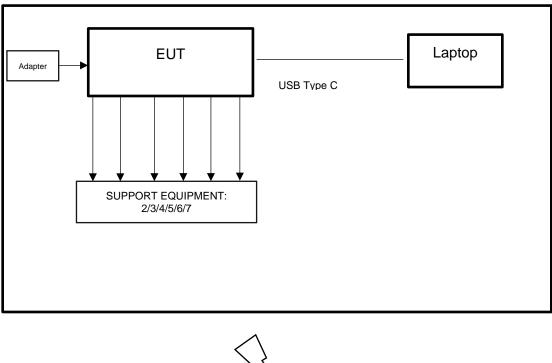
5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

ltem	Equipment	Mfr/Brand	Model/Type No.	Specification	Series No.
1	Laptop	Lenovo	E14	/	Laptop
2	Flash Disk*4	N/A	N/A	N/A	N/A
3	Bank card	N/A	N/A	N/A	N/A
4	RS232 Load	N/A	N/A	N/A	N/A
5	Cash Drawer Load	N/A	N/A	N/A	N/A
6	Micro SD Card	N/A	N/A	N/A	N/A
7	Earphone	SENNHEISER	CX80S	N/A	N/A

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	Туре С	/	1.0	/


ACCESSORIES

lt	tem	Accessory	Brand Name	Model Name	Description
	1	Switching Adapter	HONOTO	ADS-65HI-19A-3 24065E	Input: 100-240V~ 50/60Hz 1.5A max Output: DC 24V, 2.7A 64.8W
	2	AC Cable	N/A	N/A	Length: 2.0m unshielded

The EUT can connect to CMW500 into a test mode.

SETUP DIAGRAM FOR TESTS

CMW 500

6. MEASURING INSTRUMENT AND SOFTWARE USED

Antenna Terminal Test									
			Inst	rument	t				
Used	Equipment	Manufacturer	Мос	lel No.	Se	erial No	э.	Last Cal.	Next Cal.
V	Spectrum Analyzer	R&S	FS	SV40	S42	220600	01	Oct.17, 2022	Oct.16, 2023
	Wideband Radio Communication Tester	R&S	СМ	W500	1	155523	}	Oct.17, 2022	Oct.16, 2023
\checkmark	DC Power Supply	Array	36	62A	A	151201	5	Oct.17, 2022	Oct.16, 2023
			So	ftware					
Used	Descript	ion	Mar	nufactu	rer			Name	Version
V	Tonsend Cellular	Test System	Т	onsenc	ł	JS11		RF Auto Test ystem	3.1.46
	Radiated Test								
			Inst	rument	t				
Used	Equipment	Manufacturer	Moc	lel No.	Se	erial No	э.	Last Cal.	Next Cal.
\checkmark	MXE EMI Receiver	KESIGHT	N9	038A	MY	564000)36	Oct.17, 2022	Oct.16, 2023
V	Hybrid Log Periodic Antenna	TDK		LP- 003C	1	130959)	Aug.02, 2021	Aug.01, 2024
\checkmark	Preamplifier	HP	84	47D	294	4A090	99	Oct.17, 2022	Oct.16, 2023
V	EMI Measurement Receiver	R&S	ES	SR26	1	101377		Oct.17, 2022	Oct.16, 2023
\checkmark	Horn Antenna	TDK	HRN	I- 0118	1	130940)	July 20, 2021	July 19, 2024
\checkmark	Horn Antenna	Schwarzbeck	BBH	A9170		697		July 20, 2021	July 19, 2024
V	Preamplifier	TDK		\-02- 118		RS-305 00067		Oct.17, 2022	Oct.16, 2023
V	Preamplifier	TDK	PA	-02-2		RS-307 00003	7_	Oct.17, 2022	Oct.16, 2023
\checkmark	Loop antenna	Schwarzbeck	15	519B		80000		Dec.14, 2021	Dec.13, 2024
Ø	High Pass Filter	Wi	WHKX10- 2700- 3000- 18000- 40SS			23		Oct.17, 2022	Oct.16, 2023
			So	ftware					
Used	Descr	iption		Manuf	actu	irer		Name	Version
	Test Software for R	adiated disturba	ance	Fa	rad			EZ-EMC	Ver. UL-3A1

7. ANTENNA TERMINAL TEST RESULTS

7.1. EFFECTIVE (ISOTROPIC) RADIATED POWER OF TRANSMITTER

RULE PART(S)

FCC: §2.1046, §22.913, §24.232, §27.50 RSS-130, RSS-132, RSS-133, RSS-139

LIMITS

22.913(a) The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

24.232(c) Mobile/portable stations are limited to 2 watts e.i.r.p. peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

27.50(c) Portable stations (hand-held devices) in the 600 MHz uplink band and the 698-746 MHz band, and fixed and mobile stations in the 600 MHz uplink band are limited to 3 watts ERP. 27.50(d) Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watts EIRP.

27.50(h) Mobile stations are limited to 2.0 watts EIRP. All user stations are limited to 2.0 watts transmitter output power.

In addition, when the transmitter power is measured in terms of average value, the peak-toaverage ratio of the power shall not exceed 13 dB.

RSS-130

The transmitter output power shall be measured in terms of average power. In addition, the peak-to-average power ratio (PAPR) of the transmitter shall not exceed 13 dB for more than 0.1% of the time and shall use a signal corresponding to the highest PAPR during periods of continuous transmission.

Frequency bands 617-652 MHz and 663-698 MHz

The e.r.p. shall not exceed 3 watts for mobile equipment, fixed subscriber equipment and portable equipment.

Frequency bands 698-756 MHz and 777-787 MHz

The e.r.p. shall not exceed 30 watts for mobile equipment and outdoor fixed subscriber equipment. The e.r.p. shall not exceed 3 watts for portable equipment and indoor fixed subscriber equipment.

RSS-132

The transmitter output power shall be measured in terms of average power. The equivalent radiated power (e.r.p.) shall not exceed 7 watts for mobile equipment and 3 watts for portable equipment.

In addition, the peak-to-average power ratio (PAPR) of the transmitter shall not exceed 13 dB for more than 0.1% of the time using a signal corresponding to the highest PAPR during periods of continuous transmission.

RSS-133

The equivalent isotropically radiated power (e.i.r.p.) for transmitters shall not exceed the limits 2W.

In addition, the transmitter's peak-to-average power ratio (PAPR) shall not exceed 13 dB for more than 0.1% of the time using a signal corresponding to the highest PAPR during periods of continuous transmission.

RSS-139

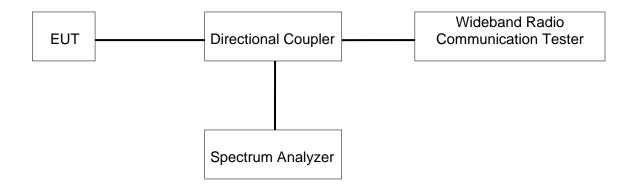
The equivalent isotropically radiated power (e.i.r.p.) for mobile and portable transmitters shall not exceed one watt.

In addition, the peak to average power ratio (PAPR) of the equipment shall not exceed 13 dB for more than 0.1% of the time, using a signal that corresponds to the highest PAPR during periods of continuous transmission.

TEST PROCEDURE

Refer to ANSI C63.26:2015 and KDB 971168 D01 Section 5.6 ERP/ EIRP = PMeas + GT - LC

where:


ERP or EIRP = effective or equivalent isotropically radiated power, respectively (expressed in the same units as PMeas, typically dBW or dBm);

PMeas = measured transmitter output power or PSD, in dBm or dBW;

GT = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);

LC = signal attenuation in the connecting cable between the transmitter and antenna, in dB The transmitter has a maximum radiated ERP / EIRP output powers as follows:

TEST SETUP

TEST ENVIRONMENT

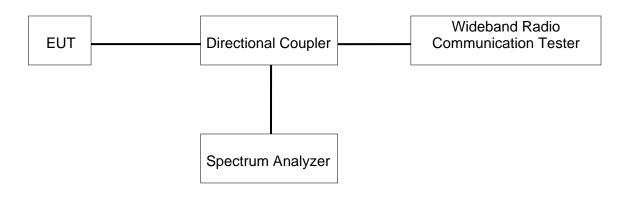
Temperature	23.4°C	Relative Humidity	57.2%
Atmosphere Pressure	101kPa	Test Voltage	AC 120 V, 60 HZ

<u>RESULTS</u>

Please refer to Appendix A.

7.2. PEAK TO AVERAGE RADIO

LIMITS


In addition, when the transmitter power is measured in terms of average value, the peak-toaverage ratio of the power shall not exceed 13 dB.

TEST PROCEDURE

Refer to KDB 971168 D01 Power Meas License Digital Systems v03r01;

The transmitter output was connected to a CMW500 Test Set and configured to operate at maximum power. The PAR was measured on the Spectrum Analyzer.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.4°C	Relative Humidity	57.2%
Atmosphere Pressure	101kPa	Test Voltage	AC 120 V, 60 HZ

<u>RESULTS</u>

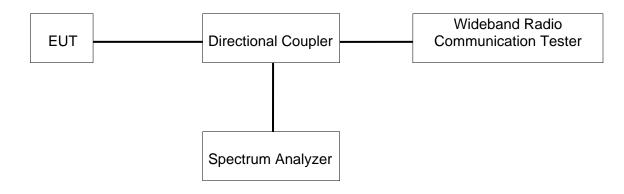
Please refer to Appendix B.

7.3. OCCUPIED BANDWIDTH

RULE PART(S)

FCC: §2.1049, RSS-130, RSS-132, RSS-133, RSS-139

<u>LIMITS</u>


For reporting purposes only.

TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at the low, middle and high channel in each band. The -26dB bandwidth was also measured and recorded.

(Refer to KDB 971168 D01 Power Meas License Digital Systems v03r01)

TEST SETUP

TEST ENVIRONMENT

Temperature	23.4°C	Relative Humidity	57.2%
Atmosphere Pressure	101kPa	Test Voltage	AC 120 V, 60 HZ

RESULTS

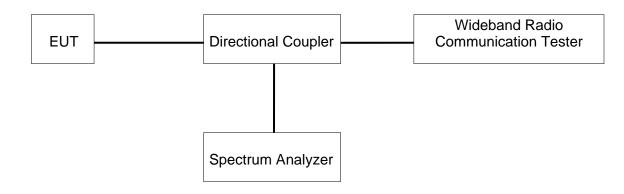
Please refer to Appendix C.

7.4. BAND EDGE EMISSIONS

RULE PART(S)

FCC §2.1051, §22.917, §24.238, §27.53 RSS-130, RSS-132, RSS-133, RSS-139

<u>LIMITS</u>


The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log (P) dB$.

TEST PROCEDURE

Refer to KDB 971168 D01 Power Meas License Digital Systems v03r01 The transmitter output was connected to a CMW500 Test Set and configured to operate at maximum power. The band edge emissions were measured at the required operating frequencies in each band on the Spectrum Analyzer.

- a) Set the RBW = 1 ~ 1.5 % of OBW (Typically limited to a minimum RBW of 1% of the OBW)
- b) Set VBW \geq 3 × RBW;
- c) Set span \geq 1.5 times the OBW;
- d) Sweep time = Auto;
- e) Detector = RMS;
- f) Ensure that the number of measurement points $\geq 2^*$ Span/RBW;
- g) Trace mode = Average (100);

TEST ENVIRONMENT

Temperature	23.4°C	Relative Humidity	57.2%
Atmosphere Pressure	101kPa	Test Voltage	AC 120 V, 60 HZ

RESULTS

Please refer to Appendix D.

7.5. SPURIOUS EMISSION AT ANTENNA TERMINAL

RULE PART(S)

FCC: §2.1051, §22.901, §22.917, §24.238, §27.53 RSS-130, RSS-132, RSS-133, RSS-139

<u>LIMITS</u>

FCC: §22.901, §22.917, §24.238

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

RSS-132 section 5.5

Mobile and base station equipment shall comply with the limits in (i) and (ii) below. (i) In the first 1.0 MHz band immediately outside and adjacent to each of the sub-bands

specified in Section 5.1, the power of emissions per any 1% of the occupied bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p (watts).

(ii) After the first 1.0 MHz immediately outside and adjacent to each of the sub-bands, the power of emissions in any 100 kHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p (watts). If the measurement is performed using 1% of the occupied bandwidth, power integration over 100 kHz is required.

RSS-133 section 6.5.1

Equipment shall comply with the limits in (i) and (ii) below.

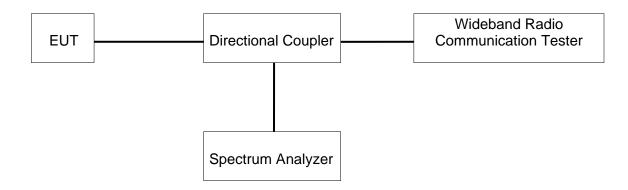
(i) In the 1.0 MHz bands immediately outside and adjacent to the equipment's operating frequency block, the emission power per any 1% of the emission bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p(watts).
(ii) After the first 1.0 MHz, the emission power in any 1 MHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p(watts).
(ii) After the first 1.0 MHz, the emission power in any 1 MHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p(watts). If the measurement is performed using 1% of the emission bandwidth, power integration over 1.0 MHz is required.

RSS-139 section 6.6

(i) In the first 1.0 MHz bands immediately outside and adjacent to the equipment's smallest operating frequency block,2 which can contain the equipment's occupied bandwidth, the emission power per any 1% of the emission bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least 43 + 10 log10 p (watts) dB.

(ii) After the first 1.0 MHz outside the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power in any 1 MHz bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least 43 + 10 log10 p (watts) dB.

Per KDB 971168 D01 Power Meas License Digital Systems v03r01


The RF output of the transmitter was connected to a spectrum analyzer through a calibrated coaxial cable. Sufficient scans were taken to show the out-of-band Emissions, if any, up to 10th harmonic. Multiple sweeps were recorded in maximum hold mode using a peak detector to ensure that the worst-case emissions were caught.

a) Set the RBW = 100 kHz for emission below 1GHz and 1MHz for emissions above 1GHz

- (Tests were performed 1 MHz [Worst case], to sweep 1 time for all frequency range)
- b) Set VBW \geq 3 × RBW;
- c) Set span \geq 1.5 times the OBW;
- d) Sweep time = auto couple;
- e) Detector = rms;
- f) Ensure that the number of measurement points = Max (40001);
- g) Trace mode = average (LTE 5), Maxhold (LTE Band7);

Note: Please refer to section 5.4 for bandwidth and RB setting about LTE bands.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.4°C	Relative Humidity	57.2%
Atmosphere Pressure	101kPa	Test Voltage	AC 120 V, 60 HZ

RESULTS

Please refer to Appendix E.

7.6. FREQUENCY STABILITY

Rule Part:

FCC: §2.1055, §22.355, §24.235, §27.54 RSS-130, RSS-132, RSS-133, RSS-139

<u>LIMITS</u>

22.355 - The carrier frequency shall not depart from the reference frequency in excess of ±2.5 ppm for mobile stations.

§24.235 and §27.54 - The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

RSS-130 section 4.5

For equipment that is capable of transmitting numerous channels simultaneously for different applications (e.g. LTE and narrowband – Internet of Things (IoT)), the occupied bandwidth shall be the bandwidth representing the sum of the occupied bandwidths of these channels.

The frequency stability shall be sufficient to ensure that the occupied bandwidth remains within each frequency block range when tested at the temperature and supply voltage variations specified in RSS-Gen.

RSS-132 section 5.3

The frequency stability shall be sufficient to ensure that the occupied bandwidth stays within each of the sub-bands when tested at the temperature and supply voltage variations specified in RSS-Gen.

RSS-133 section 6.3

The carrier frequency shall not depart from the reference frequency, in excess of ± 2.5 ppm for mobile stations and ± 1.0 ppm for base stations.

In lieu of meeting the above stability values, the test report may show that the frequency stability is sufficient to ensure that the emission bandwidth stays within the operating frequency block when tested to the temperature and supply voltage variations specified in RSS-Gen.

RSS-139 section 6.4

The frequency stability shall be sufficient to ensure that the occupied bandwidth stays within the operating frequency block when tested to the temperature and supply voltage variations specified in RSS-Gen.

TEST PROCEDURE

Refer to KDB 971168 D01 Power Meas License Digital Systems v03r01.

· · · · · · · · · · · · · · · · · · ·						
	Normal Test Conditions	Extreme Test Conditions				
Relative Humidity	45 % - 75 %	/				
Atmospheric Pressure	100 kPa ~102 kPa	/				
Temperature	T_N (Normal Temperature):	T _L (Low Temperature): -30 °C				
	24.7 °C	T _н (High Temperature): 50 °C				
Supply Voltage	V _N (Normal Voltage):	V _L (Low Voltage): AC 108 V				
Supply Voltage	AC 120 V, 60 HZ	V _H (High Voltage): AC 132 V				

TEST SETUP

RESULTS

Please refer to Appendix F.

8. APPENDIX

8.1. Appendix A: Effective (Isotropic) Radiated Power Output Data

LTE	E FDD B2			Condu	cted Powe	r(dBm)
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel
Banuwium	wouldtion	size	offset	18607	18900	19193
		1	0	20.28	20.19	20.53
		1	2	20.18	20.2	20.53
		1	5	20.27	20.22	20.52
	QPSK	3	0	20.18	20.2	20.6
		3	1	20.27	20.28	20.59
		3	3	20.2	20.2	20.58
1.4MHz		6	0	19.06	19.29	19.52
1.411172		1	0	19.51	19.22	19.61
		1	2	19.53	19.09	19.64
		1	5	19.57	19.21	19.59
	16QAM	3	0	18.71	19.06	19.51
		3	1	18.69	19.14	19.61
		3	3	18.75	19.03	19.57
		6	0	18.12	18.41	18.74
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel
Bandwidth	Modulation	size	offset	18615	18900	19185
		1	0	20.03	20.13	20.36
		1	8	20.07	19.98	20.42
		1	14	20.06	19.96	20.36
	QPSK	8	0	19.05	19.17	19.43
		8	4	19.04	19.05	19.44
		8	7	19.17	18.95	19.44
3MHz		15	0	18.99	19.2	19.4
JIVITIZ		1	0	18.95	18.89	19.24
		1	8	18.82	18.91	19.25
		1	14	19.01	18.89	19.29
	16QAM	8	0	18.12	18.53	18.46
		8	4	18.16	18.53	18.48
		8	7	18.47	18.28	18.54
		15	0	18.08	18.32	18.47
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel
Danuwidth	Modulation	size	offset	18625	18900	19175
		1	0	19.96	20.03	20.58
		1	12	19.98	19.98	20.55
5MHz	QPSK	1	24	20.04	19.99	20.58
JIVITIZ	QF ON	12	0	18.96	19.05	19.46
		12	6	18.96	19.05	19.41
		12	13	19.13	19.11	19.44

						Page
		25	0	19.06	19.11	19.44
		1	0	18.36	19.3	19.25
		1	12	18.49	19.16	19.13
		1	24	18.48	19.18	19.2
	16QAM	12	0	17.99	18.49	18.4
		12	6	17.99	18.49	18.39
		12	13	18.32	18.17	18.45
		25	0	18.34	18.49	18.56
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel
Banuwium	wooulation	size	offset	18650	18900	19150
		1	0	19.97	20.14	20.31
		1	24	20.1	20.04	20.41
		1	49	20.09	20.06	20.35
	QPSK	25	0	19.07	19.18	19.47
		25	12	19.07	19.18	19.51
		25	25	19.25	19.07	19.51
400411-		50	0	19.07	19.16	19.57
10MHz		1	0	19.01	19.2	19.22
		1	24	19.12	19.1	19.38
	16QAM	1	49	19.19	19.06	19.39
		25	0	18.33	18.47	18.85
		25	12	18.33	18.47	18.82
		25	25	18.12	18.09	18.73
		50	0	18.06	18.47	18.55
Denducidate	Madulation	RB	RB	Channel	Channel	Channel
Bandwidth	Modulation	size	offset	18675	18900	19125
		1	0	19.97	20.1	20.08
		1	38	20.17	19.92	20.21
	QPSK	1	74	20.18	19.91	20.33
		36	0	19.08	19.3	19.45
		36	18	19.1	19.28	19.46
		36	37	19.1	19.26	19.46
450411-		75	0	19.3	19.07	19.52
15MHz		1	0	19.06	19.12	19.35
		1	38	19.23	19.15	19.53
		1	74	19.16	19.05	19.65
	16QAM	36	0	18.13	18.52	18.54
		36	18	18.1	18.52	18.55
		36	37	18.14	18.52	18.53
		75	0	18.19	18.45	18.77
		RB	RB	Channel	Channel	Channel
Bandwidth	Modulation	size	offset	18700	18900	19100
		1	0	20.32	20.41	20.26
		-				
20MHz	QPSK	1	49	20.48	20.23	20.4

REPORT NO.: 4790870870-1-RF-6 Page 31 of 176

						i ugo
		50	0	19.31	19.34	19.22
		50	25	19.33	19.33	19.27
		50	50	19.22	19.11	19.52
		100	0	19.29	19.32	19.36
		1	0	19.18	19.68	19.05
	16QAM	1	49	19.32	19.56	19.33
		1	99	19.36	19.61	19.46
		50	0	18.33	18.27	18.41
		50	25	18.34	18.27	18.36
		50	50	18.71	18.51	18.69
		100	0	18.36	18.54	18.4

LTE FDD B4				Condu	cted Powe	er(dBm)
Deve devi déla		RB	RB	Channel	Channel	Channel
Bandwidth	Modulation	size	offset	19957	20175	20393
		1	0	20.9	20.79	21.08
		1	2	20.89	20.81	21.04
		1	5	20.86	20.83	21.02
	QPSK	3	0	20.95	20.9	20.99
		3	1	20.89	20.91	20.99
		3	3	20.81	20.88	21
1.4MHz		6	0	19.84	19.84	19.93
1.411172		1	0	19.35	19.94	20.71
		1	2	19.4	19.79	20.51
		1	5	19.46	19.95	20.54
	16QAM	3	0	19.47	19.85	19.34
		3	1	19.47	19.85	19.34
		3	3	19.47	19.88	19.25
		6	0	18.82	19.15	19.02
Bandwidth	vidth Modulation	RB	RB	Channel	Channel	Channel
Bandwidth		size	offset	19965	20175	20385
	QPSK	1	0	20.81	20.7	21.07
		1	8	20.78	20.77	21.01
		1	14	20.78	20.76	20.91
		8	0	19.81	19.8	19.9
		8	4	19.82	19.88	20.03
		8	7	19.88	19.86	19.93
3MHz		15	0	19.85	19.77	19.96
511112		1	0	19.65	19.84	19.75
		1	8	19.7	19.61	19.74
		1	14	19.63	19.64	19.67
	16QAM	8	0	18.99	19.11	19.22
		8	4	18.98	19.02	19.1
		8	7	19.13	19.14	19.07
		15	0	18.91	19.03	19.02

REPORT NO.: 4790870870-1-RF-6 Page 32 of 176

						Page
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel
Banawiath	Woddiation	size	offset	19975	20175	20375
		1	0	20.83	20.75	21.02
		1	12	20.81	20.79	20.94
		1	24	20.75	20.83	20.88
	QPSK	12	0	19.92	19.85	20.24
		12	6	19.92	19.87	20.11
		12	13	19.87	19.84	20.1
5MHz		25	0	19.88	19.81	19.96
011112		1	0	19.28	19.28	20.4
		1	12	19.24	19.23	20.26
		1	24	19.2	19.35	20.2
	16QAM	12	0	18.92	19.01	19.23
		12	6	18.94	19.03	19.2
		12	13	19.09	19.05	19.16
		25	0	19.13	19.07	19.1
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel
Bandwidth	woodation	size	offset	20000	20175	20350
		1	0	20.87	20.65	21.19
10MHz —		1	24	20.76	20.78	21.21
		1	49	20.8	20.94	21.1
	QPSK	25	0	19.92	19.82	20.16
		25	12	19.97	19.85	20.16
		25	25	19.86	20.03	20.18
		50	0	19.78	19.88	20.22
	16QAM	1	0	19.86	19.81	20.1
		1	24	19.78	19.93	19.99
		1	49	19.74	20.11	19.83
		25	0	19.08	18.95	19.54
		25	12	19.12	18.93	19.54
		25	25	18.76	18.92	19.22
		50	0	19.11	19.13	19.48
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel
Banamatin	modulation	size	offset	20025	20175	20325
		1	0	20.89	20.57	21.12
		1	38	20.83	20.72	21.2
		1	74	20.73	20.86	21.1
	QPSK	36	0	19.91	19.93	20.14
		36	18	19.88	19.9	20.13
15MHz		36	37	19.88	19.91	20.12
		75	0	19.8	19.89	20.24
		1	0	19.87	19.84	20.74
		1	38	19.77	20	20.83
	16QAM	1	74	19.83	20.13	20.63
		36	0	18.98	18.98	19.23
		36	18	18.97	19	19.22

REPORT NO.: 4790870870-1-RF-6 Page 33 of 176

						i ugo
		36	37	19.02	19.01	19.22
		75	0	19.01	19.13	19.44
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel
Banuwium	wouldtion	size	offset	20050	20175	20300
20111-		1	0	20.98	20.83	21.24
		1	49	20.85	20.99	21.36
		1	99	21.03	21.14	21.32
	QPSK	50	0	19.81	19.76	20.21
		50	25	19.71	19.69	20.2
		50	50	19.75	20.05	20.08
		100	0	19.79	19.92	20.18
20MHz		1	0	19.49	19.99	19.48
		1	49	19.46	20.12	19.63
		1	99	19.61	20.38	19.46
	16QAM	50	0	19.07	18.9	19.21
		50	25	19.05	18.84	19.21
		50	50	18.84	19.17	19.37
		100	0	18.92	19.15	19.21

LTE	E FDD B5			Condu	cted Powe	er(dBm)
Dondwidth	Modulation	RB	RB	Channel	Channel	Channel
Bandwidth	Modulation	size	offset	20407	20525	20643
		1	0	20.64	21.38	21.37
		1	2	21.73	21.32	21.69
		1	5	21.78	21.39	21.72
	QPSK	3	0	21.61	21.54	21.42
		3	1	21.55	21.37	21.36
		3	3	21.51	21.39	21.59
		6	0	20.63	20.35	20.43
1.4MHz	16QAM	1	0	20.48	20.44	20.5
		1	2	20.43	20.61	20.69
		1	5	20.38	20.49	20.78
		3	0	20.26	20.25	19.84
		3	1	20.35	20.35	19.85
		3	3	20.26	20.29	20.22
		6	0	19.63	19.82	19.52
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel
Banuwiuth	Modulation	size	offset	20415	20525	20635
		1	0	21.52	21.5	21.3
		1	8	21.61	21.55	21.3
		1	14	21.56	21.51	21.55
3MHz	QPSK	8	0	20.78	20.4	20.31
		8	4	20.75	20.37	20.24
		8	7	20.63	20.31	20.57
		15	0	20.68	20.38	20.2

REPORT NO.: 4790870870-1-RF-6 Page 34 of 176

Information Information <thinformation< th=""> <thinformation< th=""></thinformation<></thinformation<>
Interfact 1 14 20.32 20.55 20.88 16QAM 8 0 19.87 19.68 19.44 8 4 19.85 19.67 19.35 8 7 19.77 19.79 19.52 15 0 19.79 19.57 19.2 15 0 19.79 19.57 19.2 Bandwidth Modulation RB size Offset Channel Channel Channel I 0 21.58 20.525 20625 20625 I 0 21.58 21.36 21.61 I 12 21.55 21.4 21.53 I 24 21.46 21.32 21.77 QPSK 12 0 20.64 20.43 20.46 12 6 20.73 20.45 20.56 12 13 20.56 20.39 20.41
16QAM 8 0 19.87 19.68 19.44 8 4 19.85 19.67 19.35 8 7 19.77 19.79 19.52 15 0 19.79 19.57 19.2 15 0 19.79 19.57 19.2 Bandwidth Modulation RB size Channel Channel Channel 1 0 21.58 20525 20625 1 12 21.55 21.4 21.53 1 24 21.46 21.32 21.77 QPSK 12 0 20.64 20.43 20.46 12 6 20.73 20.45 20.56 12 13 20.56 20.39 20.41
$ \begin{array}{ c c c c c c c c c } \hline & 8 & 4 & 19.85 & 19.67 & 19.35 \\ \hline & 8 & 7 & 19.77 & 19.79 & 19.52 \\ \hline & 15 & 0 & 19.79 & 19.57 & 19.2 \\ \hline & 15 & 0 & 19.79 & 19.57 & 19.2 \\ \hline & 15 & 0 & 19.79 & 19.57 & 19.2 \\ \hline & 15 & 0ffset & 20425 & 20525 & 20625 \\ \hline & 20425 & 20525 & 20625 & 20625 \\ \hline & 20425 & 20525 & 20625 & 20625 & 20625 & 20625 \\ \hline & 11 & 12 & 21.55 & 21.4 & 21.53 & 21.61 & 21.53 & 21.61 & 21.53 & 21.61 & 21.53 & 21.46 & 21.32 & 21.77 & 20.45 & 20.46 & 20.43 & 20.46 & 20.43 & 20.46 & 12 & 6 & 20.73 & 20.45 & 20.56 & $
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c }\hline \begin{tabular}{ c c c c c c } \hline 15 & 0 & 19.79 & 19.57 & 19.2 \\ \hline \end{tabular} & 15 & 0 & 19.79 & 19.57 & 19.2 \\ \hline \end{tabular} & RB & RB & Channel & Channel & Channel \\ \hline \end{tabular} & 0 & 20425 & 20525 & 206$
Bandwidth Modulation RB size RB offset Channel Channel Channel Channel 20425 20525 20625 20625 20625 20625 1 0 21.58 21.36 21.61 1 12 21.55 21.4 21.53 1 24 21.46 21.32 21.77 0 20.64 20.43 20.46 12 6 20.73 20.45 20.56 12 13 20.56 20.39 20.36
Bandwidth Modulation size offset 20425 20525 20625 1 0 21.58 21.36 21.61 1 12 21.55 21.4 21.53 1 24 21.46 21.32 21.77 1 24 21.46 20.43 20.46 12 0 20.64 20.43 20.46 12 13 20.56 20.39 20.36 25 0 20.5 20.39 20.41
Size Offset 20425 20525 20625 1 0 21.58 21.36 21.61 1 12 21.55 21.4 21.53 1 24 21.46 21.32 21.77 12 0 20.64 20.43 20.46 12 6 20.73 20.45 20.56 12 13 20.56 20.39 20.36 25 0 20.5 20.39 20.41
1 12 21.55 21.4 21.53 1 24 21.46 21.32 21.77 12 0 20.64 20.43 20.46 12 6 20.73 20.45 20.56 12 13 20.56 20.39 20.36 25 0 20.5 20.39 20.41
1 24 21.46 21.32 21.77 QPSK 12 0 20.64 20.43 20.46 12 6 20.73 20.45 20.56 12 13 20.56 20.39 20.36 25 0 20.5 20.39 20.41
QPSK 12 0 20.64 20.43 20.46 12 6 20.73 20.45 20.56 12 13 20.56 20.39 20.36 25 0 20.5 20.39 20.41
12620.7320.4520.56121320.5620.3920.3625020.520.3920.41
12 13 20.56 20.39 20.36 25 0 20.5 20.39 20.41
25 0 205 2039 2041
25 0 20.5 20.39 20.41
5MHz 1 0 20.12 20.44 20.11
1 12 19.95 20.53 19.98
1 24 19.73 20.49 20.4
16QAM 12 0 19.67 19.65 19.53
12 6 19.63 19.66 19.46
12 13 19.67 19.77 19.34
25 0 19.76 19.79 19.48
RB RB Channel Channel Channel
Bandwidth Modulation size offset 20450 20525 20600
1 0 21.62 21.15 21.47
1 24 21.35 21.25 21.49
1 49 21.27 21.34 21.67
QPSK 25 0 20.52 20.36 20.45
25 12 20.51 20.37 20.46
25 25 20.46 20.48 20.44
50 0 20.6 20.41 20.32
10MHz 1 0 20.53 20.24 20.9
1 0 20.53 20.24 20.9 1 24 20.26 20.33 20.84
1 0 20.53 20.24 20.9
1 0 20.53 20.24 20.9 1 24 20.26 20.33 20.84
1 0 20.53 20.24 20.9 1 24 20.26 20.33 20.84 1 49 20.14 20.28 21.18
1 0 20.53 20.24 20.9 1 24 20.26 20.33 20.84 1 49 20.14 20.28 21.18 16QAM 25 0 19.58 19.71 19.48

LTE FDD B12				Condu	cted Powe	er(dBm)
Developidation	Marchalattara	RB	RB	Channel	Channel	Channel
Bandwidth	Modulation	size	offset	23017	23095	23173
		1	0	19.9	21.17	21.15
		1	2	20.96	21.04	21.23
		1	5	21.06	21.01	21.12
	QPSK	3	0	20.95	21.22	21.14
		3	1	21	21.28	21.2
		3	3	20.95	21.3	21.23
4 48411-		6	0	19.92	20.24	20.22
1.4MHz		1	0	19.85	20.16	20.29
		1	2	19.58	20.45	20.37
		1	5	19.68	20.35	20.32
	16QAM	3	0	19.55	20.19	19.46
		3	1	19.46	20.11	19.63
		3	3	19.56	20.15	19.64
		6	0	19.47	19.37	19.79
Deve about alt h	Madulation	RB	RB	Channel	Channel	Channel
Bandwidth	Modulation	size	offset	23025	23095	23165
QP		1	0	20.91	21.46	21.12
		1	8	20.89	21.33	21.14
		1	14	20.87	21.33	21.15
	QPSK	8	0	19.81	20.06	20.06
	16QAM	8	4	19.91	20.12	19.94
		8	7	20.09	20.31	20.15
2MU-		15	0	19.85	20.15	20.03
3MHz		1	0	19.72	20.02	20.46
		1	8	19.56	20.12	20.31
		1	14	19.54	20.03	20.48
		8	0	18.55	19.56	18.91
		8	4	18.69	19.56	18.88
		8	7	19.43	19.24	19.78
		15	0	18.68	19.12	18.84
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel
Banuwiuth	wooulation	size	offset	23035	23095	23155
		1	0	21.08	21.04	21.59
		1	12	21.11	21.14	21.58
		1	24	21.2	21	21.54
	QPSK	12	0	20.12	20.11	20.1
5MHz		12	6	20.09	20.09	20.09
		12	13	20.19	20.18	20.32
		25	0	20.14	20.4	20.2
		1	0	19.6	20.19	20.04
	16QAM	1	12	19.6	20.33	20.02
		1	24	19.51	20.22	20.16

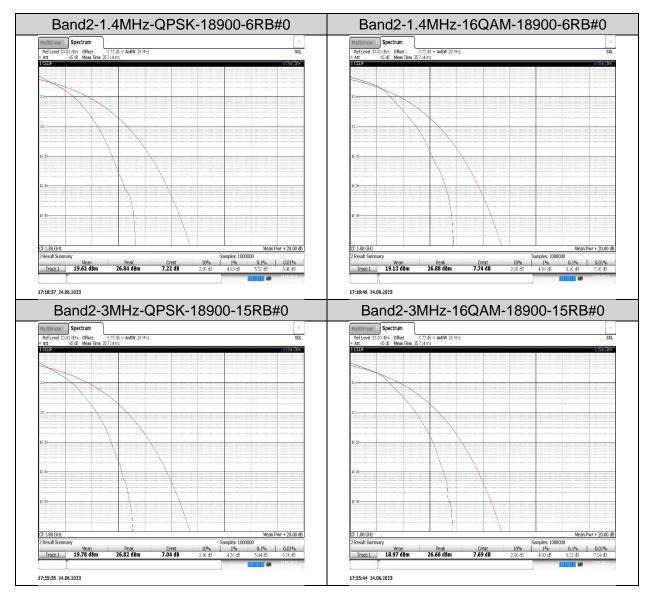
REPORT NO.: 4790870870-1-RF-6 Page 36 of 176

						i aye
		12	0	18.99	19.49	19.42
		12	6	19.03	19.47	19.38
		12	13	19.45	19.23	19.11
		25	0	19.56	19.3	19.25
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel
Banuwium		size	offset	23060	23095	23130
10MH-		1	0	21.09	21.14	21.18
		1	24	21.09	21.22	21.27
	QPSK 10MHz	1	49	21.11	21.45	21.43
		25	0	20.14	20.31	20.31
		25	12	20.08	20.15	20.33
		25	25	20.06	20.19	20.35
		50	0	19.99	20.38	20.17
		1	0	20.01	19.84	20.7
		1	24	19.66	20.13	20.63
		1	49	19.92	20.14	20.82
	16QAM	25	0	19.44	19.65	19.34
		25	12	19.38	19.69	19.42
		25	25	19.37	19.35	19.35
		50	0	19.48	19.28	19.38

LTE FDD B13				Condu	cted Powe	er(dBm)
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel
Bandwidth	Modulation	size	offset	23205	23230	23255
		1	0	20.62	21.75	21.54
		1	12	21.64	21.83	21.47
		1	24	21.57	21.75	21.49
	QPSK	12	0	20.57	20.58	20.7
		12	6	20.72	20.59	20.66
		12	13	20.68	20.69	20.75
5MHz		25	0	20.67	20.7	20.57
	16QAM	1	0	20.72	20.29	19.95
		1	12	20.67	20.35	19.93
		1	24	19.74	20.28	20.04
		12	0	19.74	19.6	19.57
		12	6	19.7	19.61	19.57
		12	13	19.65	19.52	19.87
		25	0	19.62	19.66	19.6
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel
Bandwidth	Wouldtion	size	offset	23230		
		1	0	21.72		
		1	24	21.62		
10MHz	QPSK	1	49	21.54		
		25	0	20.6		
		25	12	20.64		

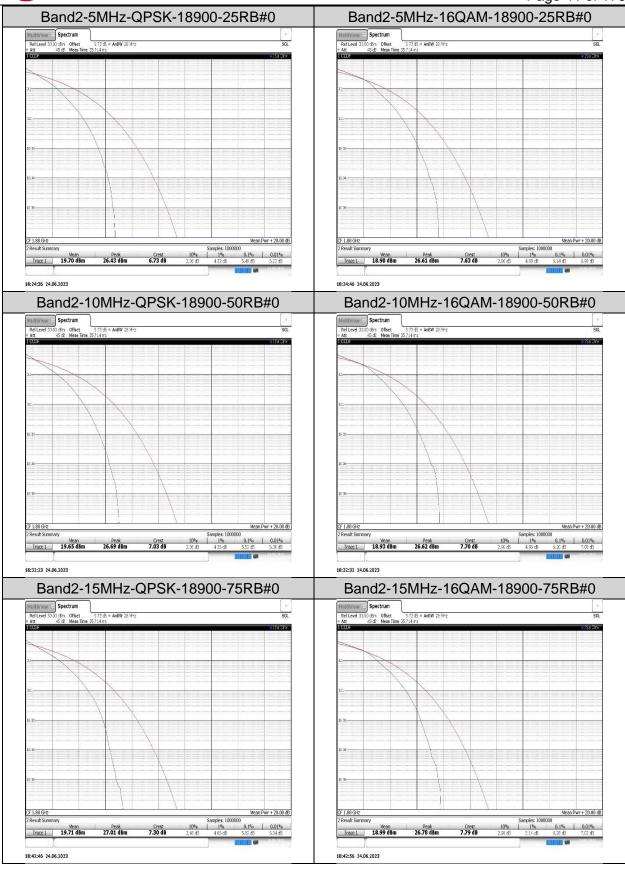
	25	25	20.68
	50	0	20.63
	1	0	20.48
	1	24	20.44
	1	49	20.36
16QAM	25	0	19.76
	25	12	19.56
	25	25	19.54
	50	0	19.58

LTE	E FDD B17			Conducted Power(dBm)				
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel		
Banuwium	Modulation	size	offset	23755	23790	23825		
		1	0	21.37	21.16	21.66		
		1	12	21.43	21.1	21.54		
		1	24	21.42	21.23	21.66		
	QPSK	12	0	20.37	20.28	20.2		
5MHz		12	6	20.06	20.26	20.37		
		12	13	20.38	20.12	20.47		
		25	0	20.21	20.19	20.35		
JIVITIZ		1	0	19.55	20.41	20.1		
		1	12	19.59	20.34	20.12		
		1	24	19.76	20.41	20.24		
	16QAM	12	0	19.66	19.22	19.53		
		12	6	19.63	19.19	19.52		
		12	13	19.3	19.73	19.28		
		25	0	19.71	19.31	19.38		
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel		
Banuwiutii		size	offset	23780	23790	23800		
		1	0	21.14	21.42	21.38		
		1	24	21.19	21.25	21.28		
		1	49	21.26	21.41	21.52		
	QPSK	25	0	20.17	20.28	20.28		
		25	12	20.27	20.38	20.38		
		25	25	20.28	20.26	20.37		
10MHz		50	0	20.23	20.35	20.31		
		1	0	20.18	20.07	20.66		
		1	24	20.24	20.03	20.74		
		1	49	20.34	20.12	20.91		
	16QAM	25	0	19.52	19.48	19.51		
		25	12	19.53	19.55	19.45		
		25	25	19.69	19.84	19.39		
		50	0	19.39	19.46	19.42		

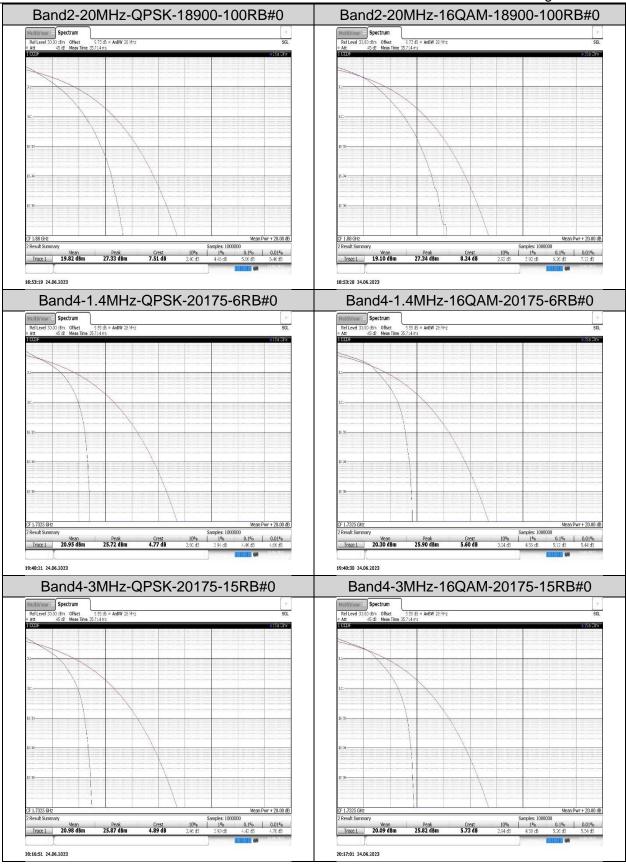

8.2. Appendix B: Peak-to-Average Ratio(CCDF) 8.2.1. Test Result

Band	Bandwidth	Modulation	Channel	RB Configuration	Result(dB)	Limit(dB)	Verdict
Band2	1.4MHz	QPSK	18900	6RB#0	5.52	13	PASS
Band2	1.4MHz	16QAM	18900	6RB#0	6.16	13	PASS
Band2	3MHz	QPSK	18900	15RB#0	5.44	13	PASS
Band2	3MHz	16QAM	18900	15RB#0	6.22	13	PASS
Band2	5MHz	QPSK	18900	25RB#0	5.48	13	PASS
Band2	5MHz	16QAM	18900	25RB#0	6.14	13	PASS
Band2	10MHz	QPSK	18900	50RB#0	5.52	13	PASS
Band2	10MHz	16QAM	18900	50RB#0	6.20	13	PASS
Band2	15MHz	QPSK	18900	75RB#0	5.82	13	PASS
Band2	15MHz	16QAM	18900	75RB#0	6.28	13	PASS
Band2	20MHz	QPSK	18900	100RB#0	5.66	13	PASS
Band2	20MHz	16QAM	18900	100RB#0	6.26	13	PASS
Band4	1.4MHz	QPSK	20175	6RB#0	4.46	13	PASS
Band4	1.4MHz	16QAM	20175	6RB#0	5.12	13	PASS
Band4	3MHz	QPSK	20175	15RB#0	4.42	13	PASS
Band4	3MHz	16QAM	20175	15RB#0	5.26	13	PASS
Band4	5MHz	QPSK	20175	25RB#0	4.38	13	PASS
Band4	5MHz	16QAM	20175	25RB#0	5.16	13	PASS
Band4	10MHz	QPSK	20175	50RB#0	4.52	13	PASS
Band4	10MHz	16QAM	20175	50RB#0	5.24	13	PASS
Band4	15MHz	QPSK	20175	75RB#0	4.80	13	PASS
Band4	15MHz	16QAM	20175	75RB#0	5.46	13	PASS
Band4	20MHz	QPSK	20175	100RB#0	4.92	13	PASS
Band4	20MHz	16QAM	20175	100RB#0	5.60	13	PASS
Band5	1.4MHz	QPSK	20525	6RB#0	5.56	13	PASS
Band5	1.4MHz	16QAM	20525	6RB#0	6.22	13	PASS
Band5	3MHz	QPSK	20525	15RB#0	5.62	13	PASS
Band5	3MHz	16QAM	20525	15RB#0	6.34	13	PASS
Band5	5MHz	QPSK	20525	25RB#0	5.58	13	PASS
Band5	5MHz	16QAM	20525	25RB#0	6.20	13	PASS
Band5	10MHz	QPSK	20525	50RB#0	5.60	13	PASS
Band5	10MHz	16QAM	20525	50RB#0	6.24	13	PASS
Band12	1.4MHz	QPSK	23095	6RB#0	4.68	13	PASS
Band12	1.4MHz	16QAM	23095	6RB#0	5.38	13	PASS
Band12	3MHz	QPSK	23095	15RB#0	4.68	13	PASS
Band12	3MHz	16QAM	23095	15RB#0	5.58	13	PASS
Band12	5MHz	QPSK	23095	25RB#0	4.78	13	PASS
Band12	5MHz	16QAM	23095	25RB#0	5.52	13	PASS
Band12	10MHz	QPSK	23095	50RB#0	5.14	13	PASS
Band12	10MHz	16QAM	23095	50RB#0	5.96	13	PASS
Band13	5MHz	QPSK	23230	25RB#0	5.44	13	PASS
Band13	5MHz	16QAM	23230	25RB#0	6.18	13	PASS
Band13	10MHz	QPSK	23230	50RB#0	5.38	13	PASS
Band13	10MHz	16QAM	23230	50RB#0	6.18	13	PASS
Band17	5MHz	QPSK	23790	25RB#0	5.02	13	PASS
Band17	5MHz	16QAM	23790	25RB#0	5.70	13	PASS

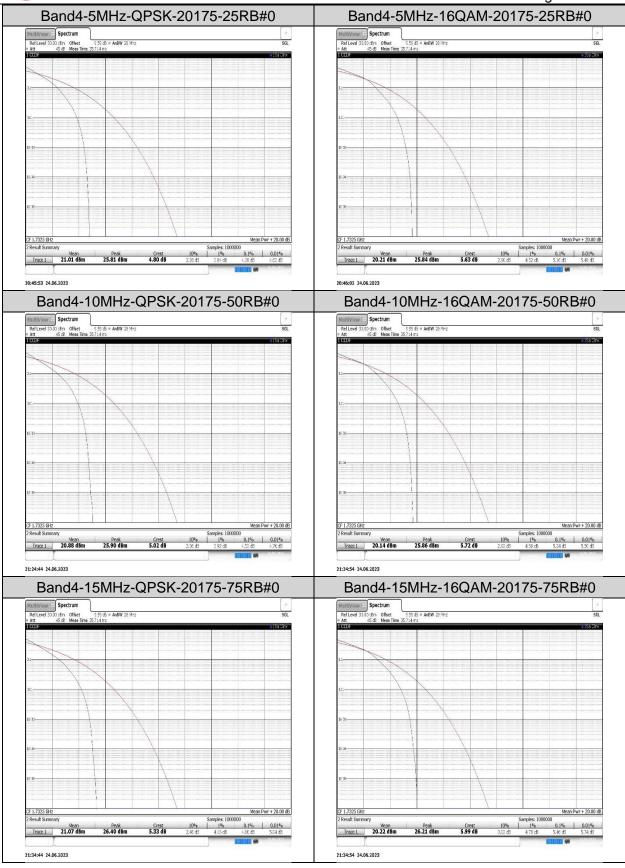
UL Sol	utions			R	EPORT NO.: 4790 F	870870-1-RF Page 39 of 1	
Band17	10MHz	QPSK	23790	50RB#0	5.34	13	PASS
Band17	10MHz	16QAM	23790	50RB#0	5.98	13	PASS



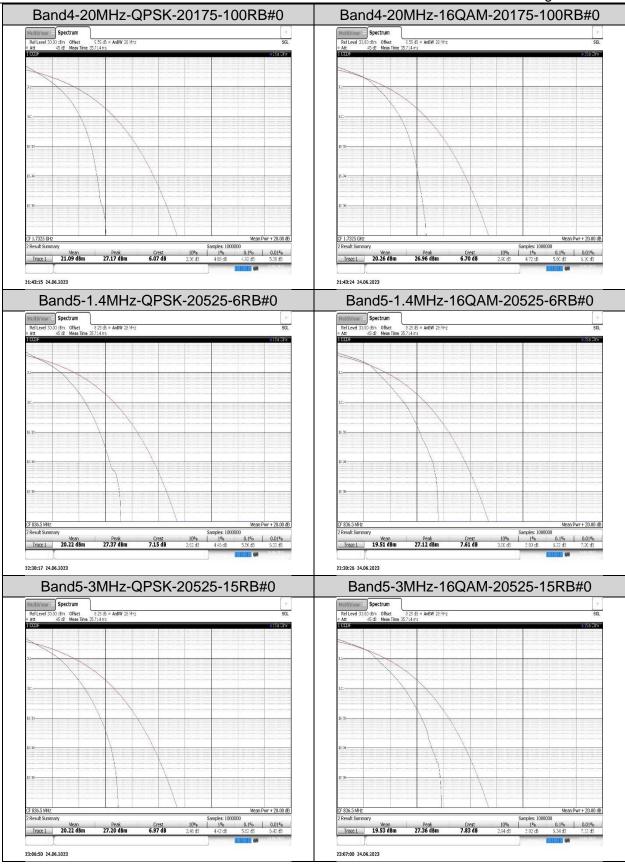
8.2.2. Test Graphs



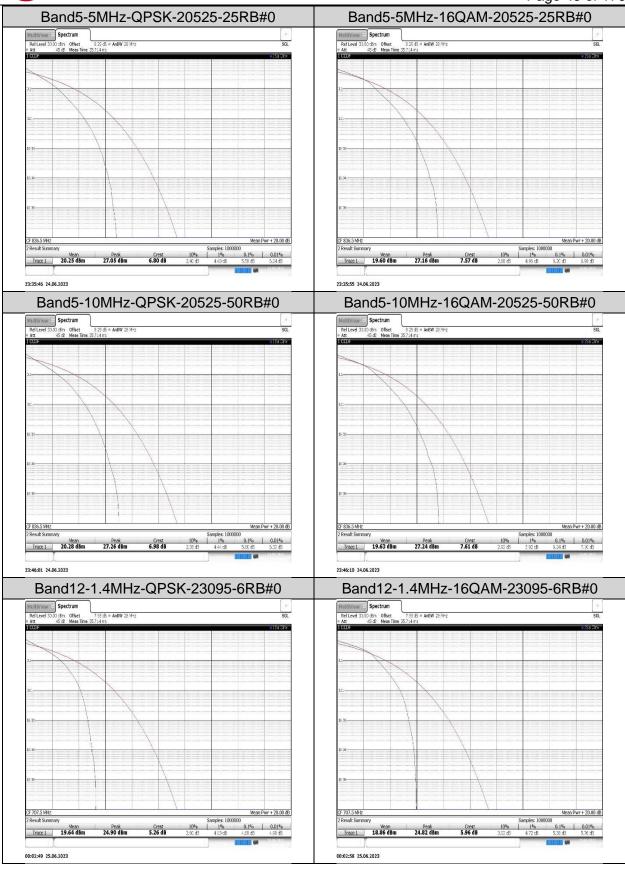
REPORT NO.: 4790870870-1-RF-6 Page 41 of 176



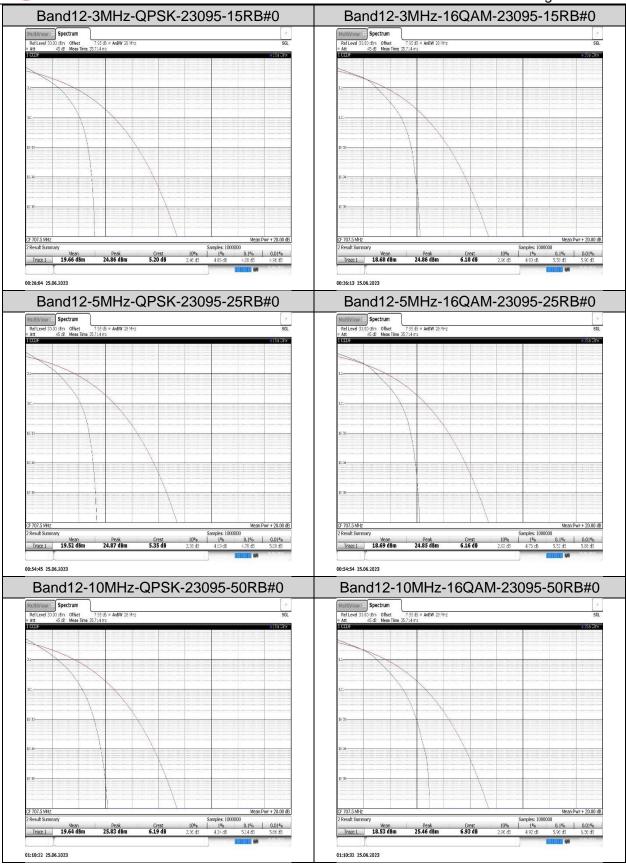
REPORT NO.: 4790870870-1-RF-6 Page 42 of 176



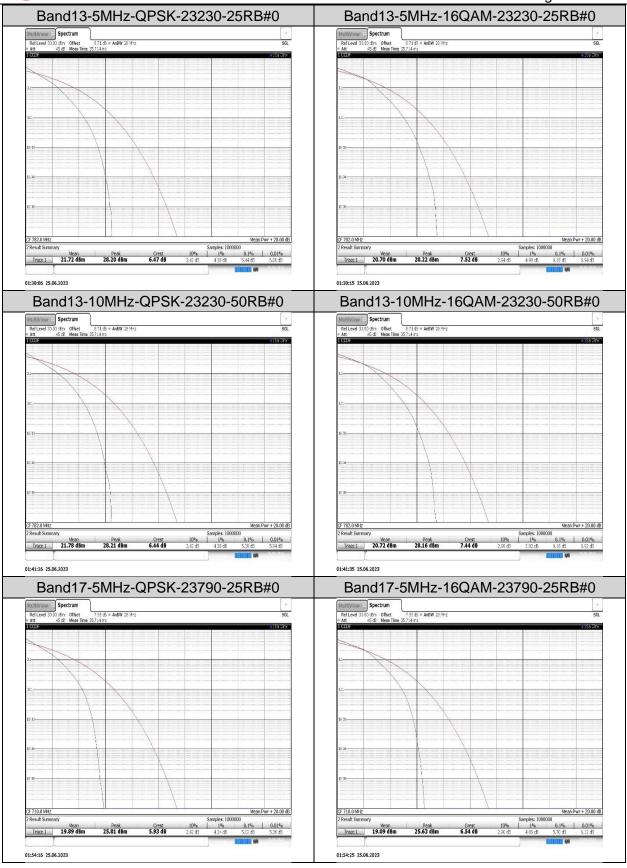
REPORT NO.: 4790870870-1-RF-6 Page 43 of 176



REPORT NO.: 4790870870-1-RF-6 Page 44 of 176



REPORT NO.: 4790870870-1-RF-6 Page 45 of 176



REPORT NO.: 4790870870-1-RF-6 Page 46 of 176

REPORT NO.: 4790870870-1-RF-6 Page 47 of 176

REPORT NO.: 4790870870-1-RF-6 Page 48 of 176

Bar	nd17-10MHz-QPSk	K-23790-50RB#0	Band17-	10MHz-	16QAN	1-23790-	50RE	3#0
MultiView	Spectrum	Y	MultiView Spectrum					y
	00 cBm Offset 7 95 d5 = AnBW 28 MHz	SGL	Ref Level 33.00 cBm Offset	7 95 d5 = AnBW 28 MHz				SGL
Att 1 CODE	45 cB Meas Time 35.714 ms	e (Sa Cirv	Att 45 dB Meas Till 4600:	me 35.714 ms				eisa ein
		120 CL N						and ell a
	and a second							
1								
72	111		32					
			No.	1				
20			20					
301			JU.,					
	1 1							
15-33			15-33					
16-10			16-13		/			
15-04			1E-04-					
15-35			15-35					
		units a strategy and the state of the strategy and the strat	friday (friday) friday (friday) (friday) friday		·····			
CF 710.0 MHz		Mean Pwr + 20.00 dB	CF 710.0 MHz				Maar D	r + 20.00 dl
2 Result Summ		Mean PWF + 20.00 dB Samples: 1000000	2 Result Summary			Samples: 1000		r + zu.00 d
2 Result Summ		10% 1% 0.1% 0.01%	2 Kesuit Summary Mean	Peak	Crest	10% 1%	0.1%	0.01%
Trace 1	Mean Peak Crest 19.83 dBm 26.18 dBm 6.35 dB	2.42 d3 4.40 d8 5.34 dB 5.88 d8	Trace 1 19.03 dBm	n 26.04 dBm	7.01 dB	2.96 dB 4 95 dB		6.58 dB
	7	448	Y					1100200
)	R						and the second second	
02:25:23 25.0	16 2022		02:25:32 25.06.2023					

8.3. Appendix C: 26dB Bandwidth and Occupied Bandwidth 8.3.1. Test Result

Band	Bandwidth	Modulation	Channel	RB Configuration	Occupied Bandwidth (MHz)	26dB Bandwidth (MHz)	Verdict
Band2	1.4MHz	QPSK	18900	6RB#0	1.085	1.24	PASS
Band2	1.4MHz	16QAM	18900	6RB#0	1.083	1.24	PASS
Band2	3MHz	QPSK	18900	15RB#0	2.686	2.97	PASS
Band2	3MHz	16QAM	18900	15RB#0	2.685	2.98	PASS
Band2	5MHz	QPSK	18900	25RB#0	4.48	4.84	PASS
Band2	5MHz	16QAM	18900	25RB#0	4.478	4.83	PASS
Band2	10MHz	QPSK	18900	50RB#0	8.966	9.60	PASS
Band2	10MHz	16QAM	18900	50RB#0	8.965	9.57	PASS
Band2	15MHz	QPSK	18900	75RB#0	13.456	14.35	PASS
Band2	15MHz	16QAM	18900	75RB#0	13.452	14.30	PASS
Band2	20MHz	QPSK	18900	100RB#0	18.049	19.33	PASS
Band2	20MHz	16QAM	18900	100RB#0	18.038	19.33	PASS
Band4	1.4MHz	QPSK	20175	6RB#0	1.09	1.22	PASS
Band4	1.4MHz	16QAM	20175	6RB#0	1.09	1.23	PASS
Band4	3MHz	QPSK	20175	15RB#0	2.693	2.88	PASS
Band4	3MHz	16QAM	20175	15RB#0	2.695	2.91	PASS
Band4	5MHz	QPSK	20175	25RB#0	4.491	4.79	PASS
Band4	5MHz	16QAM	20175	25RB#0	4.503	4.79	PASS
Band4	10MHz	QPSK	20175	50RB#0	8.981	9.57	PASS
Band4	10MHz	16QAM	20175	50RB#0	8.975	9.53	PASS
Band4	15MHz	QPSK	20175	75RB#0	13.466	14.30	PASS
Band4	15MHz	16QAM	20175	75RB#0	13.457	14.30	PASS
Band4	20MHz	QPSK	20175	100RB#0	18.021	19.33	PASS
Band4	20MHz	16QAM	20175	100RB#0	18.026	19.33	PASS
Band5	1.4MHz	QPSK	20525	6RB#0	1.086	1.23	PASS
Band5	1.4MHz	16QAM	20525	6RB#0	1.088	1.23	PASS
Band5	3MHz	QPSK	20525	15RB#0	2.697	2.90	PASS
Band5	3MHz	16QAM	20525	15RB#0	2.689	2.91	PASS
Band5	5MHz	QPSK	20525	25RB#0	4.492	4.79	PASS
Band5	5MHz	16QAM	20525	25RB#0	4.501	4.78	PASS
Band5	10MHz	QPSK	20525	50RB#0	8.979	9.53	PASS
Band5	10MHz	16QAM	20525	50RB#0	8.964	9.53	PASS
Band12	1.4MHz	QPSK	23095	6RB#0	1.089	1.22	PASS
Band12	1.4MHz	16QAM	23095	6RB#0	1.089	1.23	PASS
Band12	3MHz	QPSK	23095	15RB#0	2.695	2.91	PASS
Band12	3MHz	16QAM	23095	15RB#0	2.69	2.88	PASS
Band12	5MHz	QPSK	23095	25RB#0	4.49	4.78	PASS
Band12	5MHz	16QAM	23095	25RB#0	4.503	4.78	PASS
Band12	10MHz	QPSK	23095	50RB#0	8.954	9.53	PASS
Band12	10MHz	16QAM	23095	50RB#0	8.953	9.53	PASS
Band13	5MHz	QPSK	23230	25RB#0	4.491	4.80	PASS
Band13	5MHz	16QAM	23230	25RB#0	4.502	4.79	PASS

REPORT NO.: 4790870870-1-RF-6 Page 50 of 176

						Fage 30 01 17	0
Band13	10MHz	QPSK	23230	50RB#0	8.989	9.53	PASS
Band13	10MHz	16QAM	23230	50RB#0	8.978	9.53	PASS
Band17	5MHz	QPSK	23790	25RB#0	4.503	4.80	PASS
Band17	5MHz	16QAM	23790	25RB#0	4.509	4.78	PASS
Band17	10MHz	QPSK	23790	50RB#0	8.985	9.53	PASS
Band17	10MHz	16QAM	23790	50RB#0	8.99	9.53	PASS