

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2102379

FCC REPORT

Applicant:	PAX Technology Limited		
Address of Applicant:	Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour Road, Wanchai, Hong Kong		
Equipment Under Test (F	EUT)		
Product Name:	Integrated Smart Terminal		
Model No.:	E600Mini		
Trade mark:	PAX		
FCC ID:	V5PE600MINI		
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247		
Date of sample receipt:	03 Nov., 2021		
Date of Test:	04 Nov., to 14 Dec., 2021		
Date of report issued:	15 Dec., 2021		
Test Result:	PASS *		

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version 2

Version No.	Date	Description
00	15 Dec., 2021	Original

Tested by:

Mike.OU Test Engineer

Date: 15 Dec., 2021

Winner Thang

Reviewed by:

Project Engineer

Date:

15 Dec., 2021

Project No.: JYTSZE2110022

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	3
4	TEST SUMMARY	5
5	GENERAL INFORMATION	6
Ŭ	5.1 Client Information	_
	5.2 GENERAL DESCRIPTION OF E.U.T	
	5.3 TEST ENVIRONMENT AND MODE	
	5.4 DESCRIPTION OF SUPPORT UNITS	7
	5.5 MEASUREMENT UNCERTAINTY	
	5.6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.7 LABORATORY FACILITY	
	5.8 LABORATORY LOCATION	
6	TEST RESULTS AND MEASUREMENT DATA	9
	6.1 ANTENNA REQUIREMENT:	9
	6.2 CONDUCTED EMISSION	
	6.3 CONDUCTED OUTPUT POWER	
	6.4 OCCUPY BANDWIDTH	
	6.5 POWER SPECTRAL DENSITY	
	6.6 BAND EDGE 6.6.1 Conducted Emission Method	
	6.6.1 Conducted Emission Method 6.6.2 Radiated Emission Method	
	6.7 Spurious Emission	
	6.7.1 Conducted Emission Method	
	6.7.2 Radiated Emission Method	
A	PPENDIX A (1M PHY)	43
	A.1 MAXIMUM CONDUCTED OUTPUT POWER	43
	A.2 -6dB Bandwidth	
	A.3 OCCUPIED CHANNEL BANDWIDTH	49
	A.4 MAXIMUM POWER SPECTRAL DENSITY LEVEL	52
	A.5 BAND EDGE	
	A.6 CONDUCTED RF SPURIOUS EMISSION	58
A	PPENDIX B (2M PHY)	62
	B.1 MAXIMUM CONDUCTED OUTPUT POWER	62
	B.2 -6DB BANDWIDTH	
	B.3 OCCUPIED CHANNEL BANDWIDTH	
	B.4 MAXIMUM POWER SPECTRAL DENSITY LEVEL	
	B.5 BAND EDGE	
	B.6 CONDUCTED RF SPURIOUS EMISSION	77
A	PPENDIX C (CODED PHY, S=2)	81
	C.1 MAXIMUM CONDUCTED OUTPUT POWER	
	C.2 -6DB BANDWIDTH	
	C.3 OCCUPIED CHANNEL BANDWIDTH	
	C.4 MAXIMUM POWER SPECTRAL DENSITY LEVEL	
	C.5 BAND EDGE	
	C.6 CONDUCTED RF SPURIOUS EMISSION	96
Α	PPENDIX D (CODED PHY, S=8)	
	anYan Testing Group Shenzhen Co., Ltd. Proje o.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community,	ct No.: JYTSZE2110022
	o.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, inqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.	

Report No: JYTSZB-R12-2102379

D.1 MAXIMUM CONDUCTED OUTPUT POWER	
D.2 -6DB BANDWIDTH	
D.3 OCCUPIED CHANNEL BANDWIDTH	
D.4 MAXIMUM POWER SPECTRAL DENSITY LEVEL	
D.5 BAND EDGE	
D.6 CONDUCTED RF SPURIOUS EMISSION	

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 15.209	Pass

1. Pass: The EUT complies with the essential requirements in the standard.

2. N/A: Not Applicable.

3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method:

ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	PAX Technology Limited
Address:	Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour Road, Wanchai, Hong Kong
Manufacturer:	PAX Computer Technology (Shenzhen) Co., Ltd.
Address:	4/F, No.3 Building, Software Park, Second Central Science-Tech Road, High-Tech industrial Park, Shenzhen, Guangdong, P.R.C.

5.2 General Description of E.U.T.

Product Name:	Integrated Smart Terminal
Model No.:	E600Mini
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps & 2Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.5 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V, 6100mAh
AC adapter:	Model: TPD-71A120150UU01
	Input: AC100-240V, 50/60Hz, 0.6A
	Output: DC 3.6-6.0V, 3.0A, 18.0W
	DC 6.0-9.0V, 2.0A, 18.0W
	DC 9.0-12.0V, 1.5A, 18.0W
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and mode

Operating Environment:

Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 150KHz) for V-AMN	3.11 dB
Conducted Emission (150kHz ~ 30MHz) for V-AMN	2.62 dB
Radiated Emission (30MHz ~ 1GHz) for 3m SAC	4.45 dB
Radiated Emission (1GHz ~ 18GHz) for 3m SAC	5.34 dB
Radiated Emission (18GHz ~ 40GHz) for 3m SAC	5.34 dB

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

5.9 Test Instruments list

Radiated Emission:	Radiated Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
3m SAC	ETS	RFD-100	Q1984	04-14-2021	04-13-2024			
BiConiLog Antenna	SCHWARZBECK	VULB9163	9163-1246	03-07-2021	03-06-2022			
Biconical Antenna	SCHWARZBECK	VUBA 9117	9117#359	06-17-2021	06-17-2022			
Horn Antenna	SCHWARZBECK	BBHA9120D	912D-916	03-07-2021	03-06-2022			
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1067	04-02-2021	04-01-2022			
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1068	04-02-2021	04-01-2022			
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022			
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022			
Spectrum analyzer	Keysight	N9010B	MY60240202	10-27-2021	10-26-2022			
Low Pre-amplifier	SCHWARZBECK	BBV9743B	00305	03-07-2021	03-06-2022			
High Pre-amplifier	SKET	LNPA_0118G-50	MF280208233	03-07-2021	03-06-2022			
Cable	Qualwave	JYT3M-1G-NN-8M	JYT3M-1	03-07-2021	03-06-2022			
Cable	Qualwave	JYT3M-18G-NN- 8M	JYT3M-2	03-07-2021	03-06-2022			
Cable	Qualwave	JYT3M-1G-BB-5M	JYT3M-3	03-07-2021	03-06-2022			
Cable	Bost	JYT3M-40G-SS- 8M	JYT3M-4	04-02-2021	04-01-2022			
EMI Test Software Tonscend TS+ Version:3.0.0.1								

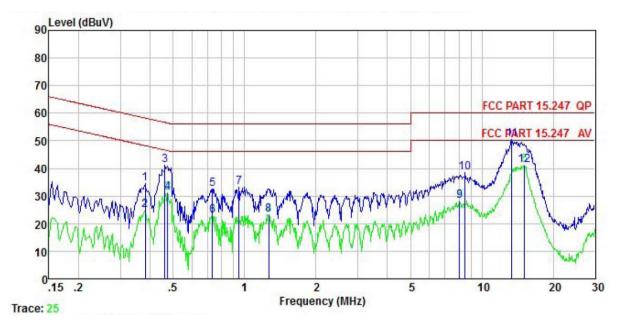
Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESCI 3	101189	03-03-2021	03-02-2022		
LISN	Rohde & Schwarz	ENV432	101602	04-06-2021	04-05-2022		
LISN	Rohde & Schwarz	ESH3-Z5	843862/010	06-18-2020	06-17-2022		
RF Switch	TOP PRECISION	RSU0301	N/A	03-03-2021	03-02-2022		
Cable	Bost	JYTCE-1G-NN-2M	JYTCE-1	03-03-2021	03-02-2022		
Cable	Bost	JYTCE-1G-BN-3M	JYTCE-2	03-03-2021	03-02-2022		
EMI Test Software	AUDIX	E3	Version: 6.110919b				

Conducted method:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	MY60240202	10-27-2021	10-26-2022
Vector Signal Generator	Keysight	N5182B	MY59101009	10-27-2021	10-26-2022
Analog Signal Generator	Keysight	N5173B	MY59100765	10-27-2021	10-26-2022
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-19-2021	11-18-2022
Simulated Station	Rohde & Schwarz	CMW270	102335	10-27-2021	10-26-2022
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A
PDU	MWRF-test	XY-G10	N/A	N/A	N/A
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2023
Temperature Humidity Chamber	Deli	8840	N/A	03-08-2021	03-07-2022
Test Software	MWRF-tes	MTS 8310		Version: 2.0.0.0	

Test results and Measurement Data 6

6.1 Antenna requirement:

Standard requirement:	FCC Part 15 C Section 15.203 /247(b)
responsible party shall be us antenna that uses a unique so that a broken antenna ca electrical connector is prohib 15.247(b) (4) requirement: (4) The conducted output po antennas with directional ga section, if transmitting anten power from the intentional ra	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit in be replaced by the user, but the use of a standard antenna jack or bited. be the use of a standard antenna jack or bited. be the use of direction is based on the use of anas of directional gain greater than 6 dBi are used, the conducted output adiator shall be reduced below the stated values in paragraphs (b)(1), tion, as appropriate, by the amount in dB that the directional gain of the
E.U.T Antenna:	
The BLE antenna is an intern antenna is 1.5dBi.	al antenna which cannot replace by end-user, the best-case gain of the

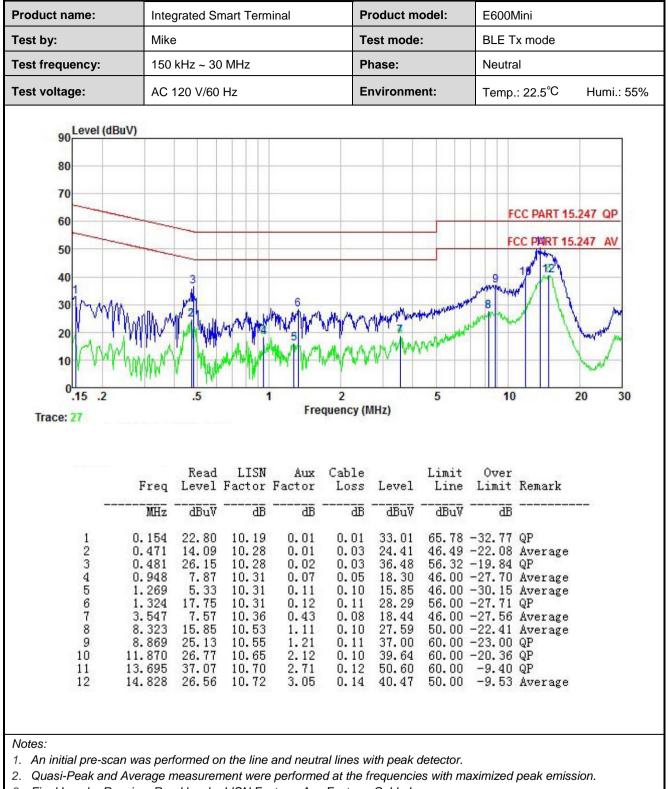

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7	
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9kHz, VBW=30kHz		
Limit:	Frequency range (MHz)		dBuV)
	, , , , , , , , , , , , , , , , ,	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithm		
Test procedure:	 The E.U.T and simulators line impedance stabilizati 50ohm/50uH coupling imp The peripheral devices at LISN that provides a 50ol termination. (Please refer photographs). Both sides of A.C. line are interference. In order to fi positions of equipment ar according to ANSI C63.10 	on network (L.I.S.N.), wh pedance for the measuring re also connected to the hm/50uH coupling imped to the block diagram of the checked for maximum and the maximum emission and all of the interface cab	nich provides a ng equipment. main power through a lance with 50ohm the test setup and conducted on, the relative les must be changed
Test setup:	Reference	80cm Filter EMI Receiver	– AC power
Test Instruments:	Refer to section 5.9 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Product name:	Integrated Smart Terminal	Product model:	E600Mini
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp.: 22.5°C Humi.: 55%

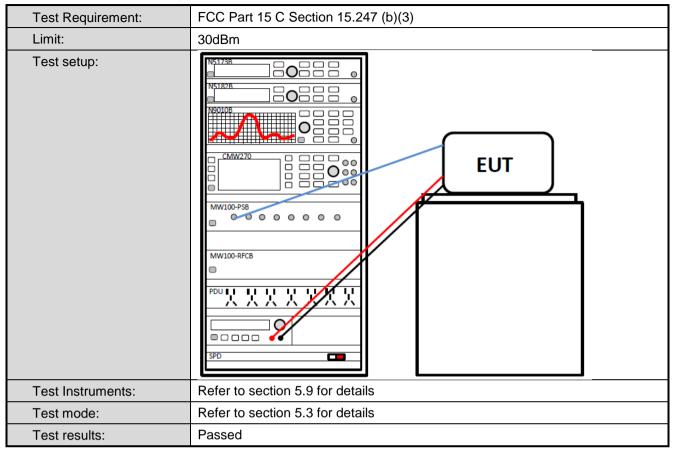
	Freq	Read Level		Aux Factor	Cable Loss	Level	Limit Line		Remark
	MHz	dBuV		ā	قة	₫₿uѶ		ā	
1	0.381	23.90	10.27	0.31	0.03	34.51	58.25	-23.74	QP
1 2 3 4 5 6 7 8 9 10	0.381	14.31	10.27	0.31	0.03	24.92			Average
3	0.461	31.06	10.29	-0.06	0.03	41.32	56.67	-15.35	QP
4	0.474	21.09	10.29	-0.18	0.03	31.23	46.45	-15.22	Average
5	0.731	22.54	10.30	-0.30	0.03	32.57	56.00	-23.43	QP
6	0.731	12.78	10.30	-0.30	0.03	22.81	46.00	-23.19	Average
7	0.948	22.45	10.32	0.32	0.05	33.14	56.00	-22.86	QP
8	1.262	12.77	10.32	0.20	0.10	23.39	46.00	-22.61	Average
9	8.062	15.98	10.53	1.57	0.10	28.18	50.00	-21.82	Average
10	8.501	26.12	10.55	1.67	0.11	38.45	60.00	-21.55	QP
11	13.337	36.64	10.72	3.11	0.11	50.58	60.00	-9.42	QP
12	15.146	26.68	10.77	3.53	0.14	41.12	50.00	-8.88	Average
									en ang a serie dag di T erda
12	10.140	20.00	10.11	5.05	0.14	41.12	50.00		0.00


Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

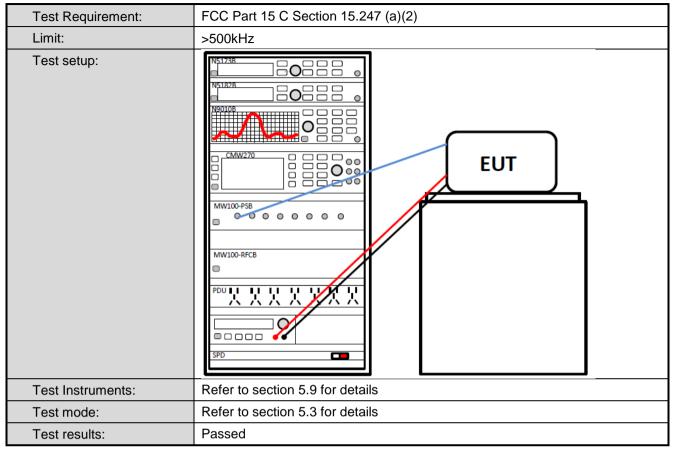
2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.



3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

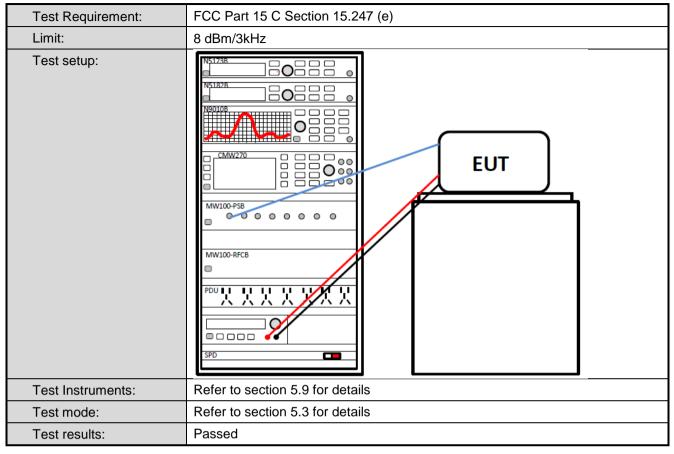
6.3 Conducted Output Power



Measurement Data:

See to Appendix A.1 (1M PHY) See to Appendix B.1 (2M PHY) See to Appendix C.1 (Coded PHY, S=2) See to Appendix D.1 (Coded PHY, S=8)

6.4 Occupy Bandwidth



Measurement Data:

See to Appendix A.2 and A.3 (1M PHY). See to Appendix B.2 and B.3 (2M PHY). See to Appendix C.2 and C.3 (Coded PHY, S=2). See to Appendix D.2 and D.3 (Coded PHY, S=8).

6.5 Power Spectral Density

Measurement Data:

See to Appendix A.4 (1M PHY). See to Appendix B.4 (2M PHY). See to Appendix C.4 (Coded PHY, S=2). See to Appendix D.4 (Coded PHY, S=8).

6.6 Band Edge

6.6.1 Conducted Emission Method

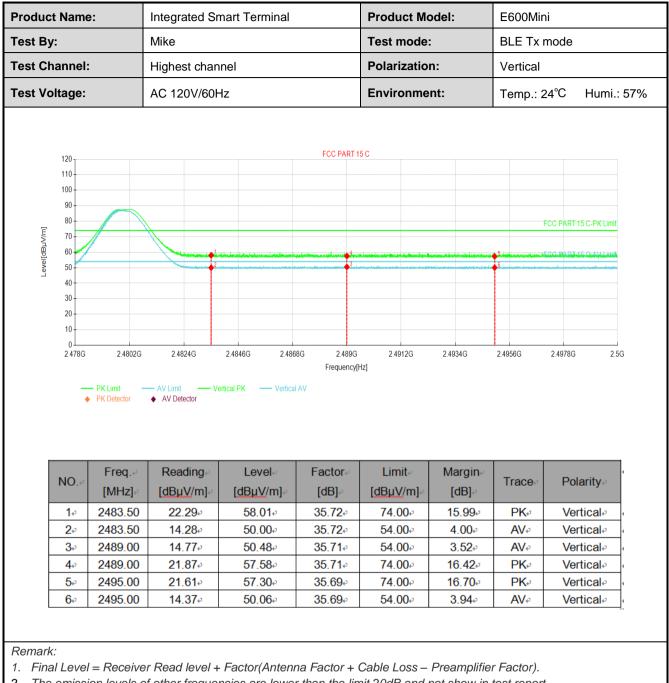
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

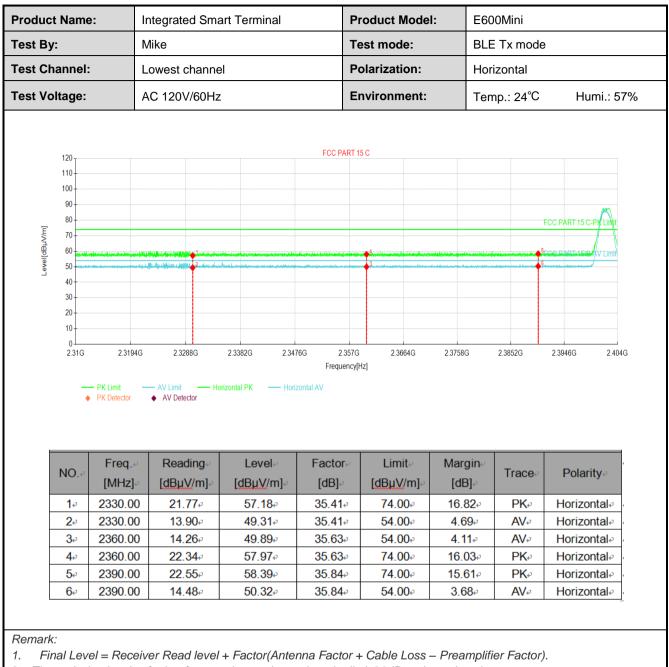
See to Appendix A.5 (1M PHY). See to Appendix B.5 (2M PHY). See to Appendix C.5 (Coded PHY, S=2). See to Appendix D.5 (Coded PHY, S=8).

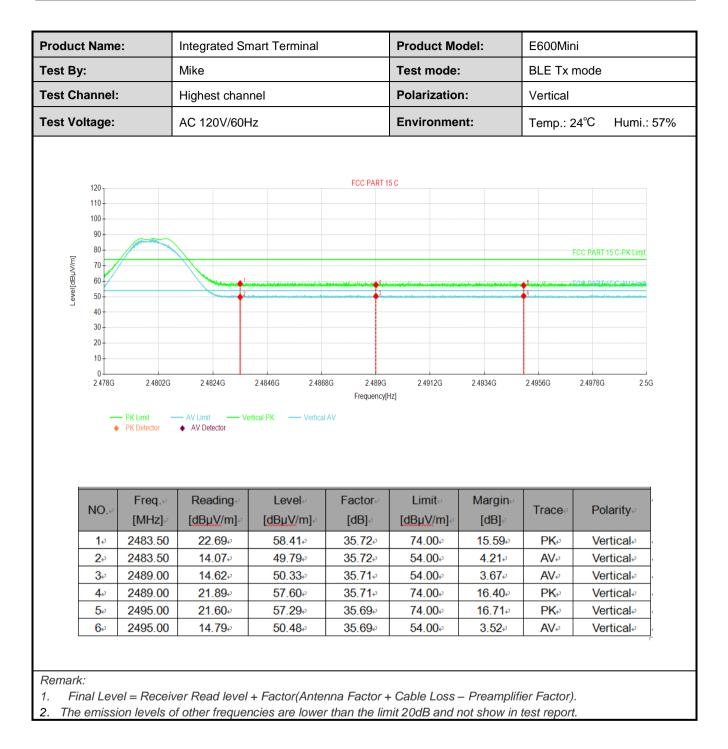
6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15	.205	and 15.209			
Test Frequency Range:	2310 MHz to 2	2390 MHz ar	nd 24	483.5MHz to 2	2500 I	MHz	
Test Distance:	3m						
Receiver setup:	Frequency	Detector		RBW	V	/BW	Remark
	Above 1GHz	Peak		1MHz		MHz	Peak Value
		RMS		1MHz		MHz	Average Value
Limit:	Frequen	су	Limi	t (dBuV/m @3 54.00	ßm)		Remark
	Above 10	GHz –		74.00			verage Value Peak Value
Test Procedure:	 the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both horiz make the 4. For each case and meters ar to find the 5. The test-r Specified 6. If the emis the limit s of the EU have 10 d 	d at a 3 met ine the positi was set 3 m which was n and height is d to determi- zontal and ver measurements suspected e then the and the rota ta maximum n receiver system Bandwidth ver ssion level of pecified, the T would be n B margin wer	ter ca tion (neter: nourn s vari ine tr ertica ent. emissa tenna able terna t	amber. The tal of the highest s away from the need on the top ied from one maximum v al polarizations sion, the EUT a was turned fro was turned fro was set to Pea Maximum Hol EUT in peak sting could be rted. Otherwis	ble wa radiat ne into o of a neter value s of th was a o heigo om 0 o ak De d Mode stopp e the one by	as rotat tion. erference variable to four of the fine anter arrange thats from degrees tect Fundes was 10 bed and emission y one us	e-height antenna meters above ield strength. nna are set to d to its worst n 1 meter to 4 s to 360 degrees nction and 0 dB lower than d the peak values ons that did not sing peak, quasi-
Test setup:		LEUT urntable) Gr Test Receiv		Р.	Antenna Tr	ower	
Test Instruments:	Refer to sectio	on 5.9 for de	tails				
Test mode:	Refer to sectio	on 5.3 for de	tails				
Test results:	Passed						


PHY: 1MHz

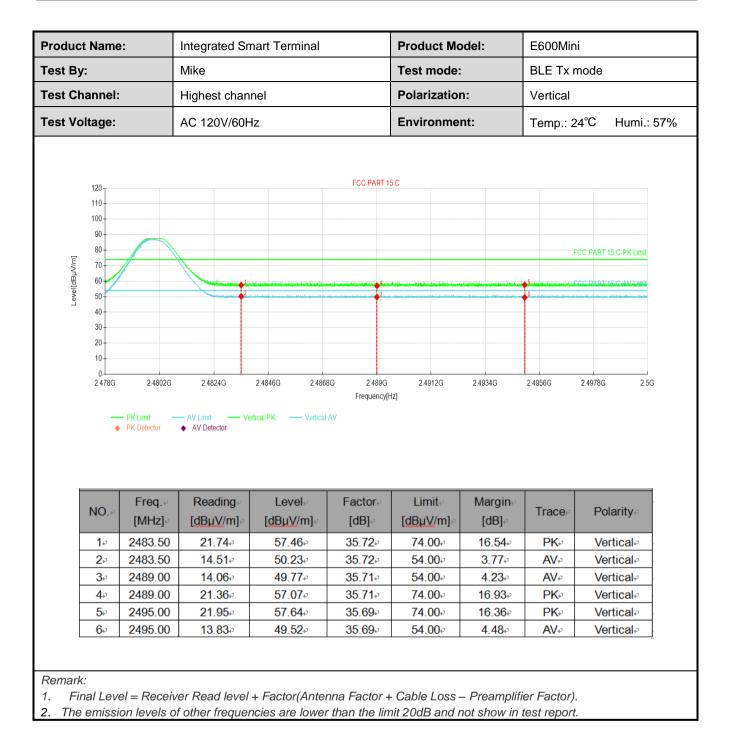
		Integrated Smart Terminal			Product Mo	uei.	E600Mini		
st By:		Mike			Test mode:		BLE Tx	mode	
st Channel	-	Lowest channel			Polarization	า:	Vertical		
st Voltage:		AC 120V/60H	łz		Environme	nt:	Temp.: 24°C Humi.: 5		
120 110 100 90 80 70 60 50 50				FCC PART 1	5 C			FCC PART 15 C-PK Dig	
40 30 20 10 2.31G	2.3194G – PK Limit – – PK Detector	2.3288G — AV Limit — Ve AV Detector	2.3382G 2.347 rtical PK — Vertical	Frequency[H		2.3758G	2.3852G	2.3946G 2.	404G
30 20 10 0	— PK Limit —	— AV Limit —— Ve		Frequency[H		2.3758G Margin/ [dB]/	2.3852G	2.3946G 2. Polarity	404G
30 20 10 2.31G	PK Limit PK Detector	AV Limit Ve AV Detector	rfical PK — Vertical	Frequency(H AV Factor	iz] Limit⇔	Margin			404G
30 20 10 2.316 NO.~	PK Limit PK Detector Freq [MHz]	AV Limit Ve ♦ AV Detector Reading V [dBµV/m] V	rtical PK — Vertical Level∉ [dBµV/m]₽	Frequency[ł AV Factor⊷ [dB]⊷	لنmit [dBuV/m]	Margin.∉ [dB]∉	Trace	Polarity∂	404G
30 20 10 2.31G NO	PK Limit PK Detector Freq	AV Limit Ve ♦ AV Detector Reading (dBµV/m) (a) 22.53(a)	Level [dBµV/m] 57.94	Frequency[ł AV Factor⊮ [dB]⊮ 35.41₽	Limit [dBµV/m] 74.00	Margin⊮ [dB]∞ 16.06⊷	Trace∂ PK₀	Polarity∉ Vertical∉	404G
30 20 10 2.316 NO.~ 1+ 2.2	PK Limit PK Detector [MHz]. ² 2330.00 2330.00 2360.00	AV Limit Ve ♦ AV Detector Reading (dBµV/m) (a) 22.53(a) 14.11(a) 13.85(a)	ertical PK — Vertical Level ← [dBµV/m] ← 57.94 ← 49.52 ← 49.48 ←	Frequency(F AV Factor	Limit [dBµV/m] 74.00 54.00 54.00	Margin. [dB]- 16.06+ 4.48+ 4.52+	Trace PK AV AV	Polarity₊ Vertical₊ Vertical₊	404G
30 20 10 0 2.316 NO* 1+2 2+3 3+3	PK Limit PK Detector Freq.₄ [MHz].₂ 2330.00 2330.00	- AV Limit Ve	Levele [dBµV/m].₂ 57.94.₂ 49.52.₂	Frequency(F AV Factor	Limit [dBµV/m] 74.00 54.00	Margin.∉ [dB]⊷ 16.06⊷ 4.48⊷	Trace PK AV	Polarity Vertical Vertical Vertical	404G


	e: li	ntegrated Sma	art Terminal	P	roduct Model	E60	0Mini		
est By:	Ν	Mike			est mode:	BLE	Tx mode	9	
est Channel:		lighest channe	el	P	olarization:	Hor	Horizontal		
est Voltage:	A	C 120V/60Hz	2	E	nvironment:	Ten	Temp: 24°C Humi: 579		
120 110 90 80 70 60 100 90 80 70 50				FCC PART 1	5 C		Second and a second second	FCC PART 15 C-PK Limit	
40 30 20 10 2.478G	2.4802G PK Limit – PK Detector	2.4824G AV Limit Ho AV Detector	2.4846G 2.486 orizontal PK — Horiz	8G 2.489G Frequency[zontal AV	2.4912G H2]	2.4934G	2.4956G	2.4978G 2.5G	
40 30 20 10 0	— PK Limit —	— AV Limit — Ho		Frequency[2.4934G Margin⊮ [dB]⊷	2.4956G Trace=	2.4978G 2.5G Polarity⊮	
40 30 20 10 0 2.478G	PK Limit - PK Detector -	AV Limit Ho AV Detector Ho Reading	orizontal PK — Horiz Levele	Frequency[zontal AV Factor-	Hz] Limit∉	Margine	Trace		
40 30 20 10 0 2.478G	PK Limit PK Detector Freq [MHz]	AV Limit Ho AV Detector Reading ([dBµV/m] ()	orizontal PK Horiz Level⊷ [dBµV/m].∘	Frequency[zontal AV Factor	لنmit بر [dBuV/m] ک	Margin.∉ [dB]∍		Polarity⊮	
40 30 20 10 0 2.478G	Freq. [MHz] 2483.50	AV Limit Ho AV Detector Ho Reading (dBµV/m) 20.79+	Level⊷ [dBµV/m].∘ 56.51.	Frequency(zontal AV Factor [dB] 35.72	Limit [dBµV/m] 74.00	Margin⊮ [dB]∞ 17.49₽	Trace∍ PK₀	Polarity⊮ Horizontal⊮	
40 30 20 10 0 2.478G NO.~ 1~ 2.478G	PK Limit PK Detector Freq↓ [MHz].↓ 2483.50 2483.50	AV Limit → Ho AV Detector → Ho AV Detector → Ho (dBµV/m] e ³ 20.79e ³ 14.43e ³	Level [dBµV/m] 56.51 € 50.15 €	Frequency[zontal AV Factor-/ [dB]-/ 35.72+/ 35.72+/	Limite [dBµV/m]e 74.00e 54.00e	Margin.∉ [dB]-∘ 17.49.₽ 3.85.₽	Trace∞ PK↔ AV↔	Polarity⊮ Horizontal⊮ Horizontal⊮	
40 30 20 10 0 2.478G NO	 PK Limit PK Detector Freq [MHz] 2483.50 2483.50 2489.00 	AV Limit Ho AV Detector Reading ([dBµV/m] (20.79 (14.43 (13.94 ()	Level↔ [dBµV/m]↔ 56.51↔ 50.15↔ 49.65↔	Frequency[zontal AV Factor [dB] 35.72 35.72 35.71	لنسند [dBuV/m]، 74.00، 54.00، 54.00،	Margin. [dB]- 17.49- 3.85- 4.35-	Trace⊳ PK↔ AV↔ AV↔	Polarity⊮ Horizontal⊮ Horizontal⊮ Horizontal⊮	


PHY: 2MHz

est By:	e:	Integrated Sr	nart Terminal		Product Mc	odel:	E600Mir	ni		
		Mike			Test mode:		BLE Tx	mode		
est Channel	:	Lowest channel			Polarizatio	n:	Vertical			
est Voltage:		AC 120V/60H	Ιz		Environme	nt:	Temp.: 24°C Humi.: 57			
120 110 90 80 70 60 40 40 30				FCC PART 1	5 C			FCC PART 15 C-PF	(Éduit / Limi	
20 10 0 2.31G	— PK Limit —		2.3382G 2.347 ertical PK — Vertical	Frequency[I		2.3758G	2.3852G	2.3946G	2.404G	
10 0 2.31G	PK Limit → PK Detector →	AV Limit Ve AV Detector Ve	ertical PK — Vertical	Frequency[AV Factor	Hz] Limit⇔	Margin.	2.3852G	2.3946G Polarity	4	
10 0 2.31G	PK Limit → PK Detector Freq [MHz]	AV Limit Ve	ertical PK — Vertical Levele [dBuV/m]-?	Frequency[Hz]		Trace		le l	
10 0 2316 NO2	PK Limit → PK Detector →	AV Limit Ve AV Detector Ve Reading ([dBµV/m].	ertical PK — Vertical	Frequency[AV Factor⊷ [dB]-∂	tz] Limit⊮ [dBμV/m]₽	Margin∉ [dB]∮		Polarity	/~ ~	
10 0 2 316 NO. •	 PK Limit PK Detector Freq [MHZ] 2330.00 	AV Limit Ve AV Detector Ve	Level [dBµV/m] 57.73	Frequency[AV Factor	±z] Limit⊮ [dBµV/m]⊮ 74.00₽	Margin⊮ [dB]₽ 16.27₽	Trace∘ PK∘	Polarity Vertica	، ابها ابها ا	
10 0 2.31G NO.₽ 1₽ 2₽	 PK Limit PK Detector Freq [MHz] 2330.00 2330.00 	AV Limit Ve AV Detector Ve (dBµV/m) 22.32+ 14.28+	ertical PK → Vertical Level → [dBµV/m] → 57.73 → 49.69 → 50.52 →	Frequency[AV Factor [dB] 35.41 35.41	Limit. [dBµV/m]. 74.00. 54.00.	Margin⊮ [dB]₽ 16.27₽ 4.31₽	Trace PKe AVe	Polarity Vertica Vertica	/→ · → · → ·	
10 0 2316 NO.₽ 1₽ 2₽ 3₽	 PK Limit PK Detector Freq [MHz] 2330.00 2330.00 2360.00 	AV Limit Ve AV Detector Ve	Evele [dBµV/m]₂ 57.73₂ 49.69₂	Frequency[AV Factor [dB] 35.41+- 35.41+- 35.63+-	Limit [dBµV/m] 74.00 54.00 54.00	Margin. [dB]. 16.27. 4.31. 3.48.	Trace PK AV AV	Polarity Vertica Vertica	10 0 0 0 0 0 0 0 0	

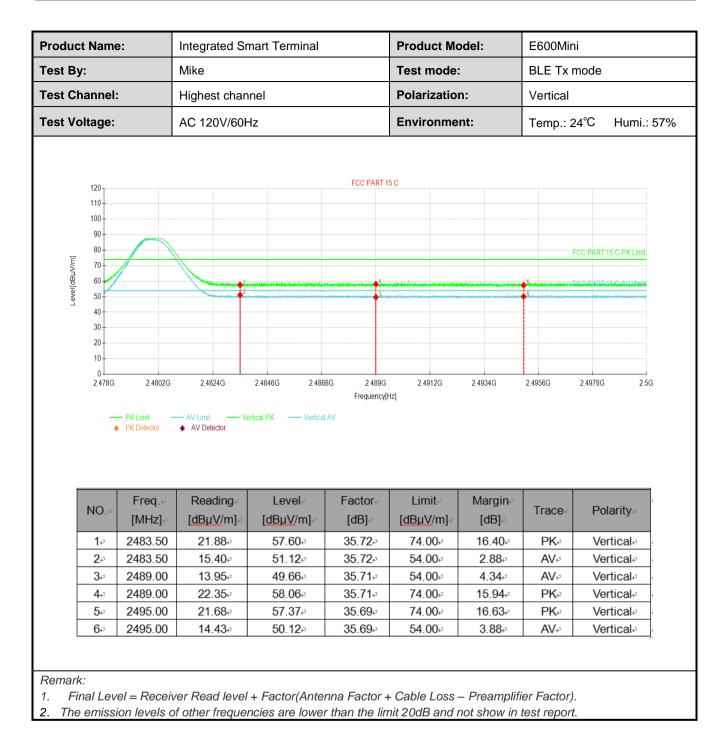
roduct N	lame:	Integrated Sm	art Terminal	P	roduct Mode	I: E60	0Mini		
est By:		Mike		т	est mode:	BLE	Tx mode	9	
Fest Channel:		Highest chann	nel	P	Polarization:		Horizontal		
est Volta	age:	AC 120V/60H	z	E	Environment:		np.: 24°C	Humi.: 57%	
11 10 [uu/\/rtap]; (ui/\/rtap];	20 10 00 90 80 70 60 50			FCC PART 1	15 C		5	FCC PART 15 C-PK Limit	
2	40 30 20 10 0 2.478G 2.48 PK Limit • PK Detector		2.4846G 2.486 Iorizontal PK — Hori	8G 2.489G Frequency[zontal AV		2.4934G	2 4956G	2.4978G 2.5G	
	30 20 10 0 2.478G 2.44 — PK Limit	AV Limit H AV Detector		Frequency[24934G Margin.∉ [dB].₂	2.4956G	24978G 2.5G	
	30 20 10 0 2.478G 2.44 — PK Limit • PK Detector	AV Limit H AV Detector H Reading ([dBuV/m] (lorizontal PK — Hori	Frequency[zontal AV Factor.⊌	Hz] Limit⊷	Margine			
N	30 20 10 0 2.478G 2.44 PK Limit PK Detector IO. Freq [MHz]	AV Limit H AV Detector H Reading ([dBuV/m] (50 21.22)	Levele [dBuV/m].	Frequency zontal AV Factor	Limit [dBuV/m]	Margin≓ [dB]∍	Trace	Polarity∂	
	30 20 10 0 2478G 244 → PK Limit ◆ PK Detector IO	AV Limit H AV Detector H AV Detector H J→ [dBµV/m]→ 50 21.22+3 50 14.36+3	Level [dBµV/m]↔ 56.94↔	Frequency zontal AV Factor	H₂] Limit⊮ [dBµV/m]⊮ 74.00₽	Margin⊮ [dB]∘ 17.06₽	Trace∘ PK∘	Polarity∍ Horizontalℯ	
N	30 20 10 0 2.478G 2.44 PK Limit PK Detector IO. Freq [MHz 1.42 2483. 2.47 2.478G 2.44 PK Limit	AV Limit H AV Detector H AV Detector H J₂ [dBµV/m]₂ 50 21.22.² 50 14.36.² 00 13.82.²	Level Hori [dBuV/m] 56.94 50.08	Frequency[zontal AV Factor [dB] 35.72+- 35.72+-	Hz] Limit [dBµV/m] 74.00 54.00	Margin.∞ [dB]∞ 17.06∞ 3.92∞	Trace PK AV	Polarity₀ Horizontal₀ Horizontal₀	
N	30 20 10 0 2.478G 2.44 → PK Limit ◆ PK Detector IO IO IO IO IO 2.478G 2.44 → PK Limit ◆ PK Detector IMHz 2.4783. 3.0 2.483. 2.483. 3.0 2.483. 3.0 2.483. 2.485. 2.48	AV Limit H AV Detector H AV Detect	Level- [dBµV/m]. ² 56.94. ³ 50.08. ³ 49.53. ²	Frequency(zontal AV Factor [dB] 35.72 35.72 35.71	Hz] Limit [dBµV/m] 74.00 54.00 54.00	Margin.∉ [dB].∉ 17.06¢ 3.92¢ 4.47¢	Trace PK AV AV	Polarity Horizontal Horizontal Horizontal	


Coded PHY, S=2

	ne:	integrated of	mart Terminal		Product Mc	odel:	E600Mi	nı		
est By:		Mike		Test mode: Polarization:		BLE Tx mode Vertical				
est Channe	l:	Lowest chan	nel							
est Voltage	:	AC 120V/60H	Hz		Environme	nt:	Temp.: 24°C Humi.: 57			
120 110 100 90 80 40				FCC PART 1	5 C			FCC PART 15 C-PK/Do		
30 20 10 0 231G	i 2.3194G → PK Limit → PK Detector	2.3288G AV Limit Vi AV Detector	2.3382G 2.347 ertical PK — Vertical	Frequency[ł		2.3758G	2.3852G	2 3946G 2 4	ц 104G	
20 10 0	PK Limit - ♦ PK Detector	— AV Limit — V		Frequency[ł		2.3758G Margin.∞ [dB].∞	2.3852G	23946G 24 Polarity	404G	
20- 10- 2.31G	PK Limit → PK Detector →	AV Limit Vi AV Detector Vi Reading e	ertical PK — Vertical	Frequency[/ AV Factor-	lz] Limit⊷	Margine			404G	
20 10 2.31G	PK Limit ◆ PK Detector Freq [MHz]-	AV Limit Vo AV Detector Reading Vo [dBuV/m]	ertical PK — Vertical Level [dBuV/m]. ²	Frequency[! AV Factor [dB]	Limit⊮ [dBµV/m]₽	Margin [dB]਼	Trace	Polarity∂	404G	
20 10 0 2.31G NO.4	 PK Limit PK Detector Freq [MHz] 2330.00 	AV Limit V AV Detector V Reading ([dBµV/m] (22.28.)	ertical PK — Vertical Level [dBµV/m] 57.69	Frequency[! AV Factor [dB] 35.41	Limit [dBµV/m] 74.00	Margin⊮ [dB]₽ 16.31₽	Trace.₀ PK₀	Polarity.₀ Vertical.₀	104G	
20 10 2316 NO. 1e 2e	 PK Limit PK Detector Freq [MHz] 2330.00 2330.00 	AV Limit Va	ertical PK — Vertical Level [dBµV/m] 57.69 49.58 2	Frequency[/ AV Factor [dB] 35.41 35.41	Limit [dBµV/m] 74.00 54.00	Margin.⊍ [dB].₂ 16.31.₂ 4.42.₂	Trace PK AV	Polarity⊷ Verticalℯ Verticalℯ	104G	
20- 10- 2.316 NO 1- 2- 2- 3-	 PK Limit PK Detector Freq [MHz] 2330.00 2330.00 2360.00 	AV LimitV	ertical PK — Vertical Level↔ [dBµV/m]↔ 57.69↔ 49.58↔ 49.86↔	Frequency[! AV Factor [dB] 35.41 35.41 35.63	Limit [dBµV/m] 74.00 54.00 54.00	Margin. [dB]. 16.31. 4.42. 4.42.	Trace PK AV AV	Polarity₀ Vertical₀ Vertical₀ Vertical₀	104G	

	e: li	liegraleu Sina	art Terminal	Pi	roduct Model	E60	E600Mini		
Test By: Test Channel: Test Voltage:		Mike Highest channel AC 120V/60Hz			est mode:	BLE	BLE Tx mode Horizontal Temp.: 24°C Humi.: 57%		
					olarization:	Hor			
					nvironment:	Ten			
120 110 100 90 80 80 70 70 60 50				FCC PART 1	5 C		Same and the second second	FCC PART 15 C-PK Limit	
30 40 30 20 10 2 478G	2.4802G PK Limit - PK Detector	2.4824G — AV Limit — Ho AV Detector	2.4846G 2.486 orizontal PK — Horiz	8G 2.489G Frequency[I zontal AV	2.4912G Hz]	2.4934G	2.4956G	2.4978G 2.5G	
40 30 20 10	— PK Limit —	— AV Limit — Ho		Frequency[I		24934G Margin.∞ [dB].∞	2.4956G	2.4978G 2.5G	
40 30 20 10 0 2.478G	PK Limit PK Detector	AV Limit Ho AV Detector Ho Reading	orizontal PK — Horiz Levele	Frequency[/ zontal AV	tz] Limit⊷	Margine			
40 30 20 10 0 2 478G	PK Limit PK Detector	AV Limit Ho AV Detector Reading ([dBµV/m] ()	orizontal PK — Horiz Level⊷ [dBµV/m]-2	Frequency[zontal AV Factor- [dB]-2	Limit [dBµV/m]	Margin.∉ [dB]∍	Trace	Polarity.	
40 30 20 10 0 2.478G	Freq.** [MHz]* 2483.50	AV Limit Ho AV Detector Ho Reading ([dBuV/m] (21.61+)	Level [dBµV/m] 57.33	Frequency[zontal AV Factor [dB] 35.72+-	Limit⊮ [dBµV/m]⊮ 74.00₽	Margin⊮ [dB]∞ 16.67₽	Trace∝ PK⊷	Polarity. Horizontal.	
40 30 20 10 0 2.478G NO.~ 1.0 1.0 2.478G	PK Limit PK Detector [MHz]. ² 2483.50 2483.50	AV Limit → Ho AV Detector → Ho AV Detector → Ho (dBµV/m] → 21.61 → 14.31 →	Level [dBµV/m] 57.33 50.03	Frequency[/ zontal AV Factor [dB] 35.72 35.72	Limit [dBµV/m] 74.00 54.00	Margin.⊍ [dB]-□ 16.67.₀ 3.97.₀	Trace PKe AVe	Polarity Horizontal Horizontal	
40 30 20 10 0 2.478G NO 1- 1- 2- - - - - - - - - - - - - -	PK Limit PK Detector [MHz].• 2483.50 2483.50 2489.00	AV Limit Ho AV Detector Reading [dBµV/m]= ² 21.61= ² 14.31= ² 14.33= ²	Level↔ [dBµV/m]↔ 57.33↔ 50.03↔ 50.04↔	Frequency[zontal AV Factor [dB] 35.72+ 35.72+- 35.71+-	Limit [dBµV/m].0 74.00.0 54.00.0	Margin.∉ [dB].∉ 16.67.¢ 3.97.¢ 3.96.¢	Trace PKe AVe AVe	Polarity.∞ Horizontal.∞ Horizontal.∞ Horizontal.∞	

Project No.: JYTSZE2110022


Coded PHY, S=8

	Integrated Smart Terminal					odel:	E600Mini		
est By:		Mike		Test mode:	:	BLE Tx mode			
Fest Channel:		Lowest channel			Polarization	n:	Vertical		
est Voltage	:	AC 120V/60H	Ηz	Environme	nt:	Temp.: 24°C Humi.: 579			
120 110 100 90 80 70 60 50 40 30		аланан арабан		FCC PART 1	5 C			FCC PART 15 C-PK	
	2.3194G PK Limit PK Detector	2 3288G AV Limit Ve AV Detector	2.3382G 2.347 ertical PK — Vertical	Frequency[H		2.3758G	2.3852G	2.3946G 2.	404G
10	PK Limit - PK Detector	— AV Limit — Ve		Frequency[H		2.3758G Margin⊮ [dB]₊	2.3852G	2.3946G 2. Polarity	404G
10	PK Limit → PK Detector →	AV Limit Ve AV Detector	ertical PK Vertical	Frequency(H AV Factor	iz] Limit∉	Margine			404G
10 0 2.310	PK Limit − PK Detector − Freq. e ² [MHz] e ²	AV Limit Ve AV Detector Ve Reading ([dBuV/m] 2	ertical PK — Vertical Level [dBuV/m]-2	Frequency[ł AV Factor⊌ [dB]-∂	لimit [dBµV/m]ی	Margin⊮ [dB]∂	Trace	Polarity∂	404G
10 0 2.310 NO	 PK Limit PK Detector Freq [MHz] 2330.00 	AV Limit Ve AV Detector Ve	Level [dBµV/m] 58.17	Frequency[F AV Factor [dB] 35.41+	لنmit⊮ [dBuV/m]⊮ 74.00₽	Margin⊮ [dB]⊮ 15.83⊮	Trace.	Polarity.₀ Vertical.₀	404G
10 0 2.310 NO.4 1+0 2+0	 PK Limit PK Detector Freq [MHz] 2330.00 2330.00 	AV Limit	Levele [dBµV/m]₀ 58.17₀ 49.78₀	Frequency(F AV Factor [dB] 35.41 35.41	Limit [dBµV/m] 74.00 54.00	Margin.∉ [dB].∘ 15.83.₽ 4.22.₽	Trace PK AV	Polarity∍ Vertical₊ Vertical₊	404G
10 0 2.310 NO1 1+ ² 2. ³	 PK Limit PK Detector Freq [MHz] 2330.00 2330.00 2360.00 	AV Limit Ve AV Detector Ve [dBµV/m]= ² 22.76+ ² 14.37+ ³ 13.74+ ³	Eevel [dBµV/m].∞ 58.17.∞ 49.78.∞ 49.37.∞	Frequency(F AV Factor (dB) 35.41+ 35.41+ 35.63+	Limit [dBµV/m] 74.00 54.00 54.00	Margin/ [dB]/ 15.83/ 4.22/ 4.63/	Trace PK AV AV	Polarity∍ Vertical₀ Vertical₀ Vertical₀	404G

		licgrated offic	art Terminal	PI	roduct Model	E60	E600Mini			
Test By: Test Channel:		Mike Highest channel			est mode:	BLE	BLE Tx mode			
					olarization:	Hor	Horizontal			
est Voltage:	Α	AC 120V/60Hz			nvironment:	Ten	Temp.: 24°C Humi.: 57%			
120 110 100 90 80 80 70 70 60 60 50				FCC PART 1	5 C		Second Se	FCC PART 15 C-PK Limit		
40 30 20 10 2.478G	2.4802G PK Limit - PK Detector	2.4824G AV Limit Ho AV Detector	2.4846G 2.486 prizontal PK — Horiz	8G 2.489G Frequency[I zontal AV	2.4912G Hz]	2.4934G	2 4956G	24978G 2.5G		
40 30 20 10	— PK Limit —	— AV Limit —— Ho		Frequency[I		2.4934G Margin.∞ [dB].∞	2.4956G	2.4978G 2.5G		
40 30 20 10 0 2.478G	PK Limit PK Detector	AV Limit Ho AV Detector	orizontal PK — Horiz Levele	Frequency[/ zontal AV	Hz] Limit⊷	Margine				
40 30 20 10 0 2.478G	PK Limit PK Detector Freq.~ [MHz].2	AV Limit Ho AV Detector Reading ([dBµV/m] ()	orizontal PK — Horiz Level⊷ [dBµV/m]₊ ²	Frequency[zontal AV Factor	Limit⊮ [dBµV/m]₽	Margin⊮ [dB]∍	Trace	Polarity-∘		
40 30 20 10 0 2.478G	Freq.* [MHz].2 2483.50	AV Limit Ho AV Detector Reading (dBµV/m) 21.80+	Level [dBµV/m] 57.52	Frequency[zontal AV Factor [dB] 35.72	Limit.e/ [dBµV/m].e2 74.00.e2	Margin⊮ [dB]∞ 16.48₽	Trace∍ PK₀	Polarity Horizontal		
40 30 20 10 0 2.478G NO.~ 1+2 2.2	PK Limit PK Detector [MHz]. ² 2483.50 2483.50	AV Limit → Ho AV Detector → Ho AV Detector → Ho (dBµV/m] ↔ 21.80↔ 14.44↔	Level [dBµV/m] 57.52 50.16	Frequency[zontal AV Factor [dB] 35.72+- 35.72+-	Limit [dBµV/m] 74.00 54.00	Margin.∉ [dB]- 16.48₽ 3.84₽	Trace PK AV	Polarity Horizontal Horizontal		
40 30 20 10 0 2.4786 NO 1- 2.4786 1- 2.4786	PK Limit PK Detector [MHz]. ² 2483.50 2483.50 2489.00	AV Limit Ho AV Detector Ho Reading ([dBµV/m] (21.80 (14.44 (14.19 ()	Level↔ [dBµV/m]↔ 57.52↔ 50.16↔ 49.90↔	Frequency[zontal AV Factor [dB] 35.72+ 35.72+- 35.71+-	Limit [dBµV/m] 74.00 54.00 54.00	Margin.∉ [dB].∉ 16.48¢ 3.84¢ 4.10¢	Trace PK AV AV	Polarity Horizontal Horizontal Horizontal		

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

See to Appendix A.6 (1M PHY). See to Appendix B.6 (2M PHY). See to Appendix C.6 (Coded PHY, S=2). See to Appendix D.6 (Coded PHY, S=8).

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.	.205	5 and 15.209			
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m or 10m						
Receiver setup:	Frequency	Detector	r	RBW	VB	W	Remark
·	30MHz-1GHz	Quasi-pea	ak	120KHz	300ł	≺Нz	Quasi-peak Value
	Above 1GHz	Peak				Hz	Peak Value
		RMS		1MHz	3M	Hz	Average Value
Limit:	Frequency		Limit (dBuV/m @10m)			Remark	
	30MHz-88M			30.0			uasi-peak Value
	88MHz-216N			33.5			Quasi-peak Value
	216MHz-960I 960MHz-1G			<u>36.0</u> 44.0			Quasi-peak Value
	Frequency		Lin		3m)	G	Quasi-peak Value Remark
			Limit (dBuV/m @3m) 54.0		Silly	Average Value	
	Above 1GH	lz		74.0			Peak Value
	 chamber(a determine for determine f	bove 1GH the position vas set 3 m antenna, w nna tower. na height is to determ ontal and w neasureme suspected hen the and the rota ta maximum r eceiver sys Bandwidth v sion level o ecified, the would be B margin wo	Iz). n of nete vhich is vanine verti ent. entimeten able read vsten with hen te rep rould	The table the highest r rs(above 1Gl h was mour aried from or the maximu ical polarizat ission, the E ma was turned ling. n was set f Maximum H he EUT in pe esting could b orted. Other be re-tested	was ru adiation Hz) aw ited on ne met um valu ions of UT wa d to he from 0 to Pea old Moo ak moo be stop wise th d one b	otated n. ay from a the f er to f ue of the a as arra eights degre k Det de was ped ar e emis y one	at a 3 meter 360 degrees to m the interference- top of a variable- four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 ses to 360 degrees tect Function and a 10 dB lower than nd the peak values ssions that did not using peak, quasi- reported in a data
Test setup:		10m <4m 4m 0.8m 1m			S A RF	Antenna To earch intenna Test ceiver —	ower

Project No.: JYTSZE2110022

	Horn Antenna Tower Horn Antenna Tower Ground Reference Plane Test Receiver
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30MHz is lower than the limit 20dB, so only shows the data of above 30MHz in this report.

Measurement Data (worst case):

Below 1GHz:

roduct Name:	Integrated Smart Terminal			Product M	odel:	E600Mini			
est By:		Mike			Test mode	:	BLE Tx r	mode	
est Frequer	uency: 30 MHz ~ 1 GHz Polarization: Vertical								
est Voltage		AC 120V/60H	łz		Environme	ent:	Temp.: 2	24°C Humi.:	57%
120 110 100 90 80 [U] 70 100 90 80 60 50				FCC PART				CC PART 15.247-QP Limit	017
30 40 20 10 30 30M		- Vertical PK	100M	Frequency	/Hz]		5	1G	
40 30 20 1 10	QP Limit • QP Detector Freq.**	Vertical PK	100M	Factor.	Limite	Margin/	Trace	Polarity.	
40 30 20 m 10 m 30M	— QP Limit ♦ QP Detector	Vertical PK	100M			Margin/ [dB]/ 21.05-/	Trace- PK-		
40 30 20 1 10 30M	QP Limit ◆ QP Detector Freq.+ ³ [MHz]- ³	Vertical PK	100M Level⊷ [dBµV/m]↩	Factor⊮ [dB]∘	Limit⊮ [<u>dBµV</u> /m]⊬	[dB]₽		Polarity₀	
40 30 10 0 30M	QP Limit ♦ QP Detector Freq.+ [MHz]-> 30.3880+>	Vertical PK Reading[d BµV/m]↔ 35.02↔	100M Level⊷ [dBµV/m]⊷ 18.95⊷	Factor⊮ [dB]∞ -16.07+	Limit.₀ [dBµV/m]₀ 40.00,₀	[dB].₀ 21.05₊₀	PK₽	Polarity vertical.₀	
40 30 20 1 10 30M	QP Limit ◆ QP Detector Freq.4 [MHz]-2 30.3880+2 58.9089+2		100M Level [dBµV/m] 18.95⊷ 13.61⊷	Factor↓ [dB]∍ -16.07₊ -14.93₊	Limit- [dBµV/m]- 40.00,- 40.00,-	[dB]⊸ 21.05⊷ 26.39⊷	PKe PKe	Polarity Vertical Vertical	
40 30 20 e ¹ 10 f ⁴ 0 30M NO 1e ² 2e ² 3e ²	QP Limit ◆ QP Detector Freq.+1 [MHZ]-2 30.3880+2 58.9089+2 107.995	Vertical PK Reading[d BµV/m]- 35.02+ 28.54+ 28.19+ 35.19	100M Level	Factor⊮ [dB]⊮ -16.07+ -14.93+ -15.94+	Limit- [dBµV/m]+ 40.00+ 40.00+ 43.50+	[dB] 21.05 26.39 31.25	PK. PK.	Polarity₀ Vertical₀ Vertical₀ Vertical₀	

Product Name:		Integrated Smart Terminal			Product M	odel:	E600Mini			
est By:	:		Mike			Test mode	:	BLE Tx	mode	
est Fre	equenc	cy:	30 MHz ~ 1 G	iHz		Polarizatio	n:	Horizon	tal	
est Vo	Itage:		AC 120V/60H	z		Environme	ent:	Temp.: 2	24°C	Humi.: 57%
Level[dBj/V/m]	120 110 100 90 80 70 60 50 40 30				FCC PART 1			F	CC PART 15 247-4	
	20 10 0 30M	QP Limit	- Horizontal PK	nan nan an	Frequency					16
	10 - www.	- QP Limit	Horizontal PK	100M Level.∞ [dBµV/m]₀			Margin.⊭ [dB]∞	Trace	Polari	
		QP Limit QP Detector	Reading[d	Level	Frequency Factor.	/[Hz]	Margin⊮		Polari Horizor	ty⇔
	10 - 4/44 0 - 30M	QP Limit QP Detector Freq.** [MHz]-?	Reading[d <u>BµV</u> /m]∉	Level⊮ [<u>dBµV</u> /m]∻	Frequency Factor⊷ [dB]⊷	/ ^[Hz] Limit⊮ [dBμV/m]⊮	Margin⊮ [dB]∘	Trace		ty.₀ ntal₊₃
	10 - 4/44 0 - 30M 30M	- QP Limit QP Detector Freq.↔ [MHz]↔ 38.0518↔	Reading[d BµV/m].₀ 28.24.₀	Level₊ [dBµV/m]₊ 13.57₊	Frequency Factor⊷ [dB]∘ -14.67⊷	(Hz] [dBµV/m]∘ 40.00₀	Margin. [dB] 26.43.	Trace.∞ PKe	Horizor	ty.⊳ ntal.₂
	10 - 4/4/4 0 - 30M 30M	QP Limit QP Detector [MHz]- ² 38.0518+ ² 58.5209- ²	Reading[d BuV/m] 28.24 27.68	Level⊮ [dBµV/m]≁ 13.57₽ 12.78₽	Frequency Factor [dB] -14.67 -14.90	(Hz] Limit [dBuV/m]- 40.00e 40.00e	Margin [dB]- 26.43- 27.22-	Trace PKe PKe	Horizor Horizor	ty∞ ntal₊∞ ntal₊∞
	NO.# 10- 30M	QP Limit QP Detector [MHZ]-∞ 38.0518-∞ 58.5209-∞ 120.801	Reading[d BµV/m]↔ 28.24↔ 27.68↔ 28.25↔	Level. [dBµV/m] 13.57. 12.78. 12.11.	Frequency Factor [dB] -14.67¢ -14.90¢ -16.14¢	Limit. [dBµV/m]+ 40.00+ 40.00+ 43.50+	Margin [dB]- 26.43- 27.22- 31.39-	Trace PKe PKe	Horizor Horizor Horizor	ty∞ ntal∞ ntal∞ ntal∞

Above 1GHz

PHY: 1MHz

		Test ch	annel: Lowest ch	nannel		
		Det	tector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4804.00	54.11	-9.60	44.51	74.00	29.49	Vertical
4804.00	55.21	-9.60	45.61	74.00	28.39	Horizontal
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatior
4804.00	46.91	-9.60	37.31	54.00	16.69	Vertical
4804.00	46.67	-9.60	37.07	54.00	16.93	Horizontal
		Test ch	annel: Middle ch	annel		
		Det	ector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatior
4884.00	54.26	-9.04	45.22	74.00	28.78	Vertical
4884.00	55.27	-9.04	46.23	74.00	27.77	Horizontal
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatior
4884.00	46.88	-9.04	37.84	54.00	16.16	Vertical
4884.00	46.22	-9.04	37.18	54.00	16.82	Horizontal
		Test cha	annel: Highest cl	nannel		
		Det	ector: Peak Valu	le		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4960.00	53.78	-8.45	45.33	74.00	28.67	Vertical
4960.00	54.98	-8.45	46.53	74.00	27.47	Horizontal
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4960.00	47.01	-8.45	38.56	54.00	15.44	Vertical
	46.24	-8.45	37.79	54.00	16.21	Horizontal

1. Final Level =Receiver Read level + Factor.

PHY: 2MHz

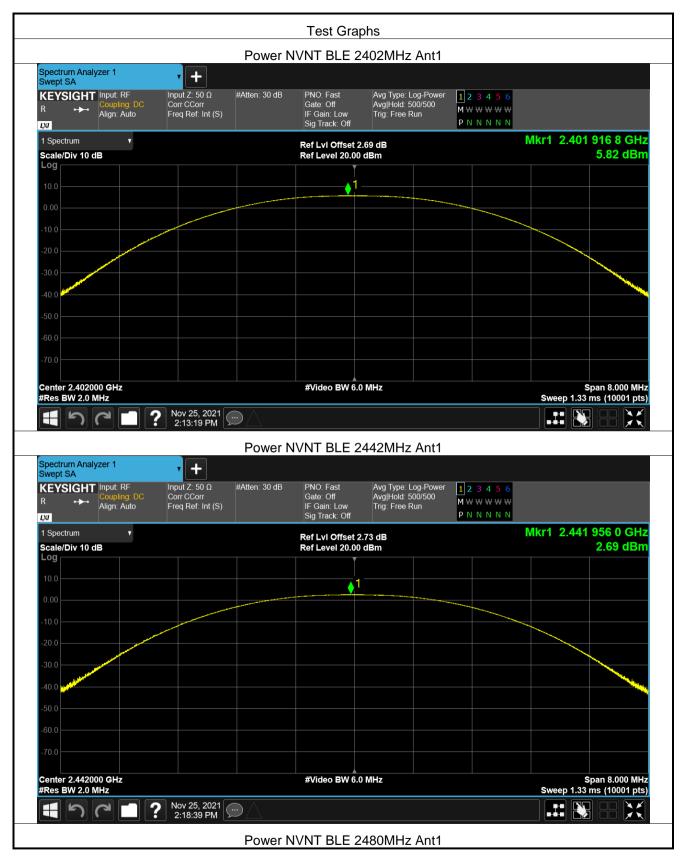
		Test ch	annel: Lowest cl	nannel		
		De	tector: Peak Valu	le		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4804.00	55.53	-9.60	45.93	74.00	28.07	Vertical
4804.00	54.59	-9.60	44.99	74.00	29.01	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4804.00	47.52	-9.60	37.92	54.00	16.08	Vertical
4804.00	48.16	-9.60	38.56	54.00	15.44	Horizontal
			annel: Middle ch			
	T	Det	tector: Peak Valu		T	1
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4884.00	55.43	-9.04	46.39	74.00	27.61	Vertical
4884.00	54.96	-9.04	45.92	74.00	28.08	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4884.00	47.92	-9.04	38.88	54.00	15.12	Vertical
4884.00	48.36	-9.04	39.32	54.00	14.68	Horizontal
		T (.)				
			annel: Highest c			
		De	tector: Peak Valu		Margin	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4960.00	55.60	-8.45	47.15	74.00	26.85	Vertical
4960.00	54.44	-8.45	45.99	74.00	28.01	Horizontal
	T	Dete	ctor: Average Va	alue	1	1
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4960.00	47.09	-8.45	38.64	54.00	15.36	Vertical
4960.00	48.01	-8.45	39.56	54.00	14.44	Horizontal
Remark: 1. Final Level =F	Receiver Read level	+ Factor.				

Coded PHY, S=2

			annel: Lowest ch			
		De	tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	54.61	-9.60	45.01	74.00	28.99	Vertical
4804.00	55.08	-9.60	45.48	74.00	28.52	Horizonta
		Dete	ctor: Average Va	llue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	47.75	-9.60	38.15	54.00	15.85	Vertical
4804.00	47.21	-9.60	37.61	54.00	16.39	Horizonta
		Test ch	annel: Middle ch	annel		
		Det	tector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	54.71	-9.04	45.67	74.00	28.33	Vertical
4884.00	54.97	-9.04	45.93	74.00	28.07	Horizonta
		Dete	ctor: Average Va	llue	·	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	48.19	-9.04	39.15	54.00	14.85	Vertical
4884.00	46.98	-9.04	37.94	54.00	16.06	Horizonta
			annel: Highest ch tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizati
4960.00	54.26	-8.45	45.81	74.00	28.19	Vertical
4960.00	55.49	-8.45	47.04	74.00	26.96	Horizonta
		Dete	ctor: Average Va	lue		
Frequency	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizati
(MHz)		1		54.00	1107	Vartical
	47.48	-8.45	39.03	54.00	14.97	Vertical

Coded PHY, S=8

			annel: Lowest ch			
	T	Det	tector: Peak Valu	ie	T	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	55.38	-9.60	45.78	74.00	28.22	Vertical
4804.00	54.86	-9.60	45.26	74.00	28.74	Horizonta
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	47.36	-9.60	37.76	54.00	16.24	Vertical
4804.00	46.55	-9.60	36.95	54.00	17.05	Horizonta
			annel: Middle ch			
_	[Det	ector: Peak Valu		·	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	55.60	-9.04	46.56	74.00	27.44	Vertical
4884.00	55.02	-9.04	45.98	74.00	28.02	Horizonta
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	47.76	-9.04	38.72	54.00	15.28	Vertical
4884.00	46.38	-9.04	37.34	54.00	16.66	Horizonta
			annel: Highest ch tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4960.00	55.87	-8.45	47.42	74.00	26.58	Vertical
4960.00	55.13	-8.45	46.68	74.00	27.32	Horizonta
	•	Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
(101112)	47 77	-8.45	39.32	54.00	14.68	Vertical
4960.00	47.77	0.10				



Appendix A (1M PHY)

A.1 Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	5.822	0	5.822	30	Pass
NVNT	BLE	2442	Ant1	2.687	0	2.687	30	Pass
NVNT	BLE	2480	Ant1	1.771	0	1.771	30	Pass



A.2 -6dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE	2402	Ant1	0.66	0.5	Pass
NVNT	BLE	2442	Ant1	0.658	0.5	Pass
NVNT	BLE	2480	Ant1	0.658	0.5	Pass

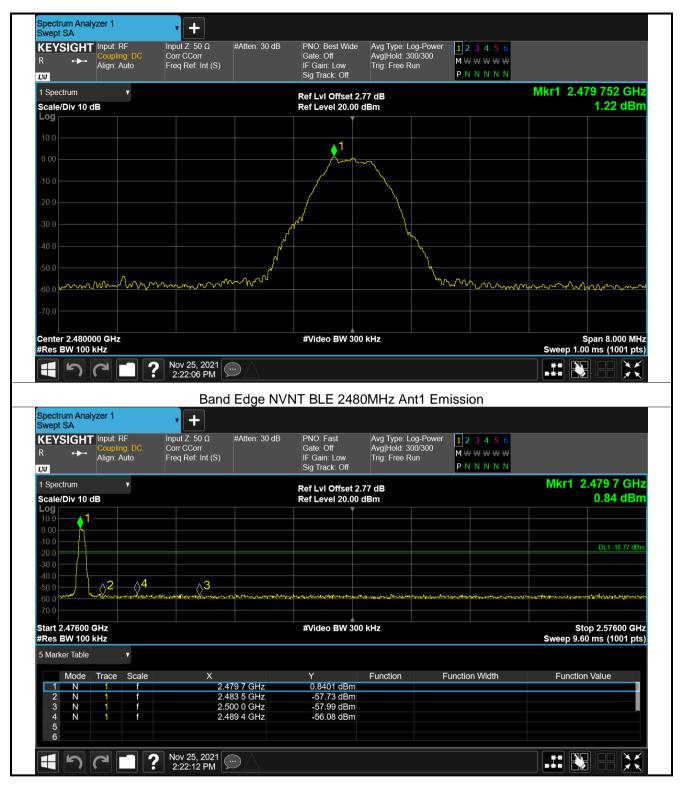
A.3 Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE	2402	Ant1	1.020650309
NVNT	BLE	2442	Ant1	1.027608431
NVNT	BLE	2480	Ant1	1.017808267

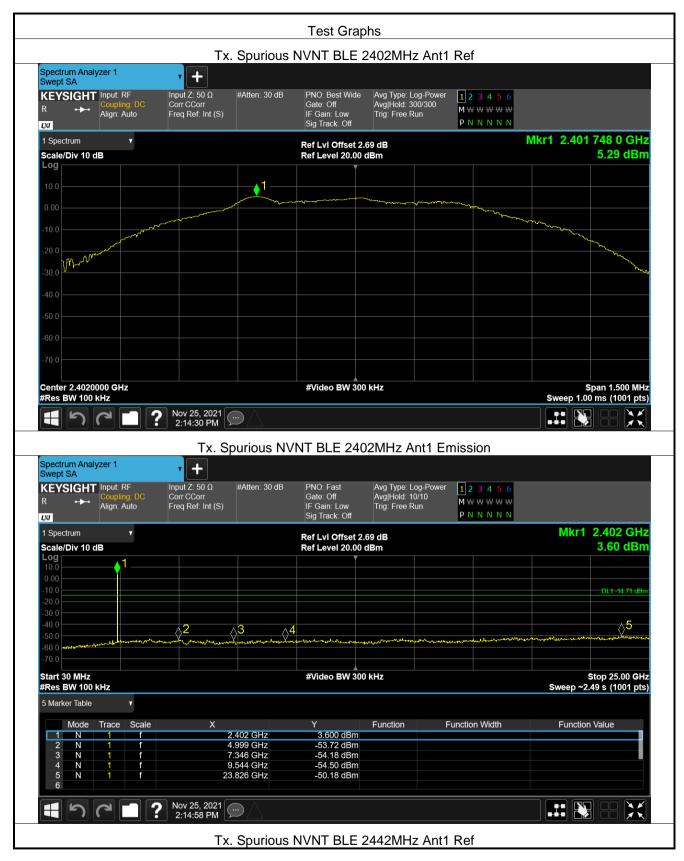



A.4 Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	-9.459	8	Pass
NVNT	BLE	2442	Ant1	-12.641	8	Pass
NVNT	BLE	2480	Ant1	-13.52	8	Pass


A.5 Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-61.25	-20	Pass
NVNT	BLE	2480	Ant1	-57.31	-20	Pass



A.6 Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-55.47	-20	Pass
NVNT	BLE	2442	Ant1	-51.29	-20	Pass
NVNT	BLE	2480	Ant1	-50.36	-20	Pass

