

FCC RF Test Report

APPLICANT	:	PAX Technology Limited
EQUIPMENT	:	Secure Card Reader
BRAND NAME	:	PAX
MODEL NAME	:	D135
FCC ID	:	V5PD135S
STANDARD	:	FCC Part 15 Subpart C §15.225
CLASSIFICATION	:	(DXX) Low Power Communication Device Transmitter
TEST DATE(S)	:	Nov. 24, 2023 ~ Dec. 05, 2023

We, Sporton International Inc. (Shenzhen), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Shenzhen), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Sporton International Inc. (ShenZhen) 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China

TABLE OF CONTENTS

TABLE	E OF CONTENTS	2
REVIS	ION HISTORY	3
SUMM	ARY OF THE TEST RESULT	4
1. GEN	VERAL DESCRIPTION	5
1.1	Applicant	5
1.2	Manufacturer	5
1.3	Product Feature of Equipment Under Test	5
1.4	Product Specification of Equipment Under Test	6
1.5	Modification of EUT	6
1.6	Testing Location	6
1.7	Test Software	7
1.8	Applicable Standards	
2. TES	T CONFIGURATION OF EQUIPMENT UNDER TEST	8
2.1	Descriptions of Test Mode	8
2.2	Connection Diagram of Test System	9
2.3	Table for Supporting Units	
2.4	EUT Operation Test Setup	
3. TES	T RESULTS	
3.1	AC Power Line Conducted Emissions Measurement	
3.2	20dB and 99% OBW Spectrum Bandwidth Measurement	
3.3	Frequency Stability Measurement	
3.4	Field Strength of Fundamental Emissions and Mask Measurement	
3.5	Radiated Emissions Measurement	17
3.6	Antenna Requirements	-
	F OF MEASURING EQUIPMENT	
5. UNC	CERTAINTY OF EVALUATION	22
APPE	NDIX A. TEST RESULTS OF CONDUCTED EMISSION TEST	
APPE	NDIX B. TEST RESULTS OF CONDUCTED TEST ITEMS	
B1.	Test Result of 20dB Spectrum Bandwidth	

B2. Test Result of Frequency Stability

APPENDIX C. TEST RESULTS OF RADIATED TEST ITEMS

- C1. Test Result of Field Strength of Fundamental Emissions
- C2. Results of Radiated Emissions (9 kHz~30MHz)
- C3. Results of Radiated Emissions (30MHz~1GHz)

APPEDNIX D. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR3N0802C	Rev. 01	Initial issue of report	Dec. 15, 2023

SUMMARY OF THE TEST RESULT

Report Section	FCC Rule	Description of Test	Result	Remark
3.1	15.207	AC Power Line Conducted Emissions	Complies	Under limit 21.88 dB at 1.35 MHz
2.2	15.215(c)	20dB Spectrum Bandwidth	Complies	-
3.2	-	99% OBW Spectrum Bandwidth	Complies	-
3.3	15.225(e)	Frequency Stability	Complies	-
3.4	15.225(a)(b)(c)	Field Strength of Fundamental Emissions	Complies	Max level 65.94 dBµV/m at 13.56 MHz
3.5	15.225(d) & 15.209	Radiated Spurious Emissions	Complies	Under limit 4.28 dB at 359.8 MHz
3.6	15.203	Antenna Requirements	Complies	-

Conformity Assessment Condition:

1. The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty"

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

1. General Description

1.1 Applicant

PAX Technology Limited

Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour Road, Wanchai, Hong Kong

1.2 Manufacturer

PAX Computer Technology (Shenzhen) Co., Ltd.

401 and 402, Building 3, Shenzhen Software Park, Nanshan District, Shenzhen City, Guangdong Province, P.R.C

1.3 Product Feature of Equipment Under Test

Product Feature			
Equipment	Secure Card Reader		
Brand Name	PAX		
Model Name	D135		
FCC ID	V5PD135S		
SN Code	Conducted: 1890174166 for Config B (Sample 1) Conduction: 1890174164 for Config B (Sample 1) 1890174135 for Config C (Sample 3) Radiation: 1890174168 for Config B (Sample 1) 1890174140 for Config C (Sample 3)		
HW Version	NA		
SW Version	NA		
EUT Stage	Production Unit		

Remark:

- 1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- There are three samples under test, sample 1(Config B) is 1st source LCD, sample 2 (Config B) is 2nd source LCD, sample 3(Config C) is without LCD, according to the difference, sample 1 perform full test and sample 3 verify the worst case for Radiation Spurious / AC Conducted Emission items.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range	13.553 ~ 13.567MHz		
Channel Number	1		
20dBW	2.577 KHz		
99%OBW	2.178 KHz		
Antenna Type	PVC wound copper wire		
Type of Modulation	ASK		

1.5 Modification of EUT

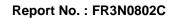
No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International Inc. (ShenZhen) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

Test Firm	Sporton International Inc. (ShenZhen)					
Test Site Location	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China TEL: +86-755-86379589 FAX: +86-755-86379595					
Test Site No.	Sporton Site No.		FCC Designation No.	FCC Test Firm Registration No.		
	TH01-SZ	CO01-SZ				
Test Engineer	ZhiQiangChen	Fang Ming Liang				
Temperature	24~26 ℃	22~24 ℃	CN1256	421272		
Relative Humidity	50~53%	44~50%				

Test Firm	Sporton International Inc. (ShenZhen)					
	101, 1st Floor, Block B, Building 1, I	101, 1st Floor, Block B, Building 1, No. 2, Tengfeng 4th Road, Fenghuang				
Test Site	Community, Fuyong Street, Baoan	Community, Fuyong Street, Baoan District, Shenzhen City, Guangdong Province				
Location	518103 People's Republic of China					
	TEL: +86-755-86066985					
Test Site No.	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.			
	03CH05-SZ					
Test Engineer	Zhan Sheng Liu					
Temperature	23~25°C CN1256 421272					
Relative Humidity	48~52%					


1.7 Test Software

ltem	Site	Manufacturer	Name	Version
1.	03CH05-SZ	AUDIX	E3	6.2009-8-24
2.	CO01-SZ	AUDIX	E3	6.120613b

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.225
- ANSI C63.10-2013

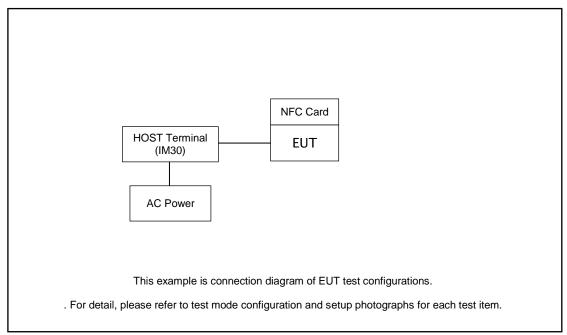
2. Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

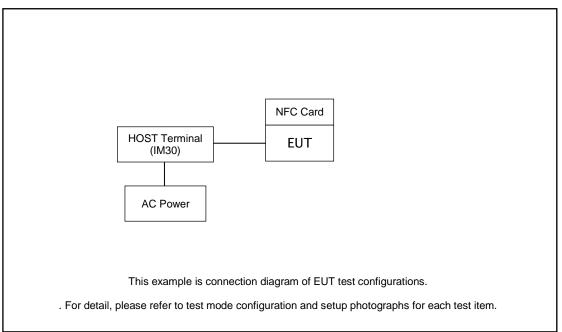
Investigation has been done on all the possible configurations.

The following table is a list of the test modes shown in this test report.

Test Items				
AC Power Line Conducted Emissions	Field Strength of Fundamental Emissions			
20dB Spectrum Bandwidth	Frequency Stability			
Radiated Emissions 9kHz~30MHz	Radiated Emissions 30MHz~1GHz			


The EUT pre-scanned in four NFC type, A, B, F. The worst type (type F) was recorded in this report. Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (Y plane as worst plane) from all possible combinations.

	Test Cases					
AC Conducted Emission	Mode 1 : NFC TX + USB Cable + Powered by IM30 + Battery for Config B(sample 1) Mode 2 : NFC TX + USB Cable + Powered by IM30 + Battery for Config C(sample 3)					
Remark: For	r Radiated Test Cases, The tests were performance with HOST terminal IM30.					



2.2 Connection Diagram of Test System

<Radiated Emission >

< AC Conducted Emission >

2.3 Table for Supporting Units

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	NFC Card	NA	NA	NA	NFC Card	NA
2.	USB Cable	NA	NA	NA	NA	NA
3.	HOST terminal	PAX	IM30	V5PIM304GBWL	NA	NA

2.4 EUT Operation Test Setup

The EUT was programmed to be in continuously transmitting mode.

The ancillary equipment, NFC card, is used to make the EUT (NFC) continuously transmit at 13.56MHz and is placed around 0 cm gap to the EUT.

3. Test Results

3.1 AC Power Line Conducted Emissions Measurement

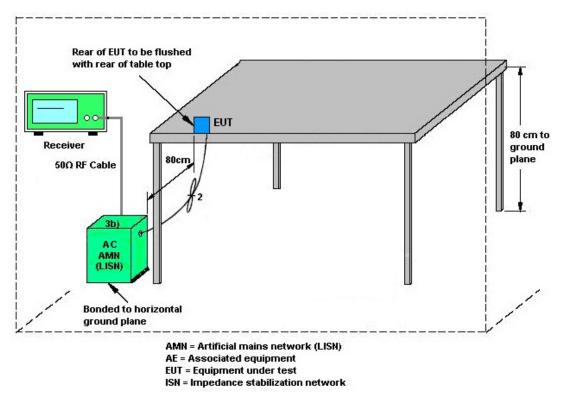
3.1.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBµV)				
(MHz)	Quasi-Peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

3.1.2 Measuring Instruments


See list of measuring instruments of this test report.

3.1.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.1.4 Test setup

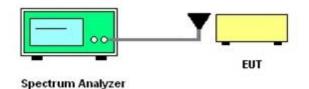
3.1.5 Test Result of AC Conducted Emission

Please refer to Appendix A.

3.2 20dB and 99% OBW Spectrum Bandwidth Measurement

3.2.1 Limit

Intentional radiators must be designed to ensure that the 20dB and 99% emission bandwidth in the specific band 13.553~13.567MHz.


3.2.2 Measuring Instruments

See list of measuring instruments of this test report.

3.2.3 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT in peak Max hold mode.
- 2. The resolution bandwidth of 1 kHz and the video bandwidth of 3 kHz were used.
- 3. Measured the spectrum width with power higher than 20dB below carrier.
- 4. Measured the 99% OBW.

3.2.4 Test Setup

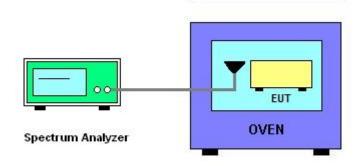
3.2.5 Test Result of Conducted Test Items

Please refer to Appendix B.

3.3 Frequency Stability Measurement

3.3.1 Limit

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.


3.3.2 Measuring Instruments

See list of measuring instruments of this test report.

3.3.3 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT.
- 2. EUT have transmitted signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire emissions bandwidth.
- 4. Set RBW = 1 kHz, VBW = 3 kHz with peak detector and maxhold settings.
- 5. The fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ±100ppm.
- 6. Extreme temperature rule is -20°C~50°C.

3.3.4 Test Setup

3.3.5 Test Result of Conducted Test Items

Please refer to Appendix B.

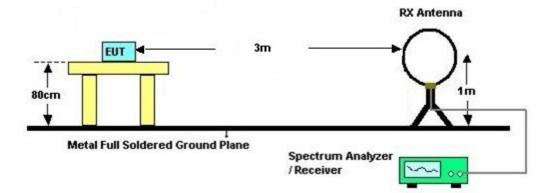
3.4 Field Strength of Fundamental Emissions and Mask Measurement

3.4.1 Limit

Rules and specifications	FCC CFR 47 Part 15 section 15.225						
Description	Compliance with the spectrum mask is tested with RBW set to 9kHz.						
Free of Emission (MUT)	Field Strength	Field Strength	Field Strength	Field Strength			
Freq. of Emission (MHz)	(µV/m) at 30m	(dBµV/m) at 30m	(dBµV/m) at 10m	(dBµV/m) at 3m			
1.705~13.110	30	29.5	48.58	69.5			
13.110~13.410	106	40.5	59.58	80.5			
13.410~13.553	334	50.5	69.58	90.5			
13.553~13.567	15848	84.0	103.08	124.0			
13.567~13.710	334	50.5	69.58	90.5			
13.710~14.010	106	40.5	59.58	80.5			
14.010~30.000	30	29.5	48.58	69.5			

3.4.2 Measuring Instruments

See list of measuring instruments of this test report.



3.4.3 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the receiving antenna was fixed at one meter above ground to find the maximum emissions field strength.
- 4. For Fundamental emissions, use the receiver to measure QP reading.
- 5. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- Compliance with the spectrum mask is tested with RBW set to 9kHz.
 Note: Emission level (dBμV/m) = 20 log Emission level (μV/m).

3.4.4 Test Setup

For radiated emissions below 30MHz

3.4.5 Test Result of Field Strength of Fundamental Emissions and Mask

Please refer to Appendix C.

3.5 Radiated Emissions Measurement

3.5.1 Limit

The field strength of any emissions which appear outside of 13.110 ~14.010MHz band shall not exceed the general radiated emissions limits.

<FCC Limit>

Frequencies	Field Strength	Measurement Distance
(MHz)	(μV/m)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

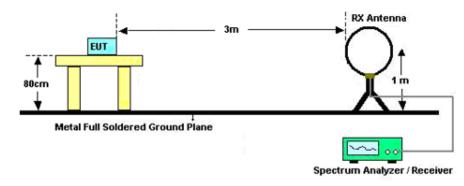
See list of measuring instruments of this test report.

3.5.3 Measuring Instrument Setting

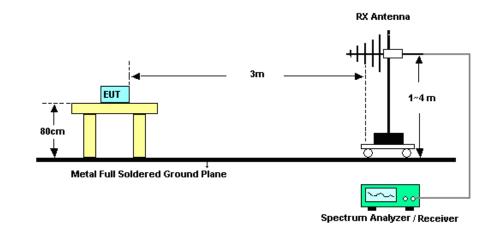
The following table is the setting of receiver.

Receiver Parameter	Setting
Attenuation	Auto
Frequency Range: 9kHz~150kHz	RBW 200Hz for QP
Frequency Range: 150kHz~30MHz	RBW 9kHz for QP
Frequency Range: 30MHz~1000MHz	RBW 120kHz for Peak

Note: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.


3.5.4 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. Antenna Requirements



3.5.5 Test Setup

For radiated emissions below 30MHz

For radiated emissions above 30MHz

3.5.6 Test Result of Radiated Emissions Measurement

Please refer to Appendix C.

- 1. There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.
- 2. Tested for radiated below 30 MHz using a loop antenna in accordance with C63.10, the antenna was positioned in three antenna orientations: parallel, perpendicular, and ground-parallel. Pre-scanned the three antenna orientations, the worst case is parallel & perpendicular polarization, and test data of two mode was reported. (Parallel: The loop antenna is placed vertical axis and aligned along the site axis; Perpendicular: The loop antenna is placed vertical axis and orthogonal to the axis; ground-parallel: The loop antenna is placed horizontal axis and parallel with the ground).

3.6 Antenna Requirements

3.6.1 Standard Applicable

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited.

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.6.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
EMI Test Receiver	R&S	ESR7	102261	9kHz~7GHz	Apr. 04, 2023	Nov. 30, 2023	Apr. 03, 2024	Radiation (03CH05-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	Jul. 28, 2022	Nov. 30, 2023	Jul. 27, 2024	Radiation (03CH05-SZ)
Log-periodic Antenna	SCHWARZBE CK	VULB 9168	01001	20MHz~1.5GHz	Jul. 08, 2023	Nov. 30, 2023	Jul. 07, 2024	Radiation (03CH05-SZ)
Amplifier	EM Electronics	EM330	060756	0.01Hz ~3000MHz	Apr. 04, 2023	Nov. 30, 2023	Apr. 03, 2024	Radiation (03CH05-SZ)
AC Power Source	APC	AFV-S-600	F119050013	N/A	Oct. 18, 2023	Nov. 30, 2023	Oct. 17, 2024	Radiation (03CH05-SZ)
Turn Table	EMEC	T-200-S-1	060925-T	0~360 degree	NCR	Nov. 30, 2023	NCR	Radiation (03CH05-SZ)
Antenna Mast	EMEC	MBS-400-1	060927	1 m~4 m	NCR	Nov. 30, 2023	NCR	Radiation (03CH05-SZ)
Spectrum Analyzer	R&S	FSV40	101078	10Hz~40GHz	Apr. 06, 2023	Nov. 24, 2023	Apr. 05, 2024	Conducted (TH01-SZ)
Thermo meter	Anymetre	JR593	#7	- 10℃ ~ 50℃ 10%RH~99%RH	Apr. 08, 2023	Nov. 24, 2023	Apr. 07, 2024	Conducted (TH01-SZ)
EMI Receiver	R&S	ESR7	101630	9kHz~7GHz;	Jul. 06, 2023	Nov. 28, 2023~ Dec. 05, 2023	Jul. 05, 2024	Conduction (CO01-SZ)
AC LISN	R&S	ENV216	100063	9kHz~30MHz	Aug. 21, 2023	Nov. 28, 2023~ Dec. 05, 2023	Aug. 20, 2024	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Oct. 16, 2023	Nov. 28, 2023~ Dec. 05, 2023	Oct. 15, 2024	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000891	100Vac~250Vac	Jul. 07, 2023	Nov. 28, 2023~ Dec. 05, 2023	Jul. 06, 2024	Conduction (CO01-SZ)

NCR: No Calibration Required

5. Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Measurement

Test Item	Uncertainty
Occupied Channel Bandwidth	0.1%
Frequency	±1.3 Hz

Uncertainty of AC Conducted Emission Measurement (0.15 MHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	2.7 dB
0195% (0 = 200(y))	

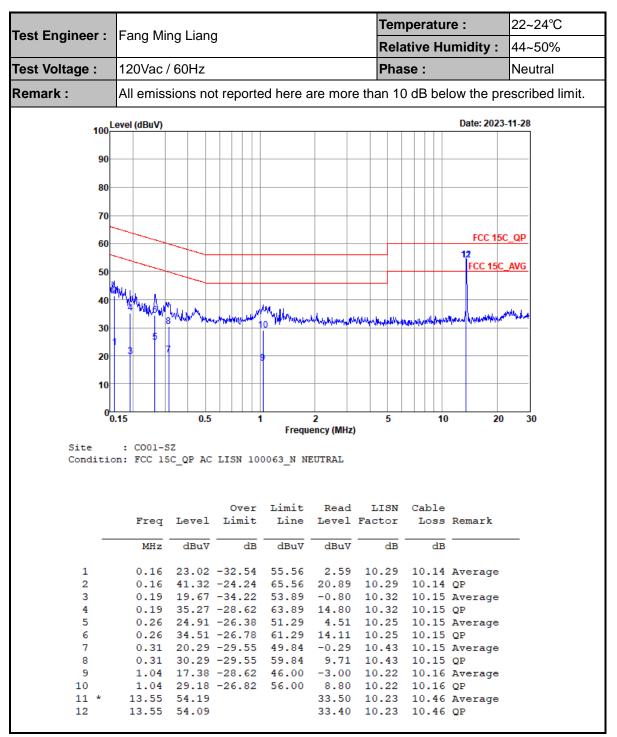
Uncertainty of Radiated Emission Measurement (9 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	5.1 dB
of 95% (U = 2Uc(y))	5.1 dB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	E 4 dD
of 95% (U = 2Uc(y))	5.1 dB

----- THE END ------

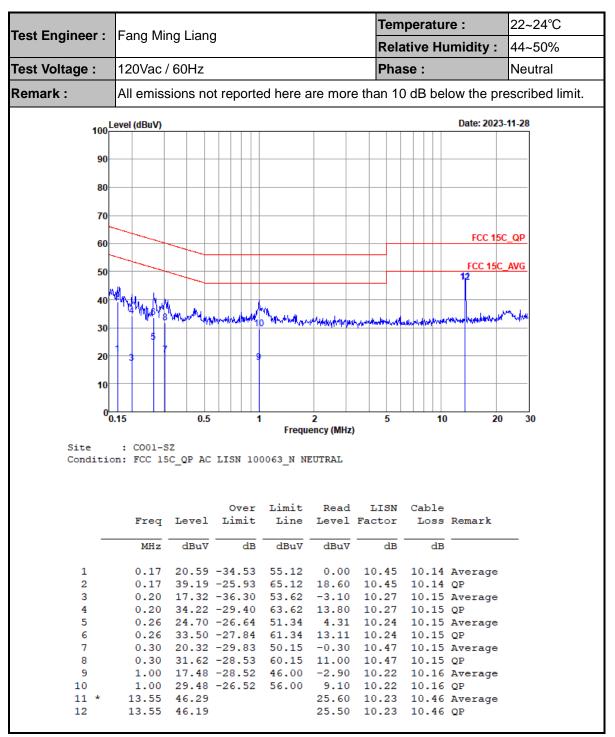


Appendix A. Test Results of Conducted Emission Test

of Englineer .	Eana Mi		_			Tem	peratu	re:	22~24°0	
st Engineer :	Fang Mi	ng Liang	9			Rela	Relative Humidity :			
st Voltage :	120Vac	120Vac / 60Hz				Pha	Phase :			
mark :	All emiss	All emissions not reported here are more than 10 dB below the pre							escribed limit.	
100	Level (dBuV)						Date: 2023-11-28			
90										
50										
80)									
70										
60								FCC 150	C_QP	
	·							12		
50								FCC 15C	AVG	
	lat.									
40	1 2 Million	han a she		the Mar						
30	I TOW WE	manut the	Maria Maria Ballar	10	Martiple and mart	iden van Auderte	have been block	yan wanness	and the second sec	
	5									
20				9						
10										
C										
	0.15	0.5	1		2	5	10	20	30	
				riegu	ency (MHz)					
Site	: CO01-5	SZ		riequ	ency (MHz))				
	: CO01-5 ion: FCC 15		LISN 10	-)				
			LISN 10	-)				
				0063_L L	INE					
	ion: FCC 15	C_QP AC		DO63_L L	INE Read		Cable	Remark		
	ion: FCC 15	C_QP AC	Over	DO63_L L	INE Read	LISN	Cable	Remark		
Conditi -	ion: FCC 15 Freq MHz	Level	Over Limit dB	Limit Line dBuV	Read Level dBuV	LISN Factor dB	Cable Loss 			
Conditi - 1 2	Eion: FCC 15 Freq MHz 0.15 0.15	Level 	Over Limit 	D063_L L Limit Line dBuV 56.00 66.00	Read Level dBuV 3.00 20.60	LISN Factor dB 10.39 10.39	Cable Loss dB 10.13 10.13	Average QP		
Conditi - 1 2 3	Freq MHz 0.15 0.18	Level dBuV 23.52 41.12 20.23	Over Limit 	Limit Line dBuV 56.00 66.00 54.64	INE Read Level dBuV 3.00 20.60 -0.20	LISN Factor dB 10.39 10.39 10.29	Cable Loss dB 10.13 10.13 10.14	Average QP Average		
Conditi 	Freq MHz 0.15 0.15 0.18 0.18	Level 	Over Limit 	Limit Line dBuV 56.00 66.00 54.64 64.64	Read Level dBuV 3.00 20.60 -0.20 16.40	LISN Factor dB 10.39 10.39 10.29 10.29	Cable Loss dB 10.13 10.13 10.14 10.14	Average QP Average QP		
Conditi - 1 2 3	Freq MHz 0.15 0.15 0.18 0.18 0.27	Level 	Over Limit dB -32.48 -24.88 -34.41 -27.81 -26.70	Limit Line dBuV 56.00 66.00 54.64 64.64 51.25	Read Level dBuV 3.00 20.60 -0.20 16.40 4.30	LISN Factor dB 10.39 10.39 10.29 10.29	Cable Loss dB 10.13 10.13 10.14 10.14 10.15	Average QP Average QP Average		
Conditi 	Freq MHz 0.15 0.15 0.18 0.18 0.27 0.27 0.31	Level dBuV 23.52 41.12 20.23 36.83 24.55 34.25 20.03	Over Limit dB -32.48 -24.88 -34.41 -27.81 -26.70 -27.00 -29.99	Limit Line dBuV 56.00 66.00 54.64 64.64 51.25 61.25 50.02	Read Level dBuV 3.00 20.60 -0.20 16.40 4.30 14.00 -0.19	LISN Factor dB 10.39 10.29 10.29 10.29 10.10 10.10 10.07	Cable Loss dB 10.13 10.13 10.14 10.14 10.15 10.15 10.15	Average QP Average QP Average QP Average		
Conditi 1 2 3 4 5 6 7 8	Freq MHz 0.15 0.15 0.18 0.18 0.27 0.27 0.21 0.31	Level dBuV 23.52 41.12 20.23 36.83 24.55 34.25 20.03 30.23	Over Limit dB -32.48 -24.88 -34.41 -27.81 -26.70 -27.00 -29.99 -29.79	Limit Line dBuV 56.00 54.64 64.64 51.25 61.25 50.02 60.02	Read Level dBuV 3.00 20.60 -0.20 16.40 4.30 14.00 -0.19 10.01	LISN Factor dB 10.39 10.29 10.29 10.10 10.10 10.10 10.07 10.07	Cable Loss dB 10.13 10.13 10.14 10.14 10.15 10.15 10.15 10.15	Average QP Average QP Average QP Average QP		
Conditi 	Freq MHz 0.15 0.15 0.18 0.18 0.27 0.27 0.31 0.31 1.06	Level dBuV 23.52 41.12 20.23 36.83 24.55 34.25 20.03 30.23 20.28	Over Limit dB -32.48 -24.88 -34.41 -27.81 -26.70 -27.00 -29.99 -29.79 -25.72	Limit Line dBuV 56.00 64.64 64.64 51.25 61.25 50.02 60.02 46.00	Read Level dBuV 3.00 20.60 -0.20 16.40 4.30 14.00 -0.19 10.01 -0.11	LISN Factor dB 10.39 10.29 10.29 10.10 10.10 10.10 10.07 10.07	Cable Loss dB 10.13 10.13 10.14 10.14 10.15 10.15 10.15 10.15 10.15	Average QP Average QP Average QP Average QP Average		
Conditi 1 2 3 4 5 6 7 8 9	Freq MHz 0.15 0.15 0.18 0.18 0.27 0.27 0.27 0.31 0.31 1.06 1.06 13.55	Level dBuV 23.52 41.12 20.23 36.83 24.55 34.25 20.03 30.23 20.28	Over Limit dB -32.48 -24.88 -34.41 -27.81 -26.70 -27.00 -29.99 -29.79 -25.72 -26.62	Limit Line dBuV 56.00 64.64 64.64 51.25 61.25 50.02 60.02 46.00	Read Level dBuV 3.00 20.60 -0.20 16.40 4.30 14.00 -0.19 10.01 -0.11 8.99 33.80	LISN Factor dB 10.39 10.29 10.29 10.10 10.10 10.07 10.07 10.22 10.22	Cable Loss dB 10.13 10.13 10.14 10.15 10.15 10.15 10.15 10.15 10.17 10.17 10.46	Average QP Average QP Average QP Average QP Average QP Average		

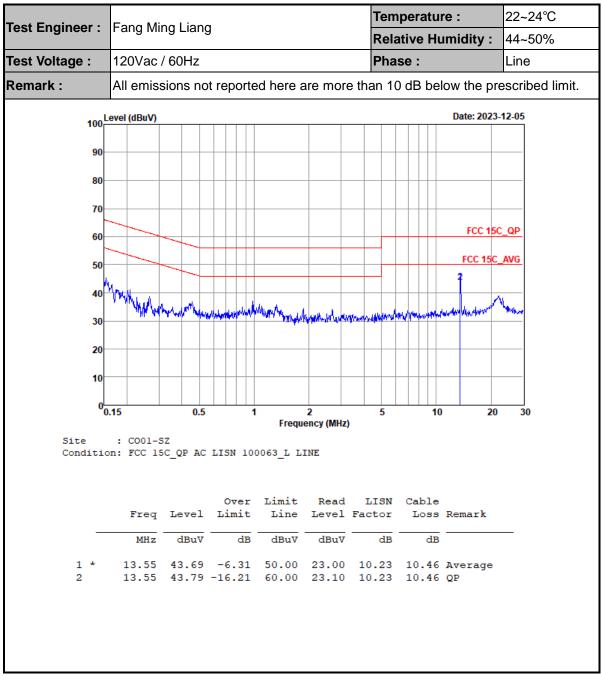
(1) with antenna

(1) with antenna

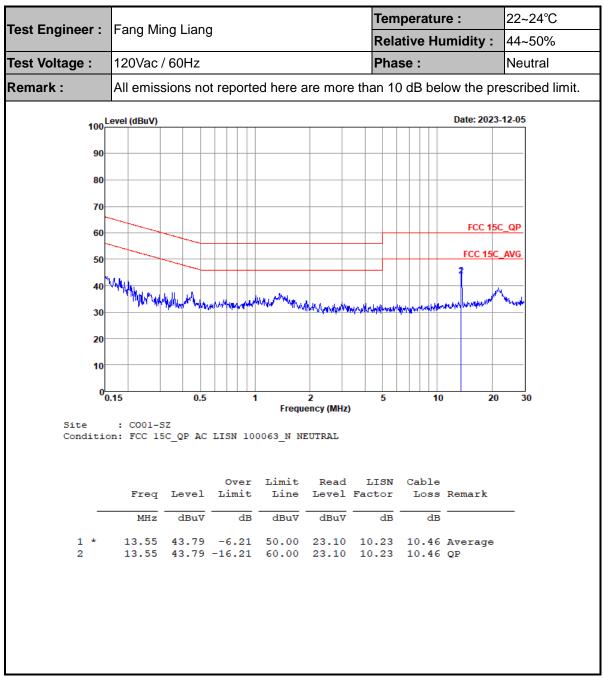


F						Tem	peratu	re :	22~24°C
Test Engineer :	Fang Mir	ng Liang	9			Rela	ative Hu	umidity :	44~50%
Test Voltage :	120Vac / 60Hz Pt						se :	Line	
Remark :	All emissions not reported here are more than 10 dB below the pre							escribed	
100	Level (dBuV) Date: 2023								
100									
90									
80									
00									
70									
								FCC 150	
60								10015	<u>- ui</u>
50								FCC 15C	AVG
50	an .							12	
40				Mar al.					
		Whom which which	M. H. Marting and Martin	10	www.	and we have	Markedon .	without upade source of	Mandata
30									
20	1 3 5			,					
20									
10									
0	0.15	0.5	1		2	5	10	20	30
				Frequ	ency (MHz)				
Site	: CO01-S		TTEN 10	0062 T T	INF				
	: CO01-S on: FCC 15		LISN 10	0063_L L:	INE				
			LISN 10	0063_L L:	INE				
				0063_L L: Limit	INE Read	LISN	Cable		
	on: FCC 15	C_QP AC		- Limit	Read	LISN Factor		Remark	
	on: FCC 15 Freq	C_QP AC Level	Over Limit	Limit Line	Read Level	Factor	Loss	Remark	
	on: FCC 15	C_QP AC	Over	- Limit	Read			Remark	
Conditi — 1	on: FCC 15 Freq MHz 0.16	Level dBuV 21.85	Over Limit 	Limit Line dBuV 55.52	Read Level dBuV 1.39	Factor dB 10.32	Loss dB 10.14	Average	
Conditi 	on: FCC 15 Freq MHz 0.16 0.16	Level dBuV 21.85 40.05	Over Limit dB -33.67 -25.47	Limit Line dBuV 55.52 65.52	Read Level dBuV 1.39 19.59	Factor dB 10.32 10.32	Loss dB 10.14 10.14	Average QP	
Conditi 	on: FCC 15 Freq MHz 0.16 0.16 0.19	Level dBuV 21.85 40.05 18.63	Over Limit 	Limit Line dBuV 55.52 65.52 54.15	Read Level dBuV 1.39 19.59 -1.91	Factor dB 10.32 10.32 10.39	Loss dB 10.14 10.14 10.15	Average QP Average	
Conditi 	on: FCC 15 Freq MHz 0.16 0.16 0.19 0.19	Level dBuV 21.85 40.05 18.63 35.33	Over Limit 	Limit Line dBuV 55.52 65.52 54.15 64.15	Read Level dBuV 1.39 19.59 -1.91 14.79	Factor dB 10.32 10.32 10.39 10.39	Loss dB 10.14 10.15 10.15	Average QP Average QP	
Conditi 	on: FCC 15 Freq MHz 0.16 0.16 0.19 0.19 0.30	Level dBuV 21.85 40.05 18.63 35.33 19.00	Over Limit 	Limit Line dBuV 55.52 65.52 54.15 64.15 50.37	Read Level dBuV 1.39 19.59 -1.91 14.79 -1.20	Factor dB 10.32 10.32 10.39 10.39 10.05	Loss dB 10.14 10.14 10.15 10.15 10.15	Average QP Average QP Average	
Conditi 	on: FCC 15 Freq MHz 0.16 0.16 0.19 0.19 0.30 0.30	Level dBuV 21.85 40.05 18.63 35.33 19.00 29.10	Over Limit 	Limit Line dBuV 55.52 65.52 54.15 64.15 50.37 60.37	Read Level dBuV 1.39 19.59 -1.91 14.79 -1.20 8.90	Factor dB 10.32 10.32 10.39 10.39 10.05 10.05	Loss dB 10.14 10.15 10.15 10.15 10.15	Average QP Average QP Average QP	
Conditi 	on: FCC 15 Freq MHz 0.16 0.19 0.19 0.30 0.30 1.00	Level dBuV 21.85 40.05 18.63 35.33 19.00 29.10 19.31	Over Limit dB -33.67 -25.47 -35.52 -28.82 -31.37 -31.27 -26.69	Limit Line dBuV 55.52 65.52 54.15 64.15 50.37 60.37 46.00	Read Level dBuV 1.39 19.59 -1.91 14.79 -1.20 8.90 -1.10	Factor dB 10.32 10.32 10.39 10.39 10.05 10.05 10.25	Loss dB 10.14 10.15 10.15 10.15 10.15 10.15	Average QP Average QP Average QP Average	
Conditi 	Freq MHz 0.16 0.19 0.19 0.30 0.30 1.00 1.00	Level dBuV 21.85 40.05 18.63 35.33 19.00 29.10 19.31 29.81	Over Limit dB -33.67 -25.47 -35.52 -28.82 -31.37 -31.27 -26.69 -26.19	Limit Line dBuV 55.52 65.52 54.15 64.15 50.37 60.37 46.00 56.00	Read Level dBuV 1.39 19.59 -1.91 14.79 -1.20 8.90 -1.10 9.40	Factor dB 10.32 10.32 10.39 10.39 10.05 10.05 10.25 10.25	Loss dB 10.14 10.15 10.15 10.15 10.15 10.16 10.16	Average QP Average QP Average QP Average QP	
Conditi 1 2 3 4 5 6 7 8 9	Freq MHz 0.16 0.19 0.30 0.30 1.00 1.00 1.35	Level dBuV 21.85 40.05 18.63 35.33 19.00 29.10 19.31 29.81 24.12	Over Limit dB -33.67 -25.47 -35.52 -28.82 -31.37 -31.27 -26.69 -26.19 -21.88	Limit Line dBuV 55.52 65.52 54.15 64.15 50.37 60.37 46.00 56.00 46.00	Read Level dBuV 1.39 19.59 -1.91 14.79 -1.20 8.90 -1.10 9.40 3.50	Factor dB 10.32 10.32 10.39 10.05 10.05 10.05 10.25 10.25 10.43	Loss dB 10.14 10.15 10.15 10.15 10.15 10.16 10.16 10.19	Average QP Average QP Average QP Average QP Average	
Conditi 	Freq MHz 0.16 0.19 0.30 0.30 1.00 1.00 1.35 1.35	Level dBuV 21.85 40.05 18.63 35.33 19.00 29.10 19.31 29.81 24.12 31.72	Over Limit dB -33.67 -25.47 -35.52 -28.82 -31.37 -31.27 -26.69 -26.19 -21.88 -24.28	Limit Line dBuV 55.52 65.52 54.15 64.15 50.37 60.37 46.00 56.00 46.00	Read Level dBuV 1.39 19.59 -1.91 14.79 -1.20 8.90 -1.10 9.40 3.50 11.10	Factor dB 10.32 10.32 10.39 10.39 10.05 10.05 10.25 10.25 10.43 10.43	Loss dB 10.14 10.15 10.15 10.15 10.15 10.16 10.16 10.19 10.19	Average QP Average QP Average QP Average QP Average QP	
Conditi 1 2 3 4 5 6 7 8 9	Freq MHz 0.16 0.19 0.19 0.30 0.30 1.00 1.00 1.35 1.35 13.55	Level dBuV 21.85 40.05 18.63 35.33 19.00 29.10 19.31 29.81 24.12	Over Limit dB -33.67 -25.47 -35.52 -28.82 -31.37 -31.27 -26.69 -26.19 -21.88 -24.28	Limit Line dBuV 55.52 65.52 54.15 64.15 50.37 60.37 46.00 56.00 46.00	Read Level dBuV 1.39 19.59 -1.91 14.79 -1.20 8.90 -1.10 9.40 3.50 11.10 25.40	Factor dB 10.32 10.32 10.39 10.39 10.05 10.05 10.25 10.25 10.43 10.43	Loss dB 10.14 10.15 10.15 10.15 10.15 10.16 10.16 10.19 10.19 10.46	Average QP Average QP Average QP Average QP Average QP Average	

For Mode 2:

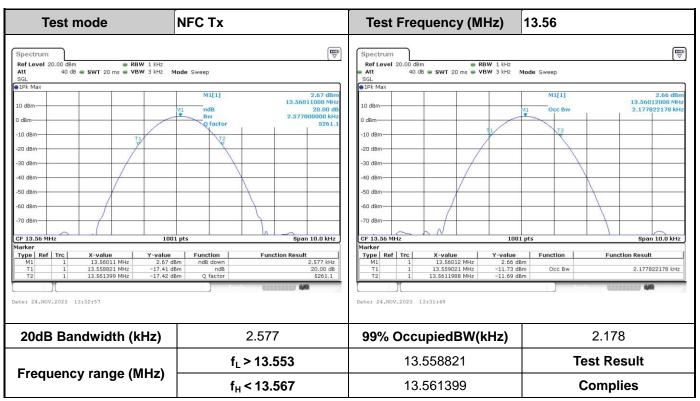

(1) with antenna

(1) with antenna



(2) With dummy load

Remark: Only the fundamental NFC signal needs to be retested per KDB 174176.


(2) With dummy load

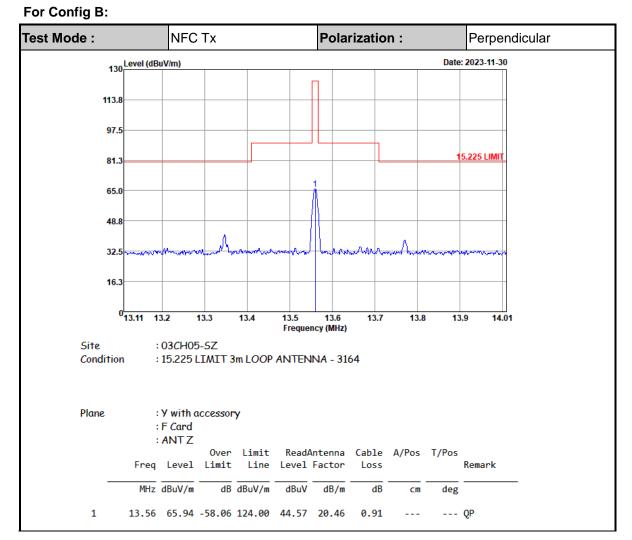
Remark: Only the fundamental NFC signal needs to be retested per KDB 174176.

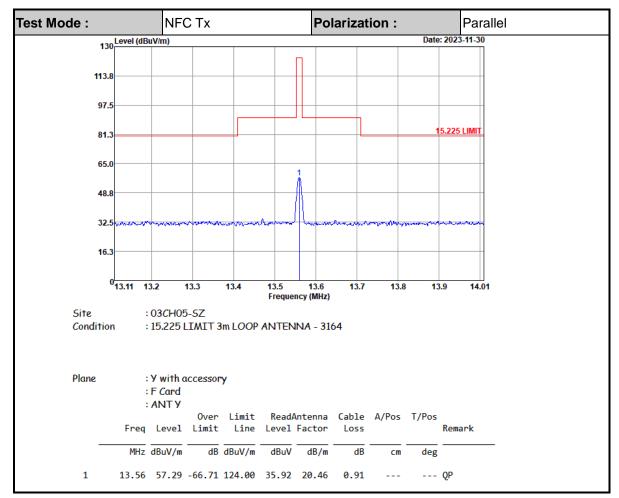
- 1. Level(dB μ V) = Read Level(dB μ V) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V) Limit Line(dB μ V)

Appendix B. Test Results of Conducted Test Items

B1. Test Result of 20dB Spectrum Bandwidth

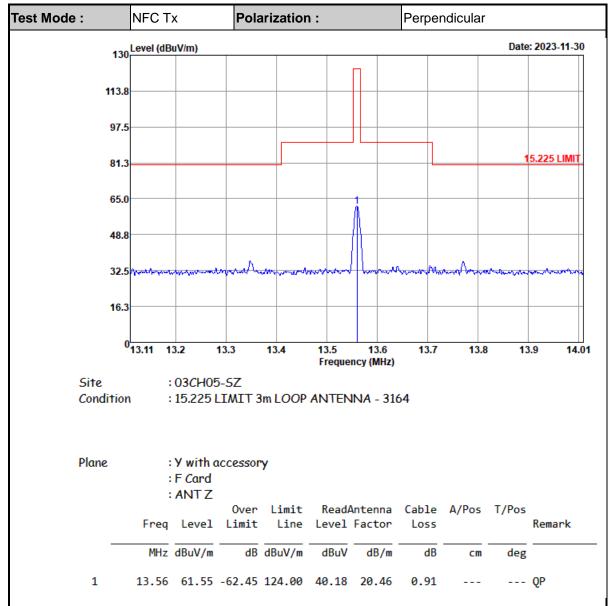
Remark: Because the measured signal is CW adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW.


B2. Test Result of Frequency Stability

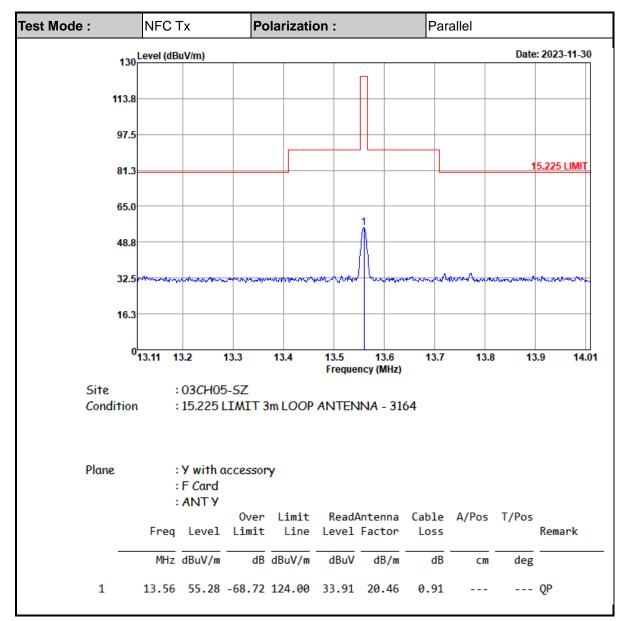

Voltage vs. Fre	quency Stability	Temperatu	re vs. Frequency	Stability
Voltage (V)	Measurement Frequency (MHz)	Temperature (℃)	Time	Measurement Frequency (MHz)
3.7V	13.560110		0	13.560105
3.45V	13.560110	-20	2	13.560105
4.2V	13.560110	-20	5	13.560105
			10	13.560105
			0	13.560105
		40	2	13.560105
		-10	5	13.560105
			10	13.560105
			0	13.560105
		_	2	13.560105
		0	5	13.560105
			10	13.560105
			0	13.560105
		10	2	13.560105
			5	13.560105
			10	13.560105
			0	13.560105
		00	2	13.560105
		20	5	13.560105
			10	13.560105
			0	13.560105
		30	2	13.560105
		30	5	13.560105
			10	13.560105
			0	13.560105
		40	2	13.560105
		40	5	13.560105
			10	13.560105
			0	13.560105
		50	2	13.560105
		50	5	13.560110
			10	13.560110
Max.Deviation (MHz)	0.000110	Max.Deviatio	n (MHz)	0.000105
Max.Deviation (ppm)	8.1121	Max.Deviatio	n (ppm)	7.7434
Limit	FS < ±100 ppm	Limit		FS < ±100 ppm
Test Result	PASS	Test Res	sult	PASS

Appendix C. Test Results of Radiated Test Items

C1. Test Result of Field Strength of Fundamental Emissions



- 1. Level(dBµV/m) = Read Level(dBµV) + Antenna Factor(dB/m) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V/m) Limit Line(dB μ V/m)



For Config C:

- 3. Level(dBµV/m) = Read Level(dBµV) + Antenna Factor(dB/m) + Cable Loss(dB)
- 4. Over Limit(dB) = Level(dBµV/m) Limit Line(dBµV/m)

C2. Results of Radiated Spurious Emissions (9 kHz~30MHz)

For Config B:

Test Mode :	NFC	Тх		Polariz	ation :	Perp	endicula	ar	
Frequency	Level	Over	Limit	Read	Antenna	Cable	Ant	Table	Remark
		Limit		Level	Factor	Loss	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(cm)	(deg)	
0.00905	50.68	-77.79	128.47	30.67	19.96	0.05	-	-	Average
0.06129	45.44	-66.42	111.86	24.94	20.46	0.04	-	-	Average
0.09195	40.38	-67.95	108.33	19.91	20.44	0.03	-	-	QP
0.12324	37.07	-68.72	105.79	16.63	20.4	0.04	-	-	Average
1.658	36.57	-26.64	63.21	16.04	20.32	0.21	-	-	QP
2.138	40.29	-29.71	70	19.78	20.32	0.19	-	-	QP
11.184	34.79	-35.21	70	13.53	20.4	0.86	-	-	QP
19.249	35.36	-34.64	70	13.66	20.67	1.03	-	-	QP
28.05	36.13	-33.87	70	13.45	21.5	1.18	-	-	QP

Test Mode :	est Mode : NFC Tx				ation :	Para	allel		
							L.		
Frequency	Level	Over	Limit	Read	Antenna	Cable	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(cm)	(deg)	
0.01507	50.5	-73.54	124.04	30.49	19.96	0.05	-	-	Average
0.06177	39.11	-72.68	111.79	18.61	20.46	0.04	-	-	Average
0.10035	39.49	-68.08	107.57	19.02	20.44	0.03	-	-	QP
0.12903	33.26	-72.13	105.39	12.82	20.4	0.04	-	-	Average
1.602	36.73	-26.78	63.51	16.2	20.32	0.21	-	-	QP
2.288	36.66	-33.34	70	16.15	20.31	0.2	-	-	QP
11.568	35.3	-34.7	70	14.02	20.41	0.87	-	-	QP
21.607	35.35	-34.65	70	13.45	20.83	1.07	-	-	QP
29.2	37.49	-32.51	70	14.68	21.61	1.2	-	-	QP

- 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 2. Distance extrapolation factor = 40 log (specific distance / test distance) (dB);
- 3. Limit line = specific limits $(dB\mu V)$ + distance extrapolation factor.

For Config C:

Test Mode :	NFC	Тх		Polariz	olarization : Perpendicular				
Frequency	Level	Over	Limit	Read	Antenna	Cable	Ant	Table	Remark
(MHz)	(dBµV/m)	Limit (dB)	Line		Factor		Pos	Pos	
	· · ·		(dBµV/m)	(dBµV)	(dB)	(dB)	(cm)	(deg)	Average
0.00956	50.67	-77.32	127.99	30.66	19.96	0.05	-	-	Average
0.06204	45.12	-66.63	111.75	24.62	20.46	0.04	-	-	Average
0.09255	42.47	-65.81	108.28	22	20.44	0.03	-	-	QP
0.12291	37.02	-68.79	105.81	16.58	20.4	0.04	-	-	Average
1.628	36.15	-27.22	63.37	15.62	20.32	0.21	-	-	QP
2.024	41.14	-28.86	70	20.63	20.32	0.19	-	-	QP
11.704	35.31	-34.69	70	14.03	20.41	0.87	-	-	QP
22.309	36.2	-33.8	70	14.22	20.89	1.09	-	-	QP
29.775	37.3	-32.7	70	14.43	21.66	1.21	-	-	QP

Test Mode :	NFC	Тх		Polariz	ation :	Para	allel		
Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss			Remark
(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB)	(dB)	(cm)	Pos (deg)	
0.00992	52.98	-74.7	127.68	32.97	19.96	0.05	-	-	Average
0.06	41.41	-70.63	112.04	20.91	20.46	0.04	-	-	Average
0.099	39.04	-68.65	107.69	18.57	20.44	0.03	-	-	QP
0.13155	33.17	-72.05	105.22	12.73	20.4	0.04	-	-	Average
1.66	36.04	-27.16	63.2	15.51	20.32	0.21	-	-	QP
2.132	39.23	-30.77	70	18.72	20.32	0.19	-	-	QP
9.12	35.43	-34.57	70	14.31	20.37	0.75	-	-	QP
23.092	35.56	-34.44	70	13.5	20.96	1.1	-	-	QP
29.87	37.74	-32.26	70	14.86	21.67	1.21	-	-	QP

- 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 2. Distance extrapolation factor = 40 log (specific distance / test distance) (dB);
- 3. Limit line = specific limits $(dB\mu V)$ + distance extrapolation factor.

C3. Results of Radiated Spurious Emissions (30MHz~1GHz)

For Config B:

Test Mode	:	NFC Tx			Polarizati	ion :	Horizon	ital		
Frequency	Level		Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
				Level	Factor		Factor	Pos	Pos	
(MHz)	(dBµV/ı	m)(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
67.83	21.71	-18.29	40	37.27	17.43	1.83	34.82	-	-	Peak
143.49	28.2	-15.3	43.5	42.19	18.43	2.29	34.71	-	-	Peak
191.99	28.62	-14.88	43.5	44.21	16.46	2.65	34.7	-	-	Peak
312.27	32.5	-13.5	46	44.43	19.4	3.27	34.6	-	-	Peak
353.98	36.63	-9.37	46	47.48	20.31	3.43	34.59	-	-	Peak
786.6	29.41	-16.59	46	31.76	27.77	4.21	34.33	-	-	Peak

Test Mode		Polarizati	ization : Vertica							
Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
66.86	33.48	-6.52	40	48.89	17.6	1.82	34.83	-	-	Peak
177.44	22.97	-20.53	43.5	37.85	17.34	2.48	34.7	-	-	Peak
263.77	36.01	-9.99	46	49.62	18	3.06	34.67	-	-	Peak
348.16	34.1	-11.9	46	45.09	20.18	3.43	34.6	-	-	Peak
462.62	36.37	-9.63	46	44.52	22.9	3.45	34.5	-	-	Peak
651.77	30.53	-15.47	46	35.08	26.28	3.67	34.5	-	-	Peak

- 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 2. Emission level (dB μ V/m) = 20 log Emission level (μ V/m).
- 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor= Level.

For Config C:

Test Mode	:	NFC Tx			Polarizat	ion :	Horizor	Horizontal			
Frequency	Level		Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark	
	(dDu)///		Line		Factor		Factor	Pos	Pos		
(MHz)	(dBµV/r	n) (dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)		
45.52	21.22	-18.78	40	34.96	19.61	1.61	34.96	-	-	Peak	
97.9	26.97	-16.53	43.5	45.09	14.66	2.02	34.8	-	-	Peak	
167.74	27.27	-16.23	43.5	41.62	17.92	2.43	34.7	-	-	Peak	
263.77	36.58	-9.42	46	50.19	18	3.06	34.67	-	-	Peak	
359.8	41.72	-4.28	46	52.44	20.45	3.41	34.58	-	-	Peak	
450.01	29.96	-16.04	46	38.24	22.75	3.47	34.5	-	-	Peak	

Test Mode	: N	FC Tx			Polarizati	ion :	Vertical	Vertical			
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark	
(MHz)	(dBµV/m	Limit	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)		
67.83	33.82	-6.18	40	49.38	17.43	1.83	34.82	-	-	Peak	
156.1	25.3	-18.2	43.5	39.01	18.63	2.36	34.7	-	-	Peak	
263.77	35.5	-10.5	46	49.11	18	3.06	34.67	-	-	Peak	
348.16	27.77	-18.23	46	38.76	20.18	3.43	34.6	-	-	Peak	
462.62	30.77	-15.23	46	38.92	22.9	3.45	34.5	-	-	Peak	
650.8	29.92	-16.08	46	34.48	26.27	3.67	34.5	-	-	Peak	

- 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 2. Emission level (dB μ V/m) = 20 log Emission level (μ V/m).
- 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor= Level.