

FCC TEST REPORT (PART 27)

Applicant:	PAX Technology Limited			
Address:	Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour Hong Kong, China			
Manufacturer or Supplier:	PAX Computer Technology (Shenz	zhen) Co., Ltd.		
Address:	4/F, No.3 Building, Software Park, industrial Park, Shenzhen, Guang	Second Central Science-Tech Road, High-Tech dong, P.R.C.		
Product:	Smart Mobile Payment Terminal			
Brand Name:	PAX			
Model Name:	A920Pro			
FCC ID:	V5PA920PRO	V5PA920PRO		
Date of tests:	tests: Apr. 01, 2020~ May 15, 2020			
The tests have bee	en carried out according to the requi	rements of the following standard:		
⋉ FCC Part 27, S⋉ FCC Part 2		A-603-D A-603-E ⊠ ANSI C63.26-2015		
CONCLUSION: Th	CONCLUSION: The submitted sample was found to COMPLY with the test requirement			
Prepared by Evans He Engineer / Mobile Department Approved by David Huang Manager / Mobile Department				
m	ious. He	David Huang		

This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the isage voy wish to raise. A failure to raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Bureau Veritas (Shenzhen)
Consumer Products Services Co., Ltd.

Date: May 18, 2020

Zone A, Floor 1, Building 2, Wan Ye Long Technology Park, South Side of Zhoushi Road, Bao'an District, Shenzhen Guangdong, 518108, China.

Tel: +86-755-26014629 Ext.800

Date: May 18, 2020

 $\textbf{Email:} \, \underline{\texttt{customerservice.dg@cn.bureauveritas.com}}$

TABLE OF CONTENTS

R	ELEAS	E CONTROL RECORD	4
1	SUN	IMARY OF TEST RESULTS	5
	1.1 N	//EASREMENT UNCERTAINTY	5
		EST SITE AND INSTRUMENTS	
2		ERAL INFORMATION	
		NERAL DESCRIPTION OF EUT	
		CONFIGURATION OF SYSTEM UNDER TEST	
		DESCRIPTION OF SUPPORT UNITS	
		EST ITEM AND TEST CONFIGURATION	
	2.5	GENERAL DESCRIPTION OF APPLIED STANDARDS	13
3	TEST	TYPES AND RESULTS	14
	3.1	DUTPUT POWER MEASUREMENT	14
	3.1.1	LIMITS OF OUTPUT POWER MEASUREMENT	14
	3.1.2	TEST PROCEDURES	14
	3.1.3	B TEST SETUP	15
	3.1.4		
	3.2 F	REQUENCY STABILITY MEASUREMENT	18
	3.2.1		
	3.2.2		
	3.2.3		-
	3.2.4		
	3.3	DCCUPIED BANDWIDTH MEASUREMENT	
	3.3.1		
	3.3.2		
	3.3.3		
	3.3.4		
		AK TO AVERAGE RATIO	
	3.4.1		
	3.4.2		
	3.4.3		
	3.4.4		
		BAND EDGE MEASUREMENTLIMITS OF BAND EDGE MEASUREMENT	
	3.5.1 3.5.2		
	3.5.2		
	3.5.4		-
		CONDUCTED SPURIOUS EMISSIONS	
	3.6.1		
	3.6.2		
	3.6.3		
	3.6.4		
		RADIATED EMISSION MEASUREMENT	
	3.7.1		
	3.7.2		
	3.7.3		
	3.7.4		
	3.7.5		

Bureau Veritas (Shenzhen)
Consumer Products Services Co., Ltd.

Zone A, Floor 1, Building 2, Wan Ye Long Technology Park, South Side of Zhoushi Road, Bao'an District, Shenzhen Guangdong, 518108, China.

Tel: +86-755-26014629 Ext.800

 $\pmb{\mathsf{Email} \colon \underline{\mathsf{customerservice.dg@cn.bureauveritas.com}}}$

5	APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT	
BY	/ THE LAB	4!

Bureau Veritas (Shenzhen)
Consumer Products Services Co., Ltd.

Zone A, Floor 1, Building 2, Wan Ye Long Technology Park, South Side of Zhoushi Road, Bao'an District, Shenzhen Guangdong, 518108, China.

Tel: +86-755-26014629 Ext.800

Email: customerservice.dg@cn.bureauveritas.com

RELEASE CONTROL RECORD

ISSUE NO.	ISSUE NO. REASON FOR CHANGE	
RF200327S003-4	Original release	May 18, 2020

Tel: +86-755-26014629 Ext.800

Email: <u>customerservice.dg@cn.bureauveritas.com</u>

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 27 & Part 2						
STANDARD SECTION	TEST TYPE AND I IMIT					
2.1046 27.50(b)(10) (c)(10) (h)(2)	Equivalent Isotropically Radiated Power	Compliance				
2.1055 27.54	Frequency Stability	Compliance				
2.1049	Occupied Bandwidth	Compliance				
27.50(d)(5)	Peak to average ratio	Compliance				
2.1051 27.53(c)(f)(g) (m)(4)(6)	Band Edge Measurements	Compliance				
2.1051 27.53(c)(f)(g) (m)(4)	Conducted Spurious Emissions	Compliance				
2.1053 27.53(c)(f)(g) (m)(4)	Radiated Spurious Emissions	Compliance				

1.1 MEASREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY	
Conducted emissions	9kHz~30MHz	2.70dB	
	9KHz ~ 30MHz	2.16dB	
Radiated emissions	30MHz ~ 1GHz	3.74dB	
readiated emissions	1GHz ~ 18GHz	4.66dB	
	18GHz ~ 40GHz	4.67dB	

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

TEST SITE AND INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESL6	1300.5001K06-10 0262-eQ	Mar. 24,20	Mar. 24,21
Bilog Antenna	Sunol Sciences	JB6	A110712	Apr. 08, 20	Apr. 07, 21
Active Antenna	CMO-POWER	AL-130	121031	Mar. 27, 20	Mar. 26, 21
Signal Amplifier	HP	8447E	443008	Mar. 24, 20	Mar. 24, 21
Spectrum	Agilent	E4446A	MY46180622	Mar. 24, 20	Mar. 24, 21
MXA signal analyzer	Agilent	N9020A	MY49100060	Mar. 22, 20	Mar. 21, 21
Horn Antenna	COM-POWER	HAH-118	71259	Mar. 20, 20	Mar. 19, 21
Horn Antenna	COM-POWER	HAH-118	71283	Jun. 30, 19	Jun. 29, 20
SHF-EHF Horn	Schwarzbeck	BBHA9170	BBHA9170147	Jun. 30, 19	Jun. 29, 20
SHF-EHF Horn	Schwarzbeck	BBHA9170	BBHA9170242	Mar. 24, 20	Mar. 24, 21
AMPLIFIER	EM Electornic Corporation	EM01G26G	60613	Jan. 04, 20	Jan. 03,21
AMPLIFIER	Emc Instruments Corporation	Emc012645	980077	Oct. 18,18	Oct. 17,21
3m Semi-anechoic Chamber	SAEMC	9m*6m*6m	N/A	Mar. 24, 20	Mar. 24, 21
Test Software	EZ-EMC	ICP-03A1	N/A	N/A	N/A
Wireless Connectivity Tester	R&S	CMW270	1201.0002K75	Dec. 18, 19	Dec. 17, 20
MXA VEXTOR SIGNAL	Agilent	n5182a	MY50140530	Mar. 24,20	Mar. 24,21
MXA signal analyzer	Agilent	n9020a	MY49100060	Mar. 24,20	Mar. 24,21
RF Control Unit	Tonscend	JS0806-2	188060112	Mar. 24,20	Mar. 24,21
Signal Generation	Agilent	E4421B	US40051152	Dec. 18, 19	Dec. 17, 20
DC Power Supply	Agilent	E3640A	MY40004013	Mar. 28,20	Mar. 27,21
Programmable Temperature & Humidity Chamber	Hongjin	HYC-TH-22 5DH	DG-180746	Mar. 24,20	Mar. 24,21
Test System	Tonscend	JS 1120-3	N/A	N/A	N/A
Power Splitter	Weinschel	1580-1	TL177	Mar. 20,20	Mar. 19,21
Universal Radio Communication	ROHDE&SCHW ARZ	CMU200	112012	Mar. 24,20	Mar. 24,21
Universal Radio Communication	ROHDE&SCHW ARZ	CMU200	121393	Mar. 28,20	Mar. 27,21
Wireless Communication Test Set	ROHDE&SCHW ARZ	CMW500	1201.0002K500-1 55842-Gd	Nov. 1, 19	Oct. 31, 20

- NOTE: 1. The calibration interval of the above test instruments is 12 months (except 3m Semi-anechoic Chamber). And the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.
 - 2. The test was performed in 3m Semi-anechoic Chamber and RF Oven Room.
 - 3. The horn antenna is used only for the measurement of emission frequency above 1GHz if tested.
 - 4. The FCC Site Registration No. is 535293.

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

PRODUCT	Smart Mobile Payment Terminal			
BRAND NAME	PAX			
MODEL NAME	A920Pro			
POWER SUPPLY	5.0Vdc (adapter or host equipment) 3.7Vdc (Li-ion, ion battery)			
MODULATION TECHNOLOGY	LTE	QPSK, 16QAM		
FREQUENCY RANGE	LTE Band 17 Channel Bandwidth: 5MHz	706.5MHz ~ 713.5MHz		
FREQUENCY RANGE	LTE Band 17 Channel Bandwidth: 10MHz	709MHz ~ 711MHz		
	LTE Band 17	QPSK: 4M48G7D		
EMISSION DESIGNATOR	Channel Bandwidth: 5MHz	16QAM: 4M49W7D		
	LTE Band 17	QPSK: 8M97G7D		
	Channel Bandwidth: 10MHz	16QAM: 8M7W7D		
MAX. EIRP POWER	LTE Band 17 Channel Bandwidth: 5MHz	186.21mW		
MAX. EIKI TOWEK	LTE Band 17 Channel Bandwidth: 10MHz	189.67mW		
ANTENNA TYPE	FPC Antenna with 1dBi gain			
HW VERSION	N/A			
SW VERSION	N/A			
DATA CABLE	USB cable: non-shielded, detachable, 1.0m			
EUT STAGE	Production Unit			
NOTE:				

NOTE:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. The EUT was powered by the following adapter:

ADAPTER		
BRAND:	N/A	
MODEL:	GLH50D2000HW	
INPUT:	100-240V~50/60Hz 0.40A	
OUTPUT:	5.0V2000mA	

3. The EUT matched the following USB cable:

USB CABLE	
BRAND:	N/A
MODEL:	N/A
SIGNAL LINE:	1.0 METER

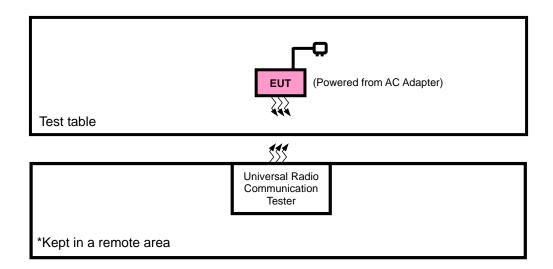
Bureau Veritas (Shenzhen)
Consumer Products Services Co., Ltd.

Zone A, Floor 1, Building 2, Wan Ye Long Technology Park, South Side of Zhoushi Road, Bao'an District, Shenzhen Guangdong, 518108, China.

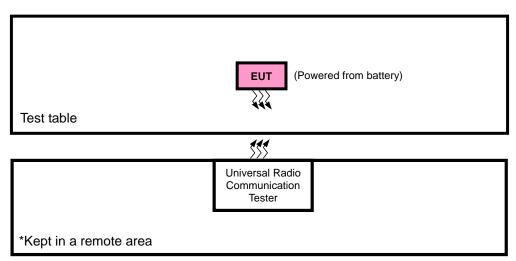
Tel: +86-755-26014629 Ext.800

Email: customerservice.dg@cn.bureauveritas.com

The EUT was powered by the following Battery:


ADAPTER			
BRAND:	VEKEN		
MODEL:	YW-008		
POWER RATING:	3.7V	5150mAh	19.05Wh

For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.



2.2 CONFIGURATION OF SYSTEM UNDER TEST

FOR RADIATION EMISSION TEST

FOR CONDUCTED & E.I.R.P. TEST

2.3 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	N/A	N/A	N/A	N/A	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	N/A

2.4 TEST ITEM AND TEST CONFIGURATION

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports. The worst case was found when positioned on Y-plane for EIRP and X-axis for radiated emission. Following channel(s) was (were) selected for the final test as listed below:

EUT CONFIGURE MODE	DESCRIPTION
Α	EUT + Adapter + USB Cable with LTE link
В	EUT + Battery with LTE link

LTE BAND 7 MODE

TEST ITEM	AVAILABLE	TESTED CHANNEL	CHANNEL	MODULATION	MODE
	CHANNEL		BANDWIDTH		
	20775 to 21425	20775, 21100, 21425	5MHz	QPSK, 16QAM	1 RB / 0 RB Offset
EIRP	20800 to 21400	20800, 21100, 21400	10MHz	QPSK, 16QAM	1 RB / 0RB Offset
	20825 to 21375	20825, 21100, 21375	15MHz	QPSK, 16QAM	1 RB / 0 RB Offset
	20850 to 21350	20850, 21100, 21350	20MHz	QPSK, 16QAM	1 RB / 0 RB Offset
	20775 to 21425	20775, 21425	5MHz	QPSK	1 RB / 0 RB Offset
FREQUENCY	20800 to 21400	20800, 21400	10MHz	QPSK	1 RB / 0RB Offset
STABILITY	20825 to 21375	20825, 21375	15MHz	QPSK	1 RB / 0 RB Offset
	20850 to 21350	20850, 21350	20MHz	QPSK	1 RB / 0 RB Offset
	20775 to 21425	20775, 21100, 21425	5MHz	QPSK, 16QAM	25 RB / 0 RB Offset
OCCUPIED	20800 to 21400	20800, 21100, 21400	10MHz	QPSK, 16QAM	50 RB / 0 RB Offset
BANDWIDTH	20825 to 21375	20825, 21100, 21375	15MHz	QPSK, 16QAM	75 RB / 0 RB Offset
	20850 to 21350	20850, 21100, 21350	20MHz	QPSK, 16QAM	100 RB / 0 RB Offset
	20775 to 21425	20775, 21100, 21425	5MHz	QPSK	1 RB / 0 RB Offset
PEAK TO	20800 to 21400	20800, 21100, 21400	10MHz	QPSK	1 RB / 0RB Offset
AVERAGE RATIO	20825 to 21375	20825, 21100, 21375	15MHz	QPSK	1 RB / 0 RB Offset
	20850 to 21350	20850, 21100, 21350	20MHz	QPSK	1 RB / 0 RB Offset
	20775 to 21425		5MHz	0001/ 100111	1 RB / 0 RB Offset
		20775		QPSK, 16QAM	25 RB / 0 RB Offset
		21425	5MHz	ODCK 4COAM	1 RB / 24 RB Offset
				QPSK, 16QAM	25 RB / 0 RB Offset
	20800 to 21400	20800	10MHz	QPSK, 16QAM	1 RB / 0 RB Offset
				Q ON, TOQ W	50 RB / 0 RB Offset
		21400	10MHz	QPSK, 16QAM	1 RB / 49 RB Offset
				Q. 0. q. 10 Q	50 RB / 0 RB Offset
BAND EDGE		20825	15MHz	QPSK, 16QAM	1 RB / 0 RB Offset
	00005 1- 04075	20023		QI ON, IOQAW	75 RB / 0 RB Offset
	20825 to 21375				1 RB / 74 RB Offset
		21375	15MHz	QPSK, 16QAM	75 RB / 0 RB Offset
					1 RB / 0 RB Offset
		20850	20MHz	QPSK, 16QAM	100 RB / 0 RB Offset
	20850 to 21350				1 RB / 99 RB Offset
		21350	20MHz	QPSK, 16QAM	
	20775 to 21425	20775 21100 21425	EN4⊔→	ODGK	100 RB / 0 RB Offset
CONDCUDET		20775, 21100, 21425	5MHz	QPSK	1 RB / 0 RB Offset
ED		20800, 21100, 21400	10MHz	QPSK	1 RB / 0RB Offset
EMISSION	20825 to 21375		15MHz	QPSK	1 RB / 0 RB Offset
	20850 to 21350	20850, 21100, 21350	20MHz	QPSK	1 RB / 0 RB Offset
	20775 to 21425	21100	5MHz	QPSK	1 RB / 0 RB Offset
RADIATED EMISSION	20800 to 21400	20800, 21100, 21400	10MHz	QPSK	1 RB / 0RB Offset
EIVIIOOIUN	20825 to 21375	21100	15MHz	QPSK	1 RB / 0 RB Offset
	20850 to 21350	21100	20MHz	QPSK	1 RB / 0 RB Offset

Note: This device was tested under all bandwidths, RB configurations and modulations. The worst case was found in QPSK modulation.

Bureau Veritas (Shenzhen)
Consumer Products Services Co., Ltd.

Zone A, Floor 1, Building 2, Wan Ye Long Technology Park, South Side of Zhoushi Road, Bao'an District, Shenzhen Guangdong, 518108, China.

Tel: +86-755-26014629 Ext.800

Email: customerservice.dg@cn.bureauveritas.com

LTE BAND 17 MODE

TEST ITEM	AVAILABLE CHANNEL	TESTED CHANNEL	CHANNEL BANDWIDTH	MODULATION	MODE			
EIRP	23755 to 23825	23755, 23790, 23825	5MHz	QPSK, 16QAM	1 RB / 0 RB Offset			
EIRP	23780 to 23800	23780, 23790, 23800	10MHz	QPSK, 16QAM	1 RB / 0RB Offset			
FREQUENCY	23755 to 23825	23755, 23825	5MHz	QPSK	1 RB / 0 RB Offset			
STABILITY	23780 to 23800	23780, 23800	10MHz	QPSK	1 RB / 0RB Offset			
OCCUPIED	23755 to 23825	23755, 23790, 23825	5MHz	QPSK, 16QAM	25 RB / 0 RB Offset			
BANDWIDTH	23780 to 23800	23780, 23790, 23800	10MHz	QPSK, 16QAM	50 RB / 0 RB Offset			
PEAK TO AVERAGE	23755 to 23825	23755, 23790, 23825	5MHz	QPSK	1 RB / 0 RB Offset			
RATIO	23780 to 23800	23780, 23790, 23800	10MHz	QPSK	1 RB / 0RB Offset			
	23755 to 23825				23755	5MHz	QPSK, 16QAM	1 RB / 0 RB Offset
					25 RB / 0 RB Offset			
		23825	5MHz	QPSK, 16QAM	1 RB / 24 RB Offset			
BAND EDGE					25 RB / 0 RB Offset			
27 12 22 02		23780	10MHz	QPSK, 16QAM	1 RB / 0 RB Offset			
	23780 to 23800			•	50 RB / 0 RB Offset			
		23800	10MHz	QPSK, 16QAM	1 RB / 49 RB Offset			
					50 RB / 0 RB Offset			
CONDCUDET ED	23755 to 23825	23755, 23790, 23825	5MHz	QPSK	1 RB / 0 RB Offset			
EMISSION	23780 to 23800	23780, 23790, 23800	10MHz	QPSK	1 RB / 0RB Offset			
RADIATED	23755 to 23825	23790	5MHz	QPSK	1 RB / 0 RB Offset			
EMISSION	23780 to 23800	23780, 23790, 23800	10MHz	QPSK	1 RB / 0RB Offset			

Note: This device was tested under all bandwidths, RB configurations and modulations. The worst case was found in QPSK modulation.

TEST CONDITION:

TEST ITEM	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
EIRP	24deg. C, 55%RH	3.7Vdc from Battery	Aaron liang
FREQUENCY STABILITY	24deg. C, 55%RH	DC 3.4V/3.7V/4.2V	Aaron liang
OCCUPIED BANDWIDTH	24deg. C, 55%RH	3.7Vdc from Battery	Aaron liang
PEAK TO AVERAGE RATIO	24deg. C, 55%RH	3.7Vdc from Battery	Aaron liang
BAND EDGE	24deg. C, 55%RH	3.7Vdc from Battery	Aaron liang
CONDCUDETED EMISSION	24deg. C, 55%RH	3.7Vdc from Battery	Aaron liang
RADIATED EMISSION	24deg. C, 55%RH	5Vdc from adapter	Aaron liang

2.5 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2

FCC 47 CFR Part 27

KDB 971168 D01 Power Meas License Digital Systems v03r01

ANSI/TIA/EIA-603-D

ANSI/TIA/EIA-603-E

ANSI C63.26-2015

NOTE: All test items have been performed and recorded as per the above standards.

3 TEST TYPES AND RESULTS

3.1 **OUTPUT POWER MEASUREMENT**

3.1.1 LIMITS OF OUTPUT POWER MEASUREMENT

27.50(c)(10) Portable stations (hand-held devices) operating in the 699-716 MHz bands are limited to 3 watts ERP.

3.1.2 TEST PROCEDURES

EIRP MEASUREMENT:

Per KDB 971168 D01 Power Meas License Digital Systems v03r01 or subclause 5.2.5.5 of ANSI C63.26-2015, the relevant equation for determing the ERP or EIRP from the conducted RF output power measured using the guidance provided above is:

ERP or EIRP = PMeas + GT - LC

Where:

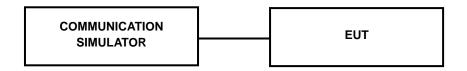
ERP or EIRP = effective radiated power or equivalent isotropically radiated power, respectively

(expressed in the same units as PMeas, typically dBW or dBm);

P_{Meas} = measured transmitter output power or PSD, in dBm or dBW;

= gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);

= signal attenuation in the connecting cable between the transmitter and antenna, in dB.


CONDUCTED POWER MEASUREMENT:

- a. The EUT was set up for the maximum power with LTE link data modulation and link up with simulator.
- b. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

3.1.3 TEST SETUP

CONDUCTED POWER MEASUREMENT:

For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.1.4 TEST RESULTS

	LTE Band 17									
BW	Modulation	RB	RB	Low CH 23755	Mid CH 23790	High CH 23825	3GPP MPR			
DVV	Wodulation	Size	Offset	Frequency 706.5 MHz	Frequency 710 MHz	Frequency 713.5MHz	(dB)			
		1	0	23.61	23.55	23.49	0			
		1	12	23.6	23.85	23.54	0			
	QPSK	1	24	23.65	23.44	23.53	0			
		12	0	22.54	22.51	22.58	1			
		12	6	22.62	22.78	22.49	1			
		12	13	22.65	22.58	22.41	1			
5 NAL 1-		25	0	22.6	22.76	22.66	1			
5MHz		1	0	22.62	22.31	22.56	1			
		1	12	22.52	22.59	22.43	1			
		1	24	22.63	22.21	22.56	1			
	16QAM	12	0	21.82	21.56	21.61	2			
		12	6	21.83	21.75	21.61	2			
		12	13	21.78	21.79	21.54	2			
		25	0	21.82	21.69	21.64	2			

	LTE Band 17									
DW	Madadatas	RB	RB	Low CH 23780	Mid CH 23790	High CH 23800	3GPP			
BW	Modulation	Size	Offset	Frequency 709 MHz	Frequency 710 MHz	Frequency 711 MHz	MPR (dB)			
		1	0	23.47	23.5	23.64	0			
		1	24	23.37	23.77	23.93	0			
	QPSK	1	49	23.57	23.51	23.7	0			
		25	0	22.54	22.63	22.64	1			
		25	12	22.51	22.69	22.71	1			
		25	25	22.54	22.47	22.62	1			
400411-		50	0	22.69	22.74	22.69	1			
10MHz		1	0	22.04	22.8	23.04	1			
		1	24	22.07	23.14	23.2	1			
		1	49	22.05	22.92	22.92	1			
	16QAM	25	0	21.82	21.72	21.9	2			
		25	12	21.77	21.87	21.92	2			
		25	25	21.89	21.87	21.94	2			
		50	0	21.64	21.76	21.75	2			

EIRP

LTE BAND 17

CHANNEL BANDWIDTH: 5MHz QPSK

Channel	Frequency (MHz)	Conducted Power (dBm)	GT-LC (dB)	EIRP (dBm)	EIRP (mW)	Limit (W)
23755	706.5	23.65	1	22.5	177.83	3
23790	710.0	23.85	1	22.7	186.21	3
23825	713.5	23.54	1	22.39	173.38	3

CHANNEL BANDWIDTH: 5MHz 16QAM

Channel	Frequency (MHz)	Conducted Power (dBm)	GT-LC (dB)	EIRP (dBm)	EIRP (mW)	Limit (W)
23755	706.5	22.63	1	21.48	140.6	3
23790	710.0	22.59	1	21.44	139.32	3
23825	713.5	22.56	1	21.41	138.36	3

CHANNEL BANDWIDTH: 10MHz QPSK

Channel	Frequency (MHz)	Conducted Power (dBm)	GT-LC (dB)	EIRP (dBm)	EIRP (mW)	Limit (W)
23780	706.5	23.57	1	22.42	174.58	3
23790	710.0	23.77	1	22.62	182.81	3
23800	713.5	23.93	1	22.78	189.67	3

CHANNEL BANDWIDTH: 10MHz 16QAM

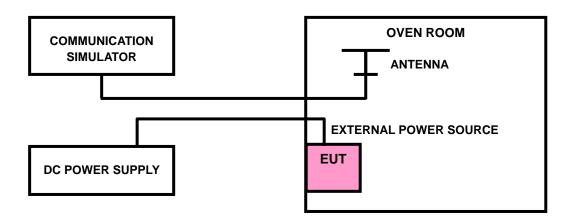
Channel	Frequency (MHz)	Conducted Power (dBm)	GT-LC (dB)	EIRP (dBm)	EIRP (mW)	Limit (W)
23780	706.5	22.07	1	20.92	123.59	3
23790	710.0	23.14	1	21.99	158.12	3
23800	713.5	23.2	1	22.05	160.32	3

REMARKS: 1. ERP Output Power (dBm) = SPA LVL (dBm) + Correction Factor (dB) -2.15(dB).

2. Correction factor (dB) = Free Space Loss + Antenna Factor + Cable Loss

3.2 FREQUENCY STABILITY MEASUREMENT

3.2.1 LIMITS OF FREQUENCY STABILITY MEASUREMENT


The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

3.2.2 TEST PROCEDURE

- a. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- b. EUT is connected the external power supply to control the DC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
- c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the ±0.5°C during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

NOTE: The frequency error was recorded frequency error from the communication simulator.

3.2.3 TEST SETUP

3.2.4 TEST RESULTS

LTE BAND 17

FREQUENCY ERROR VS. VOLTAGE

	5N		
VOLTAGE (Volts)	FREQUENCY	LIMIT (ppm)	
	Low Channel	High Channel	
3.8	0.1112	0.0965	2.5
3.55(BEP)	0.1191	0.0999	2.5
4.35	0.1282	0.1051	2.5

NOTE: The applicant defined the normal working voltage of the battery is from 3.5Vdc to 4.2Vdc.

FREQUENCY ERROR vs. TEMPERATURE.

	51	ЛНz	
TEMP. (°C)	FREQUENCY	ERROR (ppm)	LIMIT (ppm)
	Low Channel	High Channel	
-30	0.1213	0.1013	2.5
-20	0.1076	0.1019	2.5
-10	0.1221	0.0889	2.5
0	0.1145	0.0907	2.5
10	0.1024	0.105	2.5
20	0.1083	0.0945	2.5
30	0.0939	0.0928	2.5
40	0.0812	0.1066	2.5
50	0.0775	0.1116	2.5

FREQUENCY ERROR VS. VOLTAGE

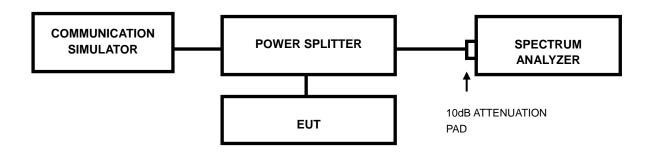
	100	ЛНz	
VOLTAGE (Volts)	FREQUENCY	LIMIT (ppm)	
	Low Channel	High Channel	
3.8	0.1037	0.0995	2.5
3.55(BEP)	0.1076	0.1126	2.5
4.35	0.1152	0.11	2.5

NOTE: The applicant defined the normal working voltage of the battery is from 3.5Vdc to 4.2Vdc.

FREQUENCY ERROR vs. TEMPERATURE.

	10	MHz				
TEMP. (℃)	FREQUENCY	FREQUENCY ERROR (ppm)				
	Low Channel	High Channel				
-30	0.0981	0.1067	2.5			
-20	0.0892	0.1133	2.5			
-10	0.0911	0.1118	2.5			
0	0.078	0.1004	2.5			
10	0.0888	0.1082	2.5			
20	0.0972	0.1139	2.5			
30	0.1073	0.1211	2.5			
40	0.101	0.1303	2.5			
50	0.0928	0.1452	2.5			

Tel: +86-755-26014629 Ext.800

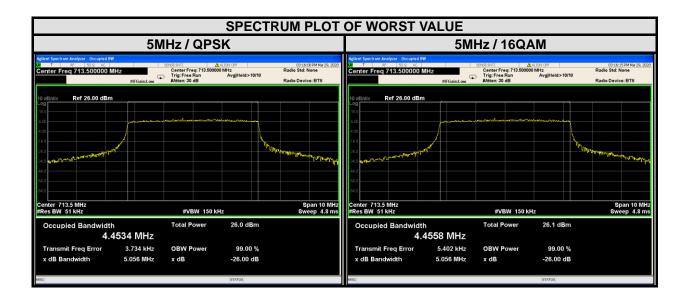


3.3 OCCUPIED BANDWIDTH MEASUREMENT

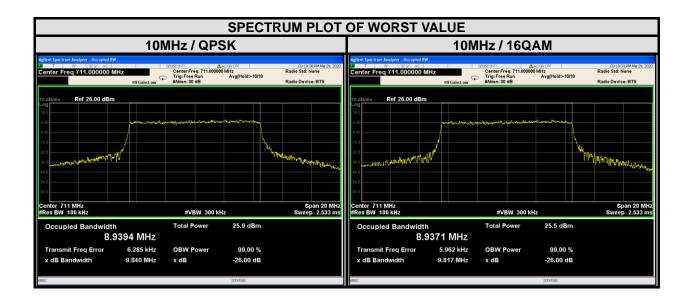
3.3.1 LIMITS OF OCCUPIED BANDWIDTH MEASUREMENT

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 %of the total mean power of a given emission.

3.3.2 TEST SETUP

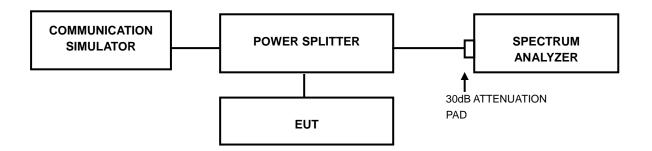

3.3.3 TEST PROCEDURES

- a. The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.
- b. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth.


3.3.4 TEST RESULTS

LTE band 17									
Channel Bandwidth : 5MHz									
Channel	Frequency (MHz)		ccupied Ith (MHz)	Channel	Channel Frequency (MHz)	26 dB bandwidth (MHz)			
		QPSK	16QAM			QPSK	16QAM		
23755	706.5	4.48	4.48	23755	706.5	4.99	5.02		
23790	710	4.48	4.49	23790	710	4.93	4.95		
23825	713.5	4.45	4.46	23825	713.5	5.06	5.06		

LTE band 17									
Channel Bandwidth : 10MHz									
Channel	Frequency (MHz)		99% Occupied bandwidth (MHz)		Frequency		26 dB bandwidth (MHz)		
		QPSK	16QAM		(MHz)	QPSK	16QAM		
23780	709	8.97	8.97	23780	709	9.74	9.73		
23790	710	8.95	8.95	23790	710	9.78	9.86		
23800	711	8.94	8.94	23800	711	9.84	9.82		



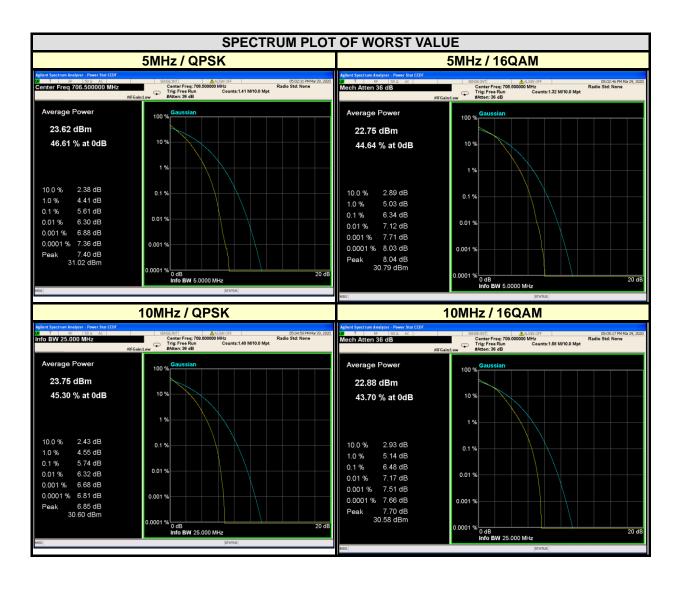
3.4 PEAK TO AVERAGE RATIO

3.4.1 LIMITS OF PEAK TO AVERAGE RATIO MEASUREMENT

In measuring transmissions in this band using an average power technique, the peak to-average ratio (PAR) of the transmission may not exceed 13 dB

3.4.2 TEST SETUP

3.4.3 TEST PROCEDURES


- 1. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 3. Record the maximum PAPR level associated with a probability of 0.1%.

3.4.4 TEST RESULTS

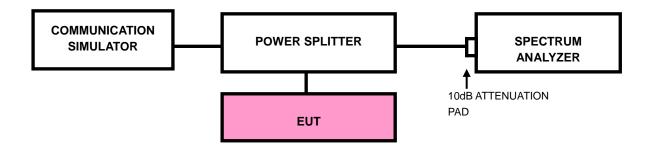
LTE BAND 17

СН	ANNEL BANDV	VIDTH: 5MI	Нz	CHANNEL BANDWIDTH: 10MHz			
CHANNEL	FREQUENCY		AVERAGE O (dB)	CHANNEL	FREQUENCY	PEAK TO AVERAGE RATIO (dB)	
	(MHz)	QPSK	16QAM		(MHz)	QPSK	16QAM
23755	706.5	5.61	6.34	23780	709	5.74	6.48
23790	710	5.60	6.52	23790	710	5.68	6.39
23825	713.5	5.45	6.14	23800	711	5.47	6.13

3.5 BAND EDGE MEASUREMENT

3.5.1 LIMITS OF BAND EDGE MEASUREMENT

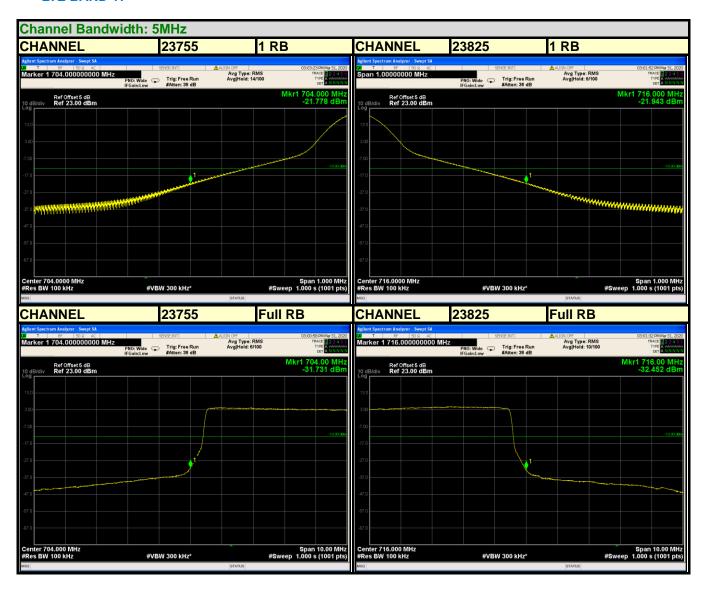
27.53(c) For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:


- (1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (3) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;
- (4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations;
- (5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;
- (6) Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.
- 27.53(f) For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

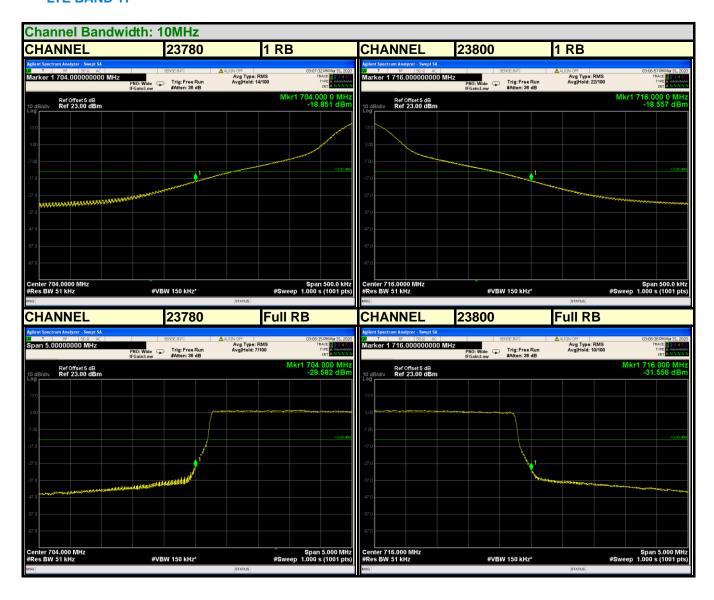
27.53(g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

27.53(m)(4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

3.5.2 TEST SETUP


3.5.3 TEST PROCEDURES

- a. The EUT was set up for the maximum peak power with LTE link data modulation. The power was measured with R&S Spectrum Analyzer. All measurements were done at 2 channels (low and high operational frequency range.).
- b. The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.
- c. The center frequency of spectrum is the band edge frequency and span is 35MHz. RBW of the spectrum is 100kHz and VBW of the spectrum is 300kHz (Channel bandwidth 5MHz).
- d. The center frequency of spectrum is the band edge frequency and span is 50MHz. RBW of the spectrum is 200kHz and VBW of the spectrum is 1MHz (Channel bandwidth 10MHz).
- e. The center frequency of spectrum is the band edge frequency and span is 60MHz. RBW of the spectrum is 300kHz and VBW of the spectrum is 1MHz (Channel bandwidth 15MHz).
- f. The center frequency of spectrum is the band edge frequency and span is 80MHz. RBW of the spectrum is 500kHz and VBW of the spectrum is 2MHz (Channel bandwidth 20MHz).
- g. Record the max trace plot into the test report.


3.5.4 TEST RESULTS

LTE BAND 17

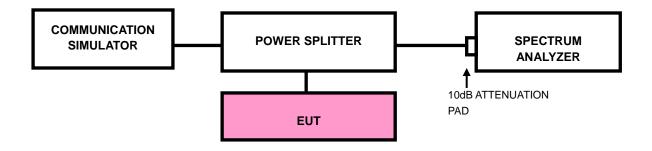
LTE BAND 17

3.6 CONDUCTED SPURIOUS EMISSIONS

3.6.1 LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

27.53(c) For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

- (1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (3) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;
- (4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations;
- (5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;
- (6) Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.
- 27.53(f) For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.


27.53(g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

27.53(m)(4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

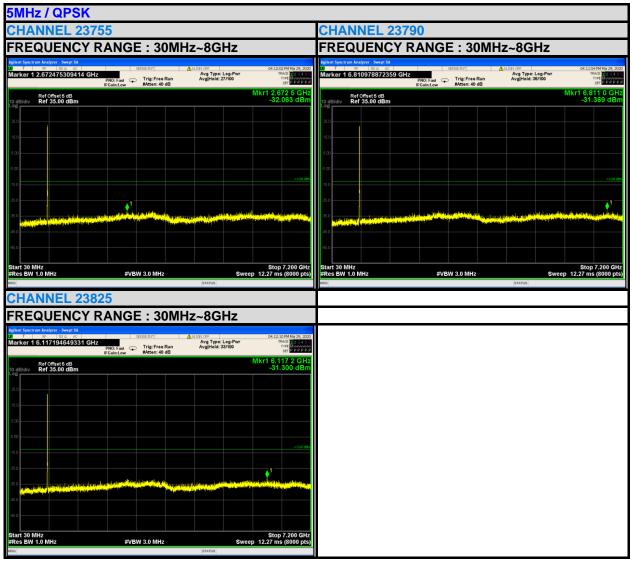
3.6.2 TEST PROCEDURE

- a. The EUT makes a phone call to the communication simulator. All measurements were done at low, middle and high operational frequency range.
- b. Measuring frequency range is from 30MHz~25.7GHz for LTE Band 7 & LTE Band 41. 10dB attenuation pad is connected with spectrum. RBW=1MHz and VBW=3MHz are used for conducted emission measurement.

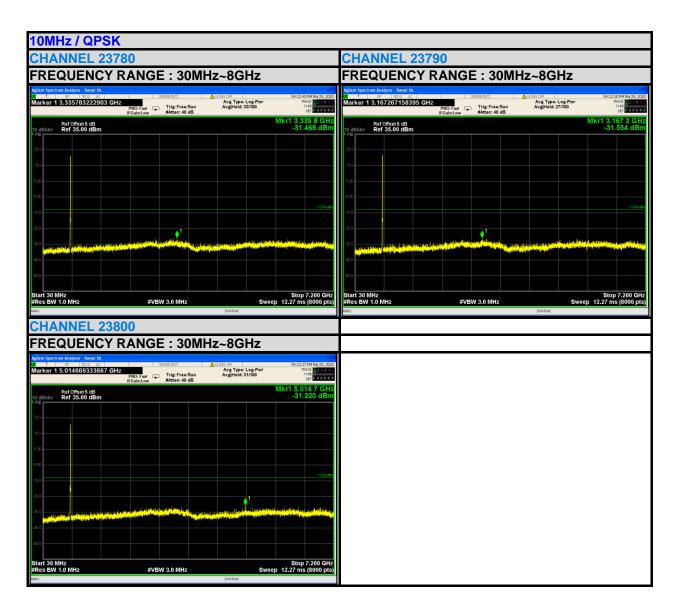
3.6.3 TEST SETUP

Bureau Veritas (Shenzhen)
Consumer Products Services Co., Ltd.

Zone A, Floor 1, Building 2, Wan Ye Long Technology Park, South Side of Zhoushi Road, Bao'an District, Shenzhen Guangdong, 518108, China.


Tel: +86-755-26014629 Ext.800

Email: customerservice.dq@cn.bureauveritas.com



3.6.4 TEST RESULTS

LTE BAND 17

3.7 RADIATED EMISSION MEASUREMENT

3.7.1 LIMITS OF RADIATED EMISSION MEASUREMENT

27.53(c) For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

- (1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- (3) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;
- (4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations;
- (5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;
- (6) Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.
- 27.53(f) For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

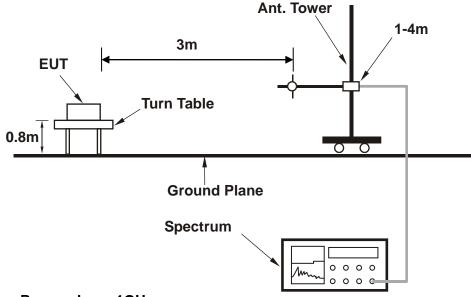
27.53(g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

27.53(m)(4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

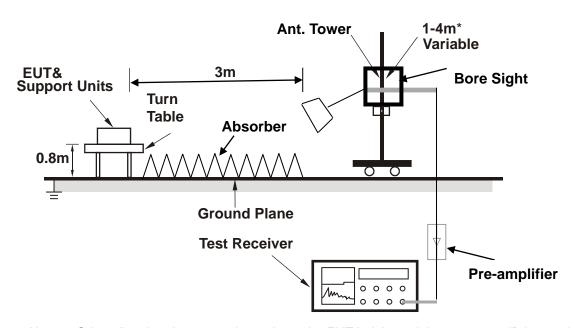
3.7.2 TEST PROCEDURES

- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G.
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution
- d. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.P.R power - 2.15dBi.

NOTE: The resolution bandwidth of spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz.


3.7.3 DEVIATION FROM TEST STANDARD

No deviation



3.7.4 TEST SETUP

< Frequency Range 30MHz~1GHz >

<Frequency Range above 1GHz>

Note: Above 1G is a directional antenna depends on the EUT height and the antenna 3dB beamwidth both, refer to section 7.3 of CISPR 16-2-3.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

Bureau Veritas (Shenzhen)
Consumer Products Services Co., Ltd.

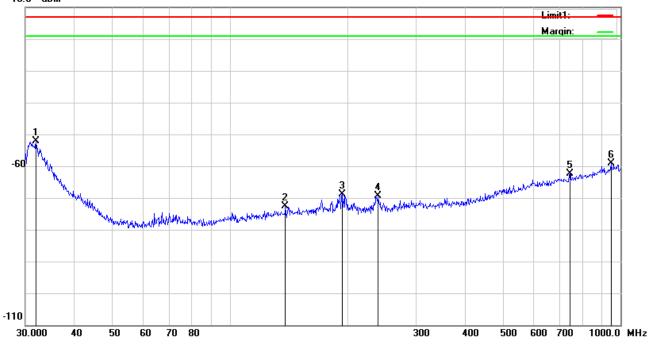
Zone A, Floor 1, Building 2, Wan Ye Long Technology Park, South Side of Zhoushi Road, Bao'an District, Shenzhen Guangdong, 518108, China.

Tel: +86-755-26014629 Ext.800

 $\pmb{\mathsf{Email}} : \underline{\mathsf{customerservice.dg@cn.bureauveritas.com}}$

3.7.5 TEST RESULTS

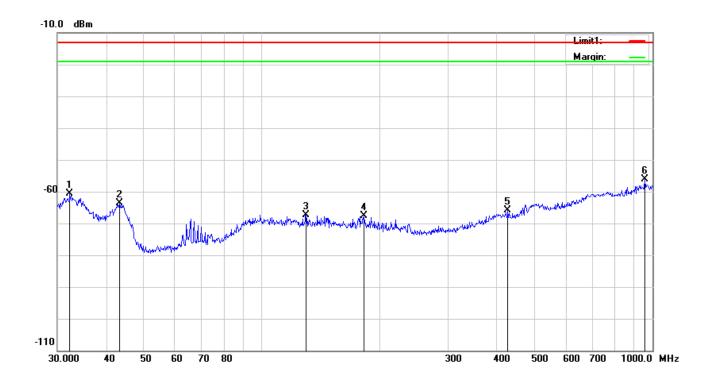
BELOW 1GHz WORST-CASE DATA


30 MHz - 1GHz data:

LTE Band 17

MODE	TX channel 23790	FREQUENCY RANGE	Below 1000MHz	
ENVIRONMENTAL CONDITIONS	24deg. C, 60%RH	IINPUT POWER	DC 5V from adapter	
TESTED BY	Aaron Liang			

NO.	FREQ. (MHz)	Antenna Polarization (H/V)	EMISSION LEVEL (dBm/m)	DETECTOR (PK/AV)	LIMIT (dBm/m)	MARGIN (dB)	RAW VALUE (dBm)	CORRECTIO N FACTOR (dB/m)
1	31.9546	Н	-52.04	peak	-13	-39.04	-64.38	-12.34
2	138.8735	Н	-72.56	peak	-13	-59.56	-72.6	-0.04
3	194.4534	Н	-68.82	peak	-13	-55.82	-69.07	-0.25
4	239.9873	Н	-69.46	peak	-13	-56.46	-70.25	-0.79
5	742.2587	Н	-62.39	peak	-13	-49.39	-71.07	-8.68
6	945.4399	Н	-59.18	peak	-13	-46.18	-71.53	-12.35



MODE	TX channel 23790	FREQUENCY RANGE	Below 1000MHz
ENVIRONMENTAL CONDITIONS	24deg. C, 60%RH	INPUT POWER	DC 5V from adapter
TESTED BY	Aaron Liang		

NO.	FREQ. (MHz)	Antenna Polarization (H/V)	EMISSION LEVEL (dBm/m)	DETECTOR (PK/AV)	LIMIT (dBm/m)	MARGIN (dB)	RAW VALUE (dBm)	CORRECTIO N FACTOR (dB/m)
1	32.2925	V	-60.66	peak	-13	-47.66	-65.8	-5.14
2	43.3534	V	-63.56	peak	-13	-50.56	-61.62	1.94
3	129.9226	V	-67.42	peak	-13	-54.42	-72.56	-5.14
4	182.5592	V	-67.64	peak	-13	-54.64	-71.53	-3.89
5	426.521	V	-65.95	peak	-13	-52.95	-72.66	-6.71
6	955.4381	V	-56.23	peak	-13	-43.23	-70.94	-14.71

ABOVE 1GHz

Note: For higher frequency, the emission is too low to be detected.

LTE BAND 17

CHANNEL BANDWIDTH: 5MHz / QPSK

Low channel

NO.	FREQ. (MHz)	Antenna Polarization (H/V)	EMISSION LEVEL (dBm/m)	DETECTOR (PK/AV)	LIMIT (dBm/m)	MARGIN (dB)	RAW VALUE (dBm)	CORRECTIO N FACTOR (dB/m)
1	1413	V	-34.85	PK	-13	-21.85	-45.03	10.18
2	1413	Н	-41.28	PK	-13	-28.28	-51.46	10.18
3	2826	V	-35.82	PK	-13	-22.82	-52.54	16.72
4	2826	Н	-32.38	PK	-13	-19.38	-49.1	16.72

Middle channel

NO.	FREQ. (MHz)	Antenna Polarization (H/V)	EMISSION LEVEL (dBm/m)	DETECTOR (PK/AV)	LIMIT (dBm/m)	MARGIN (dB)	RAW VALUE (dBm)	CORRECTIO N FACTOR (dB/m)
1	1420	V	-34.58	PK	-13	-21.58	-44.76	10.18
2	1420	Н	-43.67	PK	-13	-30.67	-53.85	10.18
3	2840	V	-36.37	PK	-13	-23.37	-53.09	16.72
4	2840	Н	-33.51	PK	-13	-20.51	-50.23	16.72

High channel

NO.	FREQ. (MHz)	Antenna Polarization (H/V)	EMISSION LEVEL (dBm/m)	DETECTOR (PK/AV)	LIMIT (dBm/m)	MARGIN (dB)	RAW VALUE (dBm)	CORRECTIO N FACTOR (dB/m)
1	1427	V	-34.87	PK	-13	-21.87	-45.05	10.18
2	1427	Н	-37.49	PK	-13	-24.49	-47.67	10.18
3	2854	V	-44.04	PK	-13	-31.04	-60.76	16.72
4	2854	Н	-39.87	PK	-13	-26.87	-56.59	16.72

Note:

- 1, The testing has been conformed to 10*713.5MHz=7,135MHz
- 2, All other emissions more than 30 dB below the limit
- 3, X-Axis, Y-Axis and Z-Axis were investigated. The results above show only the worst case.

CHANNEL BANDWIDTH: 10MHz / QPSK

Low channel

NO.	FREQ. (MHz)	Antenna Polarization (H/V)	EMISSION LEVEL (dBm/m)	DETECTOR (PK/AV)	LIMIT (dBm/m)	MARGIN (dB)	RAW VALUE (dBm)	CORRECTIO N FACTOR (dB/m)
1	1418	V	-35.38	PK	-13	-22.38	-45.56	10.18
2	2836	Н	-30.91	PK	-13	-17.91	-47.63	16.72
3	2836	V	-34.17	PK	-13	-21.17	-50.89	16.72
4	3545	Н	-25.77	PK	-13	-12.77	-43.73	17.96

Middle channel

NO.	FREQ. (MHz)	Antenna Polarization (H/V)	EMISSION LEVEL (dBm/m)	DETECTOR (PK/AV)	LIMIT (dBm/m)	MARGIN (dB)	RAW VALUE (dBm)	CORRECTIO N FACTOR (dB/m)
1	1420	V	-33.07	PK	-13	-20.07	-43.25	10.18
2	2840	Н	-31.64	PK	-13	-18.64	-48.36	16.72
3	2840	V	-35.58	PK	-13	-22.58	-52.3	16.72
4	3550	Н	-30.16	PK	-13	-17.16	-48.12	17.96

High channel

NO.	FREQ. (MHz)	Antenna Polarization (H/V)	EMISSION LEVEL (dBm/m)	DETECTOR (PK/AV)	LIMIT (dBm/m)	MARGIN (dB)	RAW VALUE (dBm)	CORRECTIO N FACTOR (dB/m)
1	1422	V	-29.4	PK	-13	-16.4	-39.58	10.18
2	2844	Н	-32.88	PK	-13	-19.88	-49.6	16.72
3	2844	V	-37.4	PK	-13	-24.4	-54.12	16.72
4	3555	Н	-30.27	PK	-13	-17.27	-48.23	17.96

Note:

- 1, The testing has been conformed to 10*711MHz=7,110MHz
- 2, All other emissions more than 30 dB below the limit
- 3, X-Axis, Y-Axis and Z-Axis were investigated. The results above show only the worst case.

5 APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END---