

CFR 47 FCC PART 22 H CFR 47 FCC PART 24 E CFR 47 FCC PART 27 RSS-132, RSS-133, RSS-139

TEST REPORT

For

Smart Mobile Payment Terminal

MODEL NUMBER: A910S

REPORT NUMBER: 4790824205-1-RF-5

ISSUE DATE: July 14, 2023

FCC ID: V5PA910S

IC: 11689A-A910S

Prepared for

PAX Technology Limited Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour Road, Wanchai, Hong Kong

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

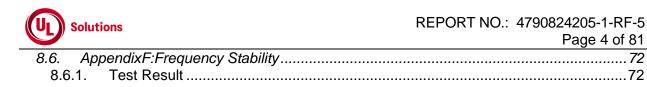
Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

REPORT NO.: 4790824205-1-RF-5 Page 2 of 81

Revision History

Rev.	Issue Date	Revisions		evised By
V0	July 14, 2023	Initial Issue		


Note:

- 1. This test report is only published to and used by the applicant, and it is not for evidence purpose in China.
- 2. The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 22 H >< CFR 47 FCC PART 24 E>< CFR 47 FCC PART 27 >< RSS-132, RSS-133, RSS-139>when <Accuracy Method> decision rule is applied.

TABLE OF CONTENTS

1. A	ITESTATION OF TEST RESULTS	5
2. TE	EST METHODOLOGY	6
3. FA	ACILITIES AND ACCREDITATION	6
4. C	ALIBRATION AND UNCERTAINTY	7
4.1.	MEASURING INSTRUMENT CALIBRATION	7
4.2.	MEASUREMENT UNCERTAINTY	7
5. E0	QUIPMENT UNDER TEST	8
5.1.	DESCRIPTION OF EUT	8
5.2.	TEST CHANNEL CONFIGURATION	8
5.3.	MAXIMUM ERP/EIRP POWER AND EMISSION DESIGNATOR	9
5.4.	WORST-CASE CONFIGURATION AND MODE	10
5.5.	DESCRIPTION OF AVAILABLE ANTENNAS	11
5.6.	DESCRIPTION OF TEST SETUP	12
6. MI	EASURING INSTRUMENT AND SOFTWARE USED	13
7. Al	NTENNA TERMINAL TEST RESULTS	14
7.1.	EFFECTIVE (ISOTROPIC) RADIATED POWER OF TRANSMITTER	14
7.2.	PEAK TO AVERAGE RADIO	16
7.3.	OCCUPIED BANDWIDTH	17
7.4.	BAND EDGE EMISSIONS	18
7.5.	SPURIOUS EMISSION AT ANTENNA TERMINAL	20
7.6.	FREQUENCY STABILITY	23
8. AF	PPENDIX	25
8.1.	AppendixA: Effective (Isotropic) Radiated Power Output Data	
_	1.1. Test Result	
8.2. 8.2	AppendixB:Peak-to-Average Ratio	
_	2.2. Test Graphs	
8.3.	AppendixC:26dB Bandwidth and Occupied Bandwidth	
	3.1. Test Result	
8. <i>4.</i>	AppendixD:Band Edge	
8.4	4.1. Test Result	34
8.4	4.2. Test Graphs	
8.5. 8.5	AppendixE:Conducted SpuriousEmission5.1. Test Graphs	
٠.٠	100. Orapho	TI

9.

RADIATED SPURIOUS EMISSIONS73

REPORT NO.: 4790824205-1-RF-5

Page 5 of 81

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: PAX Technology Limited

Address: Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour Road,

Wanchai, Hong Kong

Manufacturer Information

Company Name: PAX Computer Technology (Shenzhen) Co., Ltd.

Address: 401 and 402, Building 3, Shenzhen Software Park, Nanshan

District, Shenzhen City, Guangdong Province, P.R.C

EUT Information

EUT Name: Smart Mobile Payment Terminal

Model: A910S

Sample Received Date: April 23, 2023

Sample Status: Normal Sample ID: 6024466

Date of Tested: May 6, 2023 to July 14, 2023

APPLICABLE STANDARDS				
STANDARD TEST RESULTS				
CFR 47 FCC PART 22 H	PASS			
CFR 47 FCC PART 24 E	PASS			
CFR 47 FCC PART 27	PASS			
RSS-132 Issue 4, RSS-133 Issue 6, RSS-139 Issue 4	PASS			

Prepared By:	Checked By:	
kebo. zhung	Danny Grang	
Kebo Zhang	Denny Huang	
Senior Project Engineer	Senior Project Engineer	
Approved By:		
The phen Como		

Stephen Guo

Operations Manager

REPORT NO.: 4790824205-1-RF-5 Page 6 of 81

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.26-2015, 971168 D01 Power Meas License Digital Systems v03r01, 971168 D02 Misc Rev Approv License Devices v02r01, 412172 D01 v01r01 Determining ERP and EIRP, CFR 47 FCC Part 2, Part 22 H, Part 24 E, Part 27, RSS-132, RSS-133, RSS-139

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
	to the Commission's Delcaration of Conformity (DoC) and Certification
	rules
	ISED (Company No.: 21320)
Accreditation	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Certificate	has been registered and fully described in a report filed with ISED.
	The Company Number is 21320 and the test lab Conformity Assessment
	Body Identifier (CABID) is CN0046.
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20019 and R-20004
	Shielding Room B, the VCCI registration No. is C-20012 and T-20011

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

REPORT NO.: 4790824205-1-RF-5 Page 7 of 81

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty		
Conduction emission	3.62 dB		
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB		
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB		
D #	5.78 dB (1 GHz-18 GHz)		
Radiated Emission (Included Fundamental Emission) (1 GHz to 40 GHz)	5.23dB (18 GHz-26 GHz)		
(5.64 dB (26 GHz-40 GHz)		
Bandwidth	1.1 %		

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.

REPORT NO.: 4790824205-1-RF-5

Page 8 of 81

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	Smart Mobile Payment Terminal		
Model	A910S		
Rated Input	DC 5 V, 2 A		
Battery	7.2 Vdc		

Battery				
Model No.: YW-001C				
Rated Voltage: 7.2 Vdc				
Limited Charge Voltage:	8.4 Vdc			
Rated Capacity:	2600 mAh/18.72Wh			

Battery				
Model No.:	YW-003C			
Rated Voltage: 7.2 Vdc				
Limited Charge Voltage:	8.4 Vdc			
Rated Capacity:	3350 mAh/24.12Wh			

Note: the product have two battery(YW-001C and YW-003C), both battery have been tested, but only the worst battery data(YW-001C) recorded in the report.

Item	Accessory	Brand Name Model Name		Description	
1	Type-C Cable	N/A	N/A	Length: 1.0 m No Ferrite Core shield	

5.2. TEST CHANNEL CONFIGURATION

Band	Mode	Low Middle		High
WCDMA Band 2	HSDPA/HSUPA	9262	9400	9538
WCDIVIA Bariu 2	ПОДРА/ПОСРА	1852.4 MHz	1880.0 MHz	1907.6 MHz
WCDMA Band 4	HSDPA/HSUPA	1312	1413	1513
WCDIVIA Ballu 4	HSDPA/HSDPA	1712.4 MHz 1732.6 MHz		1752.6 MHz
WCDMA Band 5	HSDPA/HSUPA	4132	4182	4233
WCDIVIA Bariu 5	HODFA/HOUFA	826.4 MHz	836.4 MHz	846.6 MHz

5.3. MAXIMUM ERP/EIRP POWER AND EMISSION DESIGNATOR

WCDMA Band2

Part 24/RSS-133						
EIRP Limit(W)	2					
Antenna Gain (dBi)	0.4					
Mode	Ch	Freq(MHz)	Conducted	EIRP	99%	Emission
			Average	(W)	OBW	Designator
			power		(MHz)	
			(dBm)			
Rel99	9538	1907.6	18.48	0.08	4.144	4M14F9W
HSDPA	9400	1880.0	18.14	0.07	4.152	4M15F9W
HSUPA	9400	1880.0	18.24	0.07	4.150	4M15F9W

WCDMA Band4

Part 27/RSS-139						
EIRP Limit(W)	1					
Antenna Gain (dBi)	0.2					
Mode	Ch	Freq(MHz)	Conducted Average power (dBm)	EIRP (W)	99% OBW (MHz)	Emission Designator
Rel99	1413	1732.6	18.53	0.07	4.143	4M14F9W
HSDPA	1312	1712.4	18.52	0.07	4.146	4M15F9W
HSUPA	1513	1752.6	18	0.07	4.147	4M15F9W

WCDMA Band5

Part 22/RSS-132						
ERP Limit(W)	7.0					
Antenna Gain (dBi)	-2.1					
Mode	Ch	Freq(MHz)	Conducted Average power (dBm)	ERP (W)	99% OBW (MHz)	Emission Designator
Rel99	4233	846.6	21.96	0.06	4.146	4M15F9W
HSDPA	4182	836.4	21.04	0.05	4.137	4M14F9W
HSUPA	4182	836.4	20.95	0.05	4.150	4M15F9W

REPORT NO.: 4790824205-1-RF-5 Page 10 of 81

5.4. WORST-CASE CONFIGURATION AND MODE

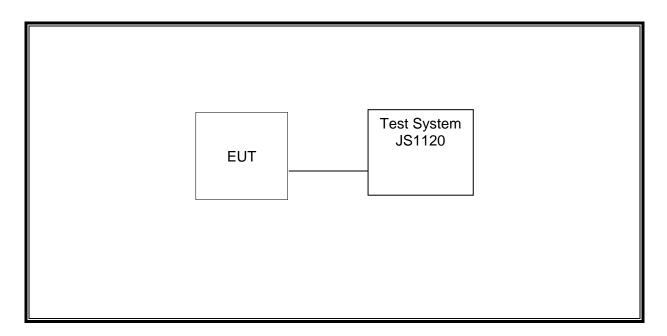
The radiated spurious emissions measurements were carried out in semi-anechoic chamber with 3-meter test range, and EUT was investigated in three orthogonal orientations X, Y and Z. It was determined that X orientation was the worst-case orientation.

Radiated spurious emissions were investigated below 30 MHz, 30 MHz - 1 GHz and above 1 GHz. There were no emissions found on below 1GHz and above 18 GHz, the emissions between 1 GHz – 18 GHz were tested the highest transmitting power channel and the worse configuration.

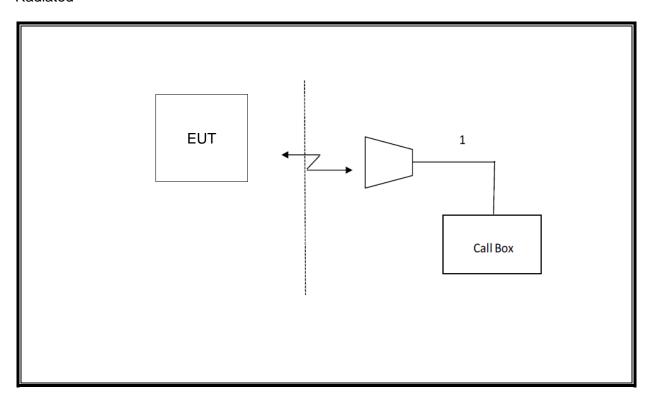
For WCDMA, HSDPA worst results are shown in test report.

REPORT NO.: 4790824205-1-RF-5 Page 11 of 81

5.5. DESCRIPTION OF AVAILABLE ANTENNAS


Antenna	Band	Antenna Type	MAX Antenna Gain (dBi)
1	WCDMA Band 2	FPC	0.4
1	WCDMA Band 4	FPC	0.2
1	WCDMA Band 5	FPC	-2.1

Band	Transmit and Receive Mode	Description
WCDMA Band 2	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.
WCDMA Band 4	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.
WCDMA Band 5	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.


Note: The value of the antenna gain was declared by customer.

5.6. DESCRIPTION OF TEST SETUP

Radiated

REPORT NO.: 4790824205-1-RF-5 Page 13 of 81

6. MEASURING INSTRUMENT AND SOFTWARE USED

		711(010)21(1	,								
		Ante	nna T	Termin	al Te	est					
			Inst	trument	t						
Used	Equipment	Manufacturer	Mod	del No.	Se	erial	No.	Last	Cal.	Next Cal.	
V	Spectrum Analyzer	R&S	FS	SV40	S42	2206	60001	Oct.17,	2022	Oct.16, 202	23
\checkmark	Wideband Radio Communication Tester	R&S	СМ	W500	1	555	523	Oct.17,	2022	Oct.16, 202	23
\checkmark	DC Power Supply	Array	36	62A	A1	512	2015	Oct.17,	2022	Oct.16, 202	23
			So	ftware							
Used	Descript	ion	Mar	nufactu	rer		١	Name		Version	
V	Tonsend Cellular	Test System	Т	onsend	l	JS		RF Auto ystem	Test	3.1.46	
		i	Radia	ated Te	st						
Instrument											
Used	Equipment	Manufacturer	Mod	del No.	Se	erial	No.	Last	Cal.	Next Cal.	•
V	MXE EMI Receiver	KESIGHT	N9	038A	MY	5640	00036	Oct.17,	2022	Oct.16, 202	23
V	Hybrid Log Periodic Antenna	TDK		ILP-)03C	1	309	959	Aug.02,	, 2021	Aug.01, 20	24
$\overline{\checkmark}$	Preamplifier	HP	84	147D	294	4A0	9099	Oct.17,	2022	Oct.16, 202	23
V	EMI Measurement Receiver	R&S	ES	SR26	1	013	377	Oct.17,	2022	Oct.16, 202	23
$\overline{\checkmark}$	Horn Antenna	TDK	HRN	N-0118	1	309	940	July 20	, 2021	July 19, 20	24
V	Horn Antenna	Schwarzbeck	BBH	IA9170		69	7	July 20,	, 2021	July 19, 20	24
V	Preamplifier	TDK		\-02- 118	(000		Oct.17,	2022	Oct.16, 202	23
V	Preamplifier	TDK	PA	-02-2		RS-3	307- 03	Oct.17,	2022	Oct.16, 202	23
V	Loop antenna	Schwarzbeck	15	519B	(000	80	Dec.14,	, 2021	Dec.13, 20	24
V	High Pass Filter	Wi	27 30 18	KX10- 700- 000- 6000- 0SS		23	3	Oct.17,	2022	Oct.16, 202	23
			So	ftware							
Used	Desci	ription		Manuf	actu	rer		Name		Version	
V	Test Software for R	adiated disturb	ance	Fa	rad			EZ-EMC	;	Ver. UL-3A	۱1

REPORT NO.: 4790824205-1-RF-5 Page 14 of 81

7. ANTENNA TERMINAL TEST RESULTS

7.1. EFFECTIVE (ISOTROPIC) RADIATED POWER OF TRANSMITTER

RULE PART(S)

FCC: §2.1046, §22.913, §24.232, §27.50

RSS-132, RSS-133, RSS-139

LIMITS

22.913(a) The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

24.232(c) Mobile/portable stations are limited to 2 watts e.i.r.p. peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

27.50(c) Portable stations (hand-held devices) in the 600 MHz uplink band and the 698-746 MHz band, and fixed and mobile stations in the 600 MHz uplink band are limited to 3 watts ERP. 27.50(d) Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watts EIRP.

27.50(h) Mobile stations are limited to 2.0 watts EIRP. All user stations are limited to 2.0 watts transmitter output power.

In addition, when the transmitter power is measured in terms of average value, the peak-to-average ratio of the power shall not exceed 13 dB.

RSS-132

The transmitter output power shall be measured in terms of average power. The equivalent radiated power (e.r.p.) shall not exceed 7 watts for mobile equipment and 3 watts for portable equipment.

In addition, the peak-to-average power ratio (PAPR) of the transmitter shall not exceed 13 dB for more than 0.1% of the time using a signal corresponding to the highest PAPR during periods of continuous transmission.

RSS-133

The equivalent isotropically radiated power (e.i.r.p.) for transmitters shall not exceed the limits 2W.

In addition, the transmitter's peak-to-average power ratio (PAPR) shall not exceed 13 dB for more than 0.1% of the time using a signal corresponding to the highest PAPR during periods of continuous transmission.

RSS-139

The equivalent isotropically radiated power (e.i.r.p.) for mobile and portable transmitters shall not exceed one watt.

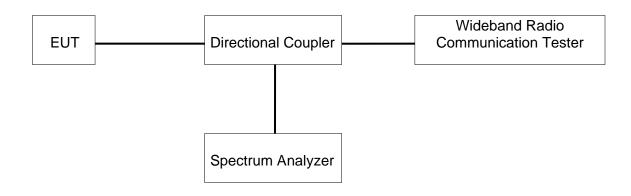
In addition, the peak to average power ratio (PAPR) of the equipment shall not exceed 13 dB for more than 0.1% of the time, using a signal that corresponds to the highest PAPR during periods of continuous transmission.

TEST PROCEDURE

Refer to ANSI C63.26:2015 and KDB 971168 D01 Section 5.6 ERP/ EIRP = PMeas + GT - LC where:

REPORT NO.: 4790824205-1-RF-5 Page 15 of 81

ERP or EIRP = effective or equivalent isotropically radiated power, respectively (expressed in the same units as PMeas, typically dBW or dBm);


PMeas = measured transmitter output power or PSD, in dBm or dBW;

GT = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);

LC = signal attenuation in the connecting cable between the transmitter and antenna, in dB

The transmitter has a maximum radiated ERP / EIRP output powers as follows:

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2°C	Relative Humidity	52.6%
Atmosphere Pressure	101kPa	Test Voltage	DC 5V

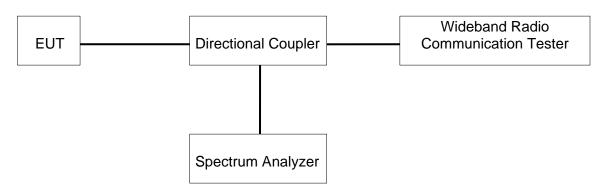
RESULTS

Please refer to Appendix A.

REPORT NO.: 4790824205-1-RF-5 Page 16 of 81

7.2. PEAK TO AVERAGE RADIO

LIMITS


In addition, when the transmitter power is measured in terms of average value, the peak-to-average ratio of the power shall not exceed 13 dB.

TEST PROCEDURE

Refer to KDB 971168 D01 Power Meas License Digital Systems v03r01;

The transmitter output was connected to a CMW500 Test Set and configured to operate at maximum power. The PAR was measured on the Spectrum Analyzer.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2°C	Relative Humidity	52.6%
Atmosphere Pressure	101kPa	Test Voltage	DC 5V

RESULTS

Please refer to Appendix B.

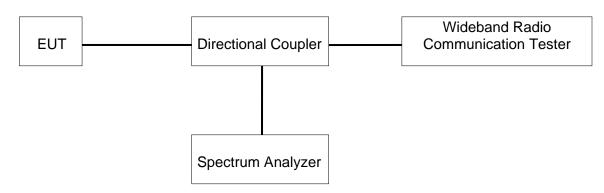
REPORT NO.: 4790824205-1-RF-5 Page 17 of 81

7.3. OCCUPIED BANDWIDTH

RULE PART(S)

FCC: §2.1049, RSS-132, RSS-133, RSS-139

LIMITS


For reporting purposes only.

TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at the low, middle and high channel in each band. The -26dB bandwidth was also measured and recorded.

(Refer to KDB 971168 D01 Power Meas License Digital Systems v03r01)

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2°C	Relative Humidity	52.6%
Atmosphere Pressure	101kPa	Test Voltage	DC 5V

RESULTS

Please refer to Appendix C.

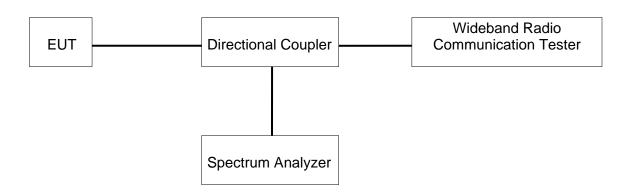
REPORT NO.: 4790824205-1-RF-5 Page 18 of 81

7.4. BAND EDGE EMISSIONS

RULE PART(S)

FCC §2.1051, §22.917, §24.238, §27.53 RSS-132, RSS-133, RSS-139

LIMITS


The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

TEST PROCEDURE

Refer to KDB 971168 D01 Power Meas License Digital Systems v03r01 The transmitter output was connected to a CMW500 Test Set and configured to operate at maximum power. The band edge emissions were measured at the required operating frequencies in each band on the Spectrum Analyzer.

- a) Set the RBW = 1 ~ 1.5 % of OBW (Typically limited to a minimum RBW of 1% of the OBW)
- b) Set VBW ≥ 3 × RBW;
- c) Set span ≥ 1.5 times the OBW;
- d) Sweep time = Auto;
- e) Detector = RMS;
- f) Ensure that the number of measurement points ≥ 2*Span/RBW;
- g) Trace mode = Average (100);

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2°C	Relative Humidity	52.6%
Atmosphere Pressure	101kPa	Test Voltage	DC 5V

RESULTS

Please refer to Appendix D.

REPORT NO.: 4790824205-1-RF-5 Page 20 of 81

7.5. SPURIOUS EMISSION AT ANTENNA TERMINAL

RULE PART(S)

FCC: §2.1051, §22.901, §22.917, §24.238, §27.53, §90,

RSS-132, RSS-133, RSS-139

LIMITS

FCC: §22.901, §22.917, §24.238

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

RSS-132 section 5.5

Mobile and base station equipment shall comply with the limits in (i) and (ii) below.

- (i) In the first 1.0 MHz band immediately outside and adjacent to each of the sub-bands specified in Section 5.1, the power of emissions per any 1% of the occupied bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p (watts).
- (ii) After the first 1.0 MHz immediately outside and adjacent to each of the sub-bands, the power of emissions in any 100 kHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p (watts). If the measurement is performed using 1% of the occupied bandwidth, power integration over 100 kHz is required.

RSS-133 section 6.5.1

Equipment shall comply with the limits in (i) and (ii) below.

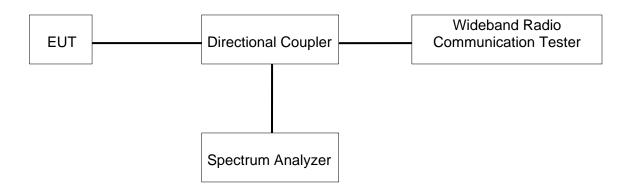
- (i) In the 1.0 MHz bands immediately outside and adjacent to the equipment's operating frequency block, the emission power per any 1% of the emission bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p(watts).
- (ii) After the first 1.0 MHz, the emission power in any 1 MHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p(watts). If the measurement is performed using 1% of the emission bandwidth, power integration over 1.0 MHz is required.

RSS-139 section 6.6

- (i) In the first 1.0 MHz bands immediately outside and adjacent to the equipment's smallest operating frequency block,2 which can contain the equipment's occupied bandwidth, the emission power per any 1% of the emission bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least 43 + 10 log10 p (watts) dB.
- (ii) After the first 1.0 MHz outside the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power in any 1 MHz bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least 43 + 10 log10 p (watts) dB.

REPORT NO.: 4790824205-1-RF-5 Page 21 of 81

TEST PROCEDURE


Per KDB 971168 D01 Power Meas License Digital Systems v03r01

The RF output of the transmitter was connected to a spectrum analyzer through a calibrated coaxial cable. Sufficient scans were taken to show the out-of-band Emissions, if any, up to 10th harmonic. Multiple sweeps were recorded in maximum hold mode using a peak detector to ensure that the worst-case emissions were caught.

- a) Set the RBW = 100 kHz for emission below 1GHz and 1MHz for emissions above 1GHz (Tests were performed 1 MHz [Worst case], to sweep 1 time for all frequency range)
- b) Set VBW \geq 3 × RBW;
- c) Set span ≥ 1.5 times the OBW;
- d) Sweep time = auto couple;
- e) Detector = rms;
- f) Ensure that the number of measurement points = Max (40001);
- g) Trace mode = average (LTE 5), Maxhold (LTE Band7);

Note: Please refer to section 5.4 for bandwidth and RB setting about LTE bands.

TEST SETUP

TEST ENVIRONMENT

REPORT NO.: 4790824205-1-RF-5 Page 22 of 81

Temperature	23.2°C	Relative Humidity	52.6%
Atmosphere Pressure	101kPa	Test Voltage	DC 5V

RESULTS

Please refer to Appendix E.

REPORT NO.: 4790824205-1-RF-5 Page 23 of 81

7.6. FREQUENCY STABILITY

Rule Part:

FCC: §2.1055, §22.355, §24.235, §27.54, §90,

RSS-132, RSS-133, RSS-139

LIMITS

§22.355 - The carrier frequency shall not depart from the reference frequency in excess of ±2.5 ppm for mobile stations.

§24.235 and §27.54 - The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

RSS-132 section 5.3

The frequency stability shall be sufficient to ensure that the occupied bandwidth stays within each of the sub-bands when tested at the temperature and supply voltage variations specified in RSS-Gen.

RSS-133 section 6.3

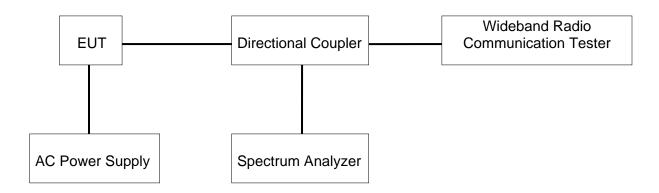
The carrier frequency shall not depart from the reference frequency, in excess of ±2.5 ppm for mobile stations and ±1.0 ppm for base stations.

In lieu of meeting the above stability values, the test report may show that the frequency stability is sufficient to ensure that the emission bandwidth stays within the operating frequency block when tested to the temperature and supply voltage variations specified in RSS-Gen.

RSS-139 section 6.4

The frequency stability shall be sufficient to ensure that the occupied bandwidth stays within the operating frequency block when tested to the temperature and supply voltage variations specified in RSS-Gen.

TEST PROCEDURE


Refer to KDB 971168 D01 Power Meas License Digital Systems v03r01.

	Normal Test Conditions	Extreme Test Conditions
Relative Humidity	45 % - 75 %	/
Atmospheric Pressure	100 kPa ~102 kPa	/
Tomporoturo	T _N (Normal Temperature):	T _L (Low Temperature): -30 °C
Temperature	24.8 °C	T _H (High Temperature): 50 °C
Supply Voltage 1	V. (Normal Valtage): DC 5V	V _L (Low Voltage): DC 4.25 V
Supply Voltage 1	V _N (Normal Voltage): DC 5V	V _H (High Voltage): DC 5.75 V
Supply Voltage 2	V. (Normal Voltage): AC 120V	V _L (Low Voltage): AC 102 V
	V _N (Normal Voltage): AC 120V	V _H (High Voltage): AC 138 V

Note: Two ways power supply voltage have been tested, only the worst data supply voltage 1 was recorded in the report.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2°C	Relative Humidity	52.6%
Atmosphere Pressure	101kPa	Test Voltage	/

RESULTS

Please refer to Appendix F.

REPORT NO.: 4790824205-1-RF-5 Page 25 of 81

8. APPENDIX

8.1. AppendixA: Effective (Isotropic) Radiated Power Output Data 8.1.1. Test Result

Band 2		Average Power (dBm)				
_		9262CH	9400CH	9538CH		
	12.2kbps RMC	18.34	18.46	18.48		
WCDMA	64kbps RMC	17.91	18.06	17.72		
	144kbps RMC	18	17.99	17.77		
	384kbps RMC	17.93	18.08	17.74		
	Subtest 1	18.03	18.14	17.82		
HSDPA	Subtest 2	17.83	18.06	17.77		
HODEA	Subtest 3	17.8	18.12	17.8		
	Subtest 4	17.84	18.09	17.76		
	Subtest 1	15.28	15.73	15.77		
	Subtest 2	16.17	16.7	16.11		
HSUPA	Subtest 3	16.1	16.37	16.06		
	Subtest 4	16.84	16.08	16.06		
	Subtest 5	18.11	18.24	17.94		
В	and 4		Average Power (dBm)			
D	anu 4	1312CH	1413CH	1513CH		
	12.2kbps RMC	17.83	18.53	18.51		
WCDMA	64kbps RMC	17.66	16.9	18.43		
	144kbps RMC	17.68	16.96	18.41		
	384kbps RMC	17.65	16.91	18.38		
	Subtest 1	17.63	17.04	18.49		
HSDPA	Subtest 2	18.52	17	18.49		
TIODI A	Subtest 3	18.52	17.01	18.44		
	Subtest 4	18.48	16.99	18.44		
	Subtest 1	15.43	14.77	16.4		
	Subtest 2	16.35	15.31	16.36		
HSUPA	Subtest 3	16.36	15.04	16.4		
	Subtest 4	16.4	15.08	16.4		
	Subtest 5	17.88	17.14	18		
D.	and 5		Average Power (dBm)			
B	and J	4132CH	4182CH	4233CH		
	12.2kbps RMC	21.68	21.83	21.96		
WCDMA	64kbps RMC	21.56	21.67	21.78		
	144kbps RMC	21.53	21.63	21.81		
	384kbps RMC	21.52	21.7	21.77		
	Subtest 1	20.72	21.04	20.90		
HSDPA	Subtest 2	20.91	21.00	20.87		
	Subtest 3	20.90	21.00	20.85		

REPORT NO.: 4790824205-1-RF-5

Page 26 of 81

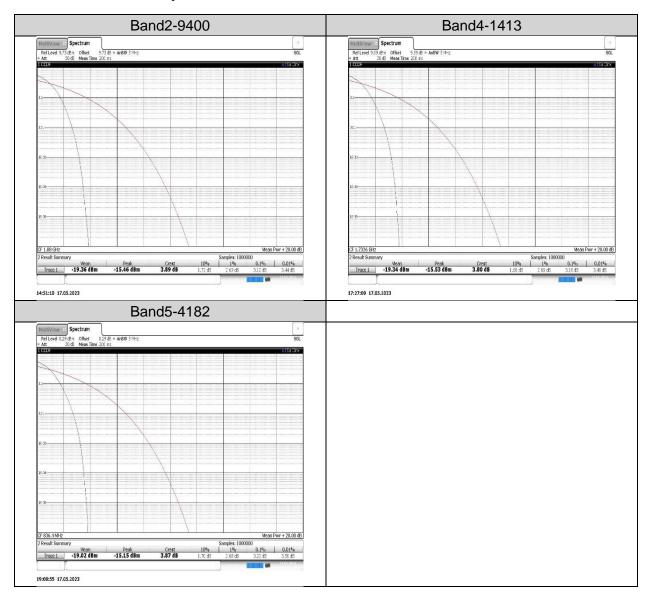
	Subtest 4	20.87	20.98	20.72
	Subtest 1	19.93	19.55	19.69
	Subtest 2	19.44	19.77	19.65
HSUPA	Subtest 3	19.41	19.76	19.65
	Subtest 4	19.43	19.76	19.68
	Subtest 5	20.61	20.95	20.49

8.2. AppendixB:Peak-to-Average Ratio 8.2.1. Test Result

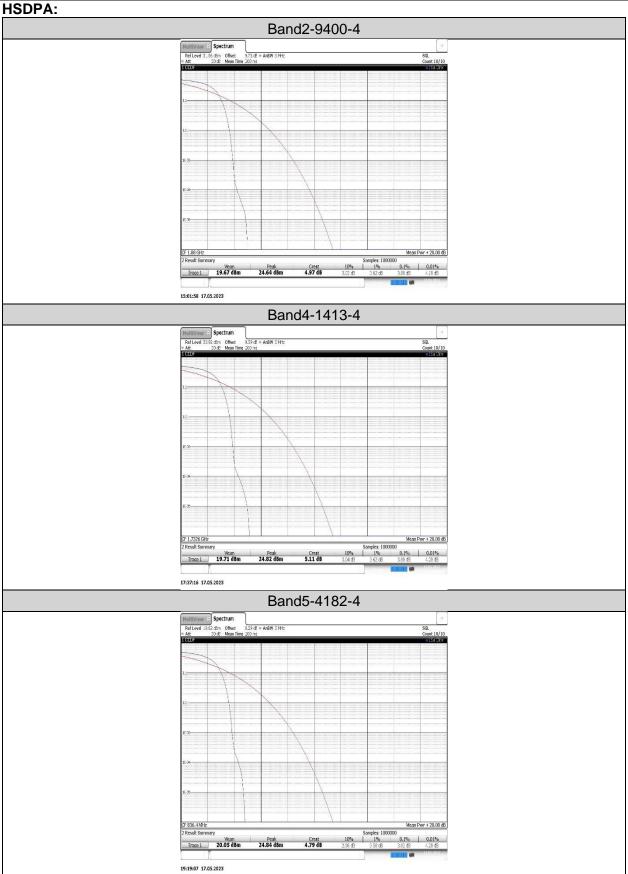
RMC 12.2kbps:

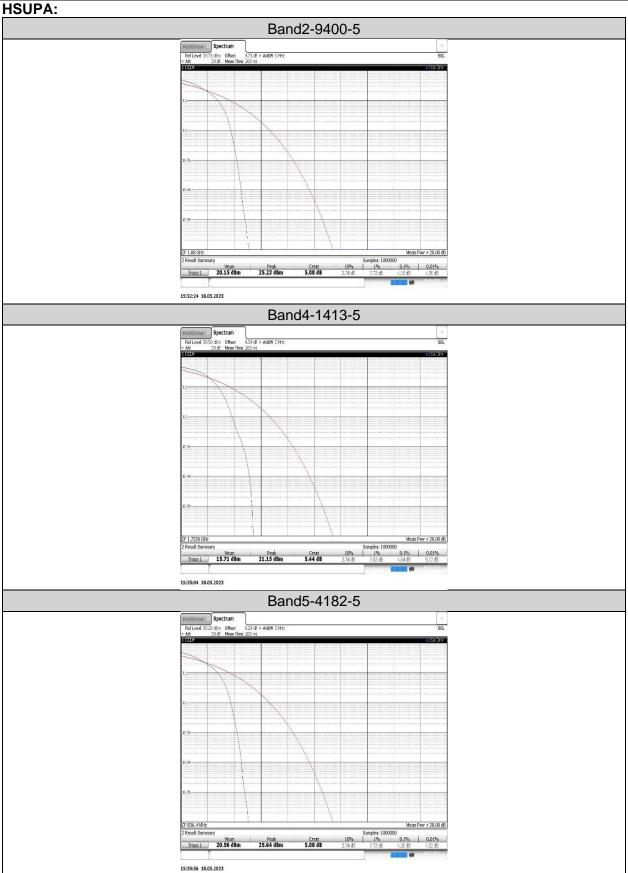
Band	Channel	Peak-to-Average Ratio(dB)	Limit(dB)	Verdict
Band2	9400	3.12	13	PASS
Band4	1413	3.18	13	PASS
Band5	4182	3.22	13	PASS

HSDPA:


Band	Channel	SubTest	Peak-to-Average Ratio(dB)	Limit(dB)	Verdict
Band2	9400	4	3.88	13	PASS
Band4	1413	4	3.88	13	PASS
Band5	4182	4	3.82	13	PASS

HSUPA:


Band	Channel	SubTest	Peak-to-Average Ratio(dB)	Limit(dB)	Verdict
Band2	9400	5	4.18	13	PASS
Band4	1413	5	4.64	13	PASS
Band5	4182	5	4.2	13	PASS


8.2.2. Test Graphs

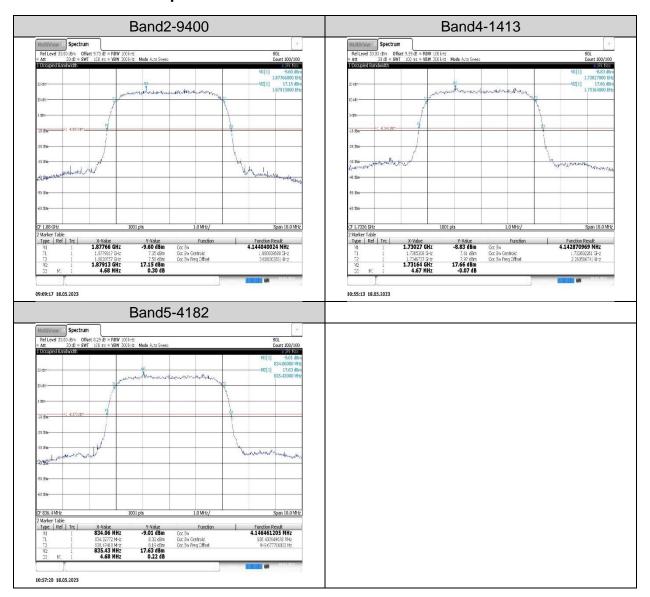
REPORT NO.: 4790824205-1-RF-5 Page 30 of 81

8.3. AppendixC:26dB Bandwidth and Occupied Bandwidth 8.3.1. Test Result

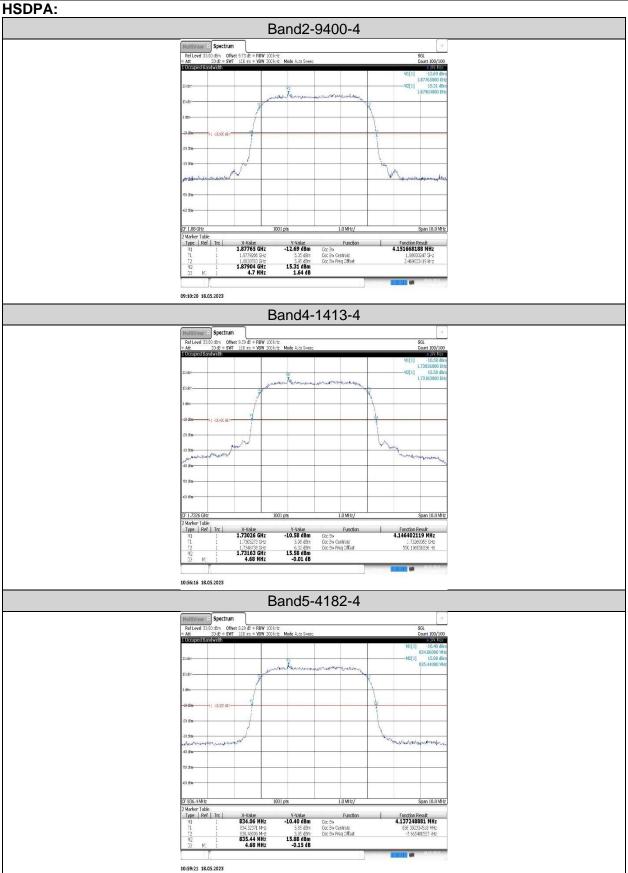
RMC 12.2kbps:

Band	Channel	Occupied Bandwidth (kHz)	26dB Bandwidth (kHz)	Limit(kHz)	Verdict
Band2	9400	4.144	4.68		PASS
Band4	1413	4.143	4.67		PASS
Band5	4182	4.146	4.68		PASS

HSDPA:


Band	Channel	SubTest	Occupied Bandwidth (kHz)	26dB Bandwidth (kHz)	Limit(kHz)	Verdict
Band2	9400	4	4.152	4.70		PASS
Band4	1413	4	4.146	4.68		PASS
Band5	4182	4	4.137	4.68		PASS

HSUPA:


Band	Channel	SubTest	Occupied Bandwidth (kHz)	26dB Bandwidth (kHz)	Limit(kHz)	Verdict
Band2	9400	5	4.15	4.66		PASS
Band4	1413	5	4.147	4.68		PASS
Band5	4182	5	4.15	4.70		PASS


8.3.2. Test Graphs

REPORT NO.: 4790824205-1-RF-5

Page 34 of 81

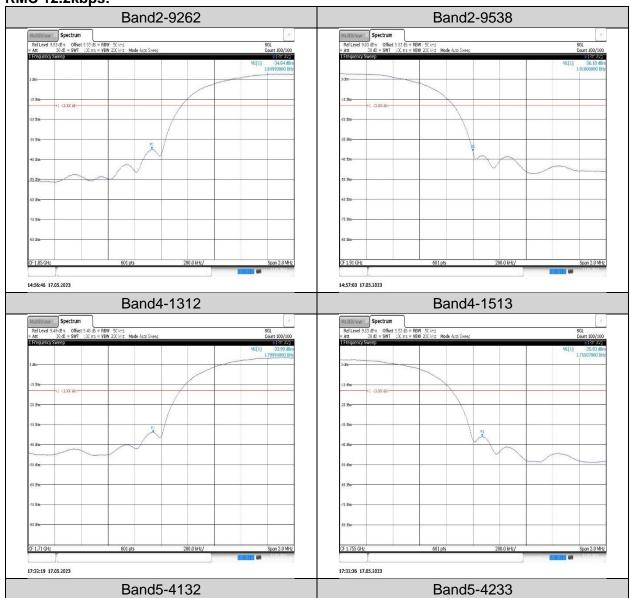
8.4. AppendixD:Band Edge 8.4.1. Test Result

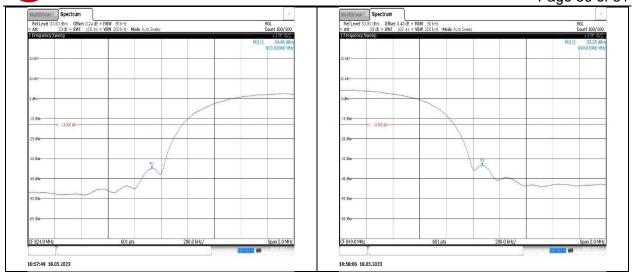
RMC 12.2kbps:

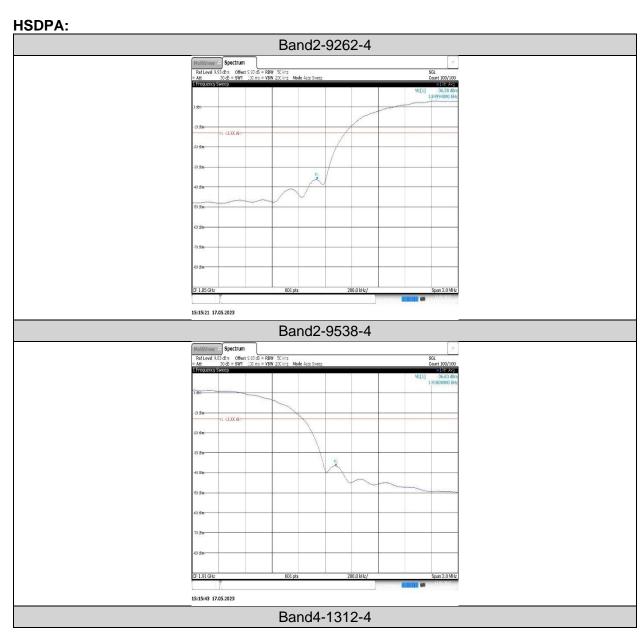
Band	Channel	Frequency (MHz)	Result (dBm)	Limit(dBm)	Verdict
Band2	9262	1849.93	-34.84	-13	PASS
Band2	9538	1910.00	-36.10	-13	PASS
Band4	1312	1709.94	-33.99	-13	PASS
Band4	1513	1755.07	-35.93	-13	PASS
Band5	4132	823.93	-34.86	-13	PASS
Band5	4233	849.07	-33.35	-13	PASS

HSDPA:

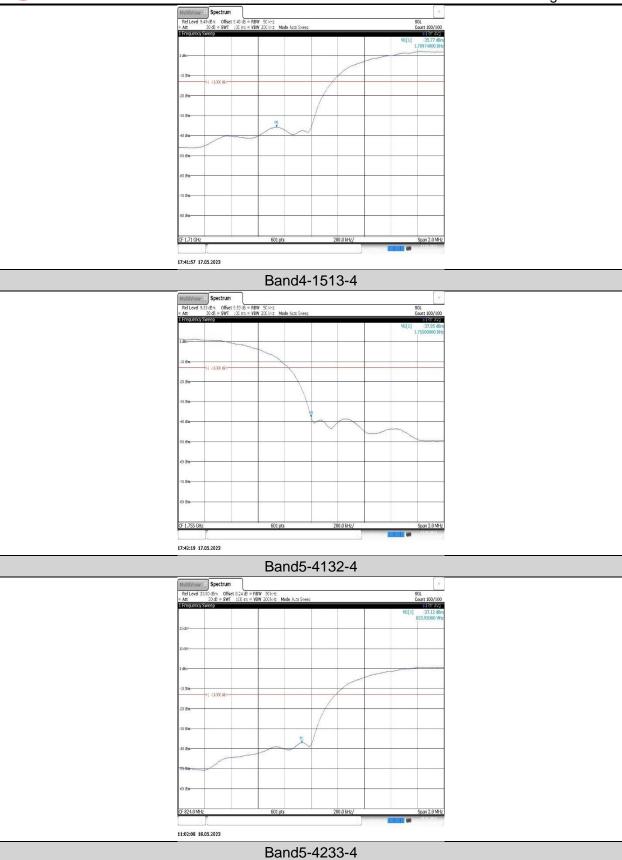
Band	Channel	SubTest	Frequency (MHz)	Result (dBm)	Limit(dBm)	Verdict
Band2	9262	4	1849.94	-36.28	-13	PASS
Band2	9538	4	1910.08	-36.63	-13	PASS
Band4	1312	4	1709.74	-35.77	-13	PASS
Band4	1513	4	1755.00	-37.95	-13	PASS
Band5	4132	4	823.93	-37.12	-13	PASS
Band5	4233	4	849.07	-34.7	-13	PASS

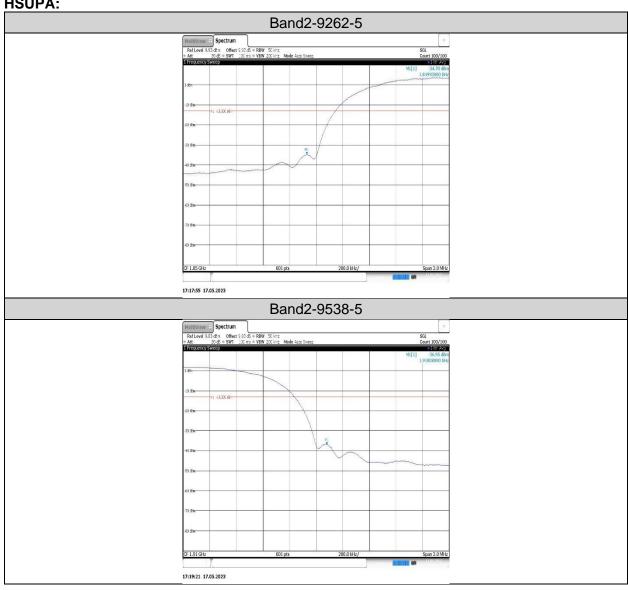

HSUPA:


1100171						
Band	Channel	SubTest	Frequency (MHz)	Result (dBm)	Limit(dBm)	Verdict
Band2	9262	5	1849.93	-34.7	-13	PASS
Band2	9538	5	1910.08	-36.95	-13	PASS
Band4	1312	5	1709.94	-34.16	-13	PASS
Band4	1513	5	1755.06	-35.92	-13	PASS
Band5	4132	5	823.93	-37.6	-13	PASS
Band5	4233	5	849.07	-35.79	-13	PASS



8.4.2. Test Graphs


RMC 12.2kbps:

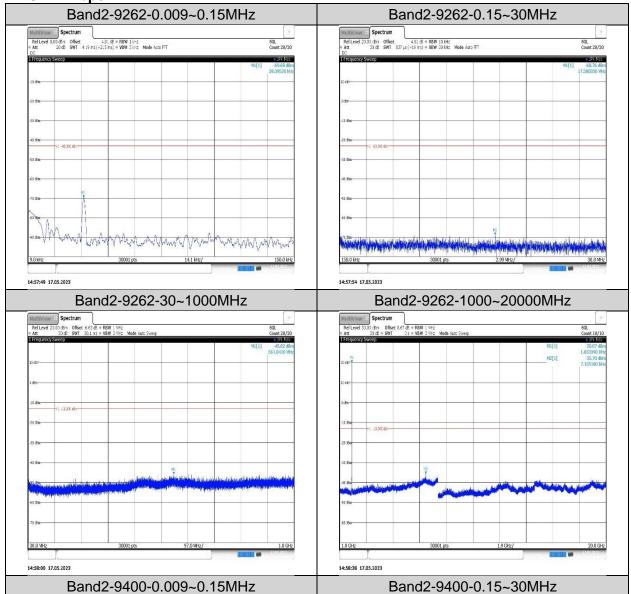


Page 38 of 81

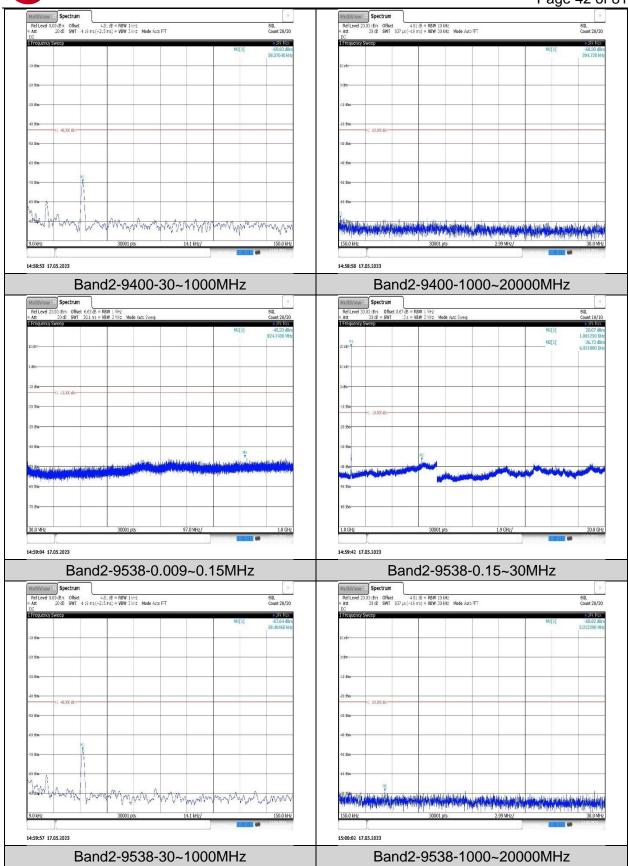
HSUPA:

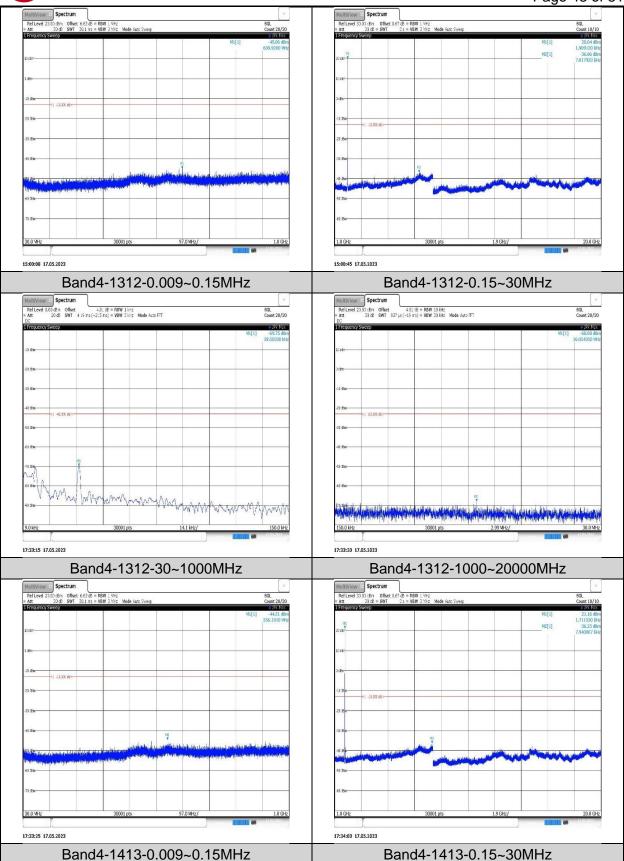
Band4-1312-5 19:01:25 17.05.2023 Band4-1513-5 19:02:49 17.05.2023 Band5-4132-5

Band5-4233-5

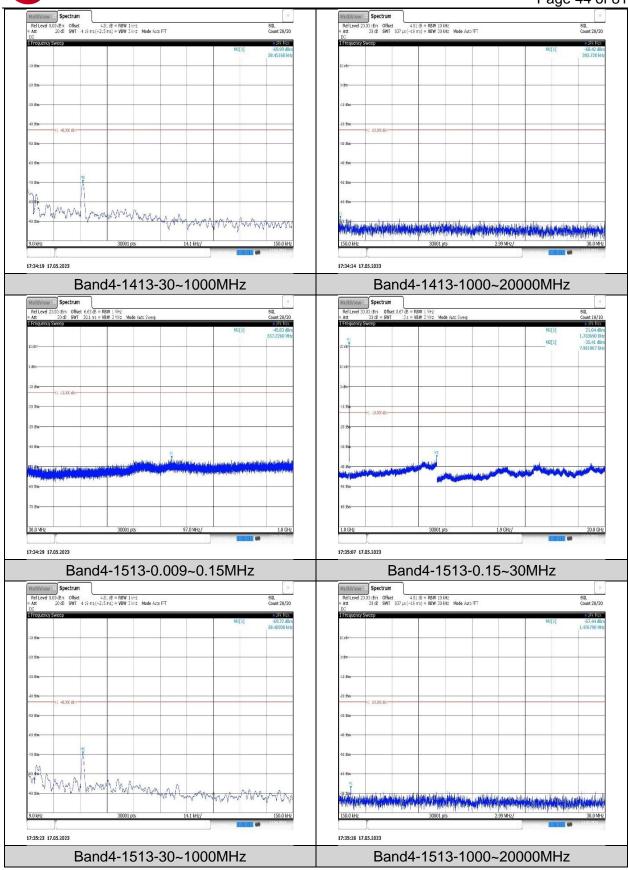

Page 40 of 81

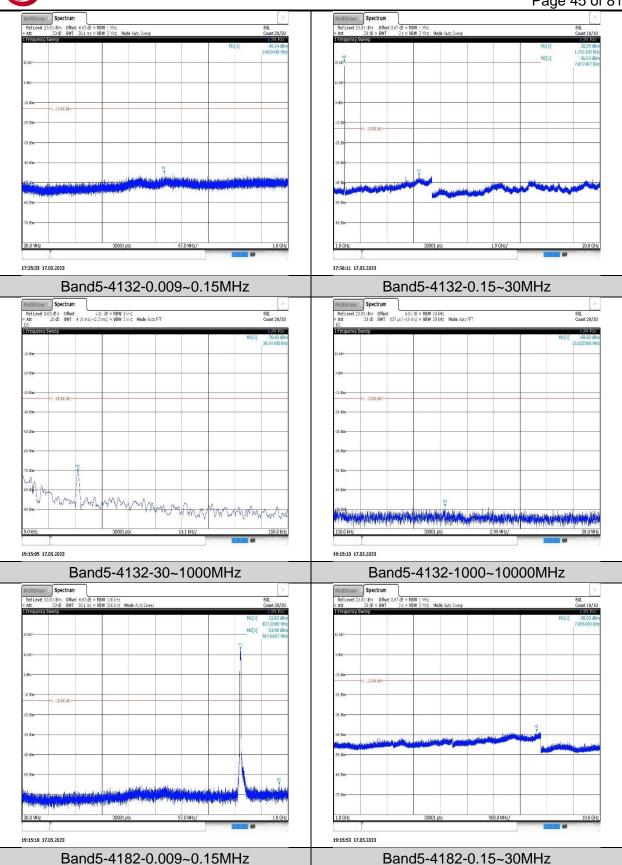
REPORT NO.: 4790824205-1-RF-5 Page 41 of 81

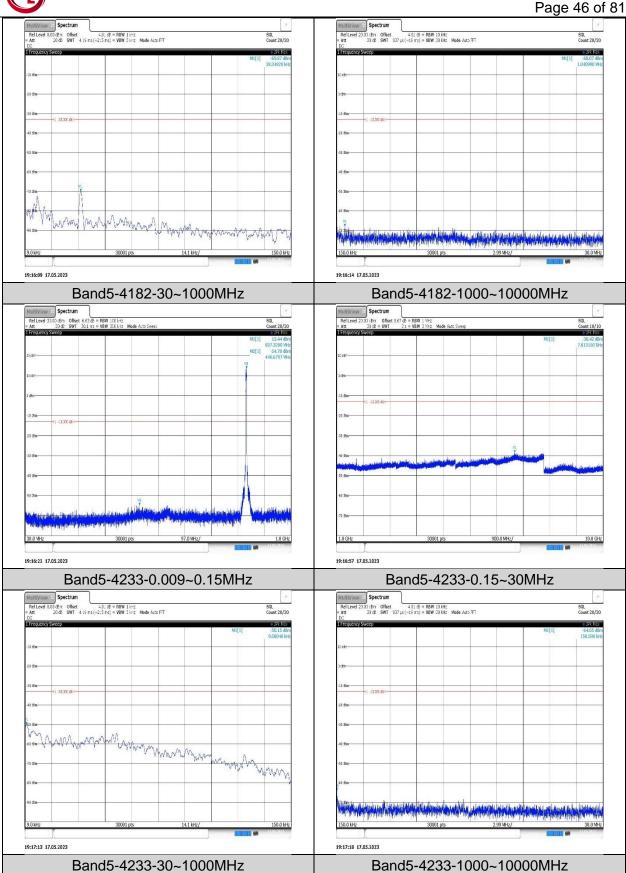

8.5. AppendixE:Conducted SpuriousEmission 8.5.1. Test Graphs


RMC 12.2kbps:

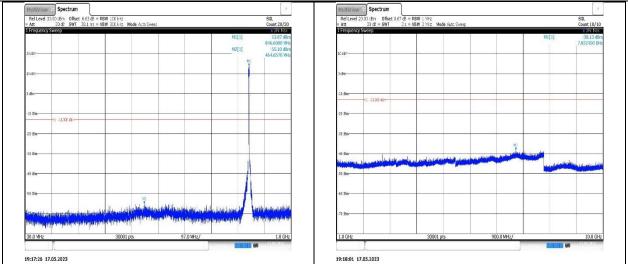
REPORT NO.: 4790824205-1-RF-5

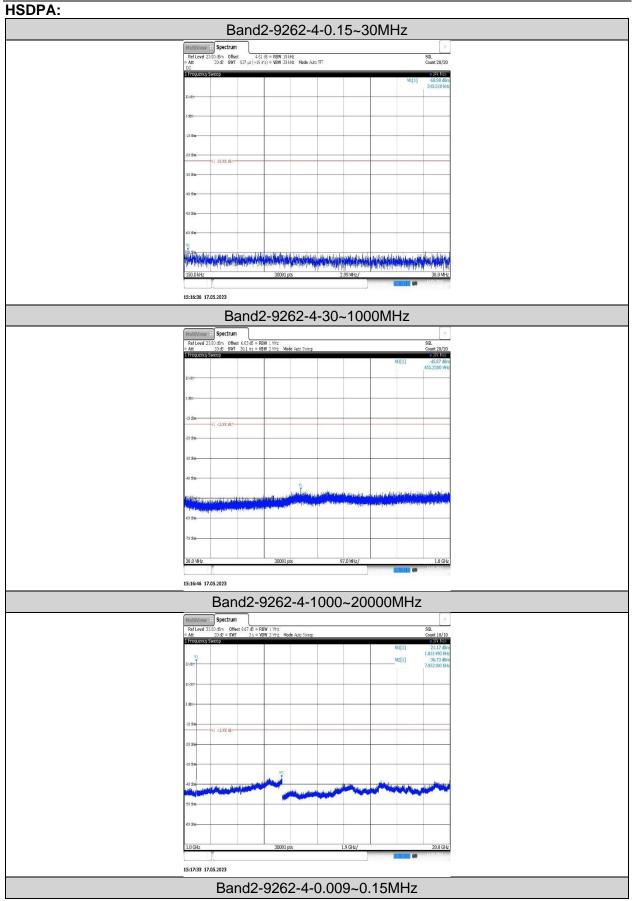

Page 42 of 81

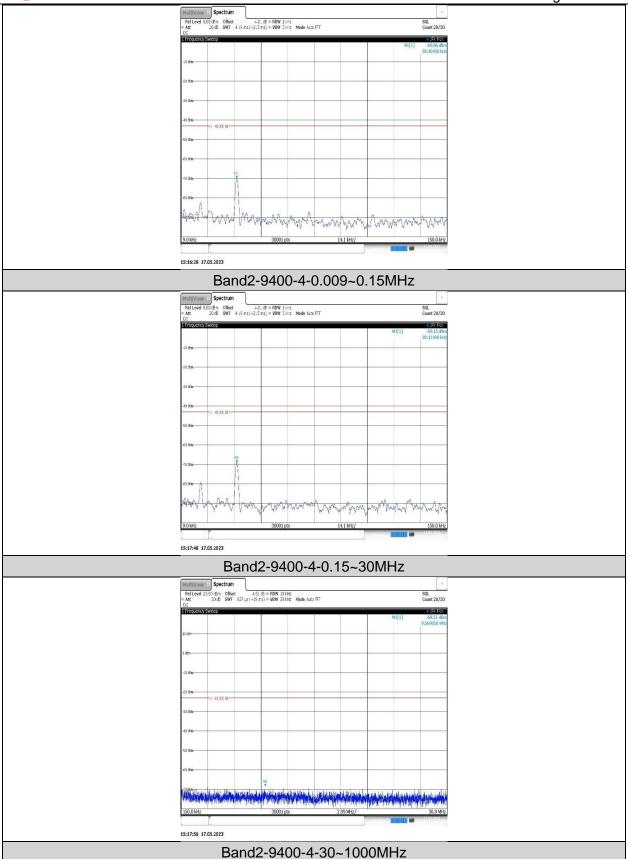


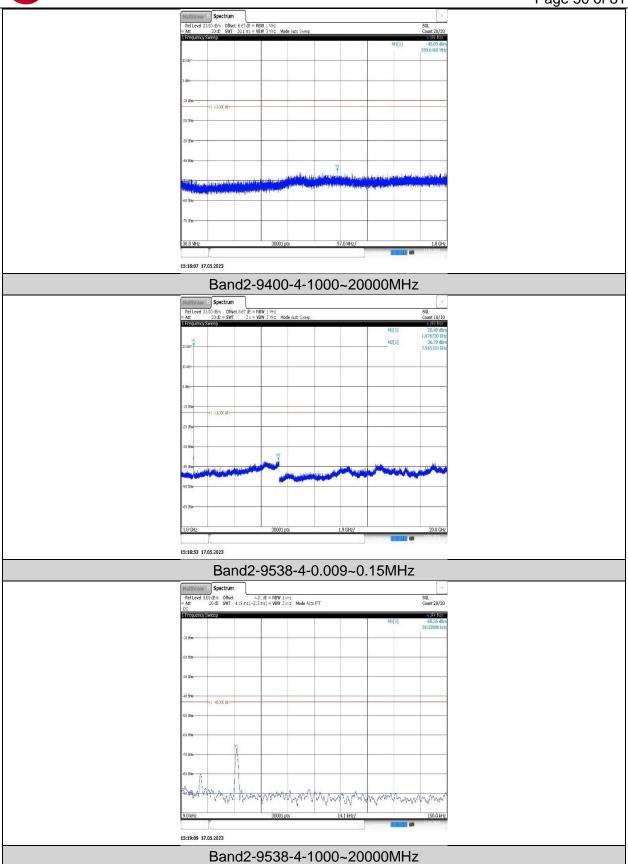


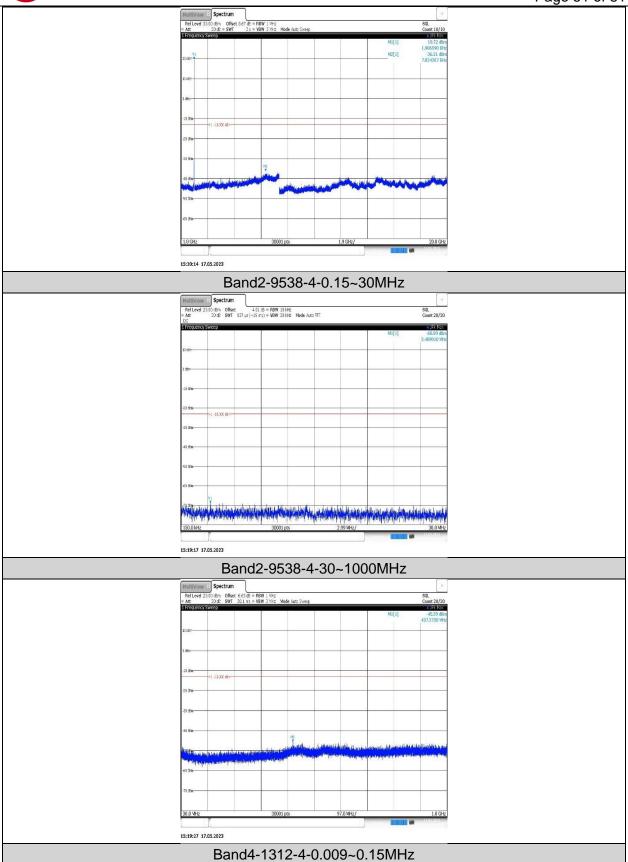
REPORT NO.: 4790824205-1-RF-5


Page 44 of 81

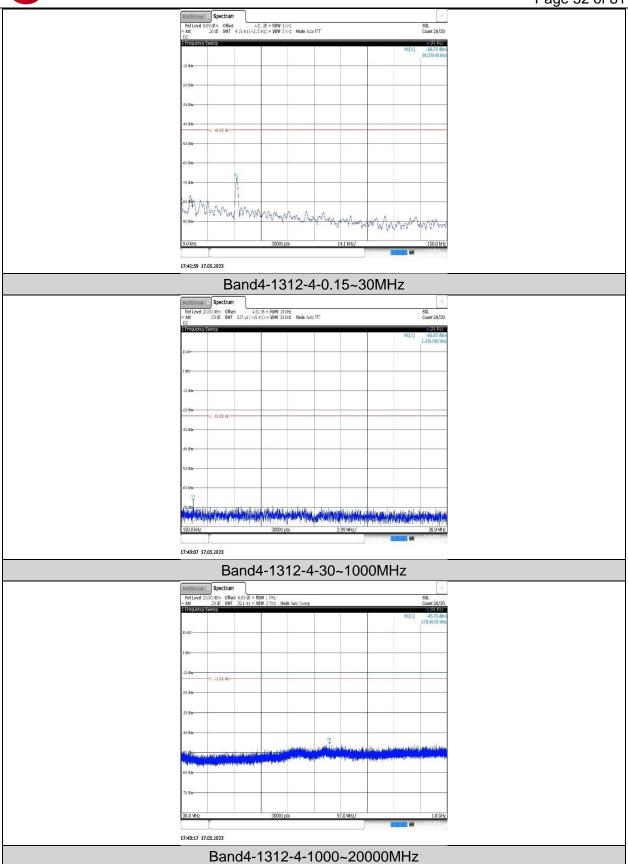




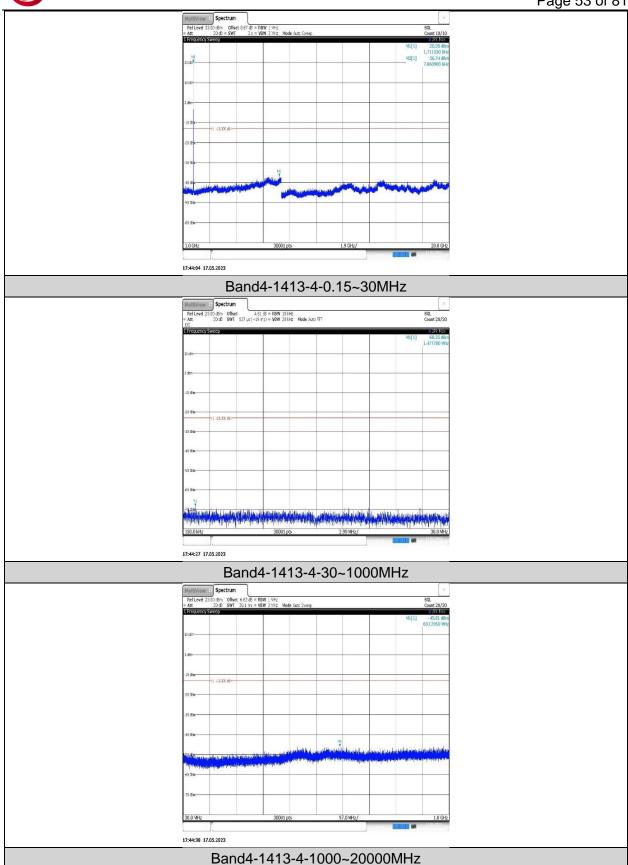




Page 50 of 81


UL Solutions

Page 51 of 81



Page 52 of 81

Page 53 of 81

