

RADIO TEST REPORT

(FCC Part 15 Subpart C)

Applicant:	PAX Technology Limited
Address:	Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour, Hong Kong China

Manufacturer:	PAX Computer Technology (Shenzhen) Co., Ltd.			
	401 and 402, Building 3, Shenzhen Software Park, Nanshan District, Shenzhen City,			
Address:	Guangdong Province, P.R.C			
Product:	Smart Desktop Terminal			
Brand Name:	PAX			
Model Name:	A8500P, A8500N			
FCC ID:	V5PA85004G			
Date of tests:	May. 5, 2023 ~ May. 29, 2023			
The tests have been corried out according to the requirements of the following standard:				

The tests have been carried out according to the requirements of the following standard:

Part 15 Subpart C §15. 225

□ RSS-Gen Issue 5 Amendment 1 (March 2019)

ANSI C63.10-2013

CONCLUSION: The submitted sample was found to <u>COMPLY</u> with the test requirement

Prepared by Simon Wang	Approved by Luke Lu
Engineer / Mobile Department	Manager / Mobile Department
0,	, ,

Date: May. 29, 2023

Simon Wang

Date: May. 29, 2023

luke lu

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauverias.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Report Revise Record

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
W7L-P23050004RF08	Original release	May. 29, 2023

Tel: +86 755 8869 6566 Fax: +86 755 8869 6577

Page 2 of 28

TABLE OF CONTENTS

1.	GEN	ERAL DESCRIPTION	5
	1.1	GENERAL DESCRIPTION OF EUT	5
	1.2	MODIFICATION OF EUT	
	1.3	APPLICABLE STANDARDS	5
2.	TES	Γ CONFIGURATION OF EQUIPMENT UNDER TEST	6
	2.1	DESCRIPTIONS OF TEST MODE	6
	2.2	TEST CONFIGURATIONS	7
	2.3	SUPPORT EQUIPMENT	8
	2.4	TEST SETUP	8
	2.5	MEASUREMENT RESULTS EXPLANATION EXAMPLE	10
3.	TES	Γ RESULT	11
	3.1	20DB AND 99% BANDWIDTH MEASUREMENT	11
	3.2	FREQUENCY STABILITY MEASUREMENT	12
	3.3	FIELD STRENGTH OF FUNDAMENTAL EMISSIONS AND MASK MEASUREMENT	14
	3.4	RADIATED EMISSIONS MEASUREMENT	17
	3.5	AC CONDUCTED EMISSION MEASUREMENT	23
	3.6	ANTENNA REQUIREMENTS	26
4	LIST	OF MEASURING EQUIPMENT	27
5	UNC	ERTAINTY OF EVALUATION	28

Summary of Test RESULT

FCC Rule	IC Rule	Description	Limit	Result	Remark
-	RSS-Gen 6.7	99% Bandwidth	-	Pass	-
15.225(a)(b)(c)	RSS-210 Annex B.6	Field Strength of Fundamental Emissions	15.225(a)(b)(c) RSS-210 Annex B.6	Pass	-
15.215	-	20dB Spectrum Bandwidth	15.215	Pass	-
15.225(d) 15.209	RSS-210 Annex B.6	Radiated Emission	15.225(d) & 15.209 RSS-210 Annex B.6	Pass	-
15.207	RSS-GEN 8.8	AC Conducted Emission	15.207(a)	Pass	-
15.225(e)	Annex B.6	Frequency Stability	< ±100 ppm	Pass	-
15.203	RSS-Gen 6.8	Antenna Requirement	N/A	Pass	-

1. General Description

1.1 General Description Of EUT

Items	Description
Tx/Rx Frequency Range	13.553 ~ 13.567MHz
Channel Number	1
20dBW	2.692 kHz
99%OBW	2.292 kHz
Antenna Type	Loop Antenna
Type of Modulation	ASK

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Applicable Standards

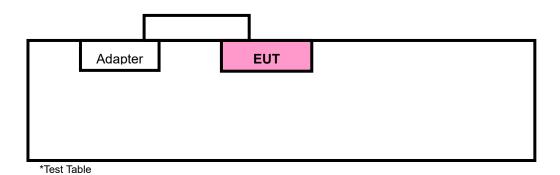
According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.225
- ANSI C63.10-2013
- RSS-210 Issue 10
- RSS-Gen Issue 5

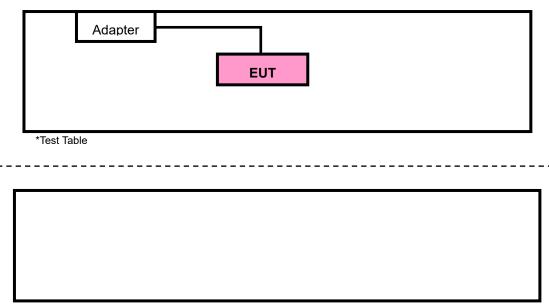
2. Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.


	Test Items						
AC Power Line Conducted Emissions		Field Strength of Fundamental Emissions					
2	0dB Spectrum Bandwidth	Frequency Stability					
R	adiated Emissions 9kHz~30MHz	Radiated Emissions 30MHz~1GHz					
No	ote:						
1.	. The EUT was programmed to be in continuously transmitting mode.						
2.	. The ancillary equipment, NFC card, is used to make the EUT (NFC) continuously transmit a						
	13.56MHz and is placed around 3 cm gap to the EUT.						
3.	3. Pre-Scan has been conducted to determine the worst-case mode from all possible combination						
	between available modulations, work in modes and data rates. Selected for the final test as listed						
	below.						

Frequency	Work in Modes	Туре	Data Rate (Kbps)		
13.56 MHz		\Box A	□ 106		
	□ Card Emulation □ Reader/Writer □ Peer-to-Peer	□в	☑ 212		
		▽ F	□ 424		
		\Box \lor	□ 848		
Remark:					
The mark" [▼] " means is chosen for testing;					
The mark" means is not chosen for testing.					



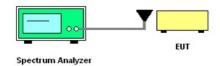
2.2 Test Configurations

<AC Conducted Emissions>

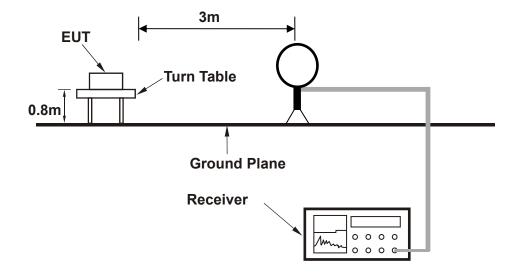
< For Fundamental Emissions and Mask and Radiated Emissions Measurement >

^{*} Kept in a remote area

2.3 Support Equipment


NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	N/A	N/A	N/A	N/A	N/A

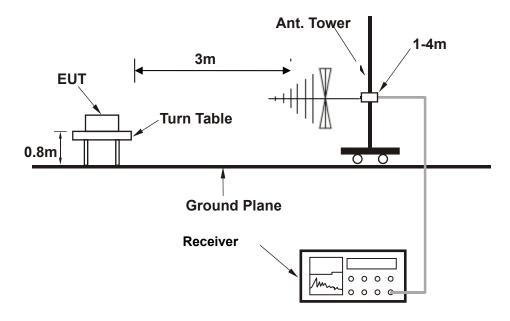
2.4 Test Setup


The EUT is continuously communicating during the tests.

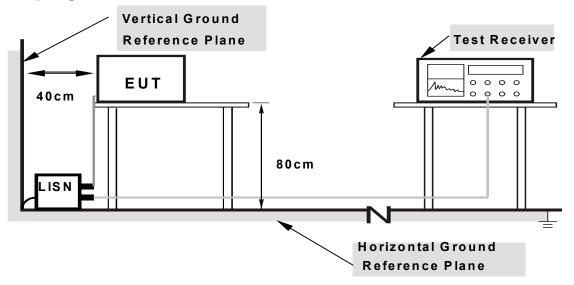
EUT was set in the Hidden menu mode to enable NFC communications.

Setup diagram for Conducted Test

Setup diagram for Radiation(9KHz~30MHz) Test



BV 7Layers Communications Technology


(Shenzhen) Co., Ltd

Setup diagram for Radiation(Below 1G) Test

Setup diagram for AC Conducted Emission Test

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

BV 7Layers Communications Technology

2.5 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 5 dB and 10dB attenuator.

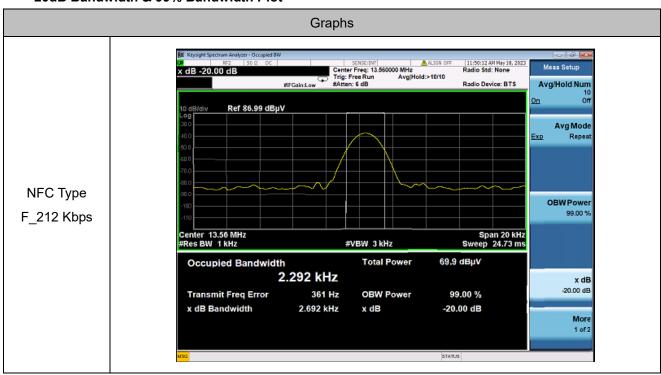
Offset(dB) = RF cable loss(dB) + attenuator factor(dB). = 5 + 10 = 15 (dB)

3. Test Result

3.1 20dB and 99% Bandwidth Measurement

3.1.1 Limit of 20dB and 99% Bandwidth

Intentional radiators must be designed to ensure that the 20dB and 99% emission bandwidth in the specific band 13.553~13.567MHz.


3.1.2 Test Procedures

- The spectrum analyzer connected via a receive antenna placed near the EUT in peak Max hold mode.
- 2. The resolution bandwidth of 1 kHz and the video bandwidth of 3 kHz were used.
- 3. Measured the spectrum width with power higher than 20dB below carrier.
- 4. Measured the 99% OBW.

3.1.3 Test Result of 20dB and 99% Bandwidth

Test Mode : NFC		Temperature :		23 ℃		
Test Engineer :	Jace hu		Relative Humidity :		50%	
Mode	Frequency	20dB Ban	dwidth [kHz]	99	% OBW[kHz]	Verdict
NFC Type F_212 Kbps	13.56MHz	2	.692		2.292	PASS

20dB Bandwidth & 99% Bandwidth Plot

BV 7Layers Communications Technology (Shenzhen) Co., Ltd

No.B102, Dazu Chuangxin Mansion, North of Beihuan Avenue, North Area, Hi-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, China

Tel: +86 755 8869 6566 Fax: +86 755 8869 6577

Email: customerservice.sw@bureauveritas.com

3.2 Frequency Stability Measurement

3.2.1 Limit of Frequency Stability

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall

be performed using a new battery.

3.2.2 Test Procedures

1. The spectrum analyzer connected via a receive antenna placed near the EUT.

2. EUT have transmitted signal and fixed channelize.

3. Set the spectrum analyzer span to view the entire emissions bandwidth.

4. Set RBW = 1 kHz, VBW = 3 kHz with peak detector and maxhold settings.

5. The fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ± 100 ppm.

6. Extreme temperature rule is -20°C~50°C.

3.2.3 Test Result of Frequency Stability

The NFC Type F 212 Kbps is the worst case, Only report worst mode data

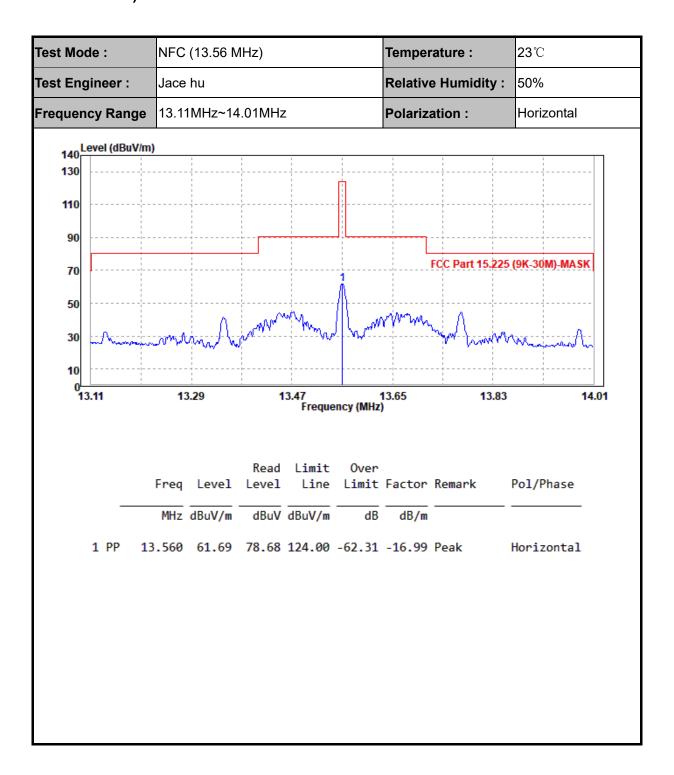
NFC Type F_212 Kbps

Voltage (Vdc)	Temperature	Measurement Frequency (MHz)	Frequency Tolerance(ppm)	Limit(ppm)	Result
8.55	20	13.56002	1.47		Pass
9.9	20	13.56037	27.29		Pass
	-20	13.56005	3.69	+100	Pass
	-10	13.56017	12.54		Pass
	0	13.55995	-3.69		Pass
9	10	13.55971	-21.39	±100	Pass
9	20 30	13.56001	0.74		Pass
		13.55983	-12.54		Pass
	40	13.55998	-1.47		Pass
	50	13.56016	11.80		Pass

BV 7Layers Communications Technology

(Shenzhen) Co., Ltd

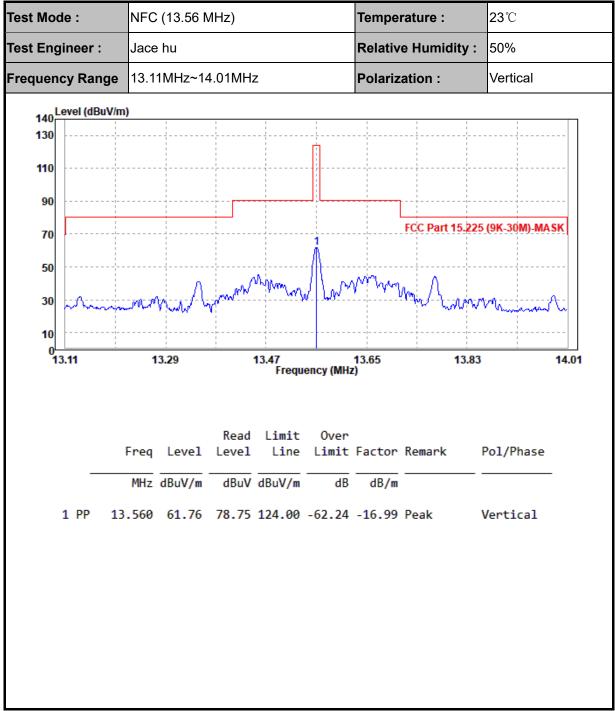
3.3 Field Strength of Fundamental Emissions and Mask Measurement


3.3.1 Limit of Field Strength of Fundamental Emissions and Mask

Rules and specifications	FCC CFR 47 Part 15 section 15.225 IC RSS-210 B.6				
Description	Compliance with th	e spectrum mask is t	ested with RBW set t	o 9kHz.	
From of Emission (MUZ)	Field Strength	Field Strength	Field Strength	Field Strength	
Freq. of Emission (MHz)	(µV/m) at 30m	(dBµV/m) at 30m	(dBµV/m) at 10m	(dBµV/m) at 3m	
1.705~13.110	30	29.5	48.58	69.5	
13.110~13.410	106	40.5	59.58	80.5	
13.410~13.553	334 50.5 69.58 90.5				
13.553~13.567	15848	84.0	103.08	124.0	
13.567~13.710	334	50.5	69.58	90.5	
13.710~14.010	106	40.5	59.58	80.5	
14.010~30.000	30	29.5	48.58	69.5	

3.3.2 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the receiving antenna was fixed at one meter above ground to find the maximum emissions field strength.
- 4. For Fundamental emissions, use the receiver to measure QP reading.
- 5. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- Compliance with the spectrum mask is tested with RBW set to 9kHz.
 Note: Emission level (dBμV/m) = 20 log Emission level (μV/m).


3.3.3 Test Results of Field Strength of Fundamental Emissions and Mask (1.705 MHz ~ 30 MHz)

Tel: +86 755 8869 6566 Fax: +86 755 8869 6577

Email: customerservice.sw@bureauveritas.com

3.4 Radiated Emissions Measurement

3.4.1 Limit

The field strength of any emissions which appear outside of 13.110 ~14.010MHz band shall not exceed the general radiated emissions limits.

Frequencies	Field Strength	Measurement Distance
(MHz)	(μV/m)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

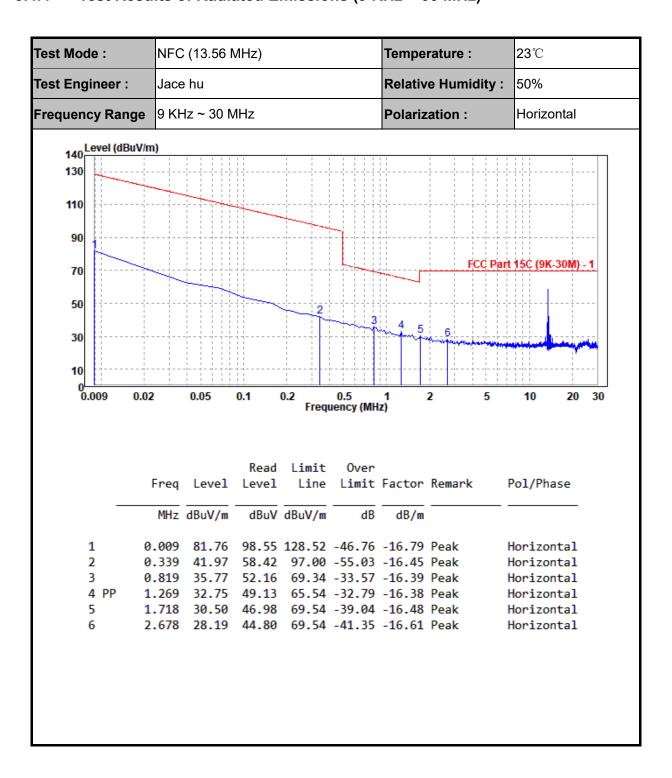
3.4.2 **Measuring Instrument Setting**

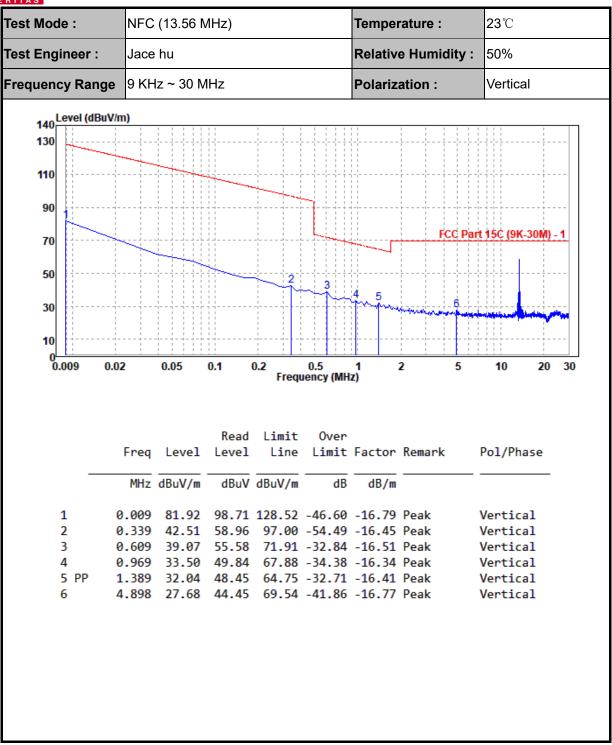
The following table is the setting of receiver.

Receiver Parameter	Setting
Attenuation	Auto
Frequency Range: 9kHz~150kHz	RBW 200Hz for QP
Frequency Range: 150kHz~30MHz	RBW 9kHz for QP
Frequency Range: 30MHz~1000MHz	RBW 120kHz for Peak

Note: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.

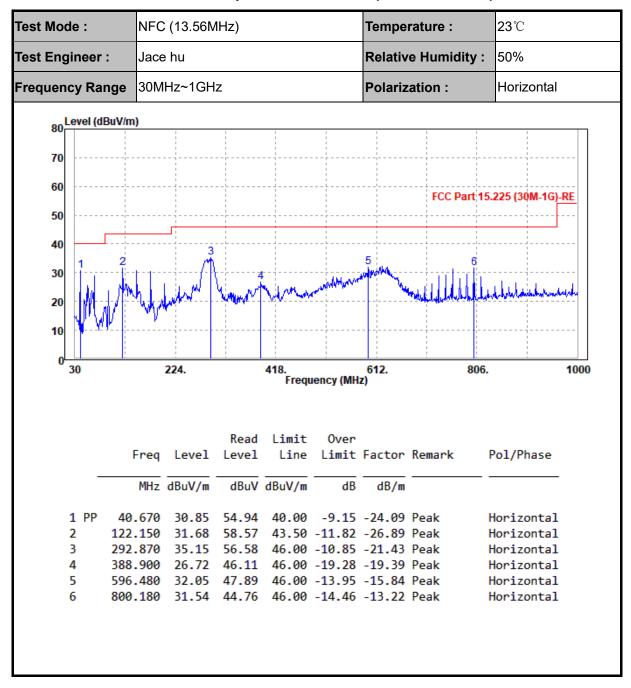
3.4.3 **Test Procedures**


- 1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the


turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.

- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver.

3.4.4 Test Results of Radiated Emissions (9 KHz ~ 30 MHz)



Email: <u>customerservice.sw@bureauveritas.com</u>

3.4.5 Test Result of Radiated Spurious Emission (30MHz ~ 1GHz)

(Shenzhen) Co., Ltd

Test Mode :	NFC (13.56M	Hz)	Tempe	rature :	23℃
Test Engineer :	Jace hu		Relativ	e Humidity :	50%
Frequency Range	30MHz~1GH:	Z	Polariz	ation :	Vertical
80 Level (dBuV/m))	1 1	1 1	1 1	
70					
60					
50				FCC Part 15.2	225 (30M-1G)-RE
40					
آ ال السلام ال	4		5		
30	I I May A	May property a party	HANNA WAYNAMA		المنظم المطالب المال
20	WAA 132 A.C. 1-3	W K		property appelled the Marketine	- Attended to the state of the
10					
0 30	224.	418.	612.	806.	1000
30	224.	Freque	ency (MHz)	800.	1000
		Read Limit	0ver		
	Freq Level	Level Line	Limit Factor	Remark F	Pol/Phase
	MHz dBuV/m	dBuV dBuV/m	dB dB/m	-	
1 PP 64	.920 35.71	63.85 40.00	-4.29 -28.14	Peak \	/ertical
	.150 36.89	64.57 43.50	-6.61 -27.68		/ertical
	.310 36.11 .110 30.97	61.62 43.50	-7.39 -25.51		/ertical
	TTM 3M 97	52.76 46.00	-15.03 -21.79		/ertical
4 285	.180 31.67	49.29 46.00	-14.33 -17.62	reak 1	/ertical

Email: customerservice.sw@bureauveritas.com

3.5 AC Conducted Emission Measurement

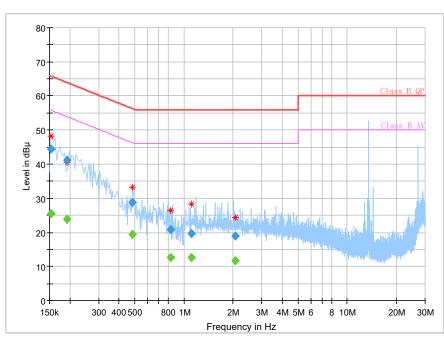
3.5.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBµV)			
(MHz)	Quasi-Peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

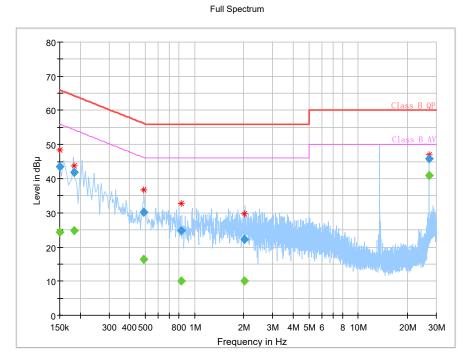
^{*}Decreases with the logarithm of the frequency.

3.5.2 Test Procedures


- The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8.Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.5.3 Test Result of AC Conducted Emission

Test Mode :	NFC	Temperature :	26℃
Test Engineer :	Carl Xie	Relative Humidity :	51%
Test Voltage :	120Vac / 60Hz	Phase :	Line
Function Type :	NFC		


Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)			(dB)
0.154000		25.56	55.78	30.22	L1	ON	9.7
0.154000	44.39		65.78	21.39	L1	ON	9.7
0.192000		23.98	53.95	29.97	L1	ON	9.7
0.192000	41.17		63.95	22.78	L1	ON	9.7
0.484000		19.33	46.27	26.94	L1	ON	9.7
0.484000	28.68		56.27	27.59	L1	ON	9.7
0.828000		12.63	46.00	33.37	L1	ON	9.7
0.828000	20.71		56.00	35.29	L1	ON	9.7
1.116000		12.70	46.00	33.30	L1	ON	9.7
1.116000	19.74		56.00	36.26	L1	ON	9.7
2.056000		11.79	46.00	34.21	L1	ON	9.7
2.056000	18.98		56.00	37.02	L1	ON	9.7

Tel: +86 755 8869 6566 Fax: +86 755 8869 6577

Email: customerservice.sw@bureauveritas.com

Test Mode :	NFC	Temperature :	26°C
Test Engineer :	Carl Xie	Relative Humidity :	51%
Test Voltage :	AC 120V/60Hz	Phase :	Neutral
Function Type :	NFC		

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dB μ V)	(dB μ V)	(dB μ	(dB)			(dB)
			\/\				
0.150000		24.37	56.00	31.63	N	ON	9.7
0.150000	43.58		66.00	22.42	N	ON	9.7
0.184000		24.84	54.30	29.46	N	ON	9.7
0.184000	41.94		64.30	22.36	N	ON	9.7
0.488000		16.26	46.20	29.94	N	ON	9.7
0.488000	30.16		56.20	26.04	Ν	ON	9.7
0.832000		10.17	46.00	35.83	N	ON	9.7
0.832000	24.70		56.00	31.30	N	ON	9.7
2.016000		10.18	46.00	35.82	Ν	ON	9.8
2.016000	22.24		56.00	33.76	N	ON	9.8
27.120000		40.99	50.00	9.01	N	ON	9.9
27.120000	45.74		60.00	14.26	N	ON	9.9

Tel: +86 755 8869 6566 Fax: +86 755 8869 6577

(Shenzhen) Co., Ltd

Email: customerservice.sw@bureauveritas.com

3.6 Antenna Requirements

3.6.1 Standard Applicable

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with

any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to

ensure that no antenna other than that furnished by the responsible party shall be used with the

device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to

the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The

manufacturer may design the unit so that the user can replace a broken antenna, but the use of a

standard antenna jack or electrical connector is prohibited.

3.6.2 Antenna Connected Construction

An Loop Antenna design is used.

3.6.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi.

Tel: +86 755 8869 6566 Fax: +86 755 8869 6577

Email: customerservice.sw@bureauveritas.com

Page 26 of 28

4 List of Measuring Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
3m Semi-anechoic Chamber	ETS-LINDGREN	9m*6m*6m	Euroshieldpn- CT0001143-1216	May. 19,20	May. 18,23
3m Semi-anechoic Chamber	ETS-LINDGREN	9m*6m*6m	Euroshieldpn- CT0001143-1216	May. 18,23	May. 17,26
Bilog Antenna	ETS-LINDGREN	3143B	00161965	Mar. 04,23	Mar. 03,24
Test Software	E3	V 9.160323	N/A	N/A	N/A
10dB Attenuator	JFW/USA	50HF-010-SMA	1505	Jun. 02,22	Jun. 01,23
MXE EMI Receiver	KEYSIGHT	N9038A-544	MY54450026	Apr. 21,23	Apr. 20,24
Signal Pre-Amplifier	EMSI	EMC 9135	980249	Jun. 01,22	May. 31,23
Loop Antenna	SCHWARZBEC K	FMZB1519B	00173	Sep. 05,22	Sep. 04,23

NOTE: 1. The calibration interval of the above test instruments is 12 months or 36 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

- 2. The test was performed in 3m Chamber.
- 3. The FCC Site Registration No. is 525120; The Designation No. is CN1171.

Uncertainty of Evaluation

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	UNCERTAINTY
AC Power Conducted emissions	±2.70dB
Radiated emissions (9KHz~30MHz)	±2.68dB
Radiated emissions (30MHz~1GMHz)	±4.98dB
Occupied Channel Bandwidth	±43.58KHz
Frequency Stability	±76.97Hz

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.