

Card and Reader Technologies

AET62

Revision History

Version	Date	Prepared By	Description
1.00	28 Mar 2008	Jason Ngan	Initial release
1.10	24 Aug 2009	Jason Ngan	Updated Features

Table of Contents

1.0.	Introduction	
2.0.	FEATURES	5
3.0.	SYSTEM BLOCK DIAGRAM	6
4.0.	HARDWARE INTERFACES	7
4.1.	Power Supply	7
4.2.	USB Interface	7
4.2	2.1. Endpoints	7
4.3.	Bi-Color LED	8
4.4.	Buzzer (optional)	8
4.5.	SAM Interface (optional)	8
4.6.	Built-in Antenna	8
4.7.	FINGERPRINT SCANNNER	8
5.0.	Commands for Contact and Contactless Interfaces Handling	10
5.0. 5.1.	Commands for Contact and Contactless Interfaces Handling	10 11
5.0. 5.1. 5.1	Commands for Contact and Contactless Interfaces Handling PSEUDO APDUS IN CONTACTLESS READER .1. Direct Transmit	10 11 11
5.0. 5.1. 5.1 6.0.	Commands for Contact and Contactless Interfaces Handling PSEUDO APDUS IN CONTACTLESS READER 1. Direct Transmit APIs for Fingerprint Sensor	10 11 11 12
5.0. 5.1. 5.1 6.0. 6.1.	Commands for Contact and Contactless Interfaces Handling PSEUDO APDUS IN CONTACTLESS READER .1. Direct Transmit APIs for Fingerprint Sensor PTOpen	10
5.0. 5.1. 6.0. 6.1. 6.2.	Commands for Contact and Contactless Interfaces Handling PSEUDO APDUS IN CONTACTLESS READER .1. Direct Transmit APIs for Fingerprint Sensor PTOpen PTClsoe	
5.0. 5.1. 6.0. 6.1. 6.2. 6.3.	Commands for Contact and Contactless Interfaces Handling PSEUDO APDUS IN CONTACTLESS READER 1. Direct Transmit APIs for Fingerprint Sensor PTOpen PTClsoe PTGrab	
5.0. 5.1. 6.0. 6.1. 6.2. 6.3. 6.4.	Commands for Contact and Contactless Interfaces Handling PSEUDO APDUS IN CONTACTLESS READER 1. Direct Transmit APIs for Fingerprint Sensor PTOpen PTClsoe PTGrab Get Response	10 11 11 12 12 12 12 12 13 14
5.0. 5.1. 6.0. 6.1. 6.2. 6.3. 6.4. 6.5.	Commands for Contact and Contactless Interfaces Handling PSEUDO APDUS IN CONTACTLESS READER 1. Direct Transmit APIs for Fingerprint Sensor PTOpen PTClsoe PTGrab Get Response Bi-Color LED and Buzzer Control	10 11 11 12 12 12 12 13 14 15
5.0. 5.1. 6.0. 6.1. 6.2. 6.3. 6.4. 6.5. 6.6.	Commands for Contact and Contactless Interfaces Handling PSEUDO APDUS IN CONTACTLESS READER 1. Direct Transmit APIs for Fingerprint Sensor PTOpen PTClsoe PTGrab Get Response Bi-Color LED and Buzzer Control	10 11 11 11 12 12 12 12 12 13 14 15 17

1.0. Introduction

AET62 is a USB 2.0 full speed Contactless card reader, which is the interface for the communication between a computer and a smart card reader. Simultaneously, it is also a fingerprint reader using strip sensor.

2.0. FEATURES

- Slope casing for strip sensor for easy finger snapping as small as possible
- Horizontal card placement
- The card should not cover the strip sensor.
- Add weight to prevent swinging
- Un-detachable USB wire of length same as ACR122
- USB version 1.1 full speed
- A bi-colour LED shows the statues of device power supply and smart card reader
- ISO14443 Parts 1-4 Type A & B, Mifare, Desfire, Topaz, ISO/IEC18092 (NFC) compliant all 3 modes
- Maxmium smart card operation speed: 424 kbps
- CCID standard,
- PC/SC compliant
- Support anti-collision. Even in the presence of multiple cards, at least 1 tag can be correctly identified.
- (By PC/SC Escape Commands) Allow manual card polling option
- Operating Distance for different Tags ~ 40mm
- Optional: 1 SAM slot (Not changing often)
- Match-on-device
- BioAPI 1.1, Windows Biometric Framework (WBF)
- CE & FCC, RoHS compliant, REACH compliant
- (Optional) VCCI
- OS supported: Windows 2000, 2003, XP 32, XP 64, Vista 32 and Vista 64, Linux, Mac

3.0. SYSTEM BLOCK DIAGRAM

AET62 is a merge version with ACR122 and finger print sensor. ACR122 is a contactless reader. The system block of AET62 is shown as follow:

The USB Hub Controller is the communication interface between the PC and the host controller and fingerprint sensor via USB port connection. The companion chip get the fingerprint image form the Strip sensor and contains the fingerprint template extraction and matching algorithms. The template matching can be performed in device. The AET62 is powered from USB port without external power supply.

AET62

4.0. HARDWARE INTERFACES

4.1. Power Supply

The AET62 requires a voltage of 5V DC, 150mA regulated power supply, and gets the power supply from PC.

4.2. USB Interface

The AET62 is connected to a computer through USB as specified in the USB Specification 1.1. The AET62 is working in Full speed mode, i.e. 12 Mbps.

Pin	Signal	Function
1	V _{BUS}	+5V power supply for the reader (Max 200mA, Normal 100mA)
2	D-	Differential signal transmits data between AET62 and PC.
3	D+	Differential signal transmits data between AET62 and PC.
4	GND	Reference voltage level for power supply

4.2.1. Endpoints

The AET62 uses the following endpoints to communicate with the host computer:

4.2.1.1. Smart Card Reader

Control Endpoint	For setup and control purpose
Bulk OUT	For command to sent from host to AET62 (data packet size is 64 bytes)
Bulk IN	For response to sent from AET62 to host (data packet size is 64 bytes)
Interrupt IN	For card status message to sent from AET62 to host (data packet size is 8 bytes)

4.2.1.2. Finger Print Device

Control Endpoint	For setup and control purpose				
Bulk OUT	For command to sent from host to Device (data packet size is 64 bytes)				
Bulk IN	For response to sent from Device to host (data packet size is 64 bytes)				

4.3. Bi-Color LED

- User-controllable Bi-color LED. Red and Green Color.
- The Green Color LED will be blinking if the "Card Interface" is not connected.
- The Green Color LED will be turned on if the "Card Interface" is connected.
- The Green Color LED will be flashing if the "Card Interface" is operating.
- The Red Color LED is controlled by the application only.

4.4. Buzzer (optional)

- User-controllable buzzer.
- The default Buzzer State is OFF

4.5. SAM Interface (optional)

• One SAM socket is provided.

4.6. Built-in Antenna

- 6 turns symmetric loop antenna. Center tapped.
- The estimated size = 50mm x 40mm.
- The loop inductance should be around ~ 1.6uH to 2.5uH
- Operating Distance for different Tags ~ 40mm to 50mm
- No anti-collision. Only one Tag can be accessed at any one time.
- Contactless Interface Carrier = 13.56MHz

4.7. FINGERPRINT SCANNNER

AET62 is built around the companion chip and fingerprint sensor.

Fingerprint sensor active capacitive sensing provides a much higher immunity to parasitic effects

leading to a higher signal-to-noise ratio and the ability to capture a wider range of fingerprints

than competing technologies, such as passive capacitive sensing. The matching algorithm will be stored in the Companion chip. The fingerprint matching will be performed on the device. It can provides "Match on device" feature.

Typically there are two processes involved in a biometric application:

Enrollment:

Before the identity of an individual can be verified via his/her fingerprints, it is necessary to

capture one or several fingerprint samples. This process is called enrollment. The samples

AET62

are referred to as fingerprint templates and can be stored on a broad range of media such as computer storage devices or smartcards.

Verification:

The verification process requires a user to verify his identity by placing his finger on the fingerprint scanner sensor. The live fingerprint is compared with a stored template using a matching algorithm in order to determine whether they represent the same set of fingerprint. The matching result is then made available to the computer. When using the fingerprint device, the security level is mainly governed by two parameters:

False Acceptance Rate (FAR):

FAR is the probability that a false sample matches with the original template previously extracted from the subject's fingerprint images during enrollment.

False Rejection Rate (FRR):

FRR is the rate at which the system incorrectly rejects a legitimate attempt to verify.

5.0. Commands for Contact and Contactless Interfaces Handling

The contactless interface is operating on the top of contact interface. Some Pseudo APDUs are defined for contactless interface. If the reader finds that the APDUs are for contactless interface, the APDUs will be routed to the contactless interface, otherwise, the APDUs will be routed to contact interface. The Contact and Contactless Interfaces are able to be operating at the same time.

• The Pseudo APDU "Direct Transmit" is used for sending commands to the contactless interface

Command	Class	INS	P1	P2	Lc	Data In
Direct Transmit	0xFF	0x00	0x00	0x00	Number of Bytes to send	PN532_Contactless Command

2. The Pseudo APDU "Get Response" is used for retrieving the responses from the contactless interface.

Command	Class	INS	P1	P2	Le
Get Response	0xFF	0xC0	0x00	0x00	Number of Bytes to retrieve

If the reader finds that the APDU is in the form of "FF 00 00 00 Lc XX XX .." or "FF C0 00 00 Le", the APDU will be routed to the contactless interface.

Also, one Pseudo APDU "Bi-Color LED and Buzzer Control" is defined for controlling the LED and Buzzer.

Command	Class	INS	P1	P2	Lc	Data In
						(4 Bytes)
Bi-Color and Buzzer	0xFF	0x00	0x40	LED State	0x04	Blinking Duration Control
LED Control				Control		

Similarly, if the reader finds that the APDU is in the form of "FF 00 40 XX 04 XX XX XX XX", the APDU will be used for setting the LED and Buzzer State.

The contact interface must be activated in order to send commands to the contactless or LED interface.

5.1. PSEUDO APDUS IN CONTACTLESS READER

PCSC interface is used for exchanging APDUs and Responses between the PC and Tag. The AET62 will handle the required protocol internally. AET62 comes with two primitive commands for this purpose.

5.1.1. Direct Transmit

To send an APDU (PN532 and Contactless Commands), and the length of the Response Data will be returned.

Table 1.0A: Direct Transmit Command Format (Length of the PN532_Contactless Command + 5 Bytes)

Command	Class	INS	P1	P2	Lc	Data In
Direct Transmit	0xFF	0x00	0x00	0x00	Number of Bytes to send	PN532_Contactless Command

Lc: Number of Bytes to Send (1 Byte)

Maximum 255 bytes

Data In: PN532_Contactless Command

The data to be sent to the PN532 and Contactless Tag.

Table 1.0B: Direct Transmit Response Format (2 Bytes)

Response	Data Out		
Result	SW1	SW2	

Data Out: SW1 SW2

Status Code returned by the reader.

6.0. APIs for Fingerprint Sensor

6.1. PTOpen

PT_STATUS PTOpen(IN PT_CHAR *pszDsn OUT PT_CONNECTION *phConnection

)

Description:

Open a new fingerprint module connection

Parameters :

pszDsn :

ASCII string describing the FM connection parameters. Examples: "USB"

phConnection:

Connection handle result.

Return value:

PT_STATUS:

Return value.

6.2. PTCIsoe

PT_STATUS PTClose(

IN PT_CONNECTION hConnection

)

Description:

Close a fingerprint module connection

Parameters :

hConnection:

Connection handle to be closed.

Return value:

PT_STATUS:

Return value.

6.3. PTGrab

PT_STATUS PTGrab(

IN PT_CONNECTION hConnection

IN PT_BYTE byType

IN PT_LONG ITimeout

IN PT_BOOL boWaitForAcceptableFinger

OUT PT_DATA **ppGrabbedData

IN PT_DATA *pSignData

OUT PT_DATA **ppSignature

)

Description:

Scan the finger and return the scanned finger image

hConnection:

FM Handle

byType:

The returned data type

ITimeout:

Timeout value in milliseconds.

boWaitForAcceptableFinger:

Value:	Description
True	Return the finger image if the finger quality would be acceptable
False	Always returns the finger image after a single swipe

ppGrabbedData:

Address of the data pointer,

pSignData:

Reserved, Null value

ppSignature:

Reserved, Null value

For the detail, please you can refer UPEK ESS&TFM Application Communication Layer document.

Table 1.0C: Status Code

Results	SW1	SW2	Meaning
Success	61	LEN	The operation is completed successfully. The response data has a length of LEN bytes.
			The APDU "Get Response" should be used to retrieve the response data.
Error	63	00	The operation is failed.
Time Out Error	63	01	The PN532 does not response.
Checksum Error	63	27	The checksum of the Contactless Response is wrong.
Parameter Error	63	7F	The PN532_Contactless Command is wrong.

6.4. Get Response

To retrieve the response data after the "Direct Command" is issued.

Table 2.0A: Get Response Command Format (5 Bytes)

Command	Class	INS	P1	P2	Le
Get Response	0xFF	0xC0	0x00	0x00	Number of Bytes to retrieve

Le: Number of Bytes to Retrieve (1 Byte)

Maximum 255 bytes

Table 2.0B: Get Response Format (L	Le bytes, Length of the Response Data	I)
------------------------------------	---------------------------------------	----

Response	Data Out
Result	Response Data

Data Out: Response Data, or Error Code "63 00" will be given if no response data is available.

Remark:

In general, the Pseudo APDUs "Direct Transmit" and "Get Response" are used in pairs. Once the APDU "Direct Transmit" is sent, the reader will return the length of the response data. Then, the APDU "Get Response" is immediately used to retrieve the actual response data.

6.5. Bi-Color LED and Buzzer Control

This APDU is used to control the states of the Bi-Color LED and Buzzer.

Command	Class	INS	P1	P2	Lc	Data In
						(4 Bytes)
Bi-Color and Buzzer	0xFF	0x00	0x40	LED State	0x04	Blinking Duration Control
LED Control				Control		

Table 3.0A: Bi-Color LED and Buzzer Control Command Format (9 Bytes)

P2: LED State Control

Table 3.0B: Bi-Color LED and Buzzer Control Format (1 Byte)

CMD	Item	Description
Bit 0	Final Red LED State	1 = On; 0 = Off
Bit 1	Final Green LED State	1 = On; 0 = Off
Bit 2	Red LED State Mask	1 = Update the State
		0 = No change
Bit 3	Green LED State Mask	1 = Update the State
		0 = No change
Bit 4	Initial Red LED Blinking State	1 = On; 0 = Off
Bit 5	Initial Green LED Blinking State	1 = On; 0 = Off
Bit 6	Red LED Blinking Mask	1 = Blink
		0 = Not Blink
Bit 7	Green LED Blinking Mask	1 = Blink
		0 = Not Blink

AET62

Data In: Blinking Duration Control

Table 3.0C: Bi-Color LED Blinking Duration Control Format (4 Bytes)

Byte 0	Byte 1	Byte 2	Byte 3
T1 Duration	T2 Duration	Number of	Link to Buzzer
Initial Blinking State	Toggle Blinking State	repetition	
(Unit = 100ms)	(Unit = 100ms)		

Byte 3: Link to Buzzer. Control the buzzer state during the LED Blinking.

- 0x00: The buzzer will not turn on
- 0x01: The buzzer will turn on during the T1 Duration
- 0x02: The buzzer will turn on during the T2 Duration
- 0x03: The buzzer will turn on during the T1 and T2 Duration.

Data Out: SW1 SW2. Status Code returned by the reader.

Table 3.0D: Status Code

Results	SW1	SW2	Meaning
Success	90	Current LED State	The operation is completed successfully.
Error	63	00	The operation is failed.

Table 3.0E: Current LED State (1 Byte)

Status	Item	Description
Bit 0	Current Red LED	1 = On; 0 = Off
Bit 1	Current Green LED	1 = On; 0 = Off
Bits 2 – 7	Reserved	

Remark:

- The LED State operation will be performed after the LED Blinking operation is completed.
 The LED will not be changed if the corresponding LED Mask is not enabled.
- 3. The LED will not be blinking if the corresponding LED Blinking Mask is not enabled. Also, the number of repetition must be greater than zero.
- 4. T1 and T2 duration parameters are used for controlling the duty cycle of LED blinking and Buzzer Turn-On duration. For example, if T1=1 and T2=1, the duty cycle = 50%. #Duty Cycle = T1 / (T1 + T2).
- 5. To control the buzzer only, just set the P2 "LED State Control" to zero.
- 6. The make the buzzer operating, the "number of repetition" must greater than zero.
- 7. To control the LED only, just set the parameter "Link to Buzzer" to zero.

6.6. Get the Firmware Version of the reader

To retrieve the firmware version of the reader.

Command	Class	INS	P1	P2	Le
Get Response	0xFF	0x00	0x48	0x00	0x00

Table 4.0B: Get Firmware Version Response Format (10 bytes)

Response	Data Out
Result	Firmware Version

E.g. Response = 41 43 52 31 32 32 55 31 30 31 (Hex) = ACR122U101 (ASCII)

7.0. Technical Specification

Universal Serial Bus Interface	
Power source	From USB
Speed	. 12 Mbps (Full Speed)
Supply Voltage	Regulated 5V DC
Supply Current	. 300mA (maximum); 100mA (standby); 150mA (normal)
Contactless Smart Card Inter	face
Standard	MIFARE Classic, ISO14443-4 Type A & B, FeliCa, ISO/IEC 18092 NFC
Operating Frequency	. 13.56 MHz
Smart card read / write speed	. 106, 212, 424 kbps
SAM Interface (optional SAM	Socket)
Standard	ISO 7816
Protocol	T=0 protocol
Operating Frequency	4 MHz
Smart card read / write speed	9600 - 115200 bps
Fingerprint Sensor Interface	
Sensor Type	Swipe
Image resolution	508 DPI
Case	
Dimensions	.98 mm (L) x 65 mm (W) x 12.8 mm (H)
Material	Polycarbonate (PC)
Color	Pearl White
Antenna Size	50mm x 40mm
Operating distance	up to 30 mm (depended on tag type)
Built-in peripherals	
Bi-Color LED	Bi-Color LED, Red and Green
Buzzer	Monotone (optional)
Operating Conditions	
Temperature	. 0 - 50° C
Humidity	. 10% - 80%
Cable Connector	
Length	. 1.5 M (USB)
Standard/Certifications	
CE, FCC	
OS	
Windows 2K, XP, Vista	
OEM	

OEM-Logo possible, customer-specific colors, casing, and card connector

Warning:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.