EMC TEST REPORT

For

ADSL2+ Wireless Router

Model Number: 7130 RG 5Ae.A2010, 7130 RG 5Ae.A2012

FCC ID: V4V-5AE-A2010

Report Number: WT088001943

Test Laboratory : Shenzhen Academy of Metrology and

Quality Inspection EMC Laboratory

Guangdong EMC Compliance Test Center

Site Location : Bldg. of Metrology &Quality Inspection,

Longzhu Road, Shenzhen, Guangdong,

China

Tel : 0086-755-26941599

Fax : 0086-755-26941545 Email : emc@smq.com.cn

TABLE OF CONTENTS

TEST	REPORT DECLARATION	4
1.	TEST RESULTS SUMMARY	5
2.	GENERAL INFORMATION	6
	2.1. Report information	6
	2.2. Laboratory Accreditation and Relationship to Customer	6
	2.3. Measurement Uncertainty	6
3.	PRODUCT DESCRIPTION	7
	3.1. EUT Description	
	3.2. Related Submittal(s) / Grant (s)	
	3.3. Block Diagram of EUT Configuration	
	3.4. Operating Condition of EUT	
	3.5. Special Accessories	
	3.6. Equipment Modifications	
	3.7. Support Equipment List3.8. Test Conditions	
4.		
	TEST EQUIPMENT USED	
5.	CONDUCTED DISTURBANCE TEST	
	5.1. Test Standard and Limit	
	5.2. Test Procedure	
	5.3. Test Arrangement5.4. Test Data	
6.	RADIATED DISTURBANCE TEST	
0.	6.1. Test Standard and Limit	
	6.2. Test Procedure	
	6.3. Test Arrangement	
	6.4. Test Data	
7.	6DB BANDWIDTH MEASUREMENT	
, •	7.1. LIMITS OF 6dB BANDWIDTH MEASUREMENT	
	7.2. TEST PROCEDURE	
	7.3. TEST SETUP	
	7.4. EUT OPERATING CONDITIONS	
	7.5. Test Data	21
8.	MAXIMUM PEAK OUTPUT POWER	28
	8.1. LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT	28
	8.2. TEST PROCEDURES	28
	8.3. TEST SETUP	
	8.4. EUT OPERATING CONDITIONS	
	8.5. Test Data	
9.	POWER SPECTRAL DENSITY MEASUREMENT	
	9.1. LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT	
	9.2. TEST PROCEDURE	
	9.3. 4.5.5 TEST SETUP	
	9.4. 4.5.6 EUT OPERATING CONDITION	30

	9.5.	Test Data	.30
10.	BANI	EDGES MEASUREMENT	.37
	10.1.	LIMITS OF BAND EDGES MEASUREMENT	.37
	10.2.	TEST PROCEDURE	.37
	10.3.	EUT OPERATING CONDITION	.37
	10.4.	TEST RESULTS	.37
11.	ANTE	NNA REQUIREMENT	.39
	11.1.	STANDARD APPLICABLE	.39
	11.2.	ANTENNA CONNECTED CONSTRUCTION	.39
APPE	ENDIX	I TEST PHOTO	.40
APPE	ENDIX	II EUT PHOTO	.43

TEST REPORT DECLARATION

Applicant : Shenzhen Gongjin Electronics Co., Ltd

Address : A211-A213, B201-B210, 2F Baiying Building, 1019# Nanhai RD,

Shekou, Shenzhen, Guangdong, China.

Manufacturer : Shenzhen Gongjin Electronics Co., Ltd

Address : A211-A213, B201-B210, 2F Baiying Building, 1019# Nanhai RD,

Shekou, Shenzhen, Guangdong, China.

Factory : Shenzhen Gongjin Electronics Co., Ltd

Address : A211-A213, B201-B210, 2F Baiying Building, 1019# Nanhai RD,

Shekou, Shenzhen, Guangdong, China.

EUT Description : ADSL2+ Wireless Router

Model Number : 7130 RG 5Ae.A2010 ,7130 RG 5Ae.A2012

FCC ID : V4V-5AE-A2010

Test Standards:

FCC Part 15 15.207, 15.209, 15.247

The EUT described above is tested by Shenzhen Academy of Metrology and Quality Inspection EMC Laboratory to determine the maximum emissions from the EUT. Shenzhen Academy of Metrology and Quality Inspection EMC Laboratory is assumed full responsibility for the accuracy of the test results. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4 (2003) and the energy emitted by the sample EUT tested as described in this report is in compliance with FCC Rules Part 15.207, 15.209 and 15.247.

The test report is valid for above tested sample only and shall not be reproduced in part without written approval of the laboratory.

Tested by:	for a	Date:	Sep.19, 2008	
_	(Ryan Chen)			
Checked by:	Derold	Date:	Sep.19, 2008	
_	(Dewelly Yang)			
Approved by:	petal	Date:	Sep.19, 2008	
_	(Peter Lin)	_		

Report No.:WT88001943 Page 4/47

1. TEST RESULTS SUMMARY

Table 1 Test Results Summary

Test Items	FCC Rules	Test Results
Conducted Disturbance	15.207	Pass
Radiated disturbance	15.209	Pass
6dB Bandwidth	15.247(a)(2)	Pass
Maximum Peak Output Power	15.247(b)	Pass
Band Edge Measurement	15.247(d)	Pass
Power Spectral Density	15.247(e)	Pass
Antenna Requirement	15.203	Pass

Report No.:WT88001943 Page 5/47

2. GENERAL INFORMATION

2.1. Report information

- 2.1.1. This report is not a certificate of quality; it only applies to the sample of the specific product/equipment given at the time of its testing. The results are not used to indicate or imply that they are application to the similar items. In addition, such results must not be used to indicate or imply that SMQ approves recommends or endorses the manufacture, supplier or use of such product/equipment, or that SMQ in any way guarantees the later performance of the product/equipment.
- 2.1.2. The sample/s mentioned in this report is/are supplied by Applicant, SMQ therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture or any information supplied.
- 2.1.3.Additional copies of the report are available to the Applicant at an additional fee. No third part can obtain a copy of this report through SMQ, unless the applicant has authorized SMQ in writing to do so.

2.2. Laboratory Accreditation and Relationship to Customer

The testing report were performed by the Shenzhen Academy of Metrology and quality Inspection EMC Laboratory (Guangdong EMC compliance testing center), in their facilities located at Bldg. of Metrology & Quality Inspection, Longzhu Road, Nanshan District, Shenzhen, Guangdong, China. At the time of testing, Laboratory is accredited by the following organizations:

China National Accreditation Committee for Laboratories (CNAL) accredits the Laboratory for conformance to FCC standards, EMC international standards and EN standards. The Registration Number is L0579.

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number are 97379(open area test site) and 274801(semi anechoic chamber).

The Laboratory is listed in Voluntary Control Council for Interference by Information Technology Equipment (VCCI), and the registration number are R-1974(open area test site), R-1966(semi anechoic chamber), C-2117(mains ports conducted interference measurement) and T-180(telecommunication ports conducted interference measurement).

The Laboratory is registered to perform emission tests with Industry Canada (IC), and the registration number is IC4174.

TUV Rhineland accredits the Laboratory for conformance to IEC and EN standards, the registration number is E2024086Z02.

Measurement Uncertainty

2.3. Measurement Uncertainty

Conducted Disturbance: 9kHz~30MHz 3.5dB

Radiated Disturbance: 30MHz~1000MHz 4.5dB

1GHz~18GHz 4.6dB

Report No.:WT88001943 Page 6/47

3. PRODUCT DESCRIPTION

3.1. EUT Description

Description : ADSL2+ Wireless Router

Manufacturer : Shenzhen Gongjin Electronics Co., Ltd

Model Number : 7130 RG 5Ae.A2010 ,7130 RG 5Ae.A2012

Model: ADS-18E-12 1212GPCU

Adaptor : Input : 100-240V~, 50/60Hz, Max. 0.60A

Output: 12VDC, 1.0A

Operate Frequency : 2.412GHz~2.462GHz

Antenna Designation : Replaceable antenna with Non-standard jack

Antenna Gain : 2.0 ± 0.7 dBi

Remark: 7130 RG 5Ae.A2010 and 7130 RG 5Ae.A2012 are series products, they are identical in schematic, construction and critical components but different packaging. There is a splitter with 7130 RG 5Ae.A2010 packaging and without 7130 RG 5Ae.A2012 packaging, So, all tests are performed on 7130 RG 5Ae.A2010 only.

Table 2 The working Frequency List

	-		
Channel	Frequency	Channel	Frequency
1	2412 MHz	7	2442 MHz
2	2417 MHz	8	2447 MHz
3	2422 MHz	9	2452 MHz
4	2427 MHz	10	2457 MHz
5	2432 MHz	11	2462 MHz
6	2437 MHz		

3.2. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: V4V-5AE-A2010 filing to comply with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C Rules.

Report No.:WT88001943 Page 7/47

3.3. Block Diagram of EUT Configuration

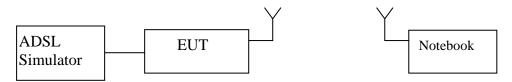


Figure 1 EUT setup 1

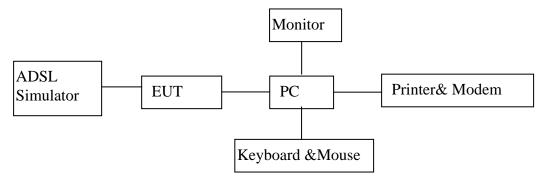


Figure 2 EUT setup 2

3.4. Operating Condition of EUT

Mode1: Transmitting at 2412MHz Mode2: Transmitting at 2442MHz Mode3: Transmitting at 2462MHz Mode4: Communication (wire network)

3.5. Special Accessories

Not available for this EUT intended for grant.

3.6. Equipment Modifications

Not available for this EUT intended for grant.

Report No.:WT88001943 Page 8/47

3.7. Support Equipment List

Table 3 Support Equipment

Name	Model Number	S/N	Manufacture
Notebook	R51		IBM
Adaptor for notebook 02K6654			IBM
PC	P9111A #AB2	CN31104346	COMPAQ
Monitor P4825		CN3087A02 6	COMPAQ
Adaptor of monitor PA-1400-02		3101571101 LN	LITEON
Keyboard (PS/2)	Keyboard (PS/2) KB-0133		COMPAQ
Mouse (PS/2)	M-S69	CT:F466BOMMSNS05J2	COMPAQ
Printer	BJC-265SP	EVX81604	CANON
Adaptor for printer	AD-300		CANON
Modem (COM)	56000BPS	200060057	KPT
Adaptor for modem	AM-1280AV		KPT
ADSL Simulator	IES-1000	3912A165-100	ZyXEL

3.8. Test Conditions

Date of test: Sep.16-Sep.19, 2008 Date of EUT Receive: Sep.08, 2008

Temperature: 25 °C

Relative Humidity: 50-70%

Report No.:WT88001943 Page 9/47

4. TEST EQUIPMENT USED

Table 4 Test Equipment

No.	Equipment	Manufacturer	Model No.	Last Cal.	Cal. Interval
SB2603	EMI Test Receiver	Rohde & Schwarz	ESCS30	Jan.25, 2008	1 Year
SB3321	AMN	Rohde & Schwarz	ESH2-Z5	Jan.25, 2008	1 Year
SB2604	AMN	Rohde & Schwarz	ESH3-Z5	Jan.25, 2008	1 Year
SB3436	EMI Test Receiver	Rohde & Schwarz	ESI26	Jan.25, 2008	1 Year
SB3440	Bilog Antenna	Chase	CBL6112B	Jan.25, 2008	1 Year
SB3435	Horn Antenna	Rohde & Schwarz	HF906	Jan.25, 2008	1 Year
SB3435/01	Amplifier(1-18GHz)	Rohde & Schwarz		Jan.25, 2008	1 Year
SB3435/02	Amplifier(18-40GHz)	Rohde & Schwarz		May.04, 2008	1 Year
SB3435/03	Horn Antenna	Rohde & Schwarz	AT4560	May.04, 2008	1 Year
SB3450/01	3m Semi-anechoic chamber	Albatross Projects	9X6X6	Jan.25, 2008	1 Year

Report No.:WT88001943 Page 10/47

5. CONDUCTED DISTURBANCE TEST

5.1. Test Standard and Limit

5.1.1.Test Standard

FCC Part 15 15.207

5.1.2.Test Limit

Table 5 Conducted Disturbance Test Limit (Class B)

Fraguancy	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

- Decreasing linearly with logarithm of the frequency
- The lower limit shall apply at the transition frequency.

5.2. Test Procedure

The EUT is put on a table of non-conducting material that is 80cm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI test receiver (R&S Test Receiver ESCS30) is used to test the emissions form both sides of AC line. According to the requirements in Section 7 and 13 of ANSI C63.4-2003.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode.

The bandwidth of EMI test receiver is set at 9kHz.

5.3. Test Arrangement

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application. The detailed information refers to test picture.

5.4. Test Data

The emissions don't show in below are too low against the limits. Refer to the test curves. Test mode: Communication (wire network) (the worst case)

Report No.:WT88001943 Page 11/47

Table 6 Conducted Disturbance Test Data

Model: 7130 RG 5Ae.A2010

Mode: 4

Line							
Frequency	Correction		Quasi-Peak		Average		
(MHz)	Factor (dB)	Reading (dBµV)	Emission Level (dBµV)	Limits (dBµV)	Reading (dBµV)	Emission Level (dBµV)	Limits (dBµV)
0. 190	9.8	37. 7	47. 5	64. 0	26. 4	36. 2	54. 0
0. 250	9.8	32. 2	42.0	61.8	22. 0	31.8	51.8
0.314	9.8	27. 1	36. 9	59. 9	22.8	32.6	49.9

REMARKS: 1. Emission level(dBuV)=Read Value(dBuV) + Correction Factor(dB)

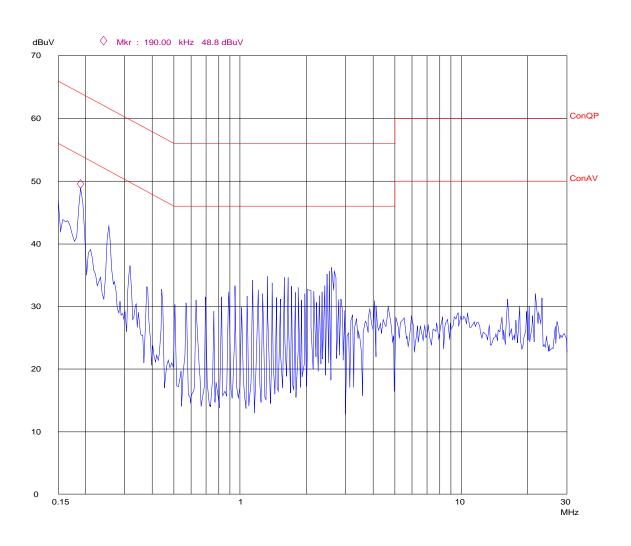
- 2. Correction Factor(dB) =LISN Factor (dB) + Cable Factor (dB)+Limiter Factor(dB)
- 3. The other emission levels were very low against the limit.

Table 7 Conducted Disturbance Test Data

Model: 7130 RG 5Ae.A2010

Mode: 4

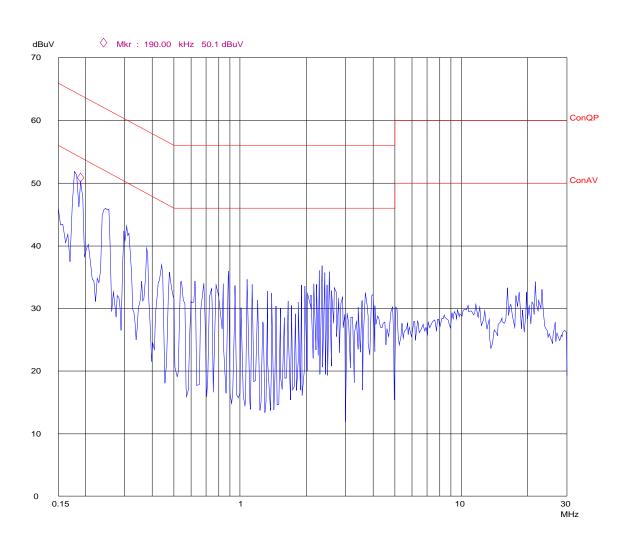
Neutral							
Frequency	Correction		Quasi-Peak		Average		
(MHz)	Factor (dB)	Reading (dBµV)	Emission Level (dBμV)	Limits (dBµV)	Reading (dBµV)	Emission Level (dBµV)	Limits (dBµV)
0. 190	9.8	38. 4	48. 2	64.0	28. 1	37. 9	54.0
0. 250	9.8	34. 4	44. 2	61.8	31.5	41.3	51.8
0.314	9.8	29. 4	39. 2	59. 9	26. 7	36. 5	49.9


REMARKS: 1. Emission level(dBuV)=Read Value(dBuV) + Correction Factor(dB)

- 2. Correction Factor(dB) = LISN Factor (dB) + Cable Factor (dB) + Limiter Factor(dB)
- 3. The other emission levels were very low against the limit.

Report No.:WT88001943 Page 12/47

Conducted Disturbance


EUT: M/N:Gaw9.2Z18-4
Op Cond: Communication
Test Spec: L
Comment: AC 120V/60Hz

Report No.:WT88001943 Page 13/47

Conducted Disturbance

EUT: M/N:Gaw9.2Z18-4
Op Cond: Communication
Test Spec: N
Comment: AC 120V/60Hz

Report No.:WT88001943 Page 14/47

6. RADIATED DISTURBANCE TEST

6.1. Test Standard and Limit

6.1.1.Test Standard

FCC Part 15 15.209

6.1.2.Test Limit

Table 8 Radiated Disturbance Test Limit

	Tuoic	O Itaaiatea Distairaniee	LOSC EIIIIIC
FREQUE	ENCY	FIELD STRENGTHS	FIELD
MH	Z	LIMITS	STRENGTHS
	$(\mu V/m)$		LIMITS
		·	$dB (\mu V/m)$
Fundam	ental	50000	94.0
Harmo	nics	500	54.0
30 ~	. 88	100	40.0
88 ~	216	150	43.5
216 ~	960	200	46.0
960 ~	•	500	54.0

^{*} The lower limit shall apply at the transition frequency.

6.2. Test Procedure

The EUT is placed on a turntable, which is 0.8 meter above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can move up and down between 1 to 4 meters to find out the maximum emission level. Broadband antenna is used as a receiving antenna. Both horizontal and vertical polarization of the antenna is set on test. In order to find out the max. emission, the relative positions of this hand-held transmitter(EUT) was rotated through three orthogonal axes according to the requirements in Section 8 and 13 of ANSI C63.4-2003.

Radiated measurements were performed on the frequency range from 30MHz to 25GHz. All readings from 30 MHz to 1 GHz are quasi-peak values with a resolution bandwidth of 120 kHz , VBW \geqslant RBW. All readings above 1 GHz are AV and PK values . RBW=1MHz and VBW=10Hz for AV value , RBW=1MHz and VBW \geqslant RBW for peak value. Measurements were made at 3 meters

6.3. Test Arrangement

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application. The detailed information refers to test picture.

Report No.:WT88001943 Page 15/47

^{*} The test distance is 3m.

6.4. Test Data

The emissions don't show in below are too low against the limits. The data was shown the worst case 802.11b 1 Mbit/s.

Table 9 General Radiated Emission Data

Model: 7130 RG 5Ae.A2010						
mode: 1 Frequency MHz	Emission (dBuV/m)	Read Value (dBuV)	Correction Factor (dB/m)	Polarizatio n	Limits (dBuV/m)	Note
53.030	33.8	25.7	8.1	Vertical	40.0	QP Value
156.771	34.1	21.0	13.1	Vertical	43.5	QP Value
750.008	41.5	16.7	24.8	Vertical	46.0	QP Value
250.032	39.2	23.3	15.9	Horizontal	46.0	QP Value
4824.642	43.7	41.4	2.3	Horizontal	54.0	AV Value
4824.521	40.8	38.5	2.3	Vertical	54.0	AV Value
4824.642	49.8	47.5	2.3	Horizontal	74.0	PK Value
4824.521	46.6	44.3	2.3	Vertical	74.0	PK Value
2400.208	34.8	38.5	-3.7	Horizontal	54.0	AV Value
2400.208	40.4	44.1	-3.7	Horizontal	74.0	PK Value
2400.208	33.1	36.8	-3.7	Vertical	54.0	AV Value
2400.208	37.6	41.3	-3.7	Vertical	74.0	PK Value
2483.597	31.3	35	-3.7	Horizontal	54.0	AV Value
2483.597	35.1	38.8	-3.7	Horizontal	74.0	PK Value
2483.597	26.5	30.2	-3.7	Vertical	54.0	AV Value
2483.597	33.9	37.6	-3.7	Vertical	74.0	PK Value

REMARKS: 1. Emission level(dBuV/m)=Read Value(dBuV) + Correction Factor(dB/m)

Report No.:WT88001943 Page 16/47

^{2.} Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

^{3.} The other emission levels were very low against the limit.

Table 10 General Radiated Emission Data

Model: 7130 RG 5Ae.A2010

mode: 2

mode: Z						
Frequency MHz	Emission (dBuV/m)	Read Value (dBuV)	Correction Factor (dB/m)	Polarizatio n	Limits (dBuV/m)	Note
750.008	40.8	16.0	24.8	Horizontal	46.0	QP Value
125.010	36.3	21.9	14.5	Vertical	43.5	QP Value
750.008	41.6	16.8	24.8	Vertical	46.0	QP Value
4885.018	49.0	46.7	2.3	Horizontal	54.0	AV Value
4885.215	44.6	42.3	2.3	Vertical	54.0	AV Value
4885.018	50.1	48.0	2.3	Horizontal	54.0	PK Value
4885.215	51.1	48.8	2.3	Vertical	54.0	PK Value
2400.010	33.6	37.3	-3.7	Horizontal	54.0	AV Value
2400.010	39.3	43	-3.7	Horizontal	74.0	PK Value
2400.010	30.7	34.4	-3.7	Vertical	54.0	AV Value
2400.010	36.9	40.6	-3.7	Vertical	74.0	PK Value
2483.567	33.1	36.8	-3.7	Horizontal	54.0	AV Value
2483.567	37.8	41.5	-3.7	Horizontal	74.0	PK Value
2483.567	31.8	35.5	-3.7	Vertical	54.0	AV Value
2483.567	35.6	39.3	-3.7	Vertical	74.0	PK Value

REMARKS: 1. Emission level(dBuV/m)=Read Value(dBuV) + Correction Factor(dB/m)

Report No.:WT88001943 Page 17/47

^{2.} Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

^{3.} The other emission levels were very low against the limit.

Table 11 General Radiated Emission Data

Model: 7130 RG 5Ae.A2010

mode: 3

mode: 5						
Frequency MHz	Emission (dBuV/m)	Read Value (dBuV)	Correction Factor (dB/m)	Polarizatio n	Limits (dBuV/m)	Note
750.008	40.3	15.5	24.8	Horizontal	46.0	QP Value
114.473	35.8	21.1	14.7	Vertical	43.5	QP Value
750.008	41.6	16.8	24.8	Vertical	46.0	QP Value
4923.918	47.3	45	2.3	Horizontal	54.0	AV Value
4924.001	43.5	41.2	2.3	Vertical	54.0	AV Value
4923.918	52.7	50.4	2.3	Horizontal	54.0	PK Value
4924.001	50.9	48.6	2.3	Vertical	54.0	PK Value
2400.010	37.5	41.2	-3.7	Horizontal	54.0	AV Value
2400.010	45.0	48.7	-3.7	Horizontal	74.0	PK Value
2400.010	35.9	39.6	-3.7	Vertical	54.0	AV Value
2400.010	42.4	46.1	-3.7	Vertical	74.0	PK Value
2483.567	35.8	39.5	-3.7	Horizontal	54.0	AV Value
2483.567	42.1	45.8	-3.7	Horizontal	74.0	PK Value
2483.567	34.1	37.8	-3.7	Vertical	54.0	AV Value
2483.567	39.5	43.2	-3.7	Vertical	74.0	PK Value

REMARKS: 1. Emission level(dBuV/m)=Read Value(dBuV) + Correction Factor(dB/m)

Report No.:WT88001943 Page 18/47

^{2.} Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) 3. The other emission levels were very low against the limit.

Table 12 General Radiated Emission Data

Model: 7130 RG 5Ae.A2010 mode: 4 Frequency Read Correction Emission Polarizatio Limits MHz Value Factor Note (dBuV/m)(dBuV/m)n (dBuV) (dB/m)500.030 Horizontal 46.0 40.6 QP Value 19.3 21.3 750.028 43.7 Horizontal 46.0 QP Value 18.9 24.8 875.010 Horizontal 44.6 46.0 QP Value 18.9 25.7 Vertical 40.0 QP Value 19.7 33.9 14.2 30.431 Vertical 43.5 QP Value 38.9 24.5 14.5 125.01 Vertical 46.0 QP Value 500.03 43.9 22.6 21.3 Vertical 46.0 QP Value 750.008 43.4 18.6 24.8 Vertical 46.0 QP Value 881.19 40.9 15.1 25.8

REMARKS: 1. Emission level(dBuV/m)=Read Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

3. The other emission levels were very low against the limit.

Report No.:WT88001943 Page 19/47

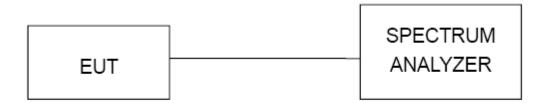
Table 13 Restricted Band Radiated Emission Data

MHz	MHz	MHz	GHz
0.090 - 0.110 0.495 - 0.505 2.1735 - 2.1905 4.125 - 4.128 4.17725 - 4.17775 4.20725 - 4.20775 6.215 - 6.218 6.26775 - 6.26825 6.31175 - 6.31225 8.291 - 8.294 8.362 - 8.366 8.37625 - 8.38675 8.41425 - 8.41475 12.29 - 12.293 12.51975 - 12.52025 12.57675 - 12.57725 13.36 - 13.41	16.42 - 16.423 16.69475 - 16.69525 16.80425 - 16.80475 25.5 - 25.67 37.5 - 38.25 73 - 74.6 74.8 - 75.2 108 - 121.94 123 - 138 149.9 - 150.05 156.52475 - 156.52525 156.7 - 156.9 162.0125 - 167.17 167.72 - 173.2 240 - 285 322 - 335.4	399.9 - 410 608 - 614 960 - 1240 1300 - 1427 1435 - 1626.5 1645.5 - 1646.5 1660 - 1710 1718.8 - 1722.2 2200 - 2300 2310 - 2390 2483.5 - 2500 2655 - 2900 3260 - 3267 3332 - 3339 3345.8 - 3358 3600 - 4400	4.5 - 5.15 5.35 - 5.46 7.25 - 7.75 8.025 - 8.5 9.0 - 9.2 9.3 - 9.5

All the emission of the above band were less than the limit 20dB.

Report No.:WT88001943 Page 20/47

7. 6DB BANDWIDTH MEASUREMENT


7.1. LIMITS OF 6dB BANDWIDTH MEASUREMENT

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

7.2. TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100kHz RBW and VBW > RBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

7.3. TEST SETUP

7.4. EUT OPERATING CONDITIONS

mode 1

mode 2

mode 3

7.5. Test Data

Table 14 6dB Bandwidth Test Data

CHANNEL	6dB BANDWIDTH (MHz)	MINIMUM LIMIT (MHz)	results
Ch1	15.8	0.5	Pass
Ch7	16.0	0.5	Pass
Ch11	15.9	0.5	Pass

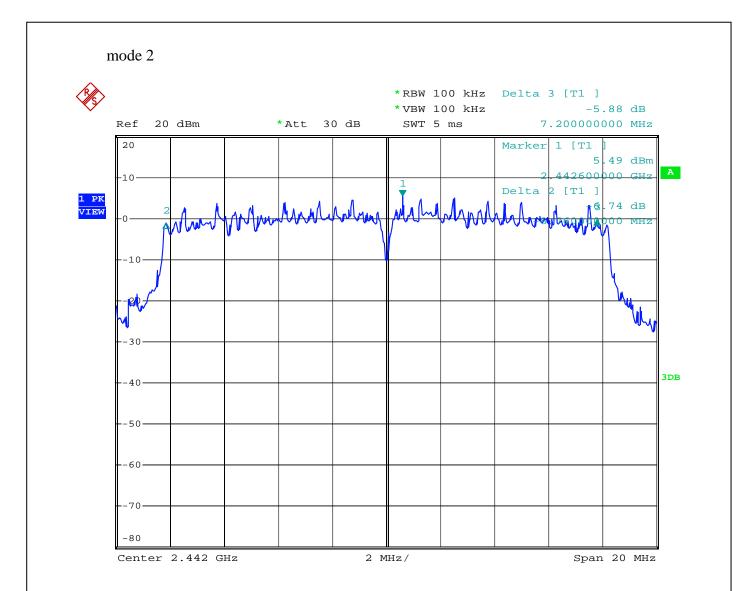
OFDM modulation

The test was performed with the speed of 6 Mbit/s,9 Mbit/s,12 Mbit/s,18 Mbit/s,24 Mbit/s,36 Mbit/s,48 Mbit/s,54 Mbit/s. the worst is 36 Mbit/s

Report No.:WT88001943 Page 21/47

mode 1 *RBW 100 kHz Delta 3 [T1] VBW 300 kHz -6.53 dB 20 dBm *Att 30 dB *SWT 50 ms 5.680000000 MHz Ref 20 Marker 1 [T1 4.90 dBm -10 Delta 1 PK VIEW 3DB -40--50--60-

2 MHz/


Span 20 MHz

Date: 4.MAR.2008 04:03:50

Center 2.412 GHz

-80

Report No.:WT88001943 Page 22/47

Date: 4.MAR.2008 04:32:19

Report No.:WT88001943 Page 23/47

mode 3 *RBW 100 kHz Delta 3 [T1] *VBW 100 kHz -6.84 dB 20 dBm *Att 30 dB SWT 5 ms 5.280000000 MHz Ref 20 Marker 1 [T1 4.69 dBm -10 Delta 1 PK VIEW 62 dB -10 3DB -40--50--60-

2 MHz/

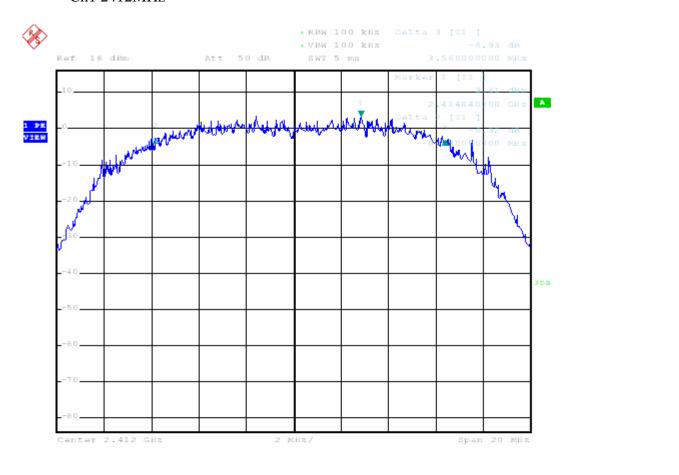
Span 20 MHz

Date: 4.MAR.2008 04:34:57

Center 2.462 GHz

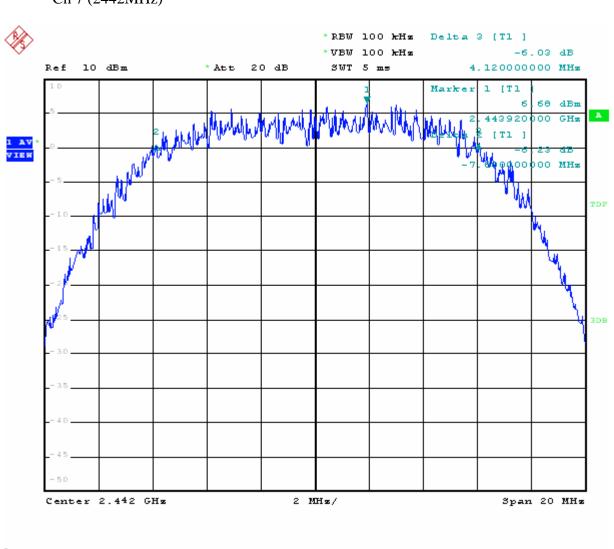
-80

Report No.:WT88001943 Page 24/47

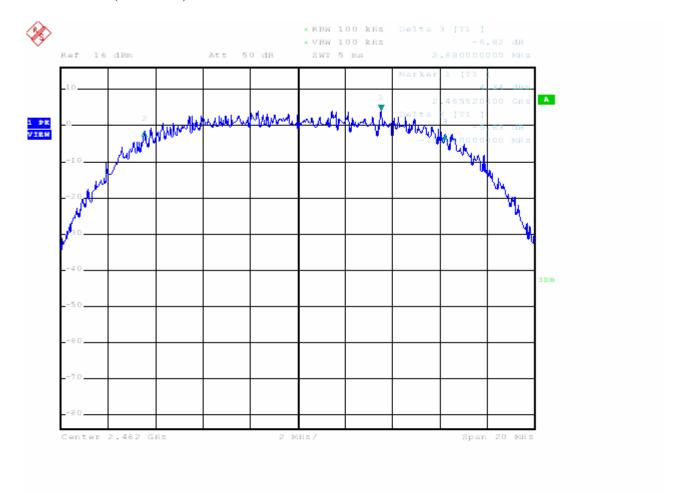

Table 15 Test Data

CHANNEL	6dB BANDWIDTH (MHz)	MINIMUM LIMIT (MHz)	results
Ch1	12.2	0.5	Pass
Ch7	11.7	0.5	Pass
Ch11	12.6	0.5	Pass


DSSS modulation


The test was performed with the speed of 1 Mbit/s,2 Mbit/s,5.5 Mbit/s,11 Mbit/s. the worst is 1 Mbit/s

Ch1 2412MHz


Report No.:WT88001943 Page 25/47

Report No.:WT88001943 Page 26/47

Ch11 (2462MHz)

Report No.:WT88001943 Page 27/47

8. MAXIMUM PEAK OUTPUT POWER

8.1. LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT

The Maximum Peak Output Power Measurement is 30dBm.

8.2. TEST PROCEDURES

- 1. A detector was used on the output port of the EUT. An oscilloscope was used to read the response of the detector.
- 2. Replaced the EUT by the signal generator. The center frequency of the S.G was adjusted to the center frequency of the measured channel.
- 3. Adjusted the power to have the same reading on oscilloscope. Record the power level.

8.3. TEST SETUP

8.4. EUT OPERATING CONDITIONS

mode 1

mode 2

mode 3

8.5. Test Data

Table 16 Maximum Peak Output Power Test Data

Supply voltage	Peak Power Output (dBm)			LIMIT (dBm)	results
voitage	Ch1	Ch7	Ch11	30dBm	Pass
AC 230V	19.6	18.9	19.2	30dBm	Pass
AC 195V	19.3	18.8	18.8	30dBm	Pass
AC 265V	19.2	18.8	19.0	30dBm	Pass

DSSS modulation

The test was performed with the speed of 1 Mbit/s,2 Mbit/s,5.5 Mbit/s,11 Mbit/s. the worst is 1 Mbit/s

Report No.:WT88001943 Page 28/47

Table 17 Maximum Peak Output Power Test Data

Supply voltage	Peak Power Output (dBm)			LIMIT (dBm)	results
voitage	Ch1	Ch7	Ch11	30dBm	Pass
AC 230V	14.5	13.7	14.2	30dBm	Pass
AC 195V	14.0	13.1	14.0	30dBm	Pass
AC 265V	14.9	13.6	13.9	30dBm	Pass

OFDM modulation

The test was performed with the speed of 6 Mbit/s,9 Mbit/s,12 Mbit/s,18Mbit/s,24 Mbit/s,36 Mbit/s,48 Mbit/s,54 Mbit/s. the worst is 36 Mbit/s

Report No.:WT88001943 Page 29/47

9. POWER SPECTRAL DENSITY MEASUREMENT

9.1. LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT

The Maximum of Power Spectral Density Measurement is 8dBm.

9.2. TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator(10.0dB), the bandwidth of the fundamental frequency was measured with the spectrum analyzer using 3kHz RBW and VBW > RBW, set sweep time = span/3kHz. The power spectral density was measured and recorded. The sweep time is allowed to be longer than span/3kHz for a full response of the mixer in the spectrum analyzer.

9.3. 4.5.5 TEST SETUP

9.4. 4.5.6 EUT OPERATING CONDITION

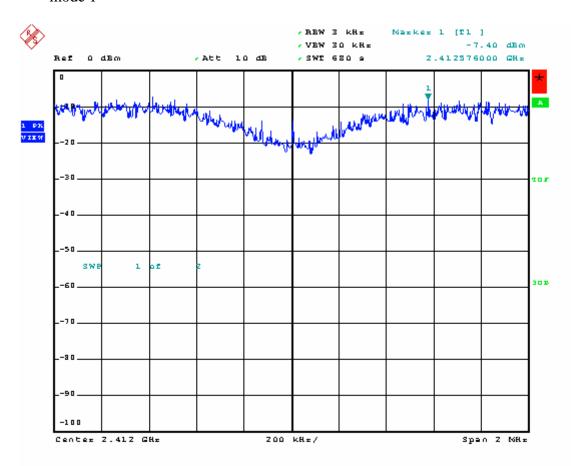
mode 1

mode 2

mode 3

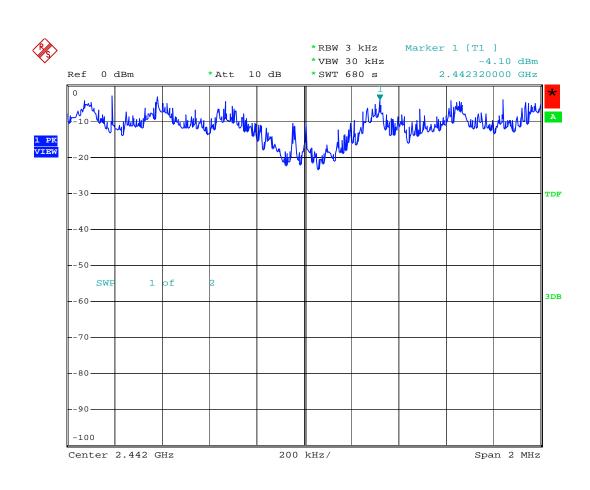
9.5. Test Data

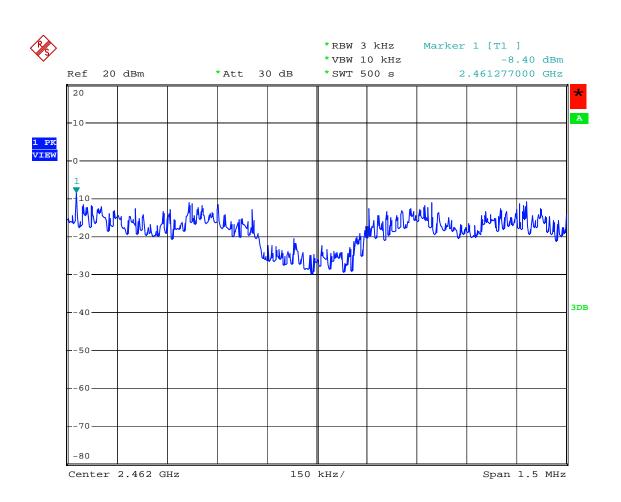
Table 18 Test Data


CHANNEL	RF POWER LEVEL IN 3kHz BW (dBm)	MAXIMUM LIMIT (dBm)	results
Ch1	-7.4	8	Pass
Ch7	-4.1	8	Pass
Ch11	-8.4	8	Pass

DSSS modulation

The test was performed with the speed of 1 Mbit/s,2 Mbit/s,5.5 Mbit/s,11 Mbit/s. the worst is 1 Mbit/s


Report No.:WT88001943 Page 30/47

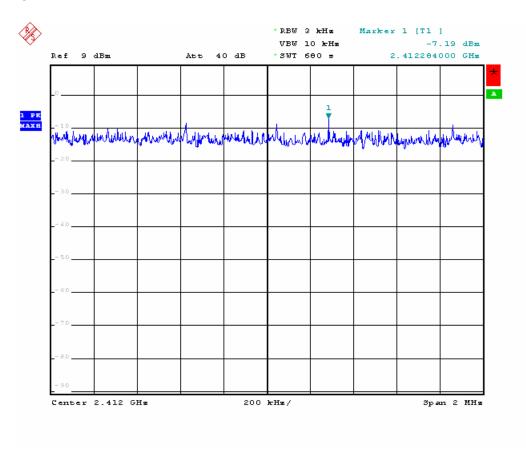

Report No.:WT88001943 Page 31/47

Report No.:WT88001943 Page 32/47

mode 3

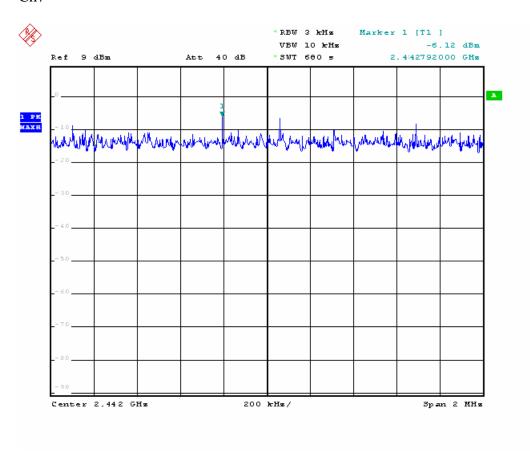
Date: 4.MAR.2008 04:47:52

Report No.:WT88001943 Page 33/47

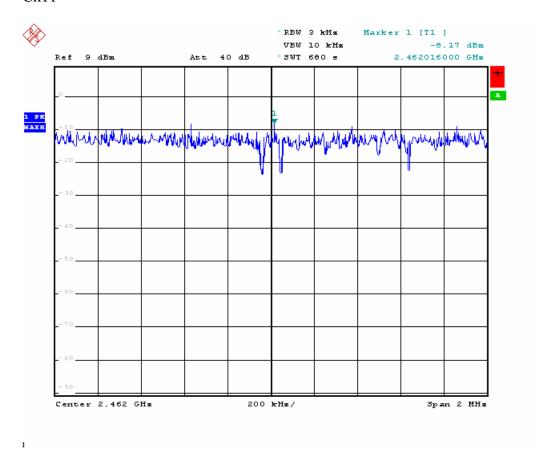

Table 19 Test Data

CHANNEL	RF POWER LEVEL IN 1kHz BW (dBm)	MAXIMUM LIMIT (dBm)	results
Ch1	-7.19	8	Pass
Ch7	-6.12	8	Pass
Ch11	-8.17	8	Pass

OFDM modulation


The test was performed with the speed of 6 Mbit/s,9 Mbit/s,12 Mbit/s,18Mbit/s,24 Mbit/s,36 Mbit/s,48 Mbit/s,54 Mbit/s. the worst is 36 Mbit/s

Ch1


Report No.:WT88001943 Page 34/47

Report No.:WT88001943 Page 35/47

Ch11

Report No.:WT88001943 Page 36/47

10. BAND EDGES MEASUREMENT

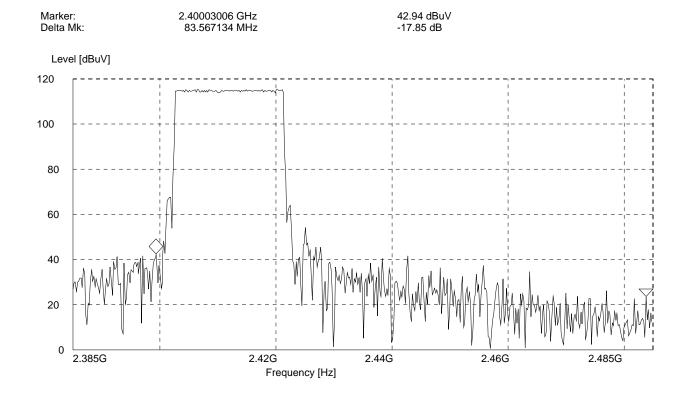
10.1.LIMITS OF BAND EDGES MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

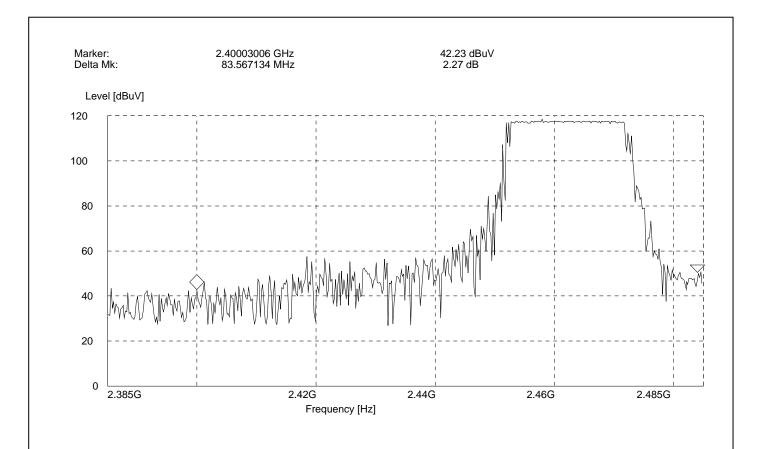
10.2.TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. Set both RBW and VBW of spectrum analyzer to 100kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

10.3.EUT OPERATING CONDITION


mode 1

mode 2


mode 3

10.4.TEST RESULTS

The spectrum plots are attached on the following. Test data shows compliance with the band edge requirement in part 15.247(d). The data was shown the worst case 802.11g 36 Mbit/s.

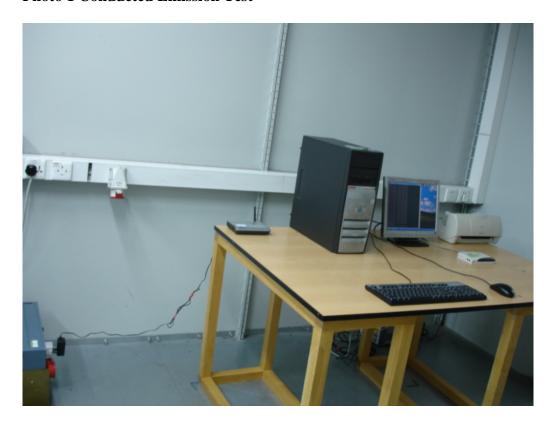
Report No.: WT88001943 Page 37/47

Report No.:WT88001943 Page 38/47

11. ANTENNA REQUIREMENT

11.1. STANDARD APPLICABLE

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.


11.2. ANTENNA CONNECTED CONSTRUCTION

The EUT has a replaceable antenna with a non-standard antenna jack, the antenna gain is 2.0 ± 0.7 dBi which is less than 6dBi. Therefore it complies with the antenna requirement.

Report No.:WT88001943 Page 39/47

Report No.:WT88001943 Page 40/47

Photo 1 Conducted Emission Test

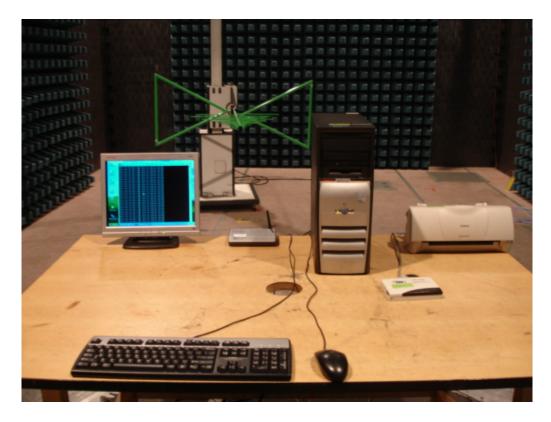
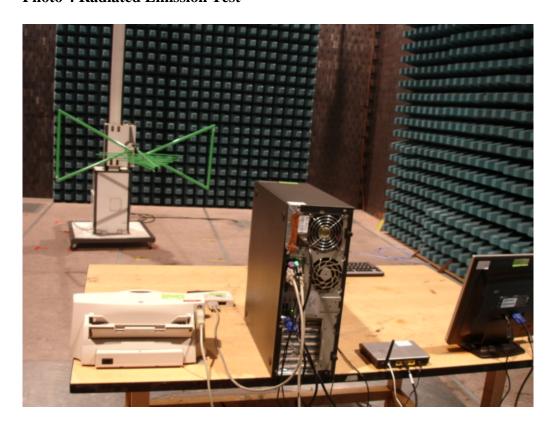


Photo 2 Conducted Emission Test



Report No.:WT88001943 Page 41/47

Photo 3 Radiated Emission Test

Photo 4 Radiated Emission Test

Report No.:WT88001943 Page 42/47

	APPENDIX II EUT PHOTO	

Report No.:WT88001943 Page 43/47

Photo 1 Label of EUT

Model:CellPipe 7130 RG 5Ae.A2010 Power Rating: 12VDC,1000mA

Do not use any other power adapter except the one that accompanies the unit. Use of other adapter could result in damage to the unit. To prevent electronic shock. Please do not open the cover.

P/N:XXX-XXXXX-XXXX

Rev:XXX

FCC ID:V4V-5AE-A2010

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) this device may not cause harmful interference, and

(2) this device must accept any interference received, including interference that may cause undesired operation.

Factory ID: X Date: MMM YYYY

Made in China

CELLPipe™7130

Model:CellPipe 7130 RG 5Ae.A2012

Power Rating: 12VDC,1000mA
WARNING:
Do not use any other power adapter except the one that accompanies the unit. Use of other adapter could result in damage to the unit. To prevent electronic shock. Please do not open the cover.

S/N:WECOYYLLLMMXXXXXX 1111111111111111111111

P/N:XXX-XXXXXX-XXXX

Rev:XXX

FCC ID:V4V-5AE-A2010

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) this device may not cause harmful interference, and

(2) this device must accept any interference received, including interference that may cause undesired operation.

€1588**①**

Factory ID: X Date: MMM YYYY

Made in China

Report No.:WT88001943 Page 44/47

Photo 2 Appearance of EUT

Photo 3 Appearance of EUT



Report No.:WT88001943 Page 45/47

Photo 5 Inside of EUT

Photo 6 Inside of EUT

Report No.:WT88001943 Page 46/47

Photo 7 Inside of EUT

Report No.:WT88001943 Page 47/47