

CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 2

CERTIFICATION TEST REPORT

For

Wireless Slim full-size scissor keyboard

MODEL NUMBER: NS-PK4KBB23
Serial Model NUMBER: NS-PK4KBB23-C

FCC ID: V4P-KB671

IC: 12487A-KB671

REPORT NUMBER: 4790692220-RF-2

ISSUE DATE: Feb. 1, 2023

Prepared for

FCC

Dongguan Newmen Electronics Technology Co., LTD No. 5, Xifa Road,Lin Village,TangxiaTown,Dongguan China

ISED

Dongguan Newmen Electronics Tech.CO., LTD
No.5, Xifa Road, Lin Village, Tangxia Town Dongguan China (Peoples Republic Of)

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

REPORT NO.: 4790692220-RF-2

Page 2 of 70

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	Feb. 1, 2023	Initial Issue	

Summary of Test Results					
Clause	Test Items	FCC/ISED Rules	Test Results		
1	6dB Bandwidth and 99% Occupied Bandwidth	FCC Part 15.247 (a) (2) RSS-247 Clause 5.2 (a) ISED RSS-Gen Clause 6.7	Pass		
2	Peak Conducted Output Power	FCC Part 15.247 (b) (3) RSS-247 Clause 5.4 (d)	Pass		
3	Power Spectral Density	FCC Part 15.247 (e) RSS-247 Clause 5.2 (b)	Pass		
4	Conducted Bandedge and Spurious Emission	FCC Part 15.247 (d) RSS-247 Clause 5.5	Pass		
5	Radiated Bandedge and Spurious Emission	FCC Part 15.247 (d) FCC Part 15.209 FCC Part 15.205 RSS-247 Clause 5.5 RSS-GEN Clause 8.9	Pass		
6	Conducted Emission Test for AC Power Port	FCC Part 15.207 RSS-GEN Clause 8.8	Pass		
7	Antenna Requirement	FCC Part 15.203 RSS-GEN Clause 6.8	Pass		

Note:

^{1.} This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

^{2.} The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 15 SUBPART C >< ISED RSS-247 > when <Accuracy Method> decision rule is applied.

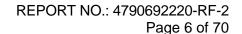


TABLE OF CONTENTS

1. A	TTESTATION OF TEST RESULTS	6
2. T	EST METHODOLOGY	8
3. F	ACILITIES AND ACCREDITATION	8
4. C	ALIBRATION AND UNCERTAINTY	9
4.1.	MEASURING INSTRUMENT CALIBRATION	9
4.2.	MEASUREMENT UNCERTAINTY	9
5. E	QUIPMENT UNDER TEST	10
5.1.	DESCRIPTION OF EUT	10
5.2.	CHANNEL LIST	10
5.3.	MAXIMUM PEAK OUTPUT POWER	10
5.4.	TEST CHANNEL CONFIGURATION	11
5.5.	THE WORSE CASE POWER SETTING PARAMETER	11
5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	11
5.7.	DESCRIPTION OF TEST SETUP	12
6. M	IEASURING INSTRUMENT AND SOFTWARE USED	14
7. A	NTENNA PORT TEST RESULTS	17
7.1.	ON TIME AND DUTY CYCLE	17
7.2.	6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH	18
7.3.	CONDUCTED OUTPUT POWER	20
7.4.	POWER SPECTRAL DENSITY	21
7.5.	CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	23
8. R	ADIATED TEST RESULTS	25
8.1.		_
	.1.1. LE 1M MODE	
8.2. 8.	SPURIOUS EMISSIONS (1 GHz ~ 3 GHz)	33 33
8.3.		
	.3.1. LE 1M MODE	
8.4. 8	SPURIOUS EMISSIONS (18 GHz ~ 26 GHz)	
8. <i>5.</i>		
	.5.1. LE 1M MODE	
<i>8.6.</i> 8.	SPURIOUS EMISSIONS BELOW 30 MHz	

9. AC POWER LINE CONDUCTED EMISSIONS	52
9.1. LE 1M MODE	53
10. ANTENNA REQUIREMENTS	EE
10. ANTENNA REQUIREMENTS	59
11. Appendix	56
11.1. Appendix A: DTS Bandwidth	56
11.1.1. Test Result	
11.1.2. Test Graphs	57
11.2. Appendix B: Occupied Channel Bandwidth	58
11.2.1. Test Result	
11.2.2. Test Graphs	
11.3. Appendix C: Maximum conducted output power	
11.3.1. Test Result	60
11.4. Appendix D: Maximum power spectral density	61
11.4.1. Test Result	
11.4.2. Test Graphs	62
11.5. Appendix E: Band edge measurements	
11.5.1. Test Result	
11.5.2. Test Graphs	
11.6. Appendix F: Conducted Spurious Emission	
11.6.1. Test Result	
11.6.2. Test Graphs	
11.7. Appendix G: Duty Cycle	
11.7.1. Test Result	
11.7.2. Test Graphs	

1. ATTESTATION OF TEST RESULTS

FCC Applicant Information

Company Name:Dongguan Newmen Electronics Technology Co., LTDAddress:No. 5, Xifa Road,Lin Village,TangxiaTown,Dongguan

China

FCC Manufacturer Information

Company Name: Dongguan Newmen Electronics Technology Co., LTD **Address:** No. 5, Xifa Road,Lin Village,TangxiaTown,Dongguan

China

ISED Applicant Information

Company Name: Dongguan Newmen Electronics Tech.CO., LTD

Address: No.5, Xifa Road, Lin Village, Tangxia Town Dongguan

China (Peoples Republic Of)

ISED Manufacturer Information

Company Name: Dongguan Newmen Electronics Tech.CO., LTD

Address: No.5, Xifa Road, Lin Village, Tangxia Town Dongguan

China (Peoples Republic Of)

EUT Information

EUT Name: Wireless Slim full-size scissor keyboard

Model: NS-PK4KBB23 Serial Model: NS-PK4KBB23-C

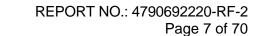
Model Difference: All the same except the model name

Brand: Insignia
Sample Received Date: Jan. 5, 2023
Sample Status: Normal
Sample ID: 5680686

Date of Tested: Jan. 5, 2023~ Feb. 1, 2023

APPLICABLE STANDARDS			
STANDARD	TEST RESULTS		
CFR 47 FCC PART 15 SUBPART C	PASS		
ISED RSS-247 Issue 2	PASS		
ISED RSS-GEN Issue 5	PASS		

Prepared By:


Checked By:

James Qin

Project Engineer

Denny Huang

Senior Project Engineer

Approved By:

Stephen Guo

Laboratory Manager

REPORT NO.: 4790692220-RF-2 Page 8 of 70

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013, ISED RSS-247 Issue 2 and ISED RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

Accreditation	A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Delcaration of Conformity (DoC) and Certification rules ISED (Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED.
Certificate	The Company Number is 21320 and the test lab Conformity Assessment Body Identifier (CABID) is CN0046. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793. Facility Name: Chamber D, the VCCI registration No. is G-20019 and R-20004 Shielding Room B, the VCCI registration No. is C-20012 and T-20011

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

REPORT NO.: 4790692220-RF-2 Page 9 of 70

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

4.00 dB	
Hz)	
5.23 dB (18 GHz ~ 26 GHz)	
±0.028%	
Hz)	
±1.328dB (1 GHz ~ 26 GHz)	

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	Wireless Slim full-size scissor keyboard		
Model	NS-PK4KBB23, NS-PK4KBB23-C		
Technology	Bluetooth - Low Ene	ergy	
Transmit Frequency Range	2402 MHz ~ 2480 MHz		
Modulation	GFSK		
Data Rate	LE 1M 1 Mbps		
Battery	DC 3.7 V		

5.2. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	11	2424	22	2446	33	2468
1	2404	12	2426	23	2448	34	2470
2	2406	13	2428	24	2450	35	2472
3	2408	14	2430	25	2452	36	2474
4	2410	15	2432	26	2454	37	2476
5	2412	16	2434	27	2456	38	2478
6	2414	17	2436	28	2458	39	2480
7	2416	18	2438	29	2460	/	/
8	2418	19	2440	30	2462	/	/
9	2420	20	2442	31	2464	1	/
10	2422	21	2444	32	2468	/	/

5.3. MAXIMUM PEAK OUTPUT POWER

Test Mode	Test Mode Frequency (MHz)		Maximum Peak Output Power (dBm)
LE 1M	2402 ~ 2480	0-39[40]	-1.41

TEST CHANNEL CONFIGURATION 5.4.

Test Mode Test Channel		Frequency	
LE 1M	CH 0(Low Channel), CH 19(MID Channel), CH 39(High Channel)	2402 MHz, 2440 MHz, 2480 MHz	

Page 11 of 70

THE WORSE CASE POWER SETTING PARAMETER 5.5.

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band					
Test Software Version fcc_test_tool					
T . NA .	Transmit	Test Software setting value			
Test Mode	Antenna Number	CH 0	CH 19	CH 39	
LE 1M	1	Default	Default	Default	

DESCRIPTION OF AVAILABLE ANTENNAS 5.6.

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)	
1	2402-2480	PCB Antenna	2.58	

Test Mode	Transmit and Receive Mode	Description
LE 1M	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.

Note: The value of the antenna gain was declared by customer.

5.7. DESCRIPTION OF TEST SETUP

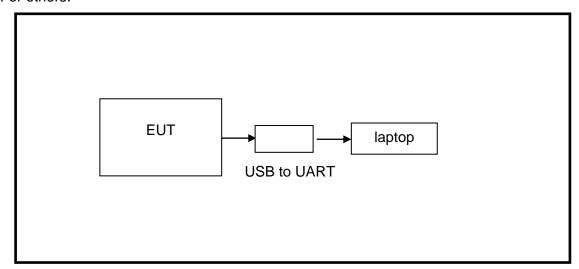
SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
1	Laptop	ThinkPad	T460S	SL10K24796 JS
2	UART	/	/	/
3	USB extension cord	/	/	/

I/O CABLES

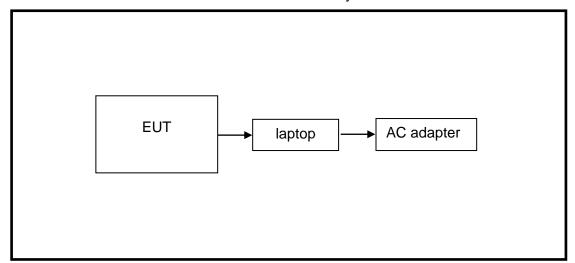
Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	/	/	/	/	/

ACCESSORIES


No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
/	/	/	/	/	/

TEST SETUP

The EUT can work in an engineer mode with a software through a laptop.


SETUP DIAGRAM FOR TESTS

For others:

For AC POWER LINE CONDUCTED EMISSIONS only:

6. MEASURING INSTRUMENT AND SOFTWARE USED

6. MEASURING IN	1911	KUME	<u>NIA</u>	MD 20	<u> </u>	WARE	וסבע <u>ו</u>			
		R&	S TS	8997 Te	st S	ystem				
Equipment		Manufac	cturer	Model	No.	Serial No.	Last C	al.	Due. Date	
Power sensor, Power M	leter	R&S	3	OSP1	20	100921	Apr.02,2	2022	Apr.01,2023	
Vector Signal Genera	tor	R&S	S	SMBV1	00A	261637	Oct.17, 2	2022	Oct.16, 2023	
Signal Generator		R&S	3	SMB10	A00	178553	Oct.17, 2	2022	Oct.16, 2023	
Signal Analyzer		R&S	3	FSV4	Ю	101118	Oct.17, 2	2022	Oct.16, 2023	
				Softwar	е					
Description		ı	Manu	facturer		Nam	ne		Version	
For R&S TS 8997 Test	Syste	m Ro	hde 8	Schwai	۲Z	EMC	32		10.60.10	
Tonsend RF Test System										
Equipment	Manu	ufacturer	Мо	del No.	S	Serial No.	Last C	Cal.	Due. Date	
Wideband Radio Communication Tester	F	R&S	CM	1W500		155523	Oct.17,	2022	Oct.16, 2023	
Wireless Connectivity Tester	F	R&S	CM	1W270	120	1.0002N75- 102	Sep.28,	2022	Sep.27, 2023	
PXA Signal Analyzer	Ke	ysight	NS	9030A	MY	′55410512	Oct.17,	2022	Oct.16, 2023	
MXG Vector Signal Generator	Ke	ysight	N5	5182B	MY	′56200284	Oct.17,	2022	Oct.16, 2023	
MXG Vector Signal Generator	Ke	ysight	N5	5172B	MY	′56200301	Oct.17,	2022	Oct.16, 2023	
DC power supply	Ke	ysight	E3	8642A	MY	′ 55159130	Oct.17,	2022	Oct.16, 2023	
Temperature & Humidity Chamber	SAN	NMOOD SG-8		30-CC-2		2088	Oct.17,	2022	Oct.16, 2023	
Software										
Description Manufac			turer			Name			Version	
Tonsend SRD Test Sys	tem	Tonse	nd	JS11	120-3	3 RF Test S	ystem	2	.6.77.0518	

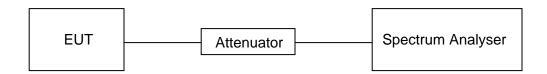
Conducted Emissions						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
EMI Test Receiver	R&S	ESR3	101961	Oct.17, 2022	Oct.16, 2023	
Two-Line V- Network	R&S	ENV216	101983	Oct.17, 2022	Oct.16, 2023	
Artificial Mains Networks	Schwarzbeck	NSLK 8126	8126465	Oct.17, 2022	Oct.16, 2023	
Software						
Description			Manufacturer	Name	Version	
Test Software for Conducted Emissions			Farad	EZ-EMC	Ver. UL-3A1	

	Radiated Emissions						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date		
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Oct.17, 2022	Oct.16, 2023		
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130959	Aug.02, 2021	Aug.01, 2024		
Preamplifier	HP	8447D	2944A09099	Oct.17, 2022	Oct.16, 2023		
EMI Measurement Receiver	R&S	ESR26	101377	Oct.17, 2022	Oct.16, 2023		
Horn Antenna	TDK	HRN-0118	130940	July 20, 2021	July 19, 2024		
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Oct.17, 2022	Oct.16, 2023		
Horn Antenna	Schwarzbeck	BBHA9170	697	July 20, 2021	July 19, 2024		
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Oct.17, 2022	Oct.16, 2023		
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Oct.17, 2022	Oct.16, 2023		
Loop antenna	Schwarzbeck	1519B	80000	Dec.14, 2021	Dec.13, 2024		
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Oct.17, 2022	Oct.16, 2023		
Preamplifier	Mini-Circuits	ZX60-83LN- S+	SUP01202035	Oct.17, 2022	Oct.16, 2023		
High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS	23	1	1		
Highpass Filter	Wainwright	WHKX10- 5850-6500- 1800-40SS	4	1	/		
Band Reject Filter	Wainwright	WRCJV12- 5695-5725- 5850-5880- 40SS	4	1	1		

Band Reject Filter	Wainwright	WRCJV20- 5120-5150- 5350-5380- 60SS	2	1	/	
Band Reject Filter	Wainwright	WRCJV20- 5440-5470- 5725-5755- 60SS	1	/	/	
Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS	4	/	/	
Band Reject Filter	Wainwright	WRCD5- 1879- 1879.85- 1880.15- 1881-40SS	1	/	/	
Notch Filter	Wainwright	WHJ10-882- 980-7000- 40SS	1	/	/	
Software						
	Description			Name	Version	
Test Software for Radiated Emissions			Farad	EZ-EMC	Ver. UL-3A1	

Other Instrument						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
Temperature humidity probe	OMEGA	ITHX-SD-5	18470007	Oct.22, 2022	Oct.21, 2023	
Barometer	Yiyi	Baro	N/A	Oct.24, 2022	Oct.23, 2023	
Attenuator	Agilent	8495B	2814a12853	Oct.18, 2022	Oct.17, 2023	

7. ANTENNA PORT TEST RESULTS 7.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only.

PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2 °C	Relative Humidity	66 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3.7 V

RESULTS

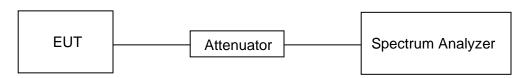
Please refer to appendix G.

7.2. 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH

LIMITS

CFR 47FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2						
Section Test Item Limit Frequency Ran (MHz)						
CFR 47 FCC 15.247(a)(2) ISED RSS-247 5.2 (a)	6 dB Bandwidth	≥ 500 kHz	2400-2483.5			
ISED RSS-Gen Clause 6.7	99 % Occupied Bandwidth	None; for reporting purposes only.	2400-2483.5			

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth and clause 6.9 for Occupied Bandwidth.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Frequency Span	For 6 dB Bandwidth: Enough to capture all products of the modulation carrier emission For 99 % Occupied Bandwidth: Between 1.5 times and 5.0 times the OBW
Detector	Peak
RBW	For 6 dB Bandwidth: 100 kHz For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
IV/R/W	For 6 dB Bandwidth: ≥3 x RBW For 99 % Occupied Bandwidth: ≥3 x RBW
Trace	Max hold
Sweep	Auto couple

- a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.
- b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

REPORT NO.: 4790692220-RF-2

Page 19 of 70

TEST ENVIRONMENT

Temperature	23.2 °C	Relative Humidity	66 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3.7 V

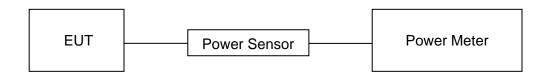
RESULTS

Please refer to appendix A & B.

REPORT NO.: 4790692220-RF-2 Page 20 of 70

7.3. CONDUCTED OUTPUT POWER

LIMITS


CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC 15.247(b)(3) ISED RSS-247 5.4 (d)	Peak Conducted Output Power	1 watt or 30 dBm	2400-2483.5	

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2 °C	Relative Humidity	66 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3.7 V

RESULTS

Please refer to appendix C.

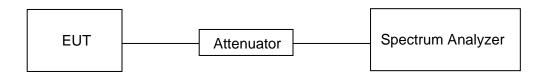
7.4. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC §15.247 (e) ISED RSS-247 5.2 (b)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.10.


Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	3 kHz ≤ RBW ≤ 100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2 °C	Relative Humidity	66 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3.7 V

REPORT NO.: 4790692220-RF-2

Page 22 of 70

RESULTS

Please refer to appendix D.

REPORT NO.: 4790692220-RF-2 Page 23 of 70

7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section Test Item Limit			
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

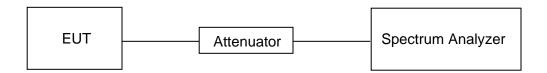
TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.11 and 11.13.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.


Change the settings for emission level measurement:

	or enhancement to the meader of them.
ISpan	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2 °C	Relative Humidity	66 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3.7 V

RESULTS

Please refer to appendix E & F.

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz-1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz				
Frequency Range	Field Strength Limit	Field Stren	gth Limit	
(MHz)	(uV/m) at 3 m	(dBuV/m)	at 3 m	
(1711 12)	(4 7/11) 41 5 111	Quasi-l	Peak	
30 - 88	100	40		
88 - 216	150	43.5		
216 - 960	200	46		
Above 960	500	54		
Above 1000	500	Peak	Average	
Above 1000	500	74	54	

FCC Emissions radiated outside of the specified frequency bands below 30 MHz							
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)							
0.009-0.490	2400/F(kHz)	300					
0.490-1.705	24000/F(kHz)	30					
1.705-30.0	30	30					

ISED General field strength limits at frequencies below 30 MHz

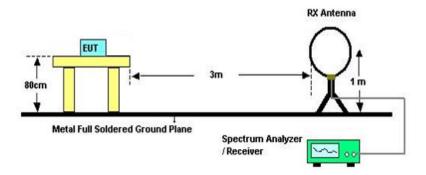
Table 6 – General field strength limits at frequencies below 30 MHz							
Frequency Magnetic field strength (H-Field) (μA/m) Measurement distance							
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300					
490 - 1705 kHz	63.7/F (F in kHz)	30					
1.705 - 30 MHz	0.08	30					

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

ISED Restricted bands please refer to ISED RSS-GEN Clause 8.10

MHz	MHz	GHz
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2
0.495 - 0.505	158.52475 - 158.52525	9.3 - 9.5
2.1735 - 2.1905	156.7 - 156.9	10.6 - 12.7
3.020 - 3.026	162.0125 - 167.17	13.25 - 13.4
4.125 - 4.128	167.72 - 173.2	14.47 - 14.5
4.17725 - 4.17775	240 – 285	15.35 - 16.2
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4
5.677 - 5.683	399.9 - 410	22.01 - 23.12
6.215 - 6.218	608 - 614	23.6 - 24.0
6.26775 - 6.26825	960 - 1427	31.2 - 31.8
6.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5
8.291 - 8.294	1645.5 - 1646.5	Above 38.6
8.362 - 8.366	1660 - 1710	
8.37625 - 8.38675	1718.8 - 1722.2	
8.41425 - 8.41475	2200 - 2300	
12.29 - 12.293	2310 - 2390	
12.51975 - 12.52025	2483.5 - 2500	
12.57675 - 12.57725	2655 - 2900	
13.36 - 13.41	3260 - 3267	
16.42 - 16.423	3332 - 3339	
16.69475 - 16.69525	3345.8 - 3358	
16.80425 - 16.80475	3500 - 4400	
25.5 - 25.67	4500 - 5150	
37.5 - 38.25	5350 - 5480	
73 - 74.6	7250 - 7750	
74.8 - 75.2	8025 - 8500	
108 – 138		

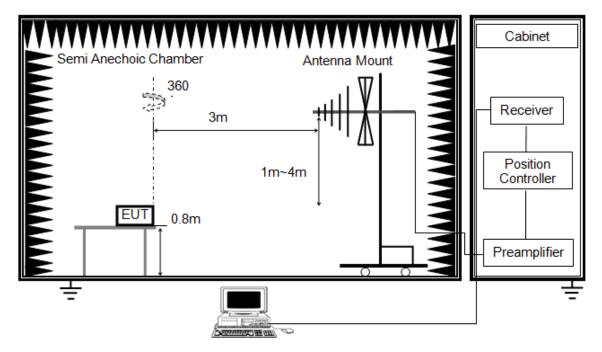
FCC Restricted bands of operation refer to FCC §15.205 (a):


MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TEST SETUP AND PROCEDURE

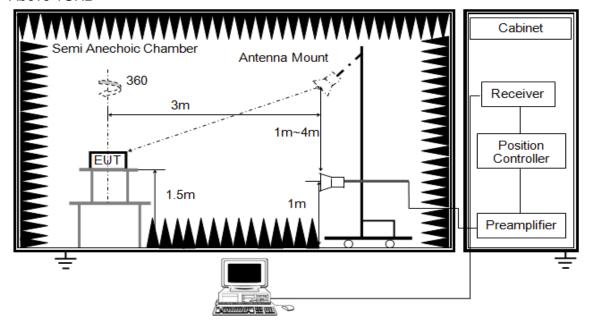
Below 30 MHz


The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- 6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.
- 7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.
- 8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ω ; For example, the measurement frequency X kHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

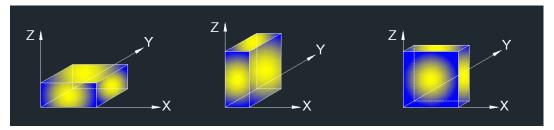
Below 1 GHz and above 30 MHz


The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1GHz


The setting of the spectrum analyser

RBW	1 MHz
IVBW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (1.5 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5 m above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.

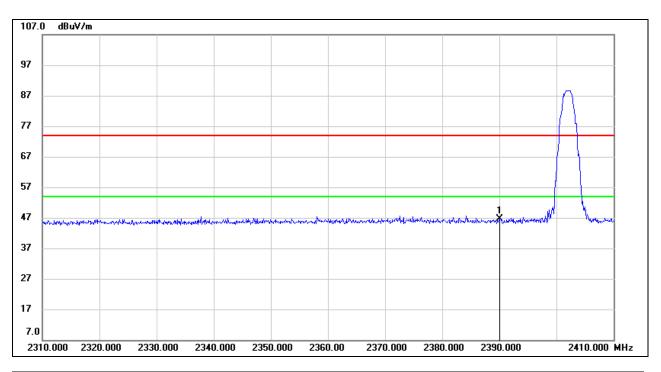
X axis, Y axis, Z axis positions:

Note 1: The manufacturer has recommended that the EUT only be used in the desktop (horizontal) orientation; therefore, all radiated testing was performed in desktop orientation. The EUT was placed on normal orientation and all radiated emissions were performed with the EUT shown on the setup photo.

TEST ENVIRONMENT

Temperature	24.3°C	Relative Humidity	61 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3.7 V

RESULTS



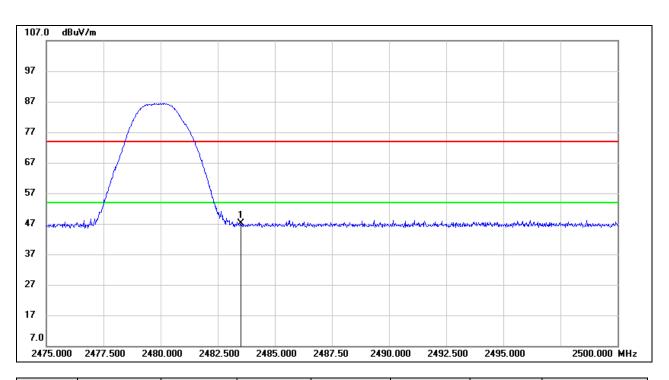
8.1. RESTRICTED BANDEDGE

8.1.1. LE 1M MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	14.39	32.16	46.55	74.00	-27.45	peak


Note:

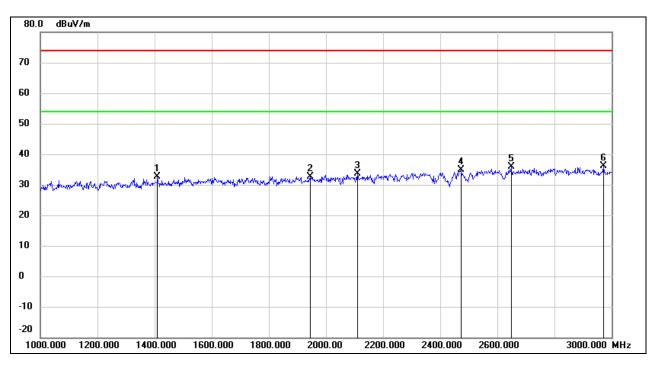
- 1. Measurement = Reading Level + Correct Factor.
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.
- 5. All the polarities (Vertical & Horizontal) had been tested, only the worst data was recorded in the report.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	14.72	32.44	47.16	74.00	-26.84	peak

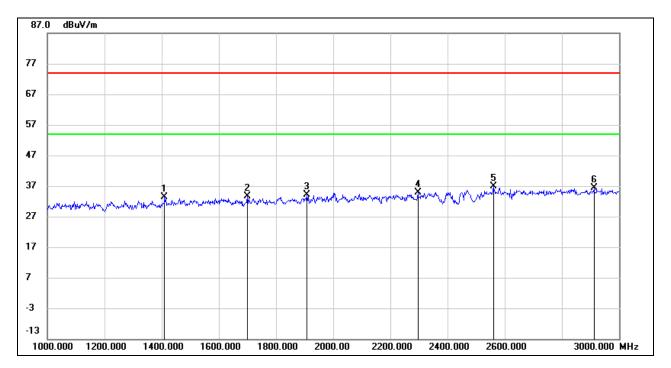
Note:


- 1. Measurement = Reading Level + Correct Factor.
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.
- 5. All the polarities (Vertical & Horizontal) had been tested, only the worst data was recorded in the report.

8.2. SPURIOUS EMISSIONS (1 GHz ~ 3 GHz)

8.2.1. LE 1M MODE

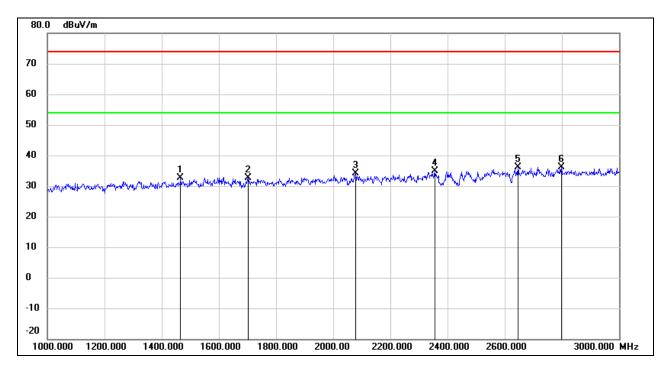
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1410.000	45.69	-13.13	32.56	74.00	-41.44	peak
2	1944.000	43.98	-11.24	32.74	74.00	-41.26	peak
3	2110.000	44.13	-10.49	33.64	74.00	-40.36	peak
4	2472.000	43.40	-8.63	34.77	74.00	-39.23	peak
5	2648.000	43.98	-8.04	35.94	74.00	-38.06	peak
6	2972.000	43.08	-7.06	36.02	74.00	-37.98	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

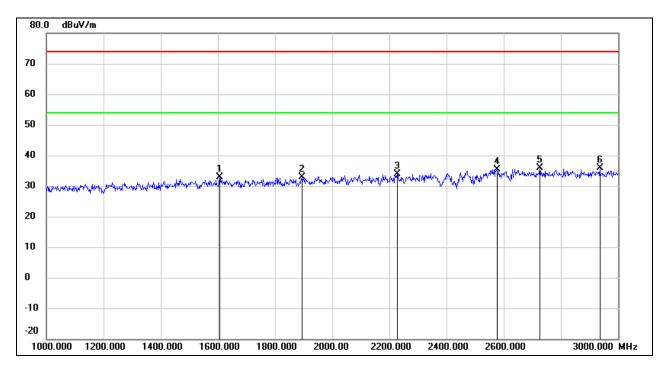
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1410.000	46.49	-13.13	33.36	74.00	-40.64	peak
2	1700.000	45.77	-12.05	33.72	74.00	-40.28	peak
3	1908.000	45.39	-11.36	34.03	74.00	-39.97	peak
4	2296.000	44.35	-9.54	34.81	74.00	-39.19	peak
5	2560.000	45.12	-8.31	36.81	74.00	-37.19	peak
6	2912.000	43.51	-7.25	36.26	74.00	-37.74	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

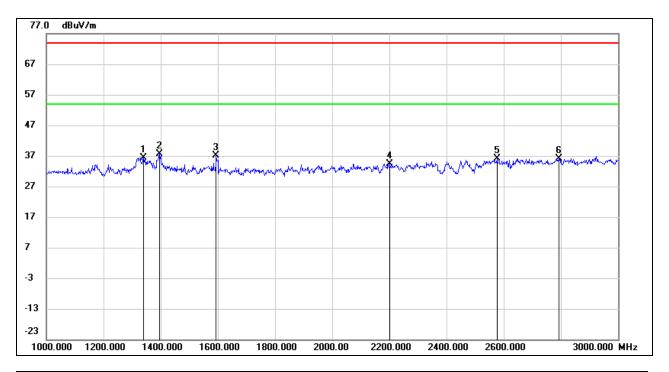
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1466.000	45.61	-12.87	32.74	74.00	-41.26	peak
2	1702.000	44.71	-12.05	32.66	74.00	-41.34	peak
3	2078.000	44.79	-10.67	34.12	74.00	-39.88	peak
4	2356.000	44.21	-9.22	34.99	74.00	-39.01	peak
5	2646.000	44.06	-8.05	36.01	74.00	-37.99	peak
6	2798.000	43.76	-7.59	36.17	74.00	-37.83	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

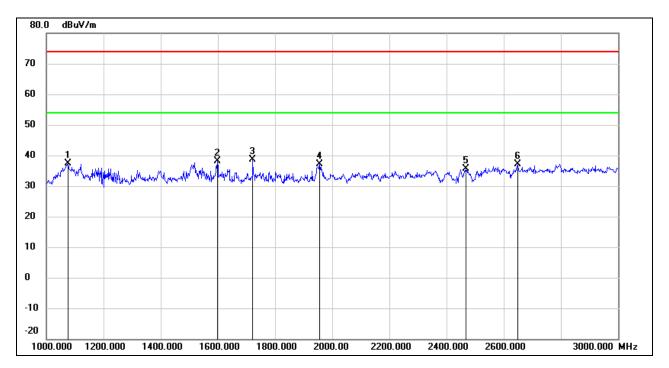
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1606.000	45.30	-12.36	32.94	74.00	-41.06	peak
2	1894.000	44.30	-11.41	32.89	74.00	-41.11	peak
3	2228.000	43.67	-9.89	33.78	74.00	-40.22	peak
4	2576.000	43.55	-8.26	35.29	74.00	-38.71	peak
5	2726.000	43.57	-7.80	35.77	74.00	-38.23	peak
6	2936.000	43.17	-7.17	36.00	74.00	-38.00	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1340.000	49.93	-13.45	36.48	74.00	-37.52	peak
2	1396.000	50.82	-13.19	37.63	74.00	-36.37	peak
3	1594.000	49.50	-12.40	37.10	74.00	-36.90	peak
4	2202.000	44.41	-10.02	34.39	74.00	-39.61	peak
5	2576.000	44.42	-8.26	36.16	74.00	-37.84	peak
6	2792.000	43.74	-7.61	36.13	74.00	-37.87	peak

Note: 1. Measurement = Reading Level + Correct Factor.

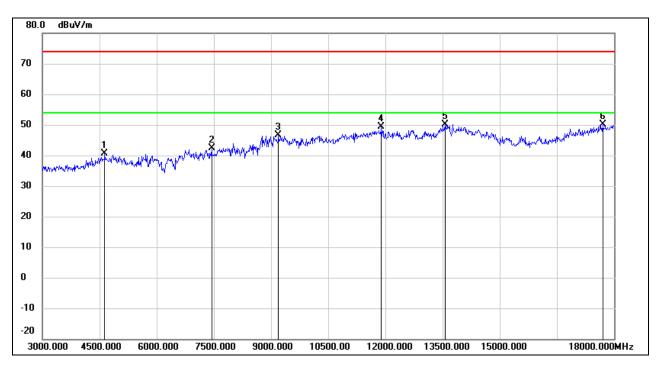
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1076.000	52.12	-14.68	37.44	74.00	-36.56	peak
2	1598.000	50.51	-12.38	38.13	74.00	-35.87	peak
3	1722.000	50.59	-11.98	38.61	74.00	-35.39	peak
4	1956.000	48.39	-11.21	37.18	74.00	-36.82	peak
5	2468.000	44.28	-8.65	35.63	74.00	-38.37	peak
6	2648.000	45.24	-8.04	37.20	74.00	-36.80	peak

Note: 1. Measurement = Reading Level + Correct Factor.

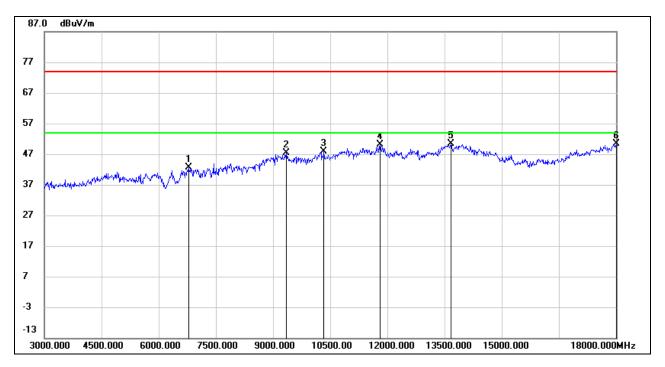
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.


Note: All the modes and channels had been tested, but only the worst data was recorded in the report.

8.3. SPURIOUS EMISSIONS (3 GHz ~ 18 GHz)

8.3.1. **LE 1M MODE**

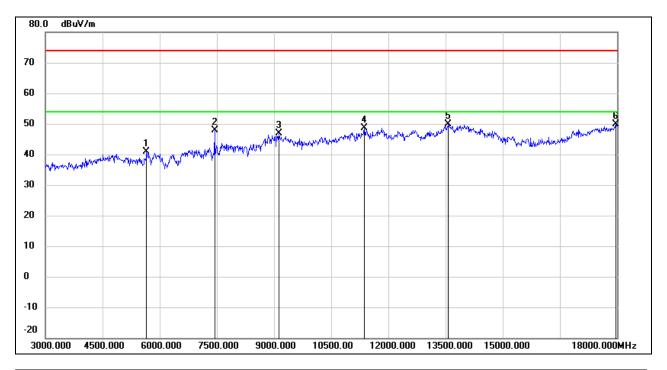
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4635.000	41.52	-0.95	40.57	74.00	-33.43	peak
2	7440.000	36.10	6.38	42.48	74.00	-31.52	peak
3	9195.000	36.16	10.56	46.72	74.00	-27.28	peak
4	11895.000	31.63	17.68	49.31	74.00	-24.69	peak
5	13560.000	29.04	21.04	50.08	74.00	-23.92	peak
6	17700.000	26.31	23.91	50.22	74.00	-23.78	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

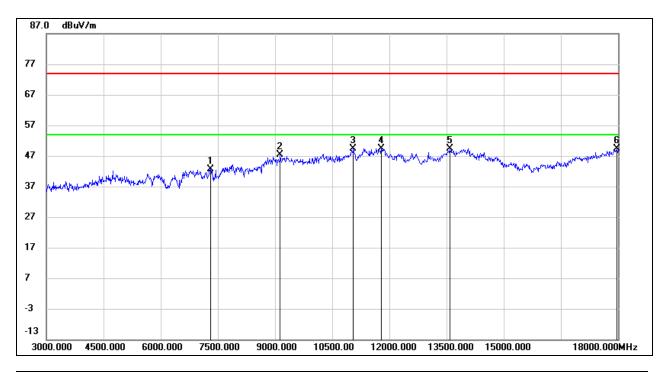
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	6780.000	36.98	5.60	42.58	74.00	-31.42	peak
2	9345.000	36.73	10.63	47.36	74.00	-26.64	peak
3	10335.000	35.25	12.67	47.92	74.00	-26.08	peak
4	11805.000	32.59	17.43	50.02	74.00	-23.98	peak
5	13665.000	29.12	21.25	50.37	74.00	-23.63	peak
6	18000.000	24.67	25.69	50.36	74.00	-23.64	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

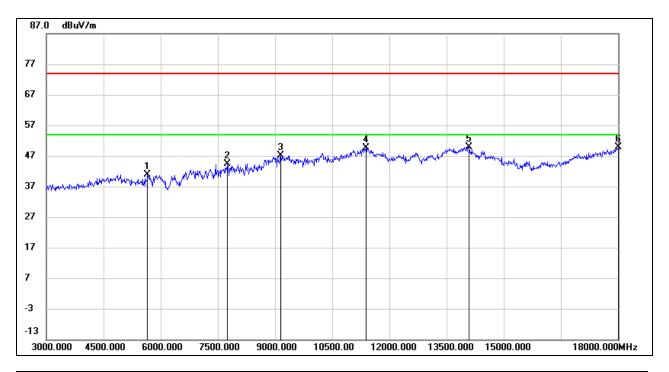
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5655.000	39.47	1.29	40.76	74.00	-33.24	peak
2	7440.000	41.45	6.38	47.83	74.00	-26.17	peak
3	9120.000	36.40	10.53	46.93	74.00	-27.07	peak
4	11370.000	32.45	16.12	48.57	74.00	-25.43	peak
5	13575.000	28.84	21.06	49.90	74.00	-24.10	peak
6	17970.000	24.44	25.51	49.95	74.00	-24.05	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

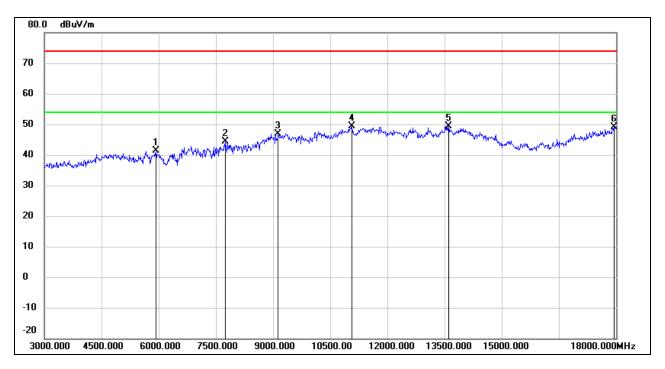
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7305.000	36.10	6.47	42.57	74.00	-31.43	peak
2	9135.000	36.94	10.55	47.49	74.00	-26.51	peak
3	11055.000	34.33	14.96	49.29	74.00	-24.71	peak
4	11790.000	32.12	17.38	49.50	74.00	-24.50	peak
5	13590.000	28.28	21.09	49.37	74.00	-24.63	peak
6	17970.000	23.76	25.51	49.27	74.00	-24.73	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

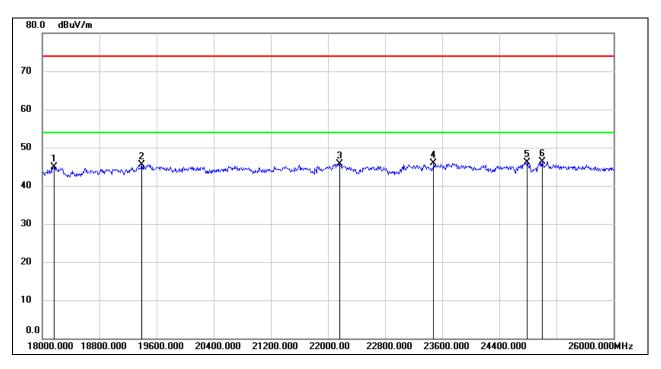


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5655.000	39.70	1.29	40.99	74.00	-33.01	peak
2	7755.000	38.19	6.31	44.50	74.00	-29.50	peak
3	9150.000	36.68	10.54	47.22	74.00	-26.78	peak
4	11385.000	33.39	16.17	49.56	74.00	-24.44	peak
5	14085.000	28.39	21.61	50.00	74.00	-24.00	peak
6	18000.000	24.30	25.69	49.99	74.00	-24.01	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

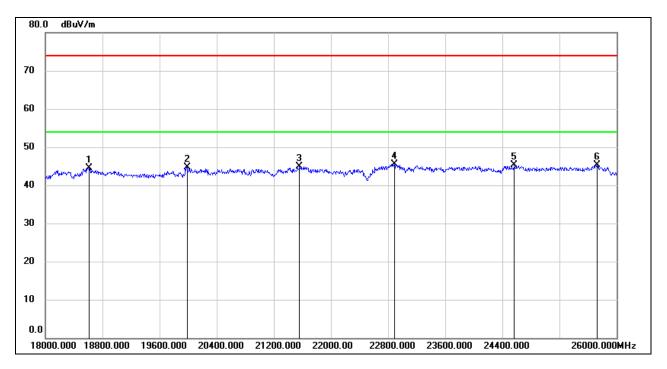
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5925.000	39.22	2.04	41.26	74.00	-32.74	peak
2	7755.000	38.11	6.31	44.42	74.00	-29.58	peak
3	9135.000	36.32	10.55	46.87	74.00	-27.13	peak
4	11070.000	34.41	15.03	49.44	74.00	-24.56	peak
5	13605.000	28.16	21.12	49.28	74.00	-24.72	peak
6	17940.000	23.70	25.34	49.04	74.00	-24.96	peak


- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
 - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8.4. SPURIOUS EMISSIONS (18 GHz ~ 26 GHz)

8.4.1. LE 1M MODE

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18160.000	50.30	-5.49	44.81	74.00	-29.19	peak
2	19392.000	51.12	-5.57	45.55	74.00	-28.45	peak
3	22160.000	50.08	-4.31	45.77	74.00	-28.23	peak
4	23480.000	49.04	-3.16	45.88	74.00	-28.12	peak
5	24792.000	48.48	-2.28	46.20	74.00	-27.80	peak
6	25000.000	48.36	-2.10	46.26	74.00	-27.74	peak

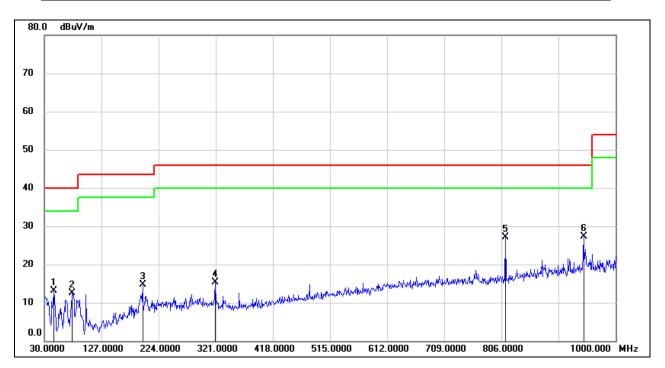
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18616.000	49.89	-5.34	44.55	74.00	-29.45	peak
2	19984.000	50.21	-5.44	44.77	74.00	-29.23	peak
3	21560.000	49.49	-4.60	44.89	74.00	-29.11	peak
4	22888.000	49.03	-3.55	45.48	74.00	-28.52	peak
5	24568.000	47.60	-2.33	45.27	74.00	-28.73	peak
6	25728.000	46.11	-0.72	45.39	74.00	-28.61	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

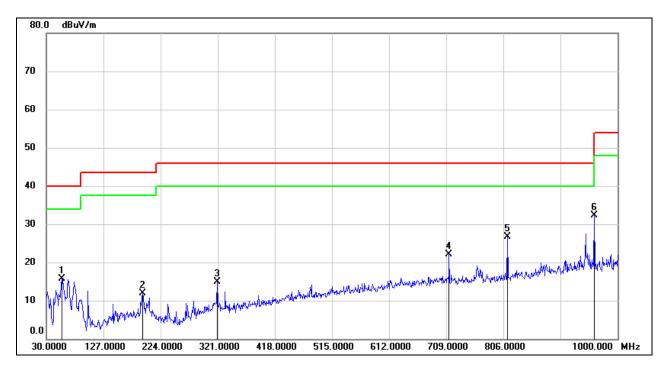
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.


Note: All the modes have been tested, only the worst data was recorded in the report.

8.5. SPURIOUS EMISSIONS (30 MHz ~ 1 GHz)

8.5.1. **LE 1M MODE**

SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	46.4900	33.43	-20.39	13.04	40.00	-26.96	QP
2	77.5300	33.73	-21.14	12.59	40.00	-27.41	QP
3	196.8400	30.95	-16.26	14.69	43.50	-28.81	QP
4	320.0300	30.22	-14.86	15.36	46.00	-30.64	QP
5	812.7900	34.30	-7.18	27.12	46.00	-18.88	QP
6	945.6800	32.00	-4.60	27.40	46.00	-18.60	QP

Note: 1. Result Level = Read Level + Correct Factor.

- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

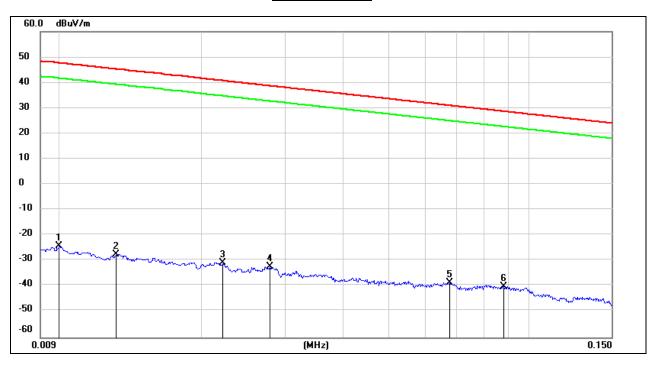
SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	56.1900	36.20	-20.56	15.64	40.00	-24.36	QP
2	192.9600	28.22	-16.36	11.86	43.50	-31.64	QP
3	320.0300	29.70	-14.86	14.84	46.00	-31.16	QP
4	713.8500	30.32	-8.29	22.03	46.00	-23.97	QP
5	812.7900	33.92	-7.18	26.74	46.00	-19.26	QP
6	960.2300	36.92	-4.68	32.24	54.00	-21.76	QP

Note: 1. Result Level = Read Level + Correct Factor.

- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

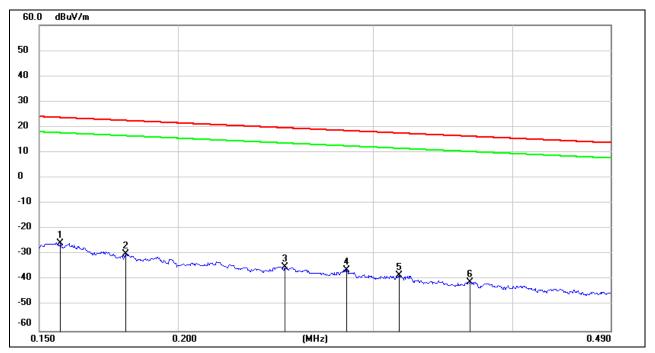
Note: All the modes have been tested, only the worst data was recorded in the report.



8.6. SPURIOUS EMISSIONS BELOW 30 MHz

8.6.1. **LE 1M MODE**

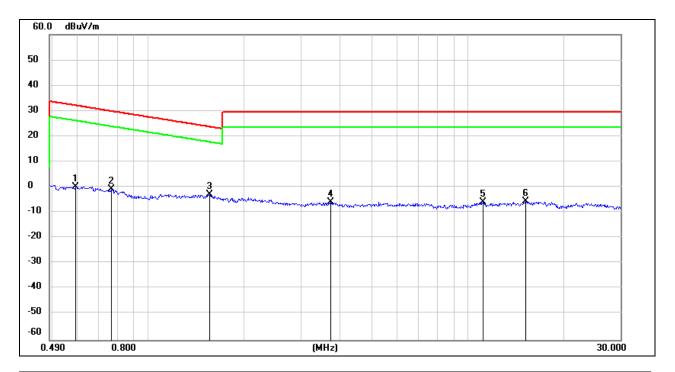
SPURIOUS EMISSIONS (LOW CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)


No.	Frequency	Reading	Correct	FCC Result	FCC Limit	ISED Result	ISED Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.0100	77.22	-101.40	-24.18	47.60	-75.68	-3.9	-71.78	peak
2	0.0131	73.97	-101.38	-27.41	45.25	-78.91	-6.25	-72.66	peak
3	0.0221	70.63	-101.35	-30.72	40.71	-82.22	-10.79	-71.43	peak
4	0.0279	69.17	-101.38	-32.21	38.69	-83.71	-12.81	-70.90	peak
5	0.0675	63.14	-101.56	-38.42	31.02	-89.92	-20.48	-69.44	peak
6	0.0882	61.59	-101.70	-40.11	28.69	-91.61	-22.81	-68.80	peak

Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- $20Log10[120\pi] = dBuV/m- 51.5$).

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

150 kHz ~ 490 kHz


No.	Frequency	Reading	Correct	FCC Result	FCC Limit	ISED Result	ISED Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.1567	75.95	-101.65	-25.70	23.70	-77.2	-27.8	-49.40	peak
2	0.1794	71.77	-101.68	-29.91	22.53	-81.41	-28.97	-52.44	peak
3	0.2494	66.96	-101.80	-34.84	19.66	-86.34	-31.84	-54.50	peak
4	0.2836	65.71	-101.83	-36.12	18.55	-87.62	-32.95	-54.67	peak
5	0.3163	63.70	-101.87	-38.17	17.60	-89.67	-33.9	-55.77	peak
6	0.3662	61.08	-101.93	-40.85	16.33	-92.35	-35.17	-57.18	peak

Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- $20Log10[120\pi] = dBuV/m- 51.5$).

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

490 kHz ~ 30 MHz

No.	Frequency	Reading	Correct	FCC Result	FCC Limit	ISED Result	ISED Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.5917	62.24	-62.08	0.16	32.16	-51.34	-19.34	-32.00	peak
2	0.7641	61.42	-62.12	-0.70	29.94	-52.2	-21.56	-30.64	peak
3	1.5564	59.18	-62.02	-2.84	23.76	-54.34	-27.74	-26.60	peak
4	3.7100	55.70	-61.41	-5.71	29.54	-57.21	-21.96	-35.25	peak
5	11.1431	54.99	-60.85	-5.86	29.54	-57.36	-21.96	-35.40	peak
6	15.1859	55.55	-61.01	-5.46	29.54	-56.96	-21.96	-35.00	peak

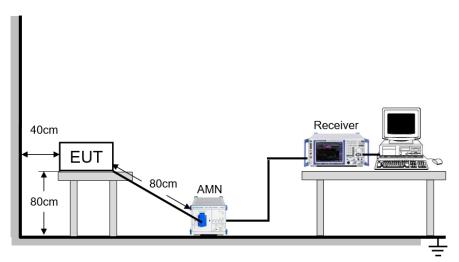
Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- 20Log10[120 π] = dBuV/m- 51.5).

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All the modes have been tested, only the worst data was recorded in the report.

Page 52 of 70

9. AC POWER LINE CONDUCTED EMISSIONS


LIMITS

Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

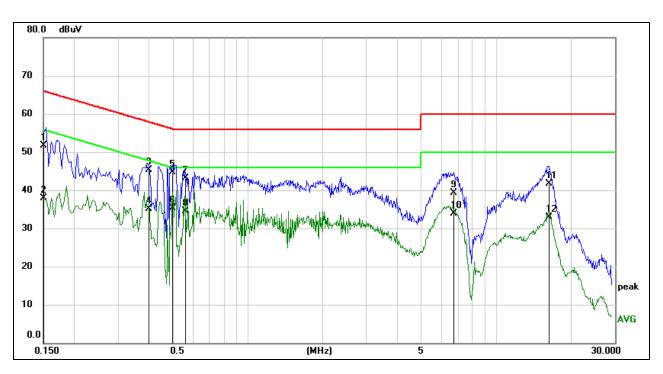
TEST SETUP AND PROCEDURE

Refer to ANSI C63.10-2013 clause 6.2.

The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

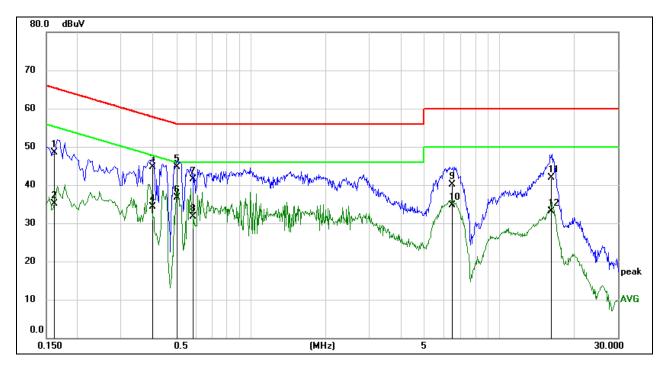
TEST ENVIRONMENT


Temperature	23.8 °C	Relative Humidity	68.5 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V/60 Hz

RESULTS

9.1. **LE 1M MODE**

LINE L RESULTS (LOW CHANNEL, WORST-CASE CONFIGURATION)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1502	42.22	9.49	51.71	65.99	-14.28	QP
2	0.1502	28.50	9.49	37.99	55.99	-18.00	AVG
3	0.3993	35.70	9.52	45.22	57.87	-12.65	QP
4	0.3993	25.53	9.52	35.05	47.87	-12.82	AVG
5	0.4969	35.16	9.50	44.66	56.05	-11.39	QP
6	0.4969	25.80	9.50	35.30	46.05	-10.75	AVG
7	0.5596	33.63	9.50	43.13	56.00	-12.87	QP
8	0.5596	24.99	9.50	34.49	46.00	-11.51	AVG
9	6.7146	29.75	9.63	39.38	60.00	-20.62	QP
10	6.7146	24.35	9.63	33.98	50.00	-16.02	AVG
11	16.1884	32.08	9.65	41.73	60.00	-18.27	QP
12	16.1884	23.22	9.65	32.87	50.00	-17.13	AVG

Note: 1. Result = Reading + Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).
- 4. Step size: 80 Hz (0.009 MHz \sim 0.15 MHz), 4 kHz (0.15 MHz \sim 30 MHz), Scan time: auto.

LINE N RESULTS (LOW CHANNEL, WORST-CASE CONFIGURATION)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1618	39.03	9.51	48.54	65.37	-16.83	QP
2	0.1618	25.51	9.51	35.02	55.37	-20.35	AVG
3	0.4052	35.24	9.53	44.77	57.75	-12.98	QP
4	0.4052	24.77	9.53	34.30	47.75	-13.45	AVG
5	0.5089	35.11	9.50	44.61	56.00	-11.39	QP
6	0.5089	27.15	9.50	36.65	46.00	-9.35	AVG
7	0.5829	32.10	9.50	41.60	56.00	-14.40	QP
8	0.5829	22.27	9.50	31.77	46.00	-14.23	AVG
9	6.4574	30.51	9.64	40.15	60.00	-19.85	QP
10	6.4574	25.06	9.64	34.70	50.00	-15.30	AVG
11	16.2989	32.35	9.65	42.00	60.00	-18.00	QP
12	16.2989	23.36	9.65	33.01	50.00	-16.99	AVG

Note: 1. Result = Reading + Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).
- 4. Step size: 80 Hz (0.009 MHz \sim 0.15 MHz), 4 kHz (0.15 MHz \sim 30 MHz), Scan time: auto.

Note: All the modes have been tested, only the worst data was recorded in the report.

REPORT NO.: 4790692220-RF-2

Page 55 of 70

10. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

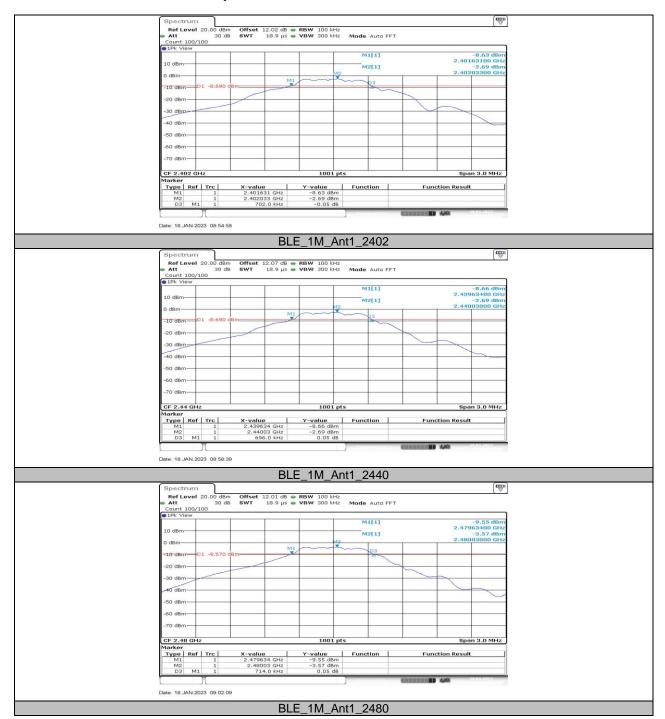
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

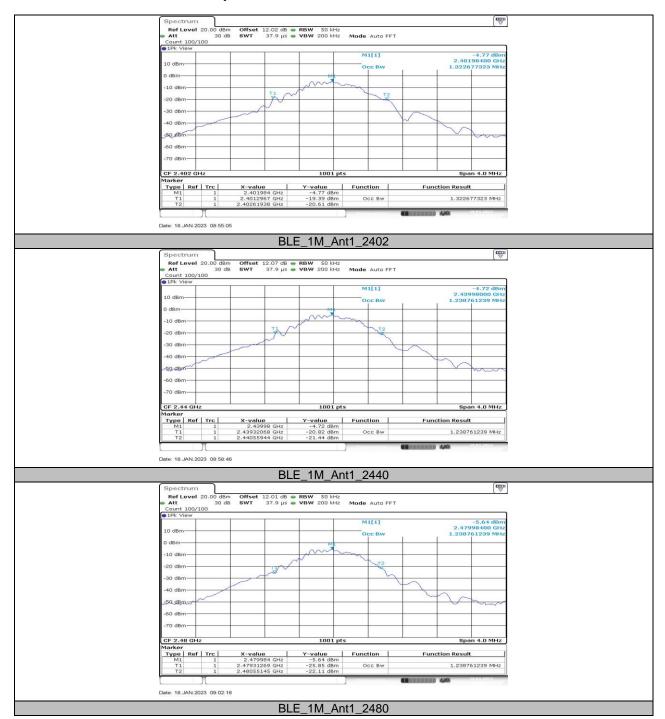
Complies


Appendix 11.

11.1. Appendix A: DTS Bandwidth 11.1.1. Test Result

Test Mode	Antenna	Channel	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.70	2401.63	2402.33	>=0.5	PASS
BLE_1M	Ant1	2440	0.70	2439.63	2440.33	>=0.5	PASS
		2480	0.71	2479.63	2480.35	>=0.5	PASS

11.1.2. Test Graphs



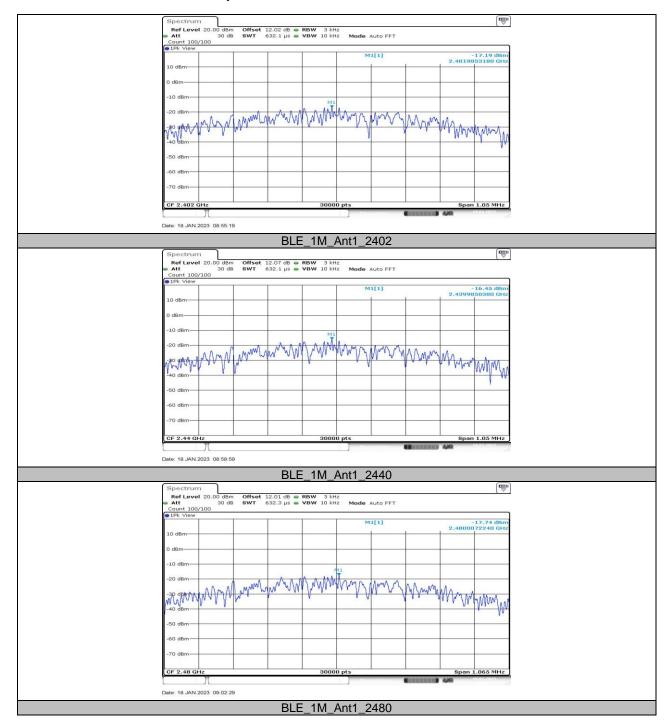
11.2. Appendix B: Occupied Channel Bandwidth 11.2.1. Test Result

Test Mode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Verdict
BLE_1M	Ant1	2402	1.323	2401.2967	2402.6194	PASS
		2440	1.239	2439.3207	2440.5594	PASS
		2480	1.239	2479.3127	2480.5514	PASS

11.2.2. Test Graphs

11.3. Appendix C: Maximum conducted output power 11.3.1. Test Result

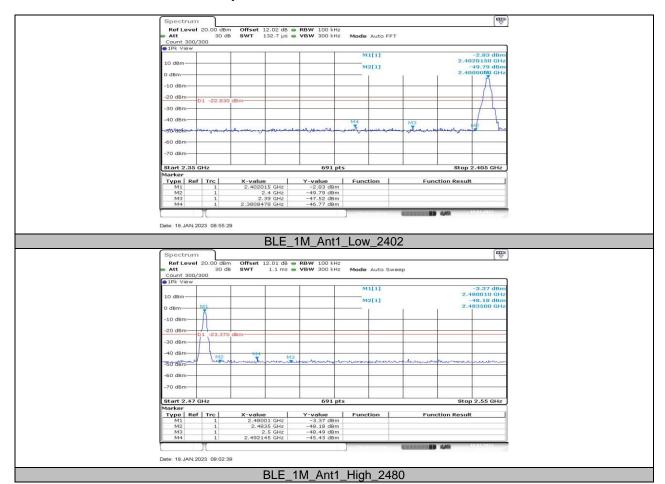
Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
BLE_1M		2402	-1.41	≤30	PASS
	Ant1	2440	-1.45	≤30	PASS
		2480	-2.29	≤30	PASS



11.4. Appendix D: Maximum power spectral density 11.4.1. Test Result

Test Mode	Antenna	Channel	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
BLE_1M		2402	-17.19	≤8.00	PASS
	Ant1	2440	-16.45	≤8.00	PASS
		2480	-17.74	≤8.00	PASS

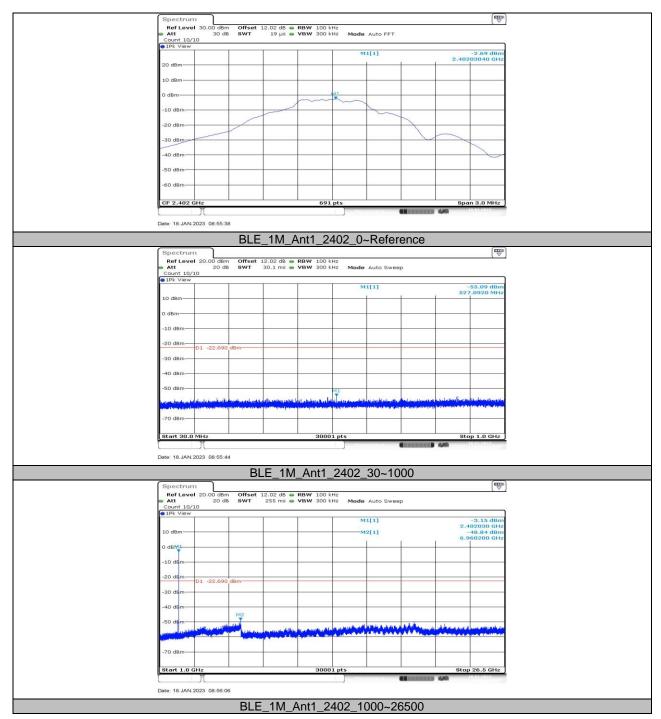
11.4.2. Test Graphs



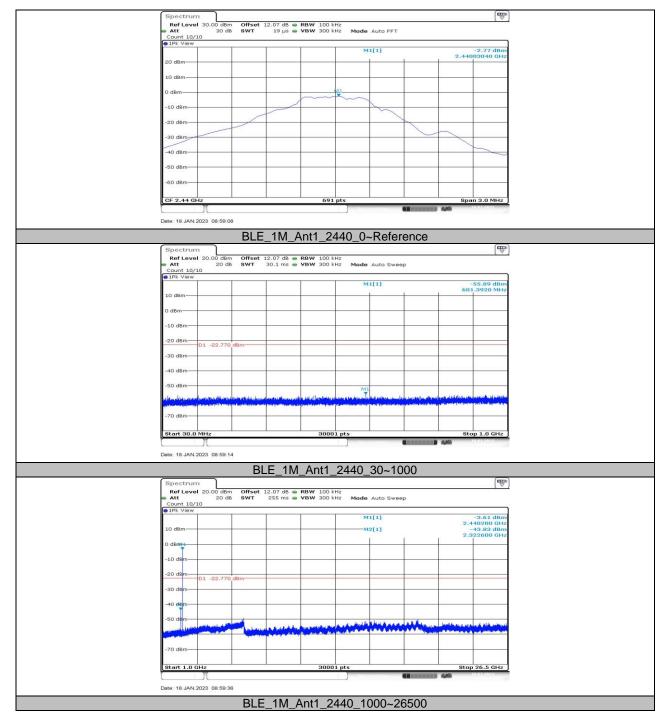
11.5. Appendix E: Band edge measurements 11.5.1. Test Result

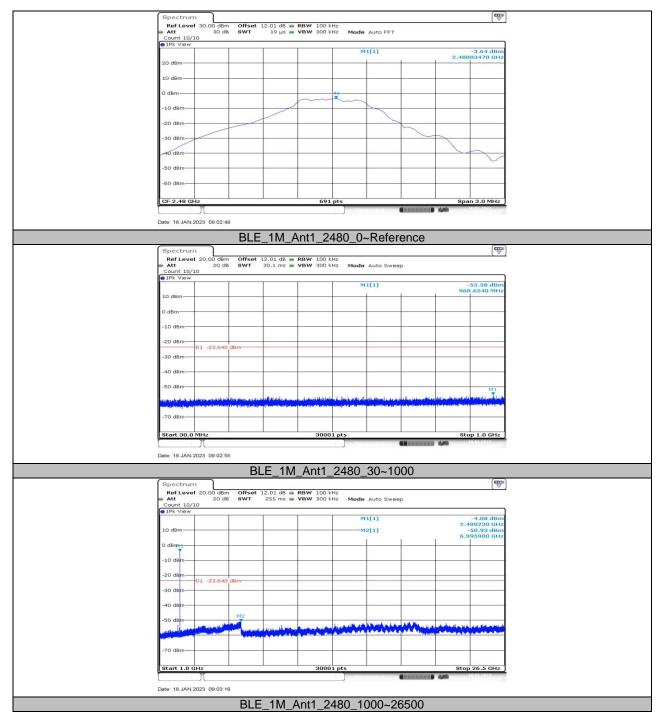
Test Mode	Antenna	ChName	Channel	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
BLE 1M	Ant1	Low	2402	-2.83	-46.77	≤-22.83	PASS
DLE_TIVI		High	2480	-3.37	-45.43	≤-23.37	PASS

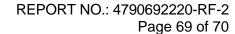
11.5.2. Test Graphs



11.6. Appendix F: Conducted Spurious Emission 11.6.1. Test Result


Test Mode	Antenna	Channel	FreqRange [MHz]	Result[dBm]	Limit[dBm]	Verdict
BLE_1M	Ant1	2402	Reference	-2.69		PASS
			30~1000	-55.09	≤-22.69	PASS
			1000~26500	-48.84	≤-22.69	PASS
		2440	Reference	-2.77		PASS
			30~1000	-55.89	≤-22.77	PASS
			1000~26500	-43.83	≤-22.77	PASS
		2480	Reference	-3.64		PASS
			30~1000	-55.38	≤-23.64	PASS
			1000~26500	-50.93	≤-23.64	PASS


11.6.2. Test Graphs



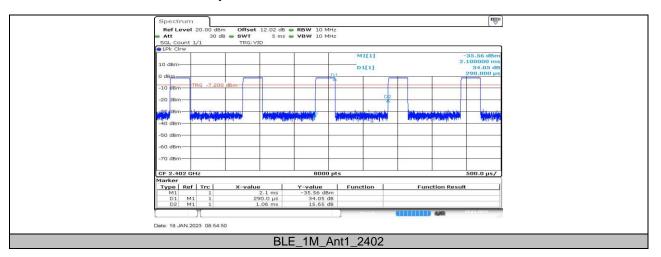
11.7. Appendix G: Duty Cycle 11.7.1. Test Result

Test Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
BLE 1M	0.29	1.06	0.2736	27.36	5.63	3.45	4

Note:

Duty Cycle Correction Factor=10log (1/x).

Where: x is Duty Cycle (Linear)


Where: T is On Time

If that calculated VBW is not available on the analyzer then the next higher value should be

used.

11.7.2. Test Graphs

END OF REPORT