FCC 47 CFR PART 15 SUBPART C AND ANSI C63.4:2003 TEST REPORT

For

Jawbone

Model: JBE

Issued for

Aliph com

99 Rhode Island,3 rd Floor San Francisco, CA94134

Issued by

Compliance Certification Services Inc. Tainan Lab.

No. 8, Jiu Cheng Ling, Jiaokeng Village, Sinhua Township, Tainan Hsien 712, Taiwan R.O.C.

TEL: +886-6-580-2201 FAX: +886-6-580-2202

http://www.ccsrf.com E-Mail: service@ccsrf.com

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

Report No.: T100923305-RP1

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	10/18/2010	Initial Issue	All Page 111	Kate Shi

FCC ID: V3J-JBE

TABLE OF CONTENTS

Report No.: T100923305-RP1

TITLE PAGE NO. 1. TEST REPORT CERTIFICATION4 2. EUT DESCRIPTION5 2.1 DESCRIPTION OF EUT & POWER....... 3. DESCRIPTION OF TEST MODES6-7 4. TEST METHODOLOGY8 5. FACILITIES AND ACCREDITATION......8 6. SETUP OF EQUIPMENT UNDER TEST......10-11 7. FCC PART 15.247 REQUIREMENTS......12 7.1 20dB BANDWIDTH FOR HOPPING12-17 7.2 MAXIMUM PEAK OUTPUT POWER18-23 7.3 HOPPING CHANNEL SEPARATION......24-29 APPENDIX I SETUP PHOTOS94-111

1. TEST REPORT CERTIFICATION

Applicant : Aliph com

Address : 99 Rhode Island,3 rd Floor San Francisco, CA94134

Equipment Under Test: Jawbone

Model : JBE

Tested Date : September 23 ~ October 18, 2010

APPLICABLE STANDARD				
Standard	Test Result			
FCC Part 15 Subpart C AND ANSI C63.4:2003	PASS			

WE HEREBY CERTIFY THAT: The above equipment has been tested by Compliance Certification Services Inc., and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:	Reviewed by:
Approved by.	rteviewed by.

Jeter Wu

Section Manager

Eric Yang

Senior Engineer

2. EUT DESCRIPTION

2.1 DESCRIPTION OF EUT & POWER

Product Name	Jawbone		
Model Number	JBE		
Received Date	September 23, 2010		
Frequency Range	2402MHz to 2480MHz f = 2402 + nMHz, n = 0,78		
Transmit Power	4.57 dBm (0.0029W)		
Channel Spacing	1MHz		
Channel Number	79		
Air Data Rate	GFSK (1Mbps), π /4-DQPSK (2Mbps), 8-DPSK (3Mbps)		
Type of Modulation	Frequency Hopping Spread Spectrum		
Frequency Selection	by software / firmware		
Transmitter Classification	portable device		
Antenna Type	PCB Antenna, Antenna Gain : -5.03dBi		
DC Power Cord Type	Shielded USB cable 38cm / 1.56m (detachable)		
	3.7VDC (Battery Powered)		
Power Source	5.0VDC (From Notebook PC, Powered From Host Device & Power Adapter)		
	Since the EUT is classed portable device, and the		
RF Exposure Evaluation	maximum peak power is 4.57 dBm (<13.6dBm), the MPE		
TAPOOUTO ETUICACION	Evaluation is not required and no SAR consideration applied.		
I/O Port	Micro USB port x 1, Audio In port x 1		

Power Adapter:

No.	Manufacturer	Model No.	Power Input	Power Output
1	JAWBONE	SPA-K901	100-240V , 50/60Hz , 0.1A	5.0V , 550mA

Remark:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. For more details, please refer to the User's manual of the EUT.
- 3. This submittal(s) (test report) is intended for FCC ID: V3J-JBE filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

3. DESCRIPTION OF TEST MODES

The EUT (JBE) had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)	
Low	2402	
Middle	2441	
High	2480	

Radiated Emission Test (Below 1 GHz) / Conducted Emission Test:

	Mode 1: EUT line in transmitted by wireless transmission or MP3, then playing music.			
	Mode 2: EUT line in transmitted by wireless transmission, then playing music.			
		Charge	EUT charged by NB or adapter.	
Radiation Test Mode	Mode 3:	Power adapter	EUT line in thansmitted by wireless transmission, then playing music.	
	Mode 4:	Charge	EUT charged by NB or adapter, then EUT Audio port connected to MP3.	
	Wode 4.	Power adapter	EUT line in transmitted by wireless transmission or MP3, then playing music.	
	Mode 5: EUT line in transmitted by USB charge , then present signal with used special software control.			
		Charge	EUT charged by NB or adapter.	
	Mode 3:	Power adapter	EUT line in thansmitted by wireless transmission, then playing music.	
Conduction Test Mode	Mode 4:	Charge	EUT charged by NB or adapter, then EUT Audio port connected to MP3.	
	ivioue 4:	Power adapter	EUT line in transmitted by wireless transmission or MP3, then playing music.	
	Mode 5:	EUT line in transmitted by USB charge , then present signal with used special software control.		

Note: After test mode of the sample is evaluated, USB cable(1.56m) as a worst case for final test mode and is recorded in report.

Radiated Emission Test (Above 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Tested Channel	Modulation Technology	Modulation Type	Packet Type	
Low, Mid, High	FHSS	GFSK	DH5	
Low, Mid, High	FHSS	8-DPSK	3-DH5	

Bandedge Measurement:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Tested Channel	Modulation Technology	Modulation Type	Packet Type	
Low, High	FHSS	GFSK	DH5	
Low, High	FHSS	8-DPSK	3-DH5	

Antenna Port Conducted Measurement:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Tested Channel	Modulation Technology	Modulation Type	Packet Type	
Low, Mid, High	FHSS	GFSK	DH5	
Low, Mid, High	FHSS	8-DPSK	3-DH5	

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4: 2003 and FCC CFR 47, 15.207, 15.209 and 15.247.

5. FACILITIES AND ACCREDITATION

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No. 8, Jiu Cheng Ling, Jiaokeng Village, Sinhua Township, Tainan Hsien 712, Taiwan R.O.C.

The sites are constructed in conformance with the requirements of ANSI C63.4:2003 and CISPR 22. All receiving equipment conforms to CISPR 16-1-1, CISPR 16-1-2, CISPR 16-1-3, CISPR 16-1-5.

5.2 ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

Taiwan TAF

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada INDUSTRY CANADA
Germany TÜV NORD

Japan VCCI
Taiwan BSMI
USA FCC MRA

Copies of granted accreditation certificates are available for downloading from our web site, http:///www.ccsrf.com

Report No.: T100923305-RP1

5.3 MEASUREMENT UNCERTAINTY

The following table is for the measurement uncertainty, which is calculated as per the document CISPR 16-4-2.

PARAMETER	UNCERTAINTY	
Open Area Test Site (OATS No.3) /	+/- 3.9267	
Radiated Emission, 30 to 200 MHz	+/- 3.9267	
Open Area Test Site (OATS No.3) /	+/- 3.6899	
Radiated Emission, 200 to 1000 MHz	+/- 3.0699	
Semi Anechoic Chamber (966 Chamber) /	+/- 3.6878	
Radiated Emission, 30 to 200 MHz	+/- 3.0070	
Semi Anechoic Chamber (966 Chamber) /	+/- 3.0885	
Radiated Emission, 200 to 1000 MHz	+/- 3.0003	
Semi Anechoic Chamber (966 Chamber) /	+/- 3.2000	
Radiated Emission, 1 to 26.5GHz	+/- 3.2000	
Conducted Emission, 9kHz to 30MHz	+/- 1.7468	

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Consistent with industry standard (e.g. CISPR 22: 2006, clause 11, Measurement Uncertainty) determining compliance with the limits shall be base on the results of the compliance measurement. Consequently the measure emissions being less than the maximum allowed emission result in this be a compliant test or passing test.

The acceptable measurement uncertainty value without requiring revision of the compliance statement is base on conducted and radiated emissions being less than U_{CISPR} which is 3.6dB and 5.2dB respectively. CCS values (called U_{Lab} in CISPR 16-4-2) is less than U_{CISPR} as shown in the table above. Therefore, MU need not be considered for compliance.

Report No.: T100923305-RP1

6. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

No.	Product	Manufacturer	Model No.	Serial No.	FCC ID
1	Notebook PC	DELL	INSPIRON 640m PP19L	CN-0MG532-70166 -71G-03EC	DoC
2	Notebook PC	HP	ProBook 4421s	CNF03242PJ	DoC
3	Notebook PC	IBM (Lenovo)	ThinkPad T61 7663-AS6	L3F3864	DoC
4	MP3 (1GB)	Transcend	TS1GMP630 (T.sonic 630)	175459-2357	

SETUP DIAGRAM FOR TESTS

EUT & peripherals setup diagram is shown in appendix setup photos.

EUT OPERATING CONDITION

RF Mode:

- 1. Setup all computers like the setup diagram.
- 2. Run CSR Blue Test software.
- 3. TX mode (GFSK)

TXDATA1

LO Freq: 2402, 2441, 2480 Power (EXT, Int): 255, 46 CFG PKT, Packet Type: 15

Packet Size: 339

TX mode (8-DPSK)

TXDATA1

LO Freq: 2402, 2441, 2480 Power (EXT, Int): 255, 46 CFG PKT, Packet Type: 31

Packet Size: 1021

- 4. All of the functions are under run.
- 5. Start test.

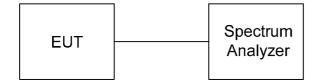
Normal Mode:

- 1. Setup all computers like the setup diagram.
- 2. Power on all equipments.
 - Mode 1: Power switch ON, line in connected, bluetooth connected. Play music to bluetooth and to line In.
 - Mode 2: Power switch ON, bluetooth connected. Play music via bluetooth.
 - Mode 3: Power switch ON, bluetooth connected, usb plugged in providing power to unit (no USB traffic) play music via bluetooth.
 - Mode 4: Power switch ON, bluetooth connected, line In connected, usb plugged in providing power to unit (no USB traffic) play music via bluetooth and via line In.
 - Mode 5: Power switch off, USB traffic. No bluetooth (see attached)
- 3. All of the functions are under run.
- 4. Start test.

7. FCC PART 15.247 REQUIREMENTS

7.1 20dB BANDWIDTH FOR HOPPING

LIMITS


Limit: N/A

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	E4446A	MY43360132	06/20/2011	
Spectrum Analyzer	Agilent	E4446A	MY46180323	05/02/2011	

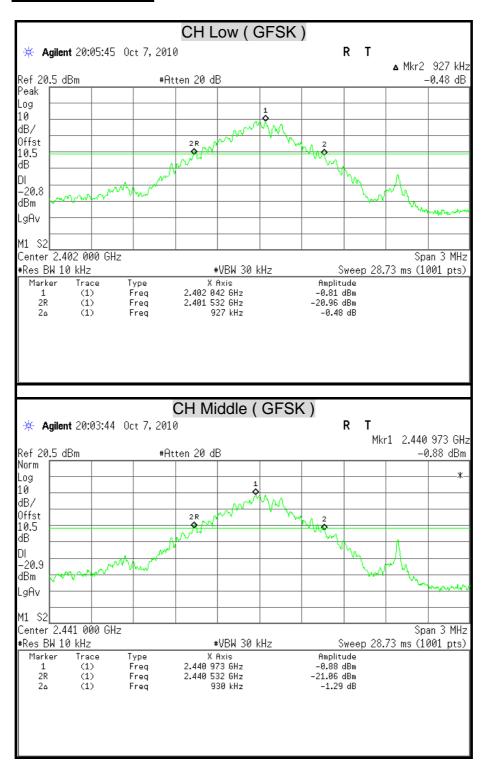
Remark: Each piece of equipment is scheduled for calibration once a year.

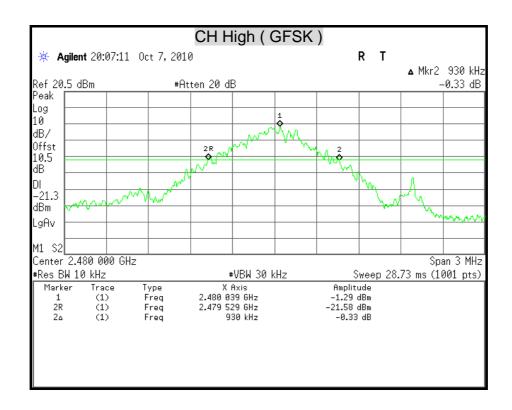
TEST SETUP

TEST PROCEDURE

The 20dB band width was measured with a spectrum analyzer connected to RF antenna connector(conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency. The analyzer center frequency was set to the EUT carrier frequency, using the analyzer. Display Line and Marker Delta functions, the 20dB band width of the emission was determined.

TEST RESULTS

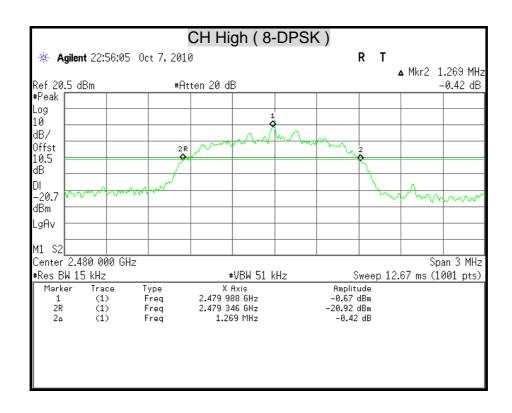

Modulation Type: GFSK, CFG PKT Packet Type: 15 Packet Size: 339 (DH5)


Channel	Channel Frequency (MHz)	20dB Bandwidth (MHz)	Result
Low	2402	0.927	N/A
Middle	2441	0.930	N/A
High	2480	0.930	N/A

Modulation Type: 8-DPSK, CFG PKT Packet Type: 31 Packet Size: 1021 (3-DH5)

Channel	Channel Frequency (MHz)	20dB Bandwidth (MHz)	Result	
Low	2402	1.317	N/A	
Middle	2441	1.278	N/A	
High	2480	1.269	N/A	

20dB BANDWIDTH



FCC ID: V3J-JBE

Report No.: T100923305-RP1

CH Low (8-DPSK) R T * Agilent 22:50:29 Oct 7, 2010 ▲ Mkr2 1.317 MHz Ref 20.5 dBm #Atten 20 dB -0.18 dB #Peak Log 10 dB/ Offst 2 R 10.5 dΒ DΙ -21.7dBm LgAv Center 2.402 000 GHz Span 3 MHz #Res BW 15 kHz #VBW 51 kHz Sweep 12.67 ms (1001 pts) X Axis 2.402 006 GHz Amplitude -1.67 dBm -21.80 dBm -0.18 dB Marker Type Freq Trace (1) 2R 2Δ 2.401 319 GHz 1.317 MHz (1) Freq (1) CH Middle (8-DPSK) * Agilent 22:53:55 Oct 7, 2010 R T ▲ Mkr2 1.278 MHz Ref 20.5 dBm #Atten 20 dB -0.49 dB #Peak Log 10 dB/ Offst 10.5 dΒ DΙ -20.9 dBm LgAv M1 S2 Center 2.441 000 GHz Span 3 MHz #Res BW 15 kHz #VBW 51 kHz Sweep 12.67 ms (1001 pts) X Axis 2.441 003 GHz Marker Trace Type Freq Amplitude (1) 2R 2Δ 2.440 340 GHz 1.278 MHz (1) Freq -21.18 dBm -0.49 dB Freq (1)

7.2 MAXIMUM PEAK OUTPUT POWER

LIMITS

§15.247(b)(1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY43360132	06/20/2011
Spectrum Analyzer	Agilent	E4446A	MY46180323	05/02/2011

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

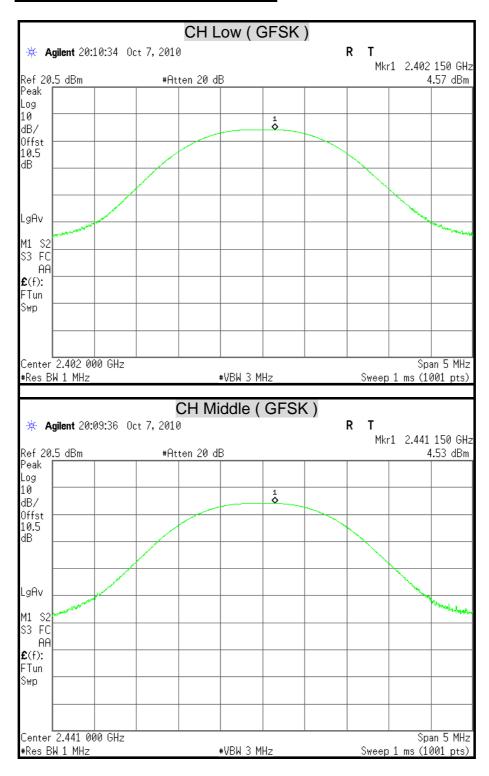
TEST PROCEDURE

The RF power output was measured with a spectrum analyzer connected to the RF Antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency, a spectrum analyzer was used to record the shape of the transmit signal.

TEST RESULTS

Modulation Type: GFSK, CFG PKT Packet Type: 15 Packet Size: 339 (DH5)

Channel	Channel Frequency	Peak Power		Peak Pov	Result		
_	(MHz)	(dBm)	(W)	(dBm)	(W)	Result	
Low	2402	4.57	0.0029	20.97	0.125	PASS	
Middle	2441	4.53	0.0028	20.97	0.125	PASS	
High	2480	4.12	0.0026	20.97	0.125	PASS	

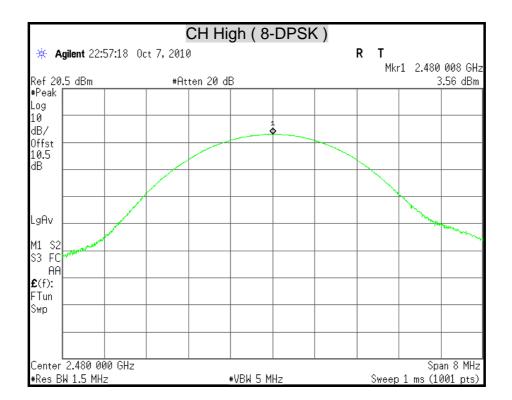

Remark: The cable assembly insertion loss of 10.5dB (including 10 dB pad and 0.5 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

Modulation Type: 8-DPSK ,CFG PKT Packet Type: 31 Packet Size: 1021 (3-DH5)

Channel	Channel Frequency	Peak l	Power	Peak Pov	wer Limit	Result
	(MHz)	(dBm)	(W)	(dBm)	(W)	Nesuit
Low	2402	4.15	0.0026	20.97	0.125	PASS
Middle	2441	4.05	0.0025	20.97	0.125	PASS
High	2480	3.56	0.0023	20.97	0.125	PASS

Remark: The cable assembly insertion loss of 10.5dB (including 10 dB pad and 0.5 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

MAXIMUM PEAK OUTPUT POWER



Report No.: T100923305-RP1

CH High (GFSK) * Agilent 20:09:08 Oct 7, 2010 R T Mkr1 2.480 150 GHz Ref 20.5 dBm #Atten 20 dB 4.12 dBm Peak Log 10 1 **◊** dB/ Offst 10.5 dB LgAv M1 S2 S3 FC AΑ **£**(f): FTun Swp Center 2.480 000 GHz Span 5 MHz #Res BW 1 MHz #VBW 3 MHz Sweep 1 ms (1001 pts)

Report No.: T100923305-RP1

CH Low (8-DPSK) R T * Agilent 22:58:49 Oct 7, 2010 Mkr1 2.401 992 GHz Ref 20.5 dBm #Atten 20 dB 4.15 dBm #Peak Log 10 dB/ Offst 10.5 dΒ LgAv S3 FC AΑ **£**(f): FTun Swp Center 2.402 000 GHz Span 8 MHz _Sweep 1 ms (1001 pts) #Res BW 1.5 MHz #VBW 5 MHz CH Middle (8-DPSK) * Agilent 22:58:10 Oct 7, 2010 R Т Mkr1 2.440 984 GHz #Atten 20 dB Ref 20.5 dBm 4.05 dBm #Peak Log 10 dB/ Offst 10.5 dΒ LgAv S3 FC AΑ **£**(f): FTun Swp Center 2.441 000 GHz Span 8 MHz Sweep 1 ms (1001 pts) #Res BW 1.5 MHz #VBW 5 MHz

7.3 HOPPING CHANNEL SEPARATION

LIMITS

§15.247(a)(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY43360132	06/20/2011
Spectrum Analyzer	Agilent	E4446A	MY46180323	05/02/2011

Remark: Each piece of equipment is scheduled for calibration once a year.

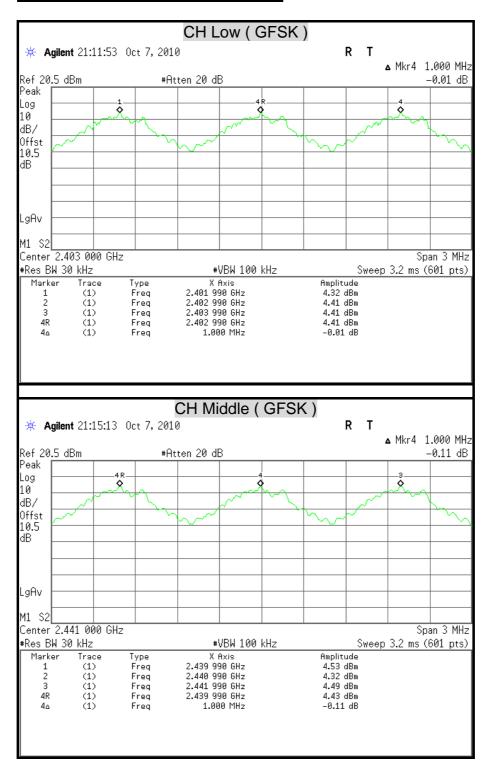
TEST SETUP

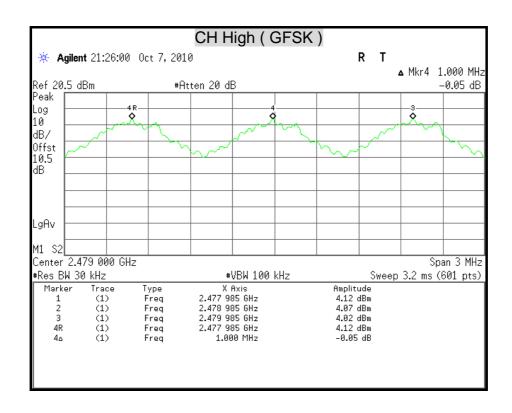
TEST PROCEDURE

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT as shown in test setup without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- 3. By using the MaxHold function record the separation of adjacent channels.
- 4. Measure the frequency difference of these two adjacent channels by spectrum analyzer MARK function. And then plot the result on spectrum analyzer screen.
- 5. Repeat above procedures until all frequencies measured were complete.

TEST RESULTS

Refer to section 8.1, 20dB bandwidth measurement, the measured channel separation should be greater than two-third of 20dB bandwidth or Minimum bandwidth.

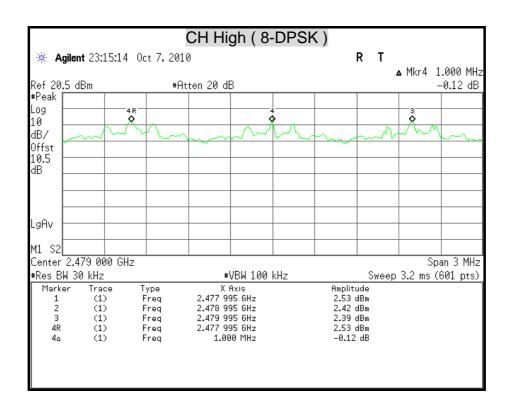

Modulation Type: GFSK, CFG PKT Packet Type: 15 Packet Size: 339 (DH5)


Channel	Channel Frequency (MHz)	Adjacent Hopping Channel Separation (kHz)	Two –third of 20dB bandwidth (kHz)	Minimum Bandwidth	Result
Low	2402	1000	618.00	25 kHz	PASS
Middle	2441	1000	620.00	25 kHz	PASS
High	2480	1000	620.00	25 kHz	PASS

Modulation Type: 8-DPSK, CFG PKT Packet Type: 31 Packet Size: 1021 (3-DH5)

Channel	Channel Frequency (MHz)	Adjacent Hopping Channel Separation (kHz)	Two –third of 20dB bandwidth (kHz)	Minimum Bandwidth	Result
Low	2402	1000	878.00	25 kHz	PASS
Middle	2441	1000	852.00	25 kHz	PASS
High	2480	1000	846.00	25 kHz	PASS

HOPPING CHANNEL SEPARATION



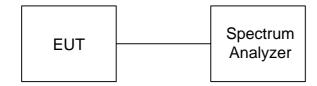
FCC ID: V3J-JBE

Report No.: T100923305-RP1

CH Low (8-DPSK) R T * Agilent 23:05:17 Oct 7, 2010 ▲ Mkr4 1.000 MH: Ref 20.5 dBm #Atten 20 dB -0.90 dB #Peak Log 10 dB/ Offst 10.5 dΒ LgAv Center 2.403 000 GHz Span 3 MHz #Res BW 30 kHz #VBW 100 kHz Sweep 3.2 ms (601 pts) X Axis 2.402 010 GHz Amplitude 2.92 dBm Marker Trace Туре (1) Freq 2.02 dBm 2.87 dBm 2.403 010 GHz 2.404 010 GHz 2 (1) Freq (1) Freq 4R (1) 2.402 010 GHz 2.92 dBm Freq (1) 1.000 MHz -0.90 dB CH Middle (8-DPSK) * Agilent 23:12:51 Oct 7, 2010 R Τ ▲ Mkr4 1.000 MHz Ref 20.5 dBm #Atten 20 dB -0.05 dB #Peak Log 10 dB/ Offst 10.5 dΒ LgAv Center 2.441 000 GHz Span 3 MHz #Res BW 30 kHz #VBW 100 kHz Sweep 3.2 ms (601 pts) X Axis 2.440 000 GHz Amplitude 2.83 dBm Marker Trace Type Freq (1) 2.441 000 GHz 2.442 000 GHz 2 (1) Freq 2.88 dBm 2.83 dBm Freq (1) 4R (1) Freq 2.441 000 GHz 2.88 dBm (1) 1.000 MHz -0.05 dB

7.4 NUMBER OF HOPPING FREQUENCY USED

LIMITS


§15.247(a)(1)(iii) For frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

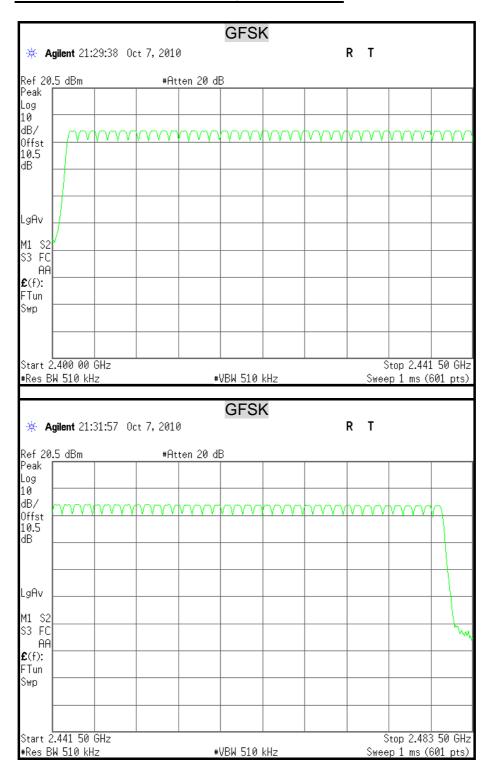
TEST EQUIPMENT

Name of Equipment	Manufacturer	Model Serial Number		Calibration Due	
Spectrum Analyzer	Agilent	E4446A	MY43360132	06/20/2011	
Spectrum Analyzer	Agilent	E4446A	MY46180323	05/02/2011	

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE


- 1. Check the calibration of the measuring instrument (spectrum analyzer) using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT as shown in test setup without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- Set the spectrum analyzer on MaxHold Mode, and then keep the EUT in hopping mode.Record all the signals from each channel until each one has been recorded.
- 4. Set the spectrum analyzer on View mode and then plot the result on spectrum analyzer screen.
- 5. Repeat above procedures until all frequencies measured were complete.

TEST RESULTS

Refer to the attached plot.

There are 79 hopping frequencies in a hopping sequence.

NUMBER OF HOPPING FREQUENCY USED

Report No.: T100923305-RP1

8-DPSK R T * Agilent 23:20:05 Oct 7, 2010 Ref 20.5 dBm #Atten 20 dB #Peak Log 10 dB/ 0ffst 10.5 ďΒ LgAv S3 FC AΑ **£**(f): FTun Swp Start 2.400 00 GHz Stop 2.441 50 GHz #Res BW 510 kHz #VBW 510 kHz Sweep 1 ms (601 pts) 8-DPSK * Agilent 23:25:08 Oct 7, 2010 R T #Atten 20 dB Ref 20.5 dBm #Peak Log 10 dB/ Offst 10.5 dΒ LgAv S3 FC AA **£**(f): FTun Swp Start 2.441 50 GHz Stop 2.483 50 GHz #Res BW 510 kHz #VBW 510 kHz _Sweep 1 ms (601 pts)

7.5 DWELL TIME ON EACH CHANNEL

LIMITS

§15.247(a)(1)(iii) For frequency hopping system operating in the 2400-2483.5MHz band, the average time of occupancy on any frequency shall not be greater than 0.4 second within a 31.6 second period.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY43360132	06/20/2011
Spectrum Analyzer	Agilent	E4446A	MY46180323	05/02/2011

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT as shown in test setup without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- Adjust the center frequency of spectrum analyzer on any frequency be measured and set spectrum analyzer to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- 4. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- 5. Repeat above procedures until all frequencies measured were complete.
- 6. The Bluetooth Device has 3 type of payload, DH1, DH3, DH5. The hopping rate is 1600 per second.

The longer the payload is, the slower the hopping rate is.

TEST RESULTS

Time of occupancy on the TX channel in 31.6sec = time domain slot length \times hop rate \div number of hop per channel \times 31.6

Refer to the attached graph.

The hopping rates of Bluetooth devices change with different types of payload. The longer the payload is, the slower the hopping rate. The hopping rate scenario is defined in Bluetooth core specification.

Modulation Type: GFSK, CFG PKT Packet Type: 15 Packet Size: 339 (DH5)

Channel	Channel Frequency (MHz)	Packet type	Dwell time (ms)	Time of occupancy on the TX channel in 31.6sec (ms)	Limit for Time of	Results
	2402	DH1	0.400	128.00	400	PASS
Low	2402	DH3	1.667	266.72	400	PASS
	2402	DH5	2.900	309.33	400	PASS
	2441	DH1	0.400	128.00	400	PASS
Middle	2441	DH3	1.667	266.72	400	PASS
	2441	DH5	2.900	309.33	400	PASS
	2480	DH1	0.400	128.00	400	PASS
High	2480	DH3	1.667	266.72	400	PASS
	2480	DH5	2.900	309.33	400	PASS

Remark:

```
Ch Low DH1 Dwell time = 0.400 \text{ ms} \times (1600 \div 2) \div 79 \times 31.6 = 128.00 \text{ (ms)} DH3 Dwell time = 1.667 \text{ ms} \times (1600 \div 4) \div 79 \times 31.6 = 266.72 \text{ (ms)} DH5 Dwell time = 2.900 \text{ ms} \times (1600 \div 6) \div 79 \times 31.6 = 309.33 \text{ (ms)} Ch Middle DH1 Dwell time = 0.400 \text{ ms} \times (1600 \div 2) \div 79 \times 31.6 = 128.00 \text{ (ms)} DH3 Dwell time = 1.667 \text{ ms} \times (1600 \div 4) \div 79 \times 31.6 = 266.72 \text{ (ms)} DH5 Dwell time = 2.900 \text{ ms} \times (1600 \div 6) \div 79 \times 31.6 = 309.33 \text{ (ms)} Ch High DH1 Dwell time = 0.400 \text{ ms} \times (1600 \div 2) \div 79 \times 31.6 = 128.00 \text{ (ms)} DH3 Dwell time = 0.400 \text{ ms} \times (1600 \div 2) \div 79 \times 31.6 = 266.72 \text{ (ms)} DH3 Dwell time = 1.667 \text{ ms} \times (1600 \div 4) \div 79 \times 31.6 = 266.72 \text{ (ms)} DH5 Dwell time = 2.900 \text{ ms} \times (1600 \div 6) \div 79 \times 31.6 = 309.33 \text{ (ms)}
```

Modulation Type: 8-DPSK, CFG PKT Packet Type: 31 Packet Size: 1021 (3-DH5)

Channel	Channel Frequency (MHz)	Packet type	Dwell time (ms)	Time of occupancy on the TX channel in 31.6sec (ms)	Limit for Time of occupancy on the TX channel in 31.6sec (ms)	Results
Low	2402	DH1	0.4167	133.34	400	PASS
	2402	DH3	1.6670	266.72	400	PASS
	2402	DH5	2.9170	311.15	400	PASS
Middle	2441	DH1	0.4167	133.34	400	PASS
	2441	DH3	1.6670	266.72	400	PASS
	2441	DH5	2.9170	311.15	400	PASS
High	2480	DH1	0.4167	133.34	400	PASS
	2480	DH3	1.6670	266.72	400	PASS
	2480	DH5	2.9170	311.15	400	PASS

Remark:

```
Ch Low
```

DH1 Dwell time = $0.4167 \text{ ms } \times (1600 \div 2) \div 79 \times 31.6 = 133.34 \text{ (ms)}$

DH3 Dwell time = $1.6670 \text{ ms} \times (1600 \div 4) \div 79 \times 31.6 = 266.72 \text{ (ms)}$

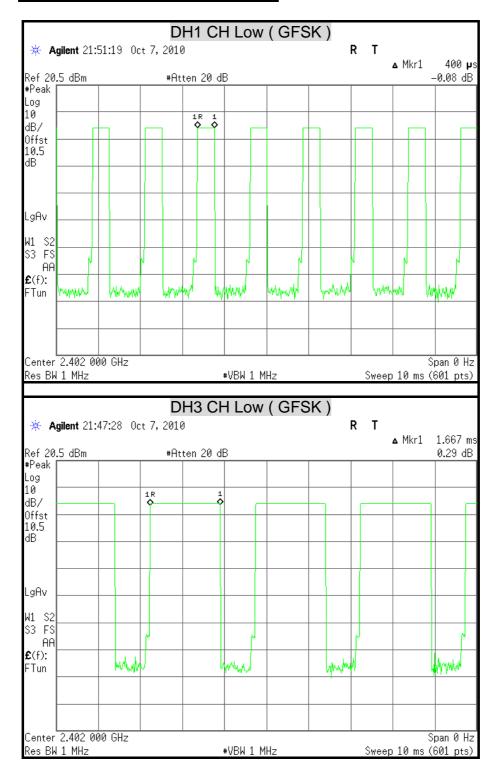
DH5 Dwell time = $2.9170 \text{ ms } \times (1600 \div 6) \div 79 \times 31.6 = 311.15 \text{ (ms)}$

Ch Middle

DH1 Dwell time = $0.4167 \text{ ms} \times (1600 \div 2) \div 79 \times 31.6 = 133.34 \text{ (ms)}$

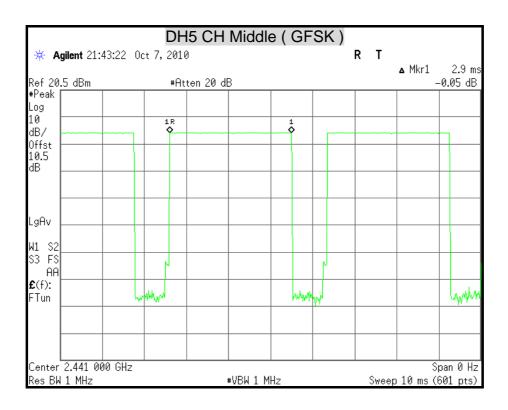
DH3 Dwell time = $1.6670 \text{ ms} \times (1600 \div 4) \div 79 \times 31.6 = 266.72 \text{ (ms)}$

DH5 Dwell time = $2.9170 \text{ ms } \times (1600 \div 6) \div 79 \times 31.6 = 311.15 \text{ (ms)}$


Ch High

DH1 Dwell time = $0.4167 \text{ ms} \times (1600 \div 2) \div 79 \times 31.6 = 133.34 \text{ (ms)}$

DH3 Dwell time = $1.6670 \text{ ms} \times (1600 \div 4) \div 79 \times 31.6 = 266.72 \text{ (ms)}$


DH5 Dwell time = $2.9170 \text{ ms } \times (1600 \div 6) \div 79 \times 31.6 = 311.15 \text{ (ms)}$

DWELL TIME ON EACH PAYLOAD

DH5 CH Low (GFSK) Agilent 21:44:50 Oct 7, 2010 R T ▲ Mkr1 2.9 ms #Atten 20 dB Ref 20.5 dBm -0.21 dB Log 10 <u>1</u> dB/ Offst 10.5 dB LgAv W1 S2 S3 FS AA **£**(f): MANA hvyhvyhj FTun Center 2.402 000 GHz Span 0 Hz Res BW 1 MHz #VBW 1 MHz Sweep 10 ms (601 pts)

DH1 CH Middle (GFSK) * Agilent 21:41:15 Oct 7, 2010 R T 400 **p**: ▲ Mkr1 Ref 20.5 dBm #Atten 20 dB -0.01 dB Log 10 1R 1 dB/ Offst 10.5 dΒ LgAv W1 S2 S3 FS AΑ **£**(f): FTun Center 2.441 000 GHz Span 0 Hz Res BW 1 MHz #VBW 1 MHz Sweep 10 ms (601 pts) DH3 CH Middle (GFSK) * Agilent 21:42:12 Oct 7, 2010 R T ▲ Mkr1 1.667 ms #Atten 20 dB Ref 20.5 dBm -1.02 dB #Peak Log 10 dB/ Offst 10.5 dΒ LgAv W1 S2 S3 FS AΑ **£**(f): halan FTun happy Center 2.441 000 GHz Span 0 Hz Res BW 1 MHz #VBW 1 MHz Sweep 10 ms (601 pts)

DH1 CH High (GFSK) Agilent 21:40:10 Oct 7, 2010 R T 400 **p**: ▲ Mkr1 -0.07 dB Ref 20.5 dBm #Atten 20 dB Log 10 1R 1 dB/ Offst 10.5 ₫B LgAv W1 S2 S3 FS AΑ **£**(f): hoplanh MAMMA FTun WWW Center 2.480 000 GHz Span 0 Hz Res BW 1 MHz #VBW 1 MHz Sweep 10 ms (601 pts) DH3 CH High (GFSK) * Agilent 21:38:52 Oct 7, 2010 R T ▲ Mkr1 1.667 ms #Atten 20 dB Ref 20.5 dBm 0.30 dB #Peak Log 10 dB/ Offst 10.5 dΒ LgAv W1 S2 S3 FS AΑ £(f): Mulle mythydyn FTun Center 2.480 000 GHz Span 0 Hz Res BW 1 MHz #VBW 1 MHz Sweep 10 ms (601 pts)

DH5 CH High (GFSK) Agilent 21:37:48 Oct 7, 2010 R T ▲ Mkr1 2.9 ms #Atten 20 dB -0.06 dB Ref 20.5 dBm Log 10 1 **\Q** dB/ Offst 10.5 dB LgAv W1 S2 S3 FS AA **£**(f): Mahal FTun Center 2.480 000 GHz Span 0 Hz Res BW 1 MHz #VBW 1 MHz Sweep 10 ms (601 pts)

DH1 CH Low (8-DPSK) Agilent 23:29:37 Oct 7, 2010 R T Δ Mkr1 416.7 μs Ref 20.5 dBm #Atten 20 dB -0.68 dB Log 10 dB/ Offst 10.5 dΒ LgAv W1 S2 S3 FS AΑ **£**(f): WWW. MANY MANA FTun Center 2.402 000 GHz Span 0 Hz Res BW 1 MHz #VBW 1 MHz Sweep 10 ms (601 pts) DH3 CH Low (8-DPSK) * Agilent 23:28:34 Oct 7, 2010 R T ▲ Mkr1 1.667 ms #Atten 20 dB Ref 20.5 dBm -0.67 dB #Peak Log 10 dB/ Offst 10.5 dΒ LgAv S3 FS AΑ £(f): MM FTun Myraldy Center 2.402 000 GHz Span 0 Hz Res BW 1 MHz #VBW 1 MHz _Sweep 10 ms (601 pts)

DH5 CH Low (8-DPSK) * Agilent 23:27:13 Oct 7, 2010 R T ▲ Mkr1 2.917 ms #Atten 20 dB Ref 20.5 dBm -0.35 dB Log 10 dB/ Offst 10.5 dB LgAv W1 S2 S3 FS AA **£**(f): www FTun Center 2.402 000 GHz Span 0 Hz Res BW 1 MHz #VBW 1 MHz Sweep 10 ms (601 pts)

DH1 CH Middle (8-DPSK) Agilent 23:30:39 Oct 7, 2010 R T Δ Mkr1 416.7 μs Ref 20.5 dBm #Atten 20 dB -0.64 dB Log 10 dB/ Offst 10.5 ₫B LgAv W1 S2 S3 FS AΑ **£**(f): haran Niga FTun Center 2.441 000 GHz Span 0 Hz Res BW 1 MHz #VBW 1 MHz Sweep 10 ms (601 pts) DH3 CH Middle (8-DPSK) * Agilent 23:32:21 Oct 7, 2010 R Т ▲ Mkr1 1.667 ms #Atten 20 dB Ref 20.5 dBm -0.61 dB #Peak Log 10 dB/ Offst 10.5 dΒ LgAv S3 FS AΑ **£**(f): hww FTun Center 2.441 000 GHz Span 0 Hz Res BW 1 MHz #VBW 1 MHz _Sweep 10 ms (601 pts)

DH5 CH Middle (8-DPSK) Agilent 23:33:15 Oct 7, 2010 R T ▲ Mkr1 2.917 ms #Atten 20 dB Ref 20.5 dBm -0.71 dB Log 10 dB/ Offst 10.5 dB LgAv W1 S2 S3 FS AA £(f): malignage waykana FTun Center 2.441 000 GHz Span 0 Hz Res BW 1 MHz #VBW 1 MHz Sweep 10 ms (601 pts)

DH1 CH High (8-DPSK) Agilent 23:36:27 Oct 7, 2010 R T Δ Mkr1 416.7 μs Ref 20.5 dBm #Atten 20 dB -0.82 dB Log 10 dB/ Offst 10.5 dΒ LgAv W1 S2 S3 FS AΑ **£**(f): whilehi FTun Center 2.480 000 GHz Span 0 Hz Res BW 1 MHz #VBW 1 MHz Sweep 10 ms (601 pts) DH3 CH High (8-DPSK) * Agilent 23:35:44 Oct 7, 2010 R T ▲ Mkr1 1.667 ms #Atten 20 dB Ref 20.5 dBm -0.39 dB #Peak Log 10 dB/ Offst 10.5 dΒ LgAv W1 S2 S3 FS AΑ £(f): mirMi.a FTun WMW Center 2.480 000 GHz Span 0 Hz Res BW 1 MHz #VBW 1 MHz _Sweep 10 ms (601 pts)

DH5 CH High (8-DPSK) * Agilent 23:34:47 Oct 7, 2010 R T Δ Mkr1 2.917 ms #Atten 20 dB 0.95 dB Ref 20.5 dBm Log 10 dB/ Offst 10.5 dB LgAv W1 S2 S3 FS AA £(f): Wh MALLY FTun Center 2.480 000 GHz Span 0 Hz Res BW 1 MHz #VBW 1 MHz Sweep 10 ms (601 pts)

7.6 CONDUCTED SPURIOUS EMISSION

LIMITS

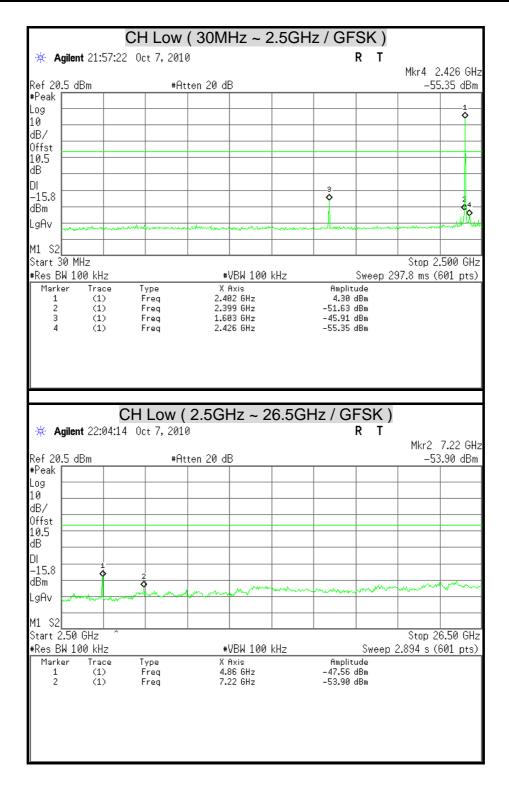
§ 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the and that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY43360132	06/20/2011
Spectrum Analyzer	Agilent	E4446A	MY46180323	05/02/2011

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP


TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

The spectrum from 30 MHz to 26.5 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

TEST RESULTS

OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT

Report No.: T100923305-RP1

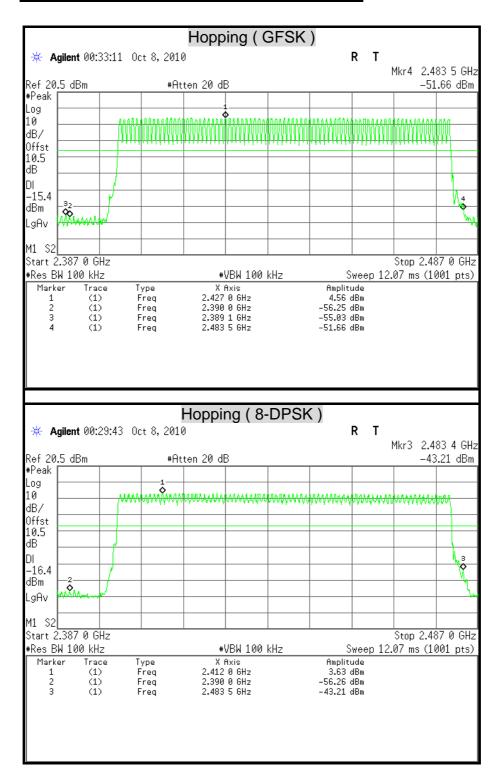
CH Middle (30MHz ~ 2.5GHz / GFSK) * Agilent 22:07:09 Oct 7, 2010 Mkr3 2.467 GHz Ref 20.5 dBm #Atten 20 dB -56.35 dBm #Peak Log Ŷ 10 dB/ Offst 10.5 dΒ ום -15.5 dBm LgAv V1 S2 Stop 2.500 GHz Start 30 MHz Sweep 297.8 ms (601 pts) #Res BW 100 kHz #VBW 100 kHz X Axis 2.441 GHz 1.627 GHz 2.467 GHz Marker Trace Туре Amplitude Freq Freq (1) (1) 4.46 dBm -44.98 dBm (1) -56.35 dBm CH Middle (2.5GHz ~ 26.5GHz / GFSK) * Agilent 22:08:15 Oct 7, 2010 Mkr2 7.34 GHz -51.59 dBm Ref 20.5 dBm #Atten 20 dB #Peak Log 10 dB/ Offst 10.5 dΒ DΙ –15.5 dBm LgAv M1 S2 Start 2.50 GHz Stop 26.50 GHz #Res BW 100 kHz Sweep 2.894 s (601 pts) #VBW 100 kHz X Axis 4.90 GHz Marker Trace Туре Amplitude (1) (1) Freq Freq -48.18 dBm 7.34 GHz -51.59 dBm

Report No.: T100923305-RP1

CH High (30MHz ~ 2.5GHz / GFSK) Agilent 22:10:06 Oct 7, 2010 R T Mkr3 2.455 GHz Ref 20.5 dBm #Atten 20 dB -56.49 dBm #Peak Log 10 dB/ Offst 10.5 dΒ ום –15.9 dBm LgAv V1 S2 Stop 2.500 GHz Start 30 MHz Sweep 297.8 ms (601 pts) #Res BW 100 kHz #VBW 100 kHz Type Freq Freq X Axis 2.479 GHz 1.652 GHz Marker Trace Amplitude 4.05 dBm -44.85 dBm (1) (1) (1) 2.455 GHz -56.49 dBm CH High (2.5GHz ~ 26.5GHz / GFSK) Agilent 22:12:26 Oct 7, 2010 Mkr2 7.44 GHz #Atten 20 dB -52.11 dBm Ref 20.5 dBm #Peak Log 10 dB/ Offst 10.5 dΒ DΙ –15.9 dBm LgAv M1 S2 Start 2.50 GHz Stop 26.50 GHz #Res BW 100 kHz Sweep 2.894 s (1001 pts) #VBW 100 kHz X Axis 4.97 GHz Marker Trace Туре Amplitude -50.99 dBm (1) (1) Freq Freq 7.44 GHz -52.11 dBm

Report No.: T100923305-RP1

CH Low (30MHz ~ 2.5GHz / 8-DPSK) * Agilent 00:01:46 Oct 8, 2010 Mkr4 2.399 GHz Ref 20.5 dBm #Atten 20 dB -49.37 dBm #Peak Log 10 dB/ Offst 10.5 dΒ DΙ -16.5-§ ♦ dBm LgAv M1 S2 Start 30 MHz Stop 2.500 GHz #Res BW 100 kHz #VBW 100 kHz Sweep 297.8 ms (601 pts) X Axis 2.402 GHz Amplitude 3.52 dBm Marker Trace Туре (1) Freq 1.603 GHz 2.376 GHz -42.73 dBm -56.86 dBm 2 (1) Freq (1) Freq (1) 2.399 GHz -49.37 dBm CH Low (2.5GHz ~ 26.5GHz / 8-DPSK) Agilent 00:03:24 Oct 8, 2010 Mkr2 4.82 GHz Ref 20.5 dBm #Atten 20 dB -55.36 dBm #Peak Log 10 dB/ Offst 10.5 dΒ DΙ -16.5 dBm LgAv M1 S2 Start 2.50 GHz Stop 26.50 GHz #Res BW 100 kHz #VBW 100 kHz Sweep 2.894 s (601 pts) X Axis 3.22 GHz 4.82 GHz Marker Trace Type Freq Amplitude (1) (1) -55.36 dBm


Report No.: T100923305-RP1

CH Middle (30MHz ~ 2.5GHz / 8-DPSK) * Agilent 23:44:46 Oct 7, 2010 Mkr3 2.414 GHz Ref 20.5 dBm #Atten 20 dB -57.14 dBm #Peak Log 10 dB/ Offst 10.5 dΒ DI -16.9 dBm LgAv M1 S2 Start 30 MHz Stop 2.500 GHz #Res BW 100 kHz **#VBW 100 kHz** Sweep 297.8 ms (601 pts) X Axis 2.441 GHz 1.627 GHz 2.414 GHz Type Freq Amplitude 3.13 dBm Trace (1) Marker -41.62 dBm -57.14 dBm (1) (1) Freq CH Middle (2.5GHz ~ 26.5GHz / 8-DPSK) * Agilent 23:51:02 Oct 7, 2010 Mkr2 4.90 GHz Ref 20.5 dBm #Atten 20 dB -54.13 dBm #Peak Log 10 dB/ Offst 10.5 dΒ DΙ -16.9dBm LgAv M1 S2 Start 2.50 GHz Stop 26.50 GHz #Res BW 100 kHz #VBW 100 kHz Sweep 2.894 s (601 pts) X Axis 3.26 GHz Amplitude Marker Trace Type Freq (1) (1) 4.90 GHz -54.13 dBm

Report No.: T100923305-RP1

CH High (30MHz ~ 2.5GHz / 8-DPSK) * Agilent 23:40:20 Oct 7, 2010 Mkr3 2.455 GHz Ref 20.5 dBm #Atten 20 dB -56.78 dBm #Peak Log 10 dB/ Offst 10.5 dΒ -17.5dBm LgAv M1 S2 Start 30 MHz Stop 2.500 GHz #Res BW 100 kHz #VBW 100 kHz Sweep 297.8 ms (601 pts) X Axis 2.480 GHz Type Freq Amplitude 2.52 dBm Trace (1) Marker 1.652 GHz 2.455 GHz (1) -41.44 dBm -56.78 dBm (1) Freq CH High (2.5GHz ~ 26.5GHz / 8-DPSK) Agilent 23:48:50 Oct 7, 2010 Mkr2 4.97 GHz Ref 20.5 dBm #Atten 20 dB -58.05 dBm #Peak Log 10 dB/ Offst 10.5 dΒ DΙ -17.5 dBm LgAv M1 S2 Start 2.50 GHz Stop 26.50 GHz #Res BW 100 kHz #VBW 100 kHz Sweep 2.894 s (1001 pts) X Axis 3.32 GHz 4.97 GHz Amplitude Marker Trace Type Freq -54.37 dBm -58.05 dBm (1) (1)

CONDUCTED MEASUREMENT BAND EDGES

7.7 RADIATED EMISSION

LIMITS

(1) § 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 -1710	10.6 -12.7
6.26775 - 6.26825	108 -121.94	1718.8 - 1722.2	13.25 -13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 – 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 -16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3338	36.43 - 36.5
12.57675 - 12.57725	322 -335.4	3600 - 4400	(²)
13.36 - 13.41			

Remark:

(2) § 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

^{1. 1} Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

^{2. &}lt;sup>2</sup> Above 38.6

(3) According to § 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(KHz)	300
0.490 – 1.705	24000/F(KHz)	30
1.705 – 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

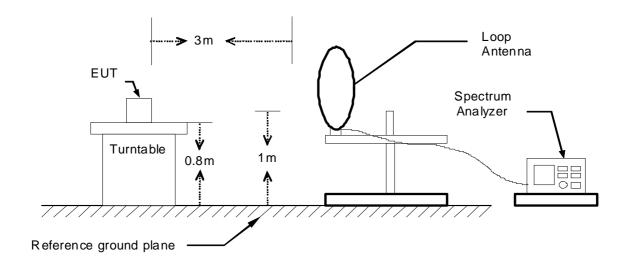
Remark: **Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

(4) According to § 15.209 (b) In the emission table above, the tighter limit applies at the band edges.

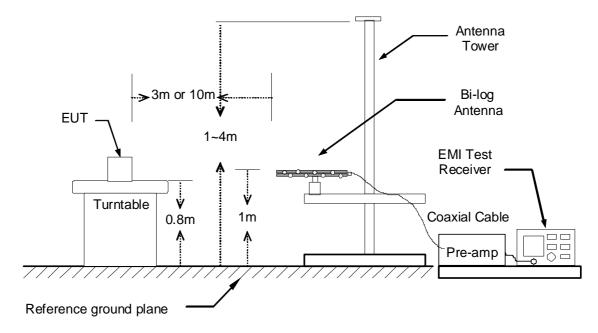
TEST EQUIPMENT

966Chamber_A

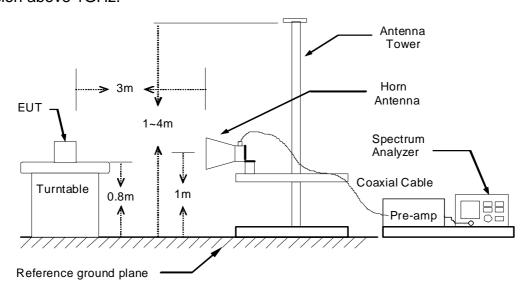
Name of Equipment	Manufacture	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY43360132	06/20/2011
EMI Test Receiver	ROHDE & SCHWARZ	ESCI	100221	05/03/2011
Bilog Antenna	SCHWARZBECK	VULB 9168	9168-249	10/04/2011
Double-Ridged Waveguide Horn ETS LINDGREN		3117	00078732	07/05/2011
Pre-Amplifier	Agilent	8449B	3008A01471	08/02/2011
Pre-Amplifier	HP	8447F	2944A03748	09/23/2011
RF Coaxial Cable	RF Coaxial Cable HUBER-SUHNER		SN31347	07/21/2011
RF Coaxial Cable	RF Coaxial Cable HUBER-SUHNER		SN31350	07/21/2011
RF Coaxial Cable	HUBER-SUHNER	SUCOFLEX 104PEA	SN31355	07/21/2011
LOOP Antenna	EMCO	6502	8905-2356	06/09/2011
Notch Filters Band Reject	Micro-Tronics	BRM05702-01	009	N.C.R


Remark: 1. Each piece of equipment is scheduled for calibration once a year.

2. N.C.R = No Calibration Request.


TEST SETUP

The diagram below shows the test setup that is utilized to make the measurements for emission from below 1GHz.


9kHz ~ 30MHz

30MHz ~ 1GHz

The diagram below shows the test setup that is utilized to make the measurements for emission above 1GHz.

TEST PROCEDURE

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. While measuring the radiated emission below 1GHz, the EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. While measuring the radiated emission above 1GHz, the EUT was set 3 meters away from the interference-receiving antenna
- 3. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarization of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.

TEST RESULTS

Below 1 GHz (9kHz ~ 30MHz)

No emission found between lowest internal used/generated frequency to 30MHz.

Below 1 GHz (30MHz ~ 1GHz)

Product Name	Jawbone	Test By	Albert Lai
Model	JBE	Test Date	2010/10/06
Test Mode	Mode 1	TEMP & Humidity	24°C, 60%

	966 Chamber_A at 3Meter / Horizontal					
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
30.97	37.40	-12.47	24.93	40.00	-15.07	Peak
127.97	40.19	-12.02	28.17	43.50	-15.33	Peak
255.04	44.71	-10.41	34.30	46.00	-11.70	Peak
299.66	42.70	-8.81	33.89	46.00	-12.11	Peak
341.37	37.09	-7.72	29.37	46.00	-16.63	Peak
352.04	34.66	-7.44	27.22	46.00	-18.78	Peak
373.38	35.14	-6.86	28.28	46.00	-17.72	Peak
392.78	33.18	-6.34	26.84	46.00	-19.16	Peak
		966 Chambe	er_A at 3Met	ter / Vertical		
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
48.43	35.21	-9.69	25.52	40.00	-14.48	Peak
131.85	36.23	-11.58	24.65	43.50	-18.85	Peak
255.04	36.01	-10.41	25.60	46.00	-20.40	Peak
302.57	36.63	-8.73	27.90	46.00	-18.10	Peak
341.37	33.31	-7.72	25.59	46.00	-20.41	Peak
352.04	36.76	-7.44	29.32	46.00	-16.68	Peak
384.05	32.23	-6.58	25.65	46.00	-20.35	Peak
986.42	28.27	5.17	33.44	54.00	-20.56	Peak

- 1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.
- 2. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB) PreAmp.Gain (dB)
- 4. Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

Product Name	Jawbone	Test By	Waternil Guan
Model	JBE	Test Date	2010/10/05
Test Mode	Mode 2	TEMP & Humidity	23°C, 44%

	9	966 Chambei	_A at 3Mete	r / Horizonta	I	
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
50.37	31.07	-9.70	21.37	40.00	-18.63	Peak
131.85	31.49	-11.58	19.91	43.50	-23.59	Peak
162.89	29.83	-9.98	19.85	43.50	-23.65	Peak
458.74	29.56	-4.54	25.02	46.00	-20.98	Peak
524.70	28.99	-3.45	25.54	46.00	-20.46	Peak
696.39	28.31	-0.07	28.24	46.00	-17.76	Peak
870.99	28.15	3.07	31.22	46.00	-14.78	Peak
		966 Chamb	er_A at 3Met	er / Vertical		
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
60.07	34.83	-10.96	23.87	40.00	-16.13	Peak
120.21	37.59	-12.88	24.71	43.50	-18.79	Peak
131.85	36.14	-11.58	24.56	43.50	-18.94	Peak
144.46	33.60	-10.47	23.13	43.50	-20.37	Peak
288.02	29.95	-9.14	20.81	46.00	-25.19	Peak
626.55	28.07	-1.33	26.74	46.00	-19.26	Peak
736.16	28.37	0.81	29.18	46.00	-16.82	Peak

Remark:

868.08

- 1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.
- 2. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

31.06

46.00

-14.94

Peak

- 3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB) PreAmp.Gain (dB)
- 4. Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

3.03

28.03

Product Name	Jawbone	Test By	Waternil Guan
Model	JBE	Test Date 2010/10/	
Test Mode	Mode 3 - Charge	TEMP & Humidity	23°C, 44%

	966 Chamber_A at 3Meter / Horizontal						
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	
106.63	43.11	-14.42	28.69	43.50	-14.81	Peak	
277.35	42.11	-9.49	32.62	46.00	-13.38	Peak	
320.03	41.83	-8.28	33.55	46.00	-12.45	Peak	
352.04	37.45	-7.44	30.01	46.00	-15.99	Peak	
405.39	38.04	-5.99	32.05	46.00	-13.95	Peak	
458.74	34.31	-4.54	29.77	46.00	-16.23	Peak	
672.14	30.59	-0.57	30.02	46.00	-15.98	Peak	
870.02	27.88	3.05	30.93	46.00	-15.07	Peak	
		966 Chamb	er_A at 3Met	ter / Vertical			
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	
60.07	37.37	-10.96	26.41	40.00	-13.59	Peak	
99.84	42.39	-15.18	27.21	43.50	-16.29	Peak	
114.39	42.80	-13.54	29.26	43.50	-14.24	Peak	
266.68	36.73	-9.96	26.77	46.00	-19.23	Peak	
298.69	36.42	-8.84	27.58	46.00	-18.42	Peak	
405.39	33.77	-5.99	27.78	46.00	-18.22	Peak	
458.74	34.43	-4.54	29.89	46.00	-16.11	Peak	
513.06	31.40	-3.71	27.69	46.00	-18.31	Peak	

- 1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.
- 2. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB) PreAmp.Gain (dB)
- 4. Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

Product Name	Jawbone	Test By Rueyyan	
Model	Model JBE		2010/10/09
Test Mode	Mode 3 - Power Adapter	TEMP & Humidity	25.1°C, 58%

Report No.: T100923305-RP1

	9	66 Chambei	r_A at 3Mete	r / Horizonta	ıl	
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
44.55	30.99	-9.83	21.16	40.00	-18.84	Peak
126.03	37.58	-12.23	25.35	43.50	-18.15	Peak
288.02	31.19	-9.14	22.05	46.00	-23.95	Peak
418.00	29.04	-5.61	23.43	46.00	-22.57	Peak
549.92	28.26	-2.87	25.39	46.00	-20.61	Peak
806.00	27.65	1.81	29.46	46.00	-16.54	Peak
903.97	26.79	3.56	30.35	46.00	-15.65	Peak
		966 Chambe	er_A at 3Met	ter / Vertical		
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
55.22	32.18	-10.33	21.85	40.00	-18.15	Peak
123.12	34.64	-12.55	22.09	43.50	-21.41	Peak
170.65	30.16	-10.62	19.54	43.50	-23.96	Peak
302.57	28.72	-8.73	19.99	46.00	-26.01	Peak
381.14	29.24	-6.66	22.58	46.00	-23.42	Peak
515.00	28.02	-3.67	24.35	46.00	-21.65	Peak
587.75	27.91	-1.97	25.94	46.00	-20.06	Peak
845.77	27.91	2.68	30.59	46.00	-15.41	Peak

- 1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.
- 2. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB) PreAmp.Gain (dB)
- 4. Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

Product Name	duct Name Jawbone		Albert Lai
Model	JBE	Test Date	2010/10/06
Test Mode	Mode 4 - Charge	TEMP & Humidity	24°C, 60%

	9	966 Chambei	r_A at 3Mete	er / Horizonta	n l	
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
106.63	44.79	-14.42	30.37	43.50	-13.13	Peak
175.50	37.08	-11.03	26.05	43.50	-17.45	Peak
191.99	37.75	-12.05	25.70	43.50	-17.80	Peak
224.00	41.20	-12.32	28.88	46.00	-17.12	Peak
257.95	42.91	-10.32	32.59	46.00	-13.41	Peak
279.29	42.16	-9.40	32.76	46.00	-13.24	Peak
352.04	34.91	-7.44	27.47	46.00	-18.53	Peak
405.39	36.76	-5.99	30.77	46.00	-15.23	Peak
		966 Chamb	er_A at 3Met	ter / Vertical		
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
30.00	46.07	-12.79	33.28	40.00	-6.72	Peak
104.69	48.41	-14.65	33.76	43.50	-9.74	Peak
138.64	38.49	-10.83	27.66	43.50	-15.84	Peak
191.99	37.17	-12.05	25.12	43.50	-18.38	Peak
252.13	39.82	-10.50	29.32	46.00	-16.68	Peak
271.53	41.04	-9.75	31.29	46.00	-14.71	Peak
458.74	32.74	-4.54	28.20	46.00	-17.80	Peak
666.32	30.06	-0.69	29.37	46.00	-16.63	Peak

- 1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.
- 2. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB) PreAmp.Gain (dB)
- 4. Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

Product Name	Jawbone	Test By	Rueyyan Lin	
Model	JBE	Test Date	2010/10/09	
Test Mode	Mode 4 - Power adapter	TEMP & Humidity	25.1°C, 58%	

Report No.: T100923305-RP1

<u> </u>						
		966 Chamber	r_A at 3Mete	r / Horizonta	1	
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
47.46	31.78	-9.72	22.06	40.00	-17.94	Peak
114.39	42.62	-13.54	29.08	43.50	-14.42	Peak
172.59	33.80	-10.78	23.02	43.50	-20.48	Peak
255.04	48.47	-10.41	38.06	46.00	-7.94	Peak
296.75	42.27	-8.89	33.38	46.00	-12.62	Peak
373.38	37.81	-6.86	30.95	46.00	-15.05	Peak
518.88	29.15	-3.58	25.57	46.00	-20.43	Peak
639.16	28.07	-1.17	26.90	46.00	-19.10	Peak
		966 Chamb	er_A at 3Met	ter / Vertical		
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
30.00	43.98	-12.79	31.19	40.00	-8.81	Peak
63.95	36.20	-11.44	24.76	40.00	-15.24	Peak
121.18	41.15	-12.77	28.38	43.50	-15.12	Peak
168.71	33.85	-10.46	23.39	43.50	-20.11	Peak
252.13	40.82	-10.50	30.32	46.00	-15.68	Peak
357.86	33.15	-7.28	25.87	46.00	-20.13	Peak
544.10	29.56	-3.00	26.56	46.00	-19.44	Peak
806.00	27.35	1.81	29.16	46.00	-16.84	Peak

- 1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.
- 2. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB) PreAmp.Gain (dB)
- 4. Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

Product Name	Jawbone	Test By	Waternil Guan
Model	JBE	Test Date	2010/10/05
Test Mode	Mode - 5	TEMP & Humidity	23°C, 44%

		966 Chambei	r A at 3Mete	er / Horizonta	·	
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
97.90	44.42	-15.24	29.18	43.50	-14.32	Peak
120.21	39.49	-12.88	26.61	43.50	-16.89	Peak
147.37	35.01	-10.33	24.68	43.50	-18.82	Peak
262.80	37.34	-10.14	27.20	46.00	-18.80	Peak
309.36	36.29	-8.55	27.74	46.00	-18.26	Peak
405.39	35.47	-5.99	29.48	46.00	-16.52	Peak
416.06	34.76	-5.67	29.09	46.00	-16.91	Peak
458.74	32.92	-4.54	28.38	46.00	-17.62	Peak
		966 Chambe	er_A at 3Met	ter / Vertical		
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
60.07	37.45	-10.96	26.49	40.00	-13.51	Peak
120.21	40.31	-12.88	27.43	43.50	-16.07	Peak
146.40	36.03	-10.38	25.65	43.50	-17.85	Peak
243.40	40.65	-10.76	29.89	46.00	-16.11	Peak
260.86	39.78	-10.22	29.56	46.00	-16.44	Peak
271.53	44.02	-9.75	34.27	46.00	-11.73	Peak
405.39	32.46	-5.99	26.47	46.00	-19.53	Peak
458.74	32.16	-4.54	27.62	46.00	-18.38	Peak

- 1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.
- 2. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB) PreAmp.Gain (dB)
- 4. Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

TX Above 1 GHz

Product Name	Jawbone	Test By	Waternil Guan
Model	JBE	Test Date	2010/10/15
Test Mode	GFSK TX / CH Low	TEMP & Humidity	27°C , 44%

	966 Chamber_A at 3Meter / Horizontal								
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1602.00	48.31	42.56	-2.12	46.19	40.44	74.00	54.00	-13.56	AVG
1866.00	53.97	47.85	0.04	54.01	47.89	74.00	54.00	-6.11	AVG
2402.00	93.93		1.94	95.87					Carrier
2636.00	52.73	45.52	2.43	55.16	47.95	74.00	54.00	-6.05	AVG
3787.50	42.40		4.27	46.67		74.00	54.00	-27.33	Peak
4800.00	53.34	45.91	6.13	59.47	52.04	74.00	54.00	-1.96	AVG
5970.00	39.76		7.88	47.64		74.00	54.00	-26.36	Peak
						_			

		9	66 Chaml	ber_A at 3	3Meter / V	ertical			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1212.00	54.26		-3.85	50.41		74.00	54.00	-23.59	Peak
1602.00	50.94	46.85	-2.12	48.82	44.73	74.00	54.00	-9.27	AVG
2124.00	53.28	45.77	1.39	54.67	47.16	74.00	54.00	-6.84	AVG
2402.00	94.88		1.94	96.82					Carrier
3817.50	41.52		4.36	45.88		74.00	54.00	-28.12	Peak
4807.50	53.99	46.47	6.11	60.10	52.58	74.00	54.00	-1.42	AVG
6450.00	40.12		9.45	49.57		74.00	54.00	-24.43	Peak

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

Product Name	Jawbone	Test By	Waternil Guan
Model	JBE	Test Date	2010/10/15
Test Mode	GFSK TX / CH Middle	TEMP & Humidity	27°C , 44%

	966 Chamber_A at 3Meter / Horizontal									
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark	
1318.00	54.17		-3.52	50.65		74.00	54.00	-23.35	Peak	
1626.00	47.08	39.31	-1.93	45.15	37.38	74.00	54.00	-16.62	AVG	
1862.00	52.43		0.01	52.44		74.00	54.00	-21.56	Peak	
2441.00	94.80		2.02	96.82					Carrier	
4005.00	40.87		4.94	45.81		74.00	54.00	-28.19	Peak	
4882.50	50.45	42.66	6.00	56.45	48.66	74.00	54.00	-5.34	AVG	
5197.50	41.21		6.23	47.44		74.00	54.00	-26.56	Peak	

	966 Chamber_A at 3Meter / Vertical										
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark		
1414.00	53.72		-3.22	50.50		74.00	54.00	-23.50	Peak		
1626.00	49.52	44.07	-1.93	47.59	42.14	74.00	54.00	-11.86	AVG		
1808.00	52.87		-0.43	52.44		74.00	54.00	-21.56	Peak		
2441.00	95.03		2.02	97.05					Carrier		
4297.50	41.51		5.90	47.41		74.00	54.00	-26.59	Peak		
4882.50	51.94	44.37	6.00	57.94	50.37	74.00	54.00	-3.63	AVG		
6720.00	40.88		9.95	50.83		74.00	54.00	-23.17	Peak		

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

Product Name	Jawbone	Test By	Waternil Guan
Model	JBE	Test Date	2010/10/15
Test Mode	GFSK TX / CH High	TEMP & Humidity	27°C , 44%

Report No.: T100923305-RP1

	966 Chamber_A at 3Meter / Horizontal											
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark			
1330.00	55.14		-3.48	51.66		74.00	54.00	-22.34	Peak			
1454.00	53.65		-3.10	50.55		74.00	54.00	-23.45	Peak			
1652.00	45.18	33.38	-1.71	43.47	31.67	74.00	54.00	-22.33	AVG			
2480.00	93.29		2.10	95.39					Carrier			
3337.50	42.39		3.32	45.71		74.00	54.00	-28.29	Peak			
4957.50	49.24	41.32	5.89	55.13	47.21	74.00	54.00	-6.79	AVG			
6720.00	40.66		9.95	50.61		74.00	54.00	-23.39	Peak			

	966 Chamber_A at 3Meter / Vertical												
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)		Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark				
1200.00	54.06		-3.88	50.18		74.00	54.00	-23.82	Peak				
1414.00	53.98		-3.22	50.76		74.00	54.00	-23.24	Peak				
1652.00	47.86	41.41	-1.71	46.15	39.70	74.00	54.00	-14.30	AVG				
2480.00	94.68		2.10	96.78					Carrier				
3825.00	41.80		4.38	46.18		74.00	54.00	-27.82	Peak				
4957.50	49.94	42.44	5.89	55.83	48.33	74.00	54.00	-5.67	AVG				
6555.00	40.01		9.70	49.71		74.00	54.00	-24.29	Peak				

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

Product Name	Jawbone	Test By	Waternil Guan
Model	JBE	Test Date	2010/10/15
Test Mode	8-DPSK TX / CH Low	TEMP & Humidity	27°C , 44%

	966 Chamber_A at 3Meter / Horizontal											
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark			
1306.00	53.92		-3.56	50.36		74.00	54.00	-23.64	Peak			
1602.00	47.83	41.20	-2.12	45.71	39.08	74.00	54.00	-14.92	AVG			
1808.00	52.76		-0.43	52.33		74.00	54.00	-21.67	Peak			
2402.00	93.97		1.94	95.91					Carrier			
3277.50	42.37		3.30	45.67		74.00	54.00	-28.33	Peak			
4807.50	50.68	40.12	6.11	56.79	46.23	74.00	54.00	-7.77	AVG			
6165.00	40.24		8.50	48.74		74.00	54.00	-25.26	Peak			
		0	66 Chamb	A t .	20010404 / \/	oution!						

	966 Chamber_A at 3Meter / Vertical												
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)		Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark				
1266.00	54.89		-3.68	51.21		74.00	54.00	-22.79	Peak				
1602.00	51.23	47.54	-2.12	49.11	45.42	74.00	54.00	-8.58	AVG				
2040.00	52.89	45.22	1.22	54.11	46.44	74.00	54.00	-7.56	AVG				
2402.00	94.47		1.94	96.41					Carrier				
3577.50	41.93		3.62	45.55		74.00	54.00	-28.45	Peak				
4807.50	51.15	40.34	6.11	57.26	46.45	74.00	54.00	-7.55	AVG				
6712.50	40.25		9.94	50.19		74.00	54.00	-23.81	Peak				

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

Product Name	Jawbone	Test By	Waternil Guan
Model	Model JBE		2010/10/15
Test Mode	8-DPSK TX / CH Middle	TEMP & Humidity	27°C , 44%

	966 Chamber_A at 3Meter / Horizontal											
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark			
1204.00	53.63		-3.87	49.76		74.00	54.00	-24.24	Peak			
1458.00	52.84		-3.09	49.75		74.00	54.00	-24.25	Peak			
1626.00	45.82	36.78	-1.93	43.89	34.85	74.00	54.00	-19.15	AVG			
2441.00	93.98		2.02	96.00					Carrier			
3750.00	41.69		4.15	45.84		74.00	54.00	-28.16	Peak			
4882.50	46.51	35.48	6.00	52.51	41.48	74.00	54.00	-12.52	AVG			
6442.50	40.79		9.43	50.22		74.00	54.00	-23.78	Peak			

	966 Chamber_A at 3Meter / Vertical												
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark				
1252.00	53.62		-3.72	49.90		74.00	54.00	-24.10	Peak				
1626.00	49.53	44.45	-1.93	47.60	42.52	74.00	54.00	-11.48	AVG				
2026.00	52.55		1.19	53.74		74.00	54.00	-20.26	Peak				
2441.00	95.03		2.02	97.05					Carrier				
3262.50	42.70		3.30	46.00		74.00	54.00	-28.00	Peak				
4882.50	47.19	36.19	6.00	53.19	42.19	74.00	54.00	-11.81	AVG				
6112.50	40.73		8.33	49.06		74.00	54.00	-24.94	Peak				

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

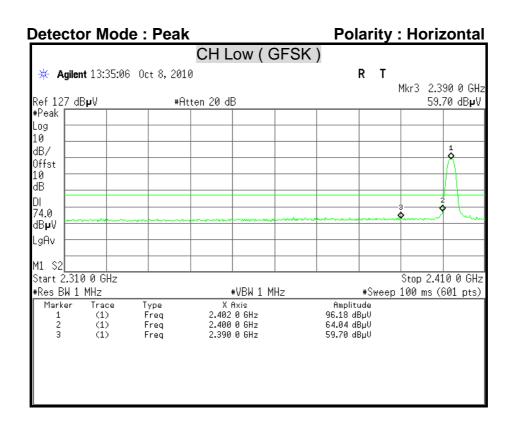
Margin = Result - Limit

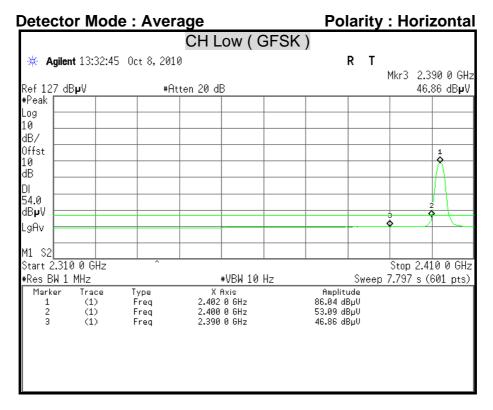
Remark Peak = Result(PK) - Limit(PK)

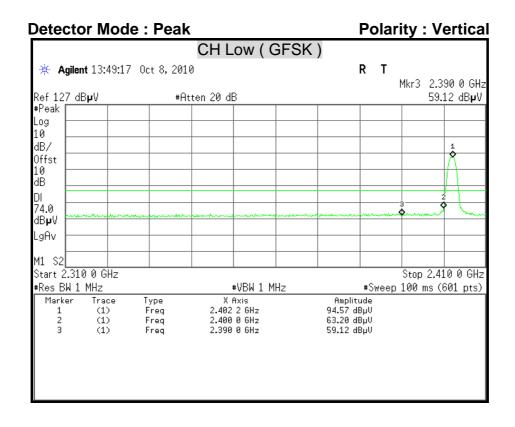
Product Name	Jawbone	Test By	Waternil Guan
Model	JBE	Test Date	2010/10/15
Test Mode	8-DPSK TX / CH High	TEMP & Humidity	27°C , 44%

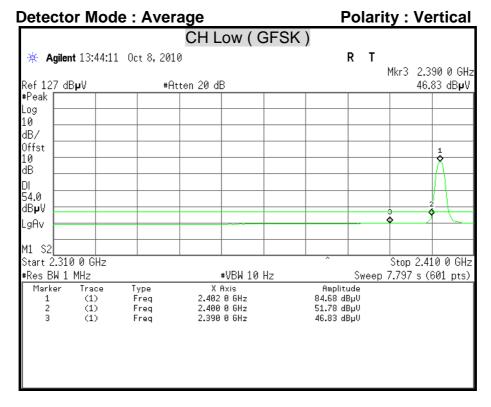
	966 Chamber_A at 3Meter / Horizontal											
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)			Limit-AV (dBuV/m)	Margin (dB)	Remark			
1386.00	54.02		-3.31	50.71		74.00	54.00	-23.29	Peak			
1652.00	45.99	36.30	-1.71	44.28	34.59	74.00	54.00	-19.41	AVG			
2072.00	52.44		1.28	53.72		74.00	54.00	-20.28	Peak			
2480.00	93.43		2.10	95.53					Carrier			
3255.00	42.03		3.30	45.33		74.00	54.00	-28.67	Peak			
4957.50	46.19	34.60	5.89	52.08	40.49	74.00	54.00	-13.51	AVG			
5842.50	40.13		7.60	47.73		74.00	54.00	-26.27	Peak			
						_						

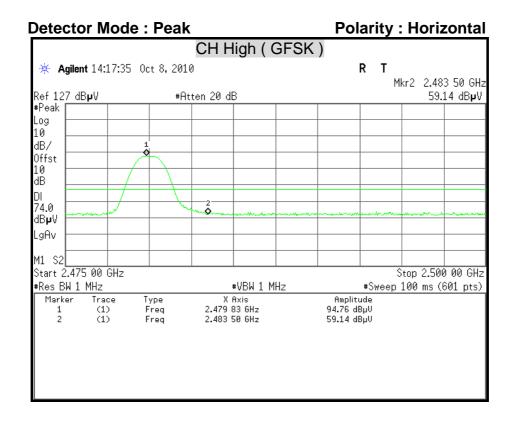
	966 Chamber_A at 3Meter / Vertical												
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark				
1314.00	53.97		-3.53	50.44		74.00	54.00	-23.56	Peak				
1652.00	47.53	41.73	-1.71	45.82	40.02	74.00	54.00	-13.98	AVG				
1988.00	53.55	45.96	1.04	54.59	47.00	74.00	54.00	-7.00	AVG				
2480.00	94.13		2.10	96.23					Carrier				
3225.00	43.15		3.29	46.44		74.00	54.00	-27.56	Peak				
4957.50	46.07	34.87	5.89	51.96	40.76	74.00	54.00	-13.24	AVG				
6457.50	41.06		9.48	50.54		74.00	54.00	-23.46	Peak				

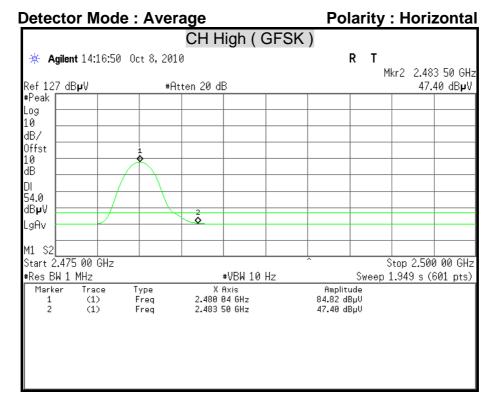

Remark:

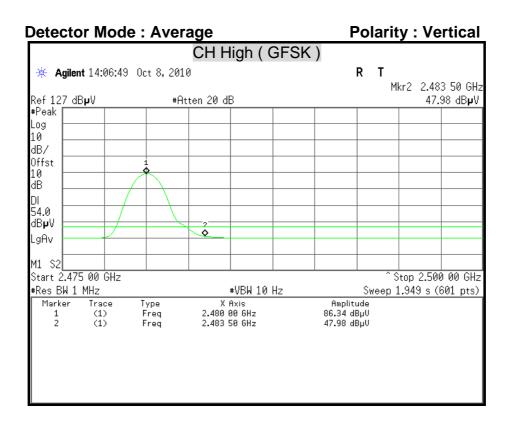

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 6. Result = Reading + Correction Factor

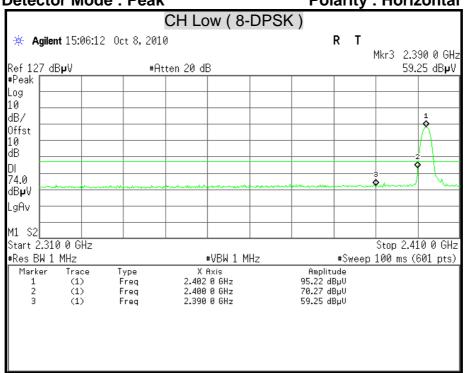

Margin = Result - Limit


Remark Peak = Result(PK) - Limit(PK)

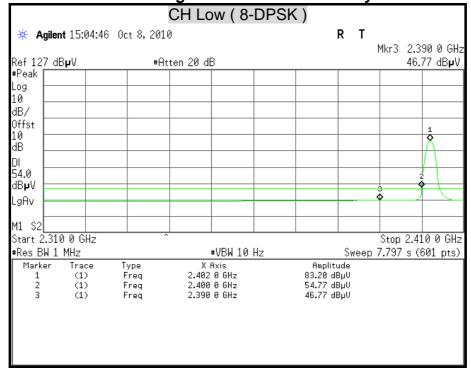

Restricted Band Edges






Report No.: T100923305-RP1

Detector Mode: Peak Polarity: Vertical CH High (GFSK) * Agilent 14:07:18 Oct 8, 2010 R T Mkr2 2.483 50 GHz Ref 127 dB**µ**V 60.49 dBpV #Atten 20 dB #Peak Loa 10 dB/ Offst 10 ďΒ 74.0 dB₽V LgAv M1 S2 Start 2.475 00 GHz Stop 2.500 00 GHz #Res BW 1 MHz #VBW 1 MHz #Sweep 100 ms (601 pts) X Axis 2.480 00 GHz 2.483 50 GHz Marker Туре Amplitude 96.60 dBµV 60.49 dBµV (1) (1) Freq Freq



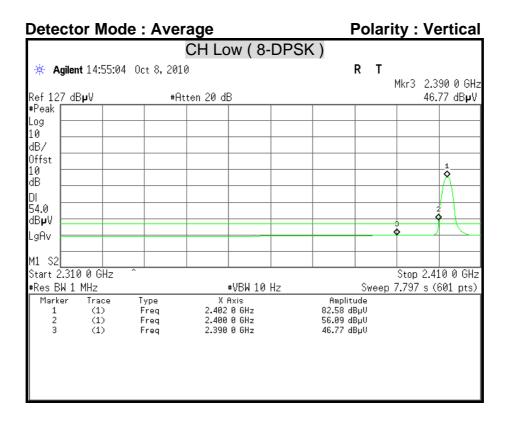
Detector Mode : Peak Polarity : Horizontal

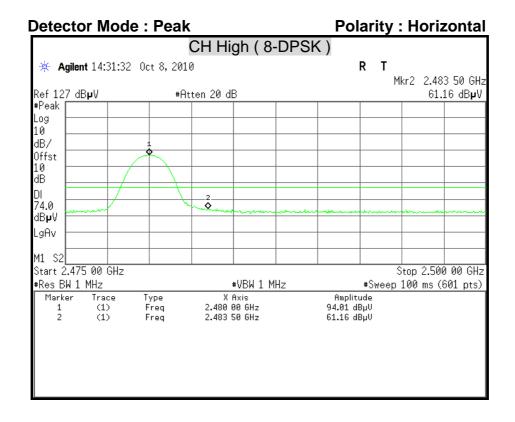
Report No.: T100923305-RP1

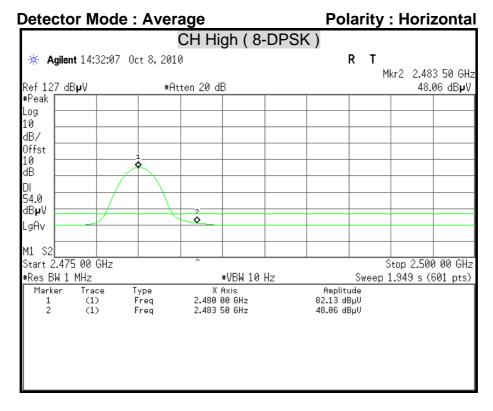
Detector Mode : Average Polarity : Horizontal

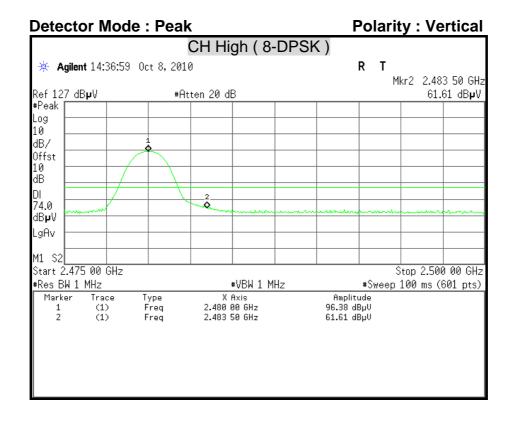
3

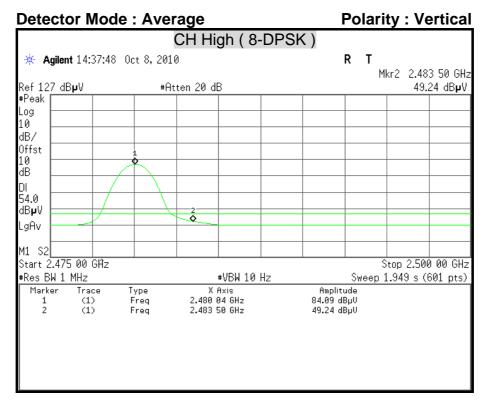
(1)


FCC ID: V3J-JBE


Report No.: T100923305-RP1


Detector Mode: Peak Polarity: Vertical CH Low (8-DPSK) R T Agilent 14:55:45 Oct 8, 2010 Mkr3 2.390 0 GHz Ref 127 dB**µ**V 59.80 dBµV #Atten 20 dB #Peak Loa 10 dB/ Offst 10 ďΒ 74.0 dB₽V LgAv M1 S2 Start 2.310 0 GHz Stop 2.410 0 GHz #Res BW 1 MHz #VBW 1 MHz #Sweep 100 ms (601 pts) X Axis 2.402 0 GHz 2.400 0 GHz Marker Amplitude Туре 94.47 dBµV 69.68 dBµV (1) (1) Freq Freq


2.390 0 GHz

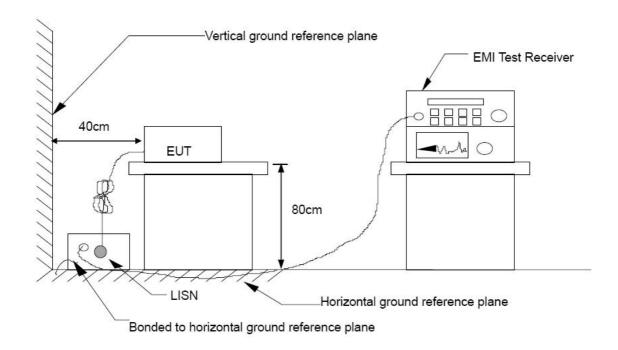

59.80 dBµV

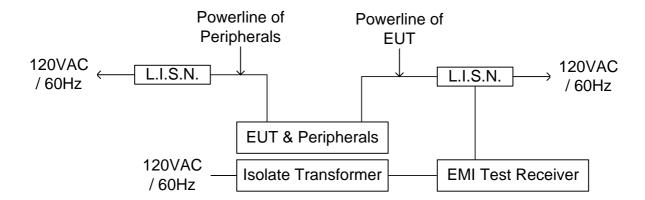
7.8 CONDUCTED EMISSION

LIMITS

§ 15.207 (a) Except as shown in paragraph (b) and (c) this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency Range	Conducted Limit (dBµv)		
(MHz)	Quasi-peak	Average	
0.15 - 0.50	66 to 56	56 to 46	
0.50 - 5.00	56	46	
5.00 - 30.0	60	50	


TEST EQUIPMENT


Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
L.I.S.N	SCHWARZBECK	NSLK 8127	8127-465	08/08/2011
L.I.S.N	SCHWARZBECK	NSLK 8127	8127-473	03/22/2011
TEST RECEIVER	ROHDE & SCHWARZ	ESCS 30	835418/008	10/27/2010
PULSE LIMIT	ROHDE & SCHWARZ	ESH3-Z2	100117	09/17/2011
N Type Coaxial Cable	BELDEN	8268 M17/164	003	07/09/2011

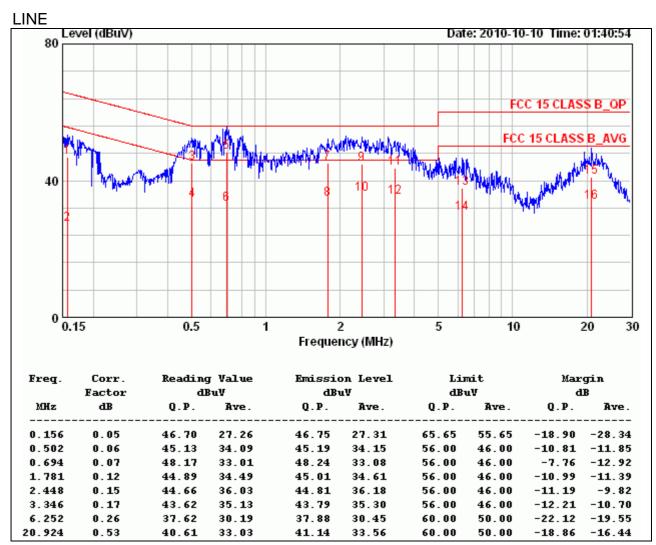
Remark: Each piece of equipment is scheduled for calibration once a year.

Report No.: T100923305-RP1

TEST SETUP

TEST PROCEDURE

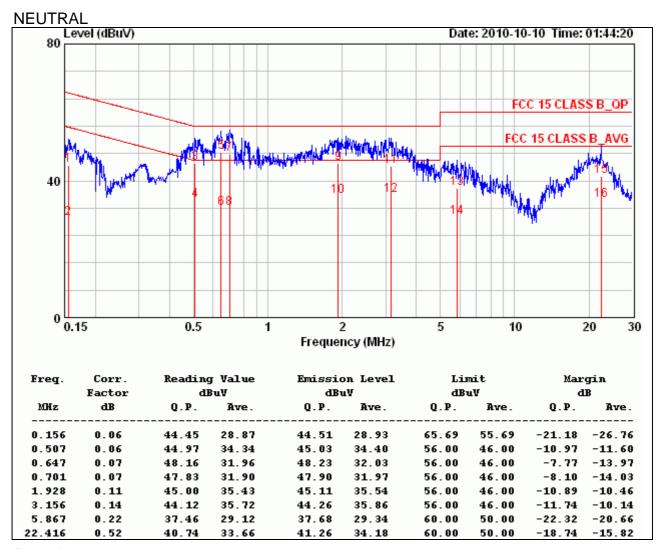
The test procedure is performed in a $4m \times 3m \times 2.4m$ (LxWxH) shielded room.


The EUT along with its peripherals were placed on a 1.0m (W) \times 1.5m (L) and 0.8m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.

The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.

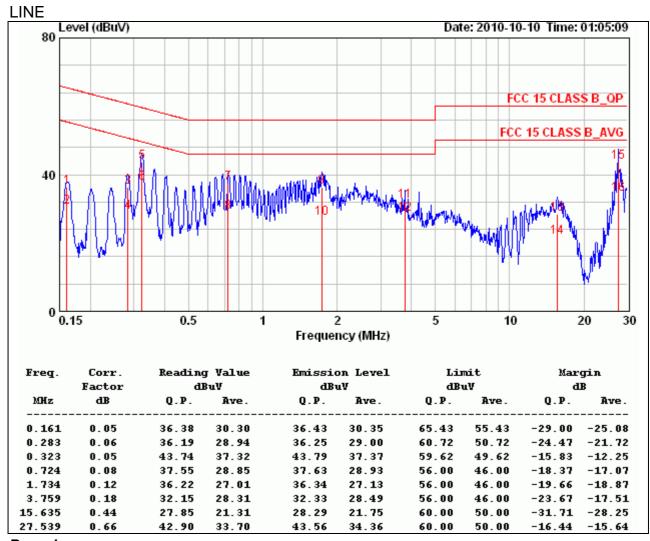
The EUT was located so that the distance between the boundary of the EUT and the closest surface of the LISN is 0.8 m. Where a mains flexible cord was provided by the manufacturer shall be 1 m long, or if in excess of 1 m, the excess cable was folded back and forth as far as possible so as to form a bundle not exceeding 0.4 m in length.

TEST RESULTS


Product Name	Jawbone	Test By	Rueyyan Lin
Model	JBE	Test Date	2010/10/10
Test Mode	Mode 3 - Charge	TEMP & Humidity	28°C, 57%

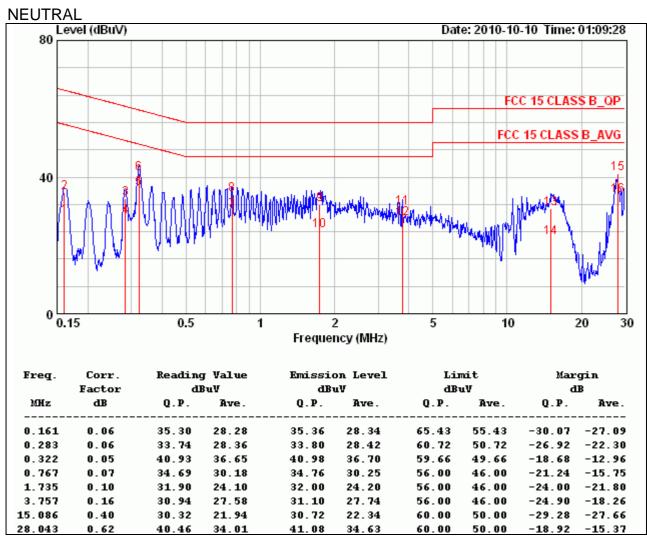
- 1. Correction Factor = Insertion loss + cable loss
- 2. Margin value = Emission level Limit value

Product Name	Jawbone	Test By	Rueyyan Lin
Model	JBE	Test Date	2010/10/10
Test Mode	Mode 3 - Charge	TEMP & Humidity	28°C, 57%


Report No.: T100923305-RP1

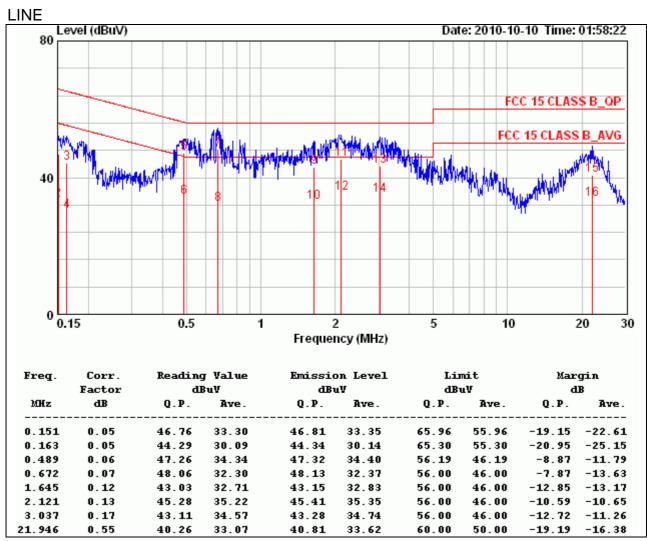
- 1. Correction Factor = Insertion loss + cable loss
- 2. Margin value = Emission level Limit value

Product Name	Jawbone	Test By	Rueyyan Lin
Model	JBE	Test Date	2010/10/10
Test Mode	Mode 3 - Power Adapter	TEMP & Humidity	28°C, 57%


Report No.: T100923305-RP1

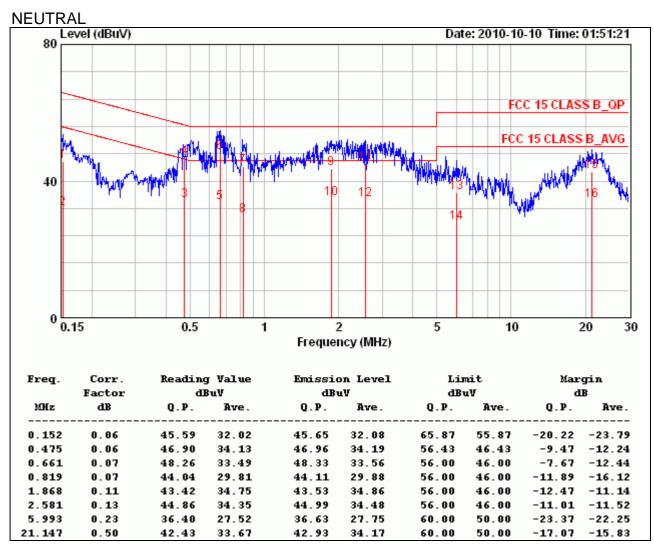
- 1. Correction Factor = Insertion loss + cable loss
- 2. Margin value = Emission level Limit value

Product Name	Jawbone	Test By	Rueyyan Lin
Model	JBE	Test Date	2010/10/10
Test Mode	Mode 3 - Power Adapter	TEMP & Humidity	28°C, 57%


Report No.: T100923305-RP1

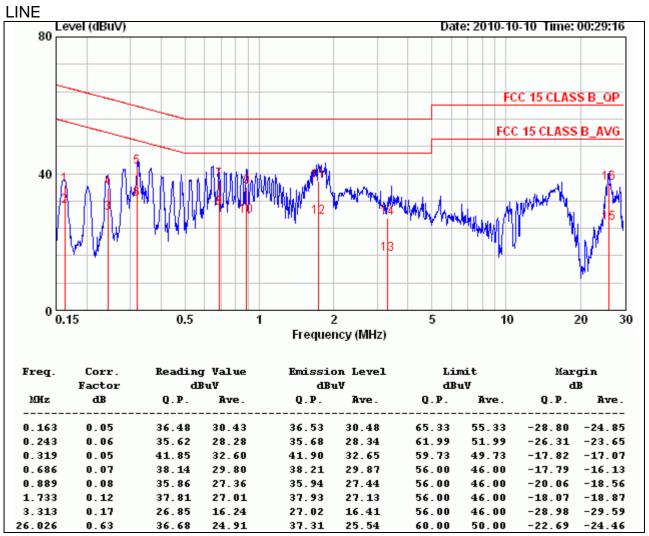
- 1. Correction Factor = Insertion loss + cable loss
- 2. Margin value = Emission level Limit value

Product Name	Jawbone	Test By	Rueyyan Lin
Model	JBE	Test Date	2010/10/10
Test Mode	Mode 4 - Charge	TEMP & Humidity	28°C, 57%


Report No.: T100923305-RP1

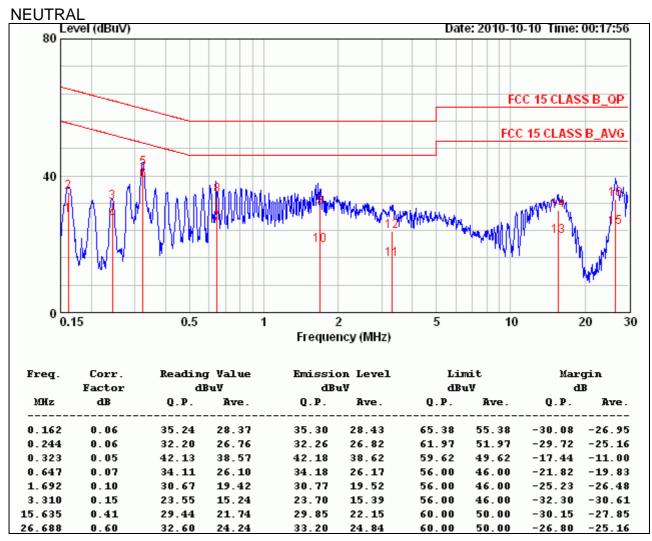
- 1. Correction Factor = Insertion loss + cable loss
- 2. Margin value = Emission level Limit value

Product Name	Jawbone	Test By	Rueyyan Lin
Model	JBE	Test Date	2010/10/10
Test Mode	Mode 4 - Charge	TEMP & Humidity	28°C, 57%


Report No.: T100923305-RP1

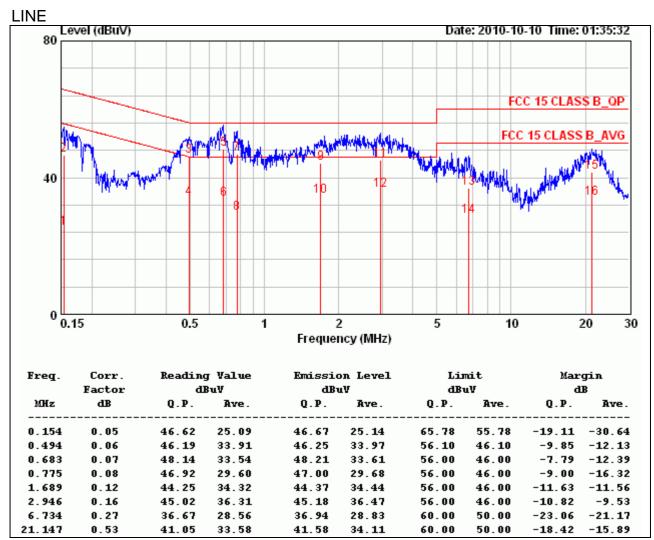
- 1. Correction Factor = Insertion loss + cable loss
- 2. Margin value = Emission level Limit value

Product Name	Jawbone	Test By	Rueyyan Lin
Model	JBE	Test Date	2010/10/10
Test Mode	Mode 4 - Power Adapter	TEMP & Humidity	28°C, 57%


Report No.: T100923305-RP1

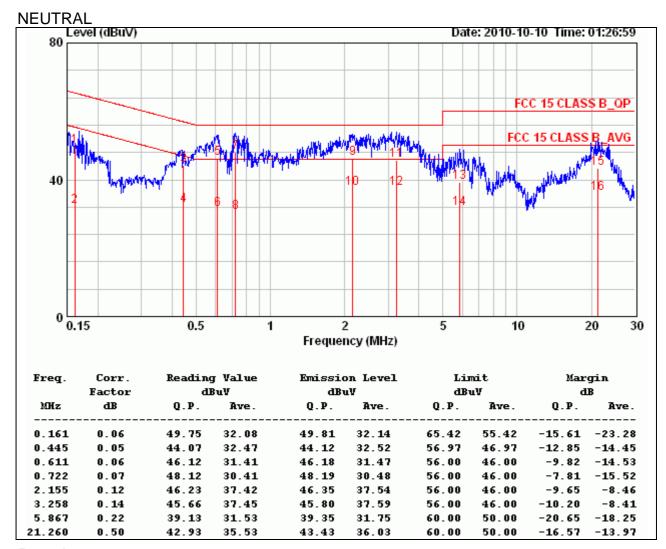
- 1. Correction Factor = Insertion loss + cable loss
- 2. Margin value = Emission level Limit value

Product Name	Jawbone	Test By	Rueyyan Lin
Model	JBE	Test Date	2010/10/10
Test Mode	Mode 4 - Power Adapter	TEMP & Humidity	28°C, 57%


Report No.: T100923305-RP1

- 1. Correction Factor = Insertion loss + cable loss
- 2. Margin value = Emission level Limit value

Product Name	Jawbone	Test By	Rueyyan Lin
Model	JBE	Test Date	2010/10/10
Test Mode	Mode 5	TEMP & Humidity	28°C, 57%


Report No.: T100923305-RP1

- 1. Correction Factor = Insertion loss + cable loss
- 2. Margin value = Emission level Limit value

Product Name	Jawbone	Test By	Rueyyan Lin
Model	JBE	Test Date	2010/10/10
Test Mode	Mode 5	TEMP & Humidity	28°C, 57%

Report No.: T100923305-RP1

- 1. Correction Factor = Insertion loss + cable loss
- 2. Margin value = Emission level Limit value