FCC PART 15.247 EMI MEASUREMENT AND TEST REPORT For

Blupont Limited

713 RM, 206 East, Tairan 4 Road, CheGongMiao Industrial Park, Futian District, ShenZhen, China

FCC ID: V36WL-600N-E2

May	18,	2012	,
-----	-----	------	---

This Report Con	cerns:	Equipment Type:	
Original Report		PCI-E 150M WIRELESS LAN	
		CARD	
Test Engineer: Steven Fang Steven		g Steven Fong	
Report No.:	BST12050201Y-1E-3		
Receive EUT Date/Test Date:	April 21, 2012/ April 23, 2012		
Reviewed By:	Christina christine		
Prepared By:	Shenzhen BST Technology Co.,Ltd.3F,Weames Technology Building,No. 10 Kefa Road,Science Park,Nanshan District,Shenzhen,Guangdong,ChirTel: 0755-26747751 ~ 3Fax: 0755-26747751 ~ 3 ext.826		

Note: The test report is specially limited to the above company and this particular sample only. It may not be duplicated without prior written consent of Shenzhen BST Technology Co.,Ltd. This report must not be used by the client to claim product certification,approval,or endorsement by NVLAP, NIST or any agency of the US Government.

TABLE OF CONTENTS

1.	GENI	ERAL INFORMATION	4
	1.1.	Report information	4
	1.2.	Measurement Uncertainty	4
2.	PROI	DUCT DESCRIPTION	5
	2.1.	EUT Description	5
	2.2.	Block Diagram of EUT Configuration	6
	2.3.	Support Equipment List	6
	2.4.	Test Conditions	6
3.	FCC	ID LABEL	7
4.	TEST	' RESULTS SUMMARY	8
	Modif	ications	8
5.	TEST	' EQUIPMENT USED	9
6.	§15.24	47 (I) AND §1.1307 (B) (1), §2.1093 – RF EXPOSURE	.10
	6.1.	Standard Applicable	
	6.2.	Test Data	
	6.3.	Test Result	.11
7.	§15.20	03 - ANTENNA REQUIREMENT	.12
	7.1.	Standard Applicable	.12
	7.2.	Antenna Connector Construction	
8.	§15.20	07 - CONDUCTED EMISSIONS	.13
	8.1.	Applicable Standard	.13
	8.2.	Test Procedure	.13
	8.3.	Conducted Power line Emission Limits	.13
	8.4.	Block Diagram of Test Setup	
	8.5.	Conducted Power Line Test Result	.14
9.	§15.2	09, §15.205, §15.247(D) - SPURIOUS EMISSIONS	.16
	9.1.	Test Equipment	.16
	9.2.	Test Procedure	.16
	9.3.	Radiated Test Setup	
	9.4.	Radiated Emission Limit	
	9.5.	Radiated Emission Test Result	
10.	§15.24	47(A) (2) – 6DB BANDWIDTH TESTING	
	10.1.	Test Equipment	
	10.2.	Test Procedure	
	10.3.	Applicable Standard	
	10.4.	Test Result:Pass.	
11.		47(B) (3) - MAXIMUM PEAK OUTPUT POWER	
	11.1.	Test Equipment	
	11.2.	Test Procedure	
	11.3.	Applicable Standard	
1.	11.4.	Test Result	
12.	§15.24	47(D) – 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	.56

	12.1.	Test Equipment	56
	12.2.	Test Procedure	56
	12.3.	Applicable Standard	56
		Test Result	
13.	§15.24	47(E) - POWER SPECTRAL DENSITY	77
	13.1.	Test Equipment	77
	13.2.	Test Procedure	77
	13.3.	Applicable Standard	77
	13.4.	Test Result	77

1. GENERAL INFORMATION

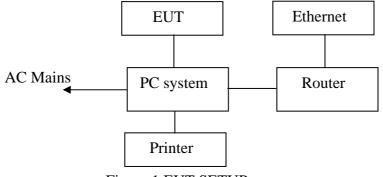
1.1. Report information

- 1.1.1.This report is not a certificate of quality; it only applies to the sample of the specific product/equipment given at the time of its testing. The results are not used to indicate or imply that they are application to the similar items. In addition, such results must not be used to indicate or imply that BST approves recommends or endorses the manufacture, supplier or use of such product/equipment, or that BST in any way guarantees the later performance of the product/equipment.
- 1.1.2. The sample/s mentioned in this report is/are supplied by Applicant, BST therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture or any information supplied.

Additional copies of the report are available to the Applicant at an additional fee. No third part can obtain a copy of this report through BST, unless the applicant has authorized BST in writing to do so.

Test Facility -The test site used to collect the radiated data is located on the address of SinTek Laboratory Co.,Ltd. (FCC Registered Test Site Number: 963441) on No.7, Xinshidai Industrial, Guantian Village, Shiyan Town, Baoan District, Shenzhen, Guangdong 518108, China The Test Site is constructed and calibrated to meet the FCC requirements.

1.2. Measurement Uncertainty


Available upon request.

2. PRODUCT DESCRIPTION

2.1. EUT Description

Applicant Address	:	Blupont Limited 713 RM, 206 East, Tairan 4 Road, CheGongMiao Industrial Park, Futian District, ShenZhen, China
Manufacturer Address	:	Blupont Limited 713 RM, 206 East, Tairan 4 Road, CheGongMiao Industrial Park, Futian District, ShenZhen, China
EUT Description	:	PCI-E 150M WIRELESS LAN CARD
Trade Name	:	N/A
Modulation	:	802.11b: DSSS 802.11g/n: OFDM
Wi-fi Frequency Band	:	IEEE 802.11b/g: 2412-2462MHz IEEE802.11n HT20: 2412-2462MHz IEEE802.11n HT40: 2422-2452MHz
Number of Channels	:	IEEE 802.11b/g: 11 Channels IEEE802.11n HT20: 11 Channels IEEE802.11n HT40: 7 Channels
Model Number	:	WL-600N-E2
Power Supply	:	DC 5V powered by PC
Antenna gain	:	2dBi(2.4GHz)

2.2. Block Diagram of EUT Configuration

Figure 1 EUT SETUP

2.3. Support Equipment List

Name	Model No	S/N	Manufacturer	Used ""
PC system	ST-PC-002	569787506	DeLUX	
Printer	HP930C	N/A	HP	
Router	TL-R402M	07115200391	TP-LINK	

2.4. Test Conditions

Temperature: 23~25 Relative Humidity: 50~63 %

After the preliminary test, we found to emit the worst emissions and therefore had been tested under operating condition.

IEEE 802.11b:

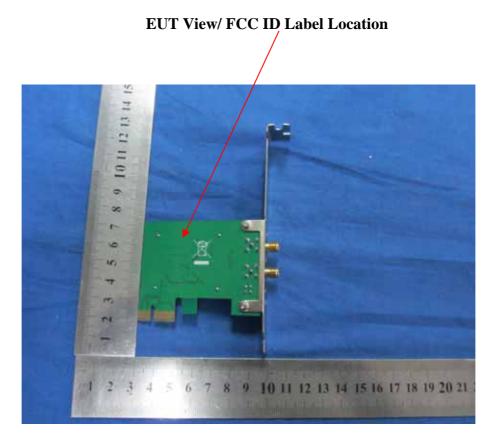
Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 1Mbps data rate were chosen for full testing.

IEEE 802.11g:

Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 6Mbps data rate were chosen for full testing.

IEEE 802.11n HT20:

Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 6.5Mbps data rate were chosen for full testing.


IEEE 802.11n HT40:

Channel Low (2422MHz), Channel Mid 2437MHz) and Channel High (2452MHz) with 13Mbpsdata rate were chosen for full testing.

3. FCC ID LABEL

FCC ID: V36WL-600N-E2

Label Location on EUT

4. TEST RESULTS SUMMARY

FCC 15 Subpart C,Paragraph 15.247

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.247 (i) , §1.1307 (b) (1), §2.1093	RF Exposure	PASS
§15.203	Antenna Requirement	PASS
§15.207 (a)	Conducted Emissions	PASS
§15.247(d)	Spurious Emissions at Antenna Port	PASS
§15.205	Restricted Bands	PASS
§15.209, §15.205, §15.247(d)	Spurious Emissions	PASS
§15.247 (a)(2)	6 dB Bandwidth	PASS
§15.247(b)(3)	Maximum Peak Output Power PASS	
§15.247(d)	100kHz Bandwidth of Frequency Band EdgePASS	
§15.247(e)	Power Spectral Density PASS	

Statement: The EUT was setup according to ANSI C63.4-2003 and tested according to DTS test procedure of March 23, 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

Modifications

No modification was made.

5. TEST EQUIPMENT USED

Equipment/Facilities	Manufacturer	Model #	Serial no.	Date of Cal.	Cal. Interval
Cable	Resenberger	N/A	NO.1	Mar 10 , 2012	1 Year
Cable	SCHWARZBECK	N/A	NO.2	Mar 10 , 2012	1 Year
Cable	SCHWARZBECK	N/A	NO.3	Mar 10 , 2012	1 Year
LISN	Rohde & Schwarz	ESH3-Z5	100305	Mar 10 , 2012	1 Year
50 Coaxial Switch	ANRITSU CORP	MP59B	6200283933	Mar 10 , 2012	1 Year
EMI Test Receiver	Rohde & Schwarz	ESP13	100180	Oct.11,2011	1 Year
Spectrum Analyzer	Rohde & Schwarz	FSP40	100273	Sep.10,2011	1 Year
3m Semi-Anechoic Chamber	Albatross Projects	9m×6m×6m	N/A	Feb.20,2012	1 Year
Signal Generator	FLUKE	PM5418 + Y/C	LO747012	Feb.20,2012	1 Year
Signal Generator	FLUKE	PM5418TX	LO738007	Feb.20,2012	1 Year
Loop Antenna	SCHWARZBECK	FMZB1516	113	Jan.30,2012	1 Year
Trilog-Super Broadband Antenna	SCHWARZBECK	VULB9161	9161-4079	Sep.22,2011	1 Year
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-564	Sep.22,2011	1 Year
Horn Antenna	Schwarzbeck	BBHA9170	208 279	May 12, 2012	1 Year
Ultra Broadband Antenna	Rohde & Schwarz	HL-562	100110	June.15,2011	1 Year
AMN	Rohde & Schwarz	ESH3-Z5	100196	Oct.11,2011	1 Year
AMN	Rohde & Schwarz	ESH3-Z5	100197	Oct.11,2011	1 Year
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	N/A	N/A	N/A
Power Meter	Rohde & Schwarz	NRVD	100041	Feb.20,2012	1 Year
EMI Test Receiver	Rohde & Schwarz	ESCS30	100003	Feb.20,2012	1 Year
Coaxial Cable with N-connectors	SCHWARZBECK	AK9515H	95549	Sep.22,2011	1 Year
Radio Communication Test Set	Rohde & Schwarz	CMS 54	846621/024	Feb.20,2012	1 Year
Modulation Analyzer	Hewlett-Packard	8901B	2303A00362	Feb.20,2012	1 Year
Absorbing clamp	Rohde & Schwarz	MDS-21	N/A	Oct.11,2011	1 Year

6. §15.247 (I) AND §1.1307 (B) (1), §2.1093 – RF EXPOSURE

6.1. Standard Applicable

According to §15.247 (i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minute)			
	Limits for General Population/Uncontrolled Exposure						
0.3–3.0	614	1.63	*(100)	30			
3.0–30	824/f	2.19/f	*(180/f2)	30			
30–300	27.5	0.073	0.2	30			
300-1500	/	/	f/1500	30			
1500–100,0 00	/	/	1.0	30			

f = frequency in MHz

* = Plane-wave equivalent power density

Routine SAR evaluation refers to that specifically required by § 2.1093, using measurements or computer simulation. When routine SAR evaluation is not required, portable transmitters with output power greater than the applicable low threshold require SAR evaluation to qualify for TCB approval.

6.2. Test Data

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S=PG/4\pi R^{\text{2}}$

S: Power density, in mW/cm²

P: Power input to the antenna, in mW

G: numeric gain of the antenna

R: distance to the center of the antenna, in cm

Maximum peak output power at antenna input terminal (dBm):	<u>18.68</u>
Maximum peak output power at antenna input terminal (mW):	<u>73.79</u>
Prediction distance (cm):	<u>20</u>
Prediction frequency (MHz):	2437
Antenna Gain, typical (dBi):	<u>2</u>
Maximum Antenna Gain (numeric):	<u>1.585</u>
Power density at predication frequency and distance (mW/cm ²): MPE limit for Occupational exposure at predication frequency (mW/cm ²):	<u>0.02327</u> <u>1.0</u>

6.3. Test Result

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. In order to avoid the possibility of exceeding the FCC radio frequency exposure limits, Human proximity to the antenna shall not be less than 20cm(8 inches) during normal operation.

7. §15.203 - ANTENNA REQUIREMENT

7.1. Standard Applicable

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna Steven or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

7.2. Antenna Connector Construction

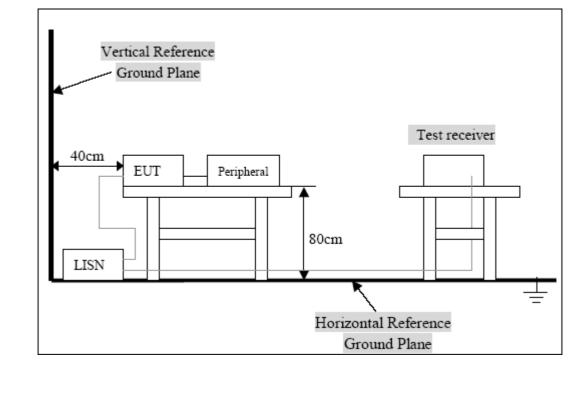
The antenna type used in this product is Dipole Antenna with Reverse Polarity (RP-SMA) connectors. and it is considered to meet antenna requirement of FCC. Refer to the product photo

8. §15.207 - CONDUCTED EMISSIONS

8.1. Applicable Standard

The specification used was with the FCC Part 15.207 limits.

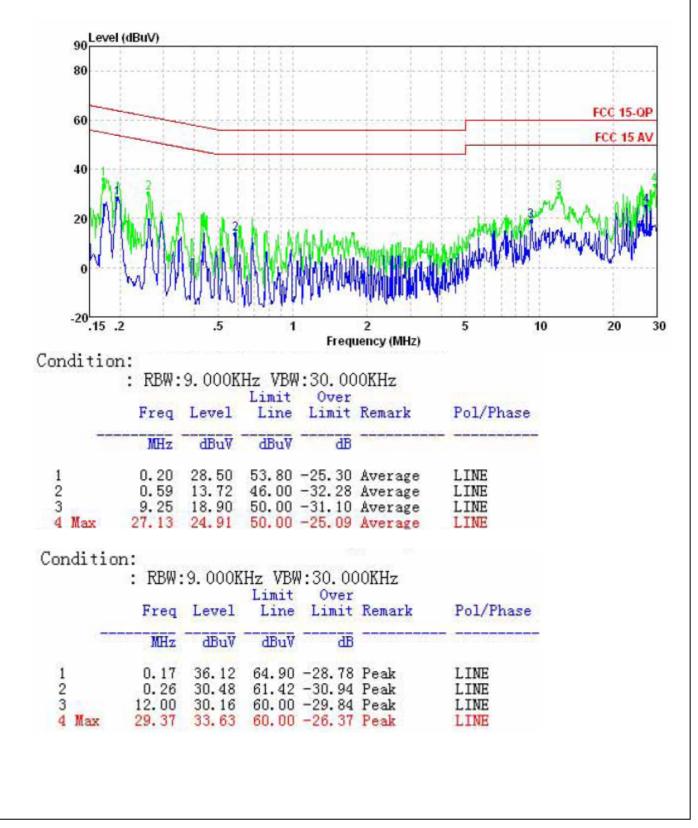
8.2. Test Procedure

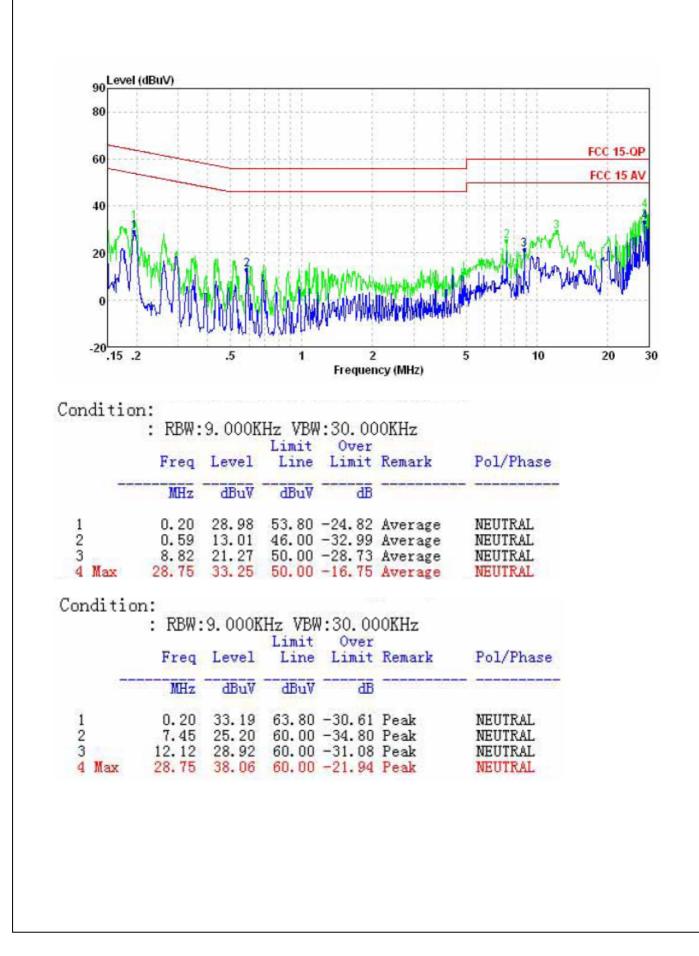

During the conducted emission test, the EUT was connected to the outlet of the LISN. Maximizing procedure was performed on the six (6) highest emissions of the EUT. All data was recorded in the Quasi-peak and average detection mode.

8.3. Conducted Power line Emission Limits

FCC Part 15 Paragraph 15.207 (dBuV)				
Frequency Range (MHz)	Class A QP/AV	Class B QP/AV		
0.15-0.5	79/66	65-56/56-46		
0.5-5.0	73/60	56-46		
5.0-3.0	73/60	60-50		

Note: In the above table, the tighter limit applies at the band edges.


8.4. Block Diagram of Test Setup



8.5. Conducted Power Line Test Result

Pass.

The worst test mode: Wi-Fi TX 2437MHz

9. §15.209, §15.205, §15.247(D) - Spurious Emissions

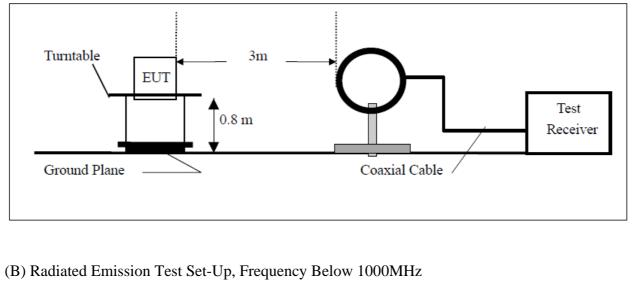
9.1. Test Equipment

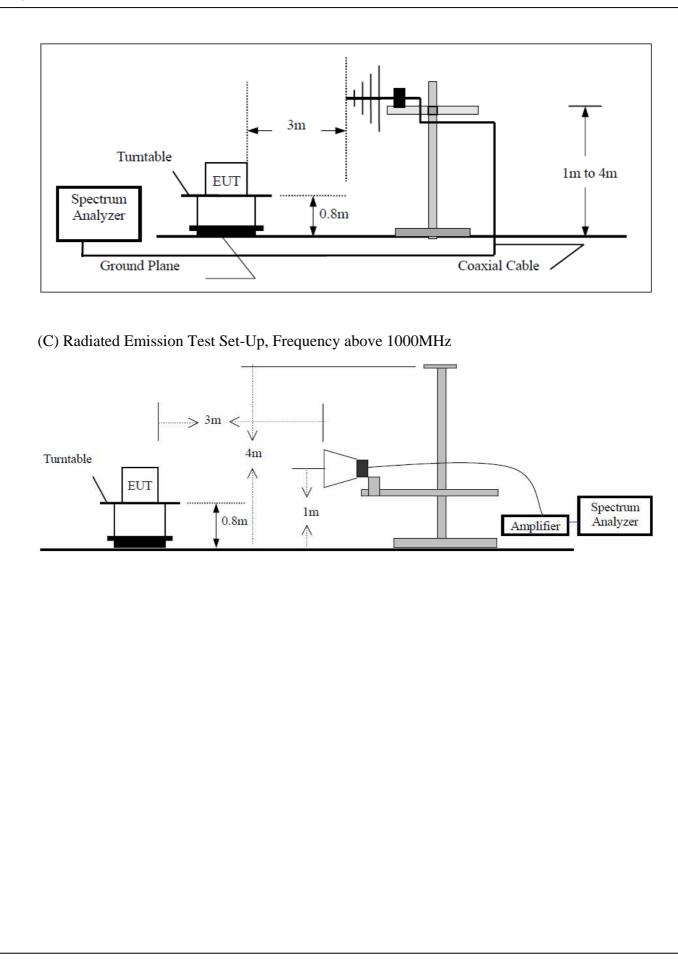
Please refer to section 2 this report.

9.2. Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Calibrated Loop antenna is used as receiving antenna for frequencies below 30MHz, Calibrated Bilog antenna is used as receiving antenna for frequencies between 30 MHz and 1 GHz, Calibrated Horn antenna is used as receiving antenna for frequencies above 1000MHz. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2003 on radiated emission measurement.

The bandwidth of test receiver is set at 9kHz in below 30MHz. and set at 120kHz in 30-1000MHz, and 1MHz in above 1000MHz.


The frequency range from 9kHz to 25GHz is checked.


The final measurement in band 9-90kHz, 110-490kHz and above 1000MHz is performed with Peak detector and Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

Through three orthogonal axes to determine which attitude and equipment arrangement produces the highest emission relative to the limit.

9.3. Radiated Test Setup

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

9.4. Radiated Emission Limit

	Limit					
Frequency (MHz)	Field Strength of Quasi-peak Value (microvolts/m)	Field Strength of Quasi-peak Value (dBµV/m)	Measurement distance (m)	The final measurement in band 9-90kHz,		
0.009 - 0.490	2400/F(kHz)	/	300	110-490kHz and above 1000MHz is		
0.490 - 1.705	24000/F(kHz)	/	30	performed with		
1.705-30	30	29.5	30	Average detector. Except those		
30 - 88	100	40	3	frequency bands mention above, the		
88 - 216	150	43.5	3	final measurement for frequencies		
216 - 960	200	46	3	below 1000MHz is		
Above 960	500	54	3	performed with Quasi Peak detector.		

Note: (1) RF Voltage (dBuV)=20 log Voltage(uV)

(2) In the Above Table, the tighter limit applies at the band edges.

(3) Distaque refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

9.5. Radiated Emission Test Result

Pass.

Date of Test:	April 23, 2012	Temperature:	25°C
	PCI-E 150M WIRELESS LAN		
EUT:	CARD	Humidity:	52%
Model No.:	WL-600N-E2	Power Supply:	AC 120V/60Hz
Test Mode:	802.11b Channel Low 2412MHz	Test Engineer:	Steven

For below 1000MHz

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequency	Reading (dBµV/m)	Correct Factor	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
(MHz)	QP	(dB)	QP	QP	QP	
-	-	-	-	-	-	Vertical
-	_	-	-	-	-	Horizontal

For 1GHz-25GHz

Horizontal

		Frequency	Correct	Reading	Measure	Margin	Peak	Average	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1	*	4823.950	-5.420	47.930	42.509	-31.491	74.000	54.000	PEAK
2		7236.350	0.325	37.465	37.791	-36.209	74.000	54.000	PEAK
3		9648.100	2.462	38.633	41.095	-32.905	74.000	54.000	PEAK
4		12059.950	5.628	36.029	41.657	-32.343	74.000	54.000	PEAK

Vertical

		Frequency	Correct	Reading	Measure	Margin	Peak	Average	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1	*	4824.000	-5.420	50.812	45.391	-28.609	74.000	54.000	PEAK
2		7235.500	0.322	38.392	38.714	-35.286	74.000	54.000	PEAK
3		9647.950	2.462	40.836	43.298	-30.702	74.000	54.000	PEAK
4		12059.500	5.626	35.907	41.534	-32.466	74.000	54.000	PEAK

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. Measurement Level = Reading Level + Correct Factor.

Date of Test:	April 23, 2012		Temperature:	25°C
	PCI-E 150M WI	IRELESS LAN		
EUT:	CARD		Humidity:	52%
Model No.:	WL-600N-E2		Power Supply:	AC 120V/60Hz
Test Mode:	802.11b Channel Mie	ddle 2437MHz	Test Engineer:	Steven

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequency	Reading (dBµV/m)	Correct Factor	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
(MHz)	QP	(dB)	QP	QP	QP	
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

For 1GHz-25GHz

Horizontal

		Frequency	Correct	Reading	Measure	Margin	Peak	Average	Detector		
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре		
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)			
1		4873.750	-5.293	45.497	40.204	-33.796	74.000	54.000	PEAK		
2		7310.600	0.634	38.284	38.918	-35.082	74.000	54.000	PEAK		
3		9747.950	2.531	39.028	41.559	-32.441	74.000	54.000	PEAK		
4	*	12185.550	5.784	38.346	44.130	-29.870	74.000	54.000	PEAK		

Vertical

		Frequency	Correct	Reading	Measure	Margin	Peak	Average	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4874.150	-5.293	48.041	42.749	-31.251	74.000	54.000	PEAK
2		7310.650	0.634	37.769	38.403	-35.597	74.000	54.000	PEAK
3	*	9748.000	2.531	41.018	43.549	-30.451	74.000	54.000	PEAK
4		12185.300	5.784	37.289	43.073	-30.927	74.000	54.000	PEAK

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. Measurement Level = Reading Level + Correct Factor.

Date of Test:	April 23, 2012	Temperature:	25°C
	PCI-E 150M WIRELESS LAN		
EUT:	CARD	Humidity:	52%
Model No.:	WL-600N-E2	Power Supply:	AC 120V/60Hz
Test Mode:	802.11b Channel High 2462MHz	Test Engineer:	Steven

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequency	Reading (dBµV/m)	Correct Factor	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
(MHz)	QP	(dB)	QP	QP	QP	
-	-	-	-	-	_	Vertical
-	-	-	-	_	_	Horizontal

For 1GHz-25GHz

Horizontal

		Frequency	Correct	Reading	Measure	Margin	Peak	Average	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4923.800	-5.165	45.369	40.203	-33.797	74.000	54.000	PEAK
2		7386.300	0.948	38.320	39.268	-34.732	74.000	54.000	PEAK
3		9848.250	2.600	39.635	42.235	-31.765	74.000	54.000	PEAK
4	*	12310.100	5.939	37.419	43.358	-30.642	74.000	54.000	PEAK

Vertical

		Frequency	Correct	Reading	Measure	Margin	Peak	Average	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4924.000	-5.165	47.565	42.400	-31.600	74.000	54.000	PEAK
2		7384.600	0.941	38.067	39.008	-34.992	74.000	54.000	PEAK
3	*	9847.900	2.599	41.032	43.632	-30.368	74.000	54.000	PEAK
4		12310.150	5.939	37.540	43.479	-30.521	74.000	54.000	PEAK

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. Measurement Level = Reading Level + Correct Factor.

Date of Test:	April 23, 2012			Temperature:	25°C
	PCI-E 150M	WIRELESS	LAN		
EUT:	CARD			Humidity:	52%
Model No.:	WL-600N-E2			Power Supply:	AC 120V/60Hz
Test Mode:	802.11g Chann	el Low 2412MF	Iz	Test Engineer:	Steven

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

		Reading	Correct	Result	Limit	Margin	
	Frequency	$(dB\mu V/m)$	Factor	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	Polarization
	(MHz)	QP	(dB)	QP	QP	QP	
							X7 (* 1
_	-	-	-	-	-	-	Vertical
							TT 1
	-	-	-	-	-	-	Horizontal

For 1GHz-25GHz

Horizontal

	Frequenc	y Correct	Reading	Measure	Margin	Peak	Average	Detector
	(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
			(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1	4823.4	-5.423	39.781	34.359	-39.641	74.000	54.000	PEAK
2	7237.7	50 0.332	38.446	38.778	-35.222	74.000	54.000	PEAK
3	9648.3	50 2.462	38.324	40.786	-33.214	74.000	54.000	PEAK
4	* 12059.7	00 5.627	36.361	41.988	-32.012	74.000	54.000	PEAK

Vertical

		Frequency	Correct	Reading	Measure	Margin	Peak	Average	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4823.700	-5.421	41.705	36.284	-37.716	74.000	54.000	PEAK
2		7235.400	0.322	37.465	37.787	-36.213	74.000	54.000	PEAK
3		9648.000	2.462	38.474	40.936	-33.064	74.000	54.000	PEAK
4	*	12059.850	5.628	36.777	42.404	-31.596	74.000	54.000	PEAK

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. Measurement Level = Reading Level + Correct Factor.

Date of Test:	April 23, 2012	Temperature:	25°C
	PCI-E 150M WIRELESS LAN		
EUT:	CARD	Humidity:	52%
Model No.:	WL-600N-E2	Power Supply:	AC 120V/60Hz
Test Mode:	802.11g Channel Middle 2437MHz	Test Engineer:	Steven

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequency	Reading (dBµV/m)	Correct Factor	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
(MHz)	QP	(dB)	QP	QP	QP	
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

For 1GHz-25GHz

Horizontal

		Frequency	Correct	Reading	Measure	Margin	Peak	Average	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4871.350	-5.300	45.494	40.194	-33.806	74.000	54.000	PEAK
2		7310.400	0.634	38.985	39.618	-34.382	74.000	54.000	PEAK
3		9747.600	2.530	38.841	41.372	-32.628	74.000	54.000	PEAK
4	*	12190.450	5.790	38.358	44.148	-29.852	74.000	54.000	PEAK

Vertical

		Frequency	Correct	Reading	Measure	Margin	Peak	Average	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4874.950	-5.290	47.917	42.627	-31.373	74.000	54.000	PEAK
2		7315.500	0.654	38.252	38.906	-35.094	74.000	54.000	PEAK
3		9748.200	2.531	39.135	41.666	-32.334	74.000	54.000	PEAK
4	*	12183.900	5.782	38.411	44.193	-29.807	74.000	54.000	PEAK

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. Measurement Level = Reading Level + Correct Factor.

Date of Test:	April 23, 2012			Temperature:	25°C
	PCI-E 150M	WIRELESS	LAN		
EUT:	CARD			Humidity:	52%
Model No.:	WL-600N-E2			Power Supply:	AC 120V/60Hz
Test Mode:	802.11g Channe	el High 2462MH	Ηz	Test Engineer:	Steven

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

	Reading	Correct	Result	Limit	Margin	
Frequency	(dBµV/m)	Factor	(dBµV/m)	(dBµV/m)	(dB)	Polarization
(MHz)	QP	(dB)	QP	QP	QP	
						Vertical
-	-	-	-	-	-	ventical
-	-	-	-	-	-	Horizontal

For 1GHz-25GHz

Horizontal

		Frequency	Correct	Reading	Measure	Margin	Peak	Average	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4923.600	-5.167	39.296	34.130	-39.870	74.000	54.000	PEAK
2		7386.250	0.948	37.248	38.196	-35.804	74.000	54.000	PEAK
3		9848.000	2.600	38.020	40.620	-33.380	74.000	54.000	PEAK
4	*	12309.750	5.939	37.048	42.986	-31.014	74.000	54.000	PEAK

Vertical

		Frequency	Correct	Reading	Measure	Margin	Peak	Average	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4927.700	-5.156	39.837	34.681	-39.319	74.000	54.000	PEAK
2		7386.250	0.948	37.122	38.070	-35.930	74.000	54.000	PEAK
3		9848.300	2.600	38.407	41.007	-32.993	74.000	54.000	PEAK
4	*	12309.650	5.938	37.256	43.194	-30.806	74.000	54.000	PEAK

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. Measurement Level = Reading Level + Correct Factor.

Date of Test:	April 23, 2012	Temperature:	25°C
EUT:	PCI-E 150M WIRELESS LAN CARD	Humidity:	52%
Model No.:	WL-600N-E2	Power Supply:	AC 120V/60Hz
Test Mode:	802.11n HT20 Channel Low 2412MHz	Test Engineer:	Steven

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequency	Reading (dBµV/m)	Correct Factor	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
(MHz)	QP	(dB)	QP	QP	QP	
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

For 1GHz-25GHz

Horizontal

		Frequency	Correct	Reading	Measure	Margin	Peak	Average	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4823.850	-5.420	39.040	33.619	-40.381	74.000	54.000	PEAK
2		7236.450	0.327	38.005	38.331	-35.669	74.000	54.000	PEAK
3		9648.200	2.462	38.440	40.902	-33.098	74.000	54.000	PEAK
4	*	12059.500	5.626	36.465	42.092	-31.908	74.000	54.000	PEAK

Vertical

		Frequency	Correct	Reading	Measure	Margin	Peak	Average	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4824.000	-5.420	41.217	35.796	-38.204	74.000	54.000	PEAK
2		7233.150	0.313	38.001	38.314	-35.686	74.000	54.000	PEAK
3		9647.500	2.461	38.660	41.122	-32.878	74.000	54.000	PEAK
4	*	12060.250	5.628	36.142	41.770	-32.230	74.000	54.000	PEAK

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. Measurement Level = Reading Level + Correct Factor.

Date of Test:	April 23, 2012	Temperature:	25°C
EUT:	PCI-E 150M WIRELESS LAN CARD	Humidity:	52%
Model No.:	WL-600N-E2	Power Supply:	AC 120V/60Hz
Test Mode:	802.11n HT20 Channel Middle 2437MHz	Test Engineer:	Steven

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

Frequency	Reading (dBµV/m)	Correct Factor	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
(MHz)	QP	(dB)	QP	QP	QP	
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

For 1GHz-25GHz

Horizontal

		Frequency	Correct	Reading	Measure	Margin	Peak	Average	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4874.000	-5.293	45.915	40.622	-33.378	74.000	54.000	PEAK
2		7314.150	0.648	38.615	39.264	-34.736	74.000	54.000	PEAK
3		9747.950	2.531	38.047	40.578	-33.422	74.000	54.000	PEAK
4	*	12185.300	5.784	36.887	42.671	-31.329	74.000	54.000	PEAK

Vertical

		Frequency	Correct	Reading	Measure	Margin	Peak	Average	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4874.100	-5.293	48.216	42.923	-31.077	74.000	54.000	PEAK
2		7310.850	0.636	37.141	37.776	-36.224	74.000	54.000	PEAK
3		9746.900	2.531	39.324	41.854	-32.146	74.000	54.000	PEAK
4	*	12184.400	5.782	37.497	43.279	-30.721	74.000	54.000	PEAK

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. Measurement Level = Reading Level + Correct Factor.

Date of Test:	April 23, 2012	Temperature:	25°C
EUT:	PCI-E 150M WIRELESS LAN CARD	Humidity:	52%
Model No.:	WL-600N-E2	Power Supply:	AC 120V/60Hz
Test Mode:	802.11n HT20 Channel High 2462MHz	Test Engineer:	Steven

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequency	Reading (dBµV/m)	Correct Factor	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
(MHz)	QP	(dB)	QP	QP	QP	
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

For 1GHz-25GHz

Horizontal

									-
		Frequency	Correct	Reading	Measure	Margin	Peak	Average	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4923.800	-5.165	39.132	33.966	-40.034	74.000	54.000	PEAK
2		7386.050	0.947	36.962	37.909	-36.091	74.000	54.000	PEAK
3		9848.100	2.600	38.308	40.908	-33.092	74.000	54.000	PEAK
4	*	12309.850	5.939	37.073	43.011	-30.989	74.000	54.000	PEAK

Vertical

		Frequency	Correct	Reading	Measure	Margin	Peak	Average	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4922.950	-5.168	39.448	34.280	-39.720	74.000	54.000	PEAK
2		7384.950	0.943	37.488	38.431	-35.569	74.000	54.000	PEAK
3		9848.000	2.600	37.983	40.583	-33.417	74.000	54.000	PEAK
4	*	12310.695	5.939	37.714	43.654	-30.346	74.000	54.000	PEAK

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. Measurement Level = Reading Level + Correct Factor.

Date of Test:	April 23, 2012	Temperature:	25°C
EUT:	PCI-E 150M WIRELESS LAN CARD	Humidity:	52%
Model No.:	WL-600N-E2	Power Supply:	AC 120V/60Hz
Test Mode:	802.11n HT40 Channel Low 2422MHz	Test Engineer:	Steven

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequency	Reading (dBµV/m)	Correct Factor	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
(MHz)	QP	(dB)	QP	QP	QP	
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

For 1GHz-25GHz

Horizontal

		Frequency	Correct	Reading	Measure	Margin	Peak	Average	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4842.750	-5.373	39.731	34.358	-39.642	74.000	54.000	PEAK
2		7265.700	0.448	37.335	37.783	-36.217	74.000	54.000	PEAK
3		9688.600	2.489	38.247	40.737	-33.263	74.000	54.000	PEAK
4	*	12110.500	5.691	36.965	42.655	-31.345	74.000	54.000	PEAK

Vertical

		Frequency	Correct	Reading	Measure	Margin	Peak	Average	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4844.500	-5.368	38.831	33.463	-40.537	74.000	54.000	PEAK
2		7269.450	0.463	37.687	38.150	-35.850	74.000	54.000	PEAK
3		9686.200	2.488	38.278	40.766	-33.234	74.000	54.000	PEAK
4	*	12111.250	5.691	35.981	41.672	-32.328	74.000	54.000	PEAK

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. Measurement Level = Reading Level + Correct Factor.

Date of Test:	April 23, 2012	Temperature:	25°C
EUT:	PCI-E 150M WIRELESS LAN CARD	Humidity:	52%
Model No.:	WL-600N-E2	Power Supply:	AC 120V/60Hz
Test Mode:	802.11n HT40 Channel Middle 2437MHz	Test Engineer:	Steven

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequency	Reading (dBµV/m)	Correct Factor	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
(MHz)	QP	(dB)	QP	QP	QP	
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

For 1GHz-25GHz

Horizontal

		1							
		Frequency	Correct	Reading	Measure	Margin	Peak	Average	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4873.900	-5.293	43.954	38.661	-35.339	74.000	54.000	PEAK
2		7310.400	0.634	37.394	38.027	-35.973	74.000	54.000	PEAK
3		9746.500	2.531	38.433	40.963	-33.037	74.000	54.000	PEAK
4	*	12185.050	5.783	37.128	42.911	-31.089	74.000	54.000	PEAK

Vertical

		Frequency	Correct	Reading	Measure	Margin	Peak	Average	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4874.050	-5.293	45.296	40.003	-33.997	74.000	54.000	PEAK
2		7312.500	0.642	38.524	39.166	-34.834	74.000	54.000	PEAK
3		9747.700	2.530	37.552	40.083	-33.917	74.000	54.000	PEAK
4	*	12185.400	5.784	36.146	41.930	-32.070	74.000	54.000	PEAK

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. Measurement Level = Reading Level + Correct Factor.

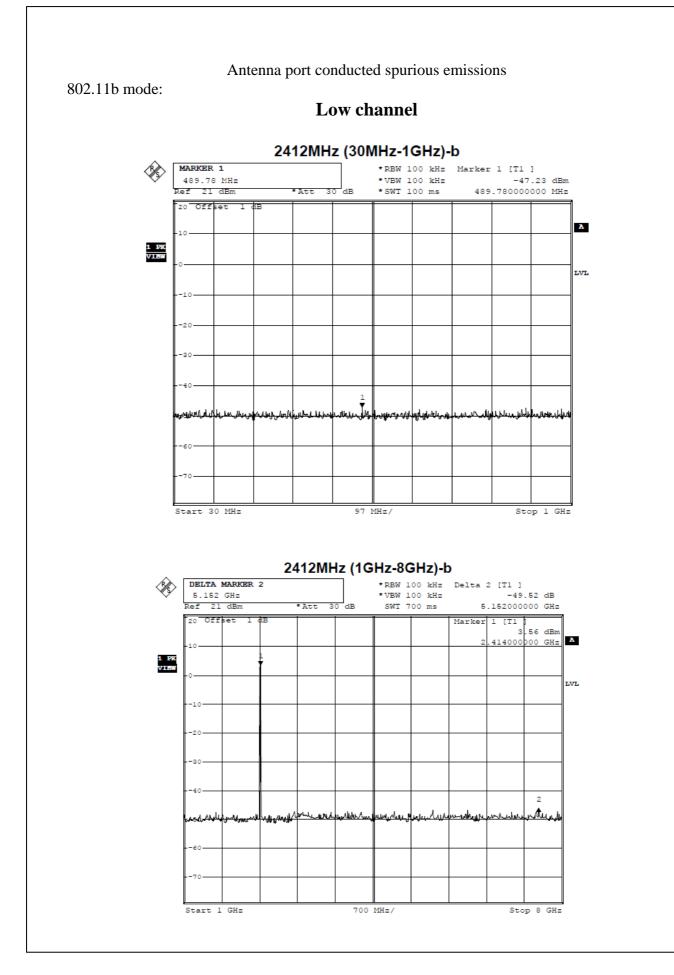
Date of Test:	April 23, 2012	Temperature:	25°C
EUT:	PCI-E 150M WIRELESS LAN CARD	Humidity:	52%
Model No.:	WL-600N-E2	Power Supply:	AC 120V/60Hz
Test Mode:	802.11n HT40 Channel High 2452MHz	Test Engineer:	Steven

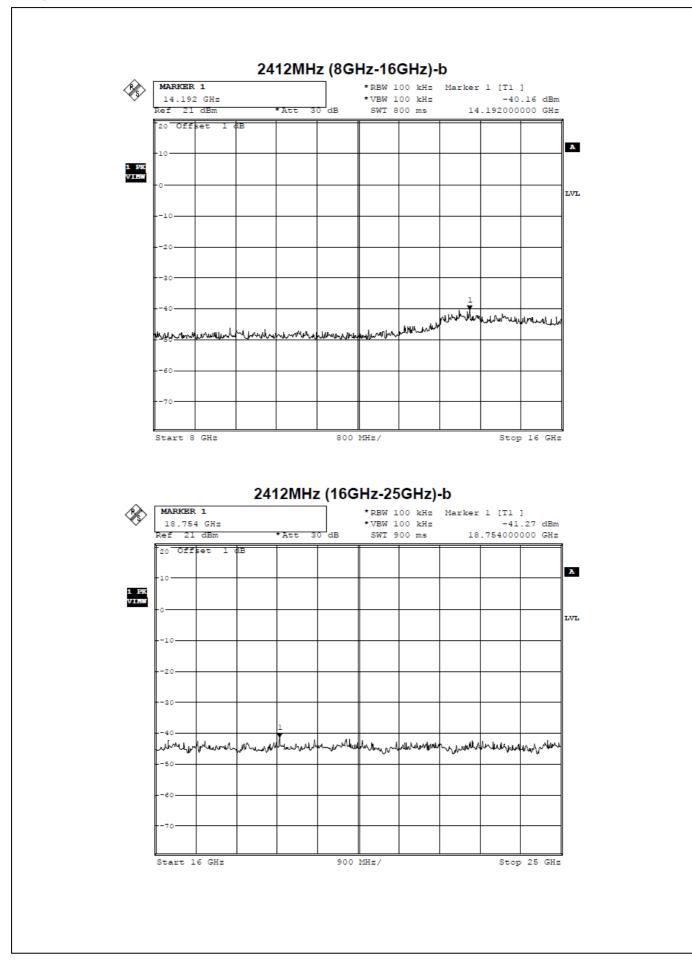
Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

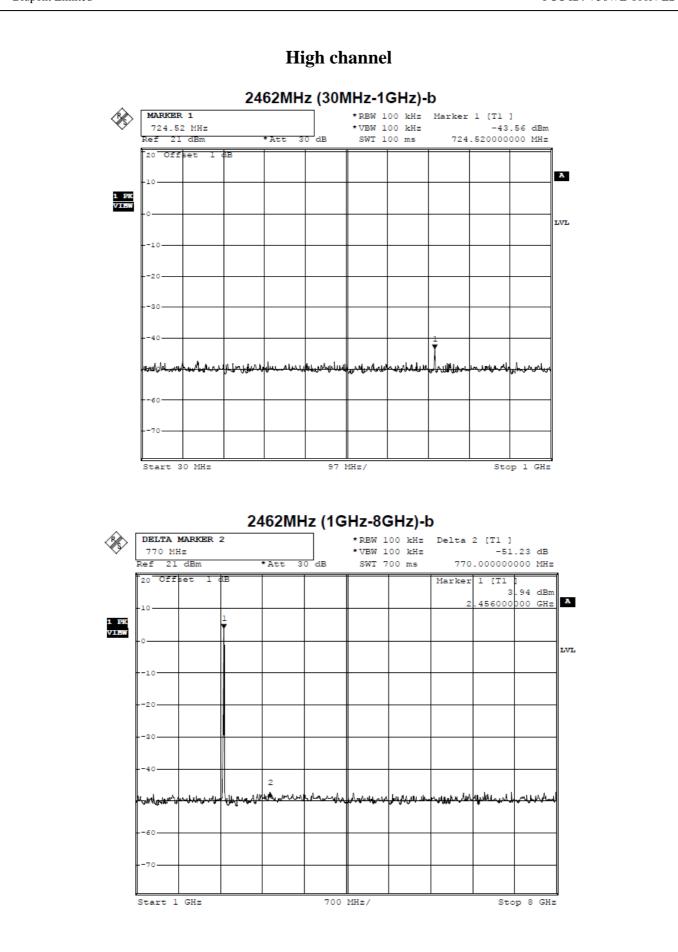
Frequency	Reading (dBµV/m)	Correct Factor	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
(MHz)	QP	(dB)	QP	QP	QP	
-	-	-	-	-	-	Vertical
-	-	-	-	-	-	Horizontal

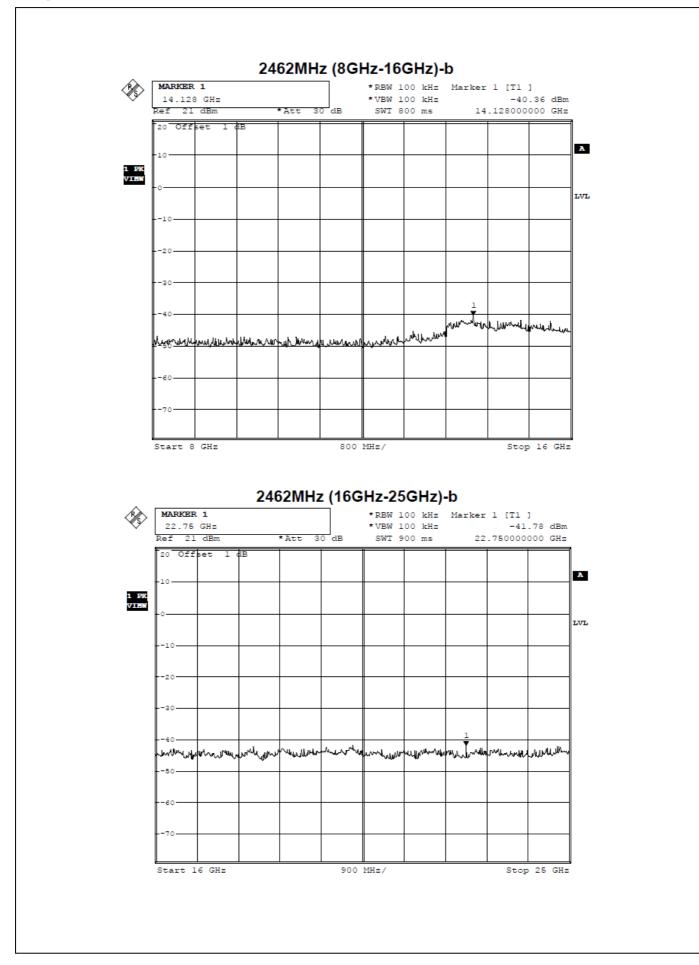
For 1GHz-25GHz

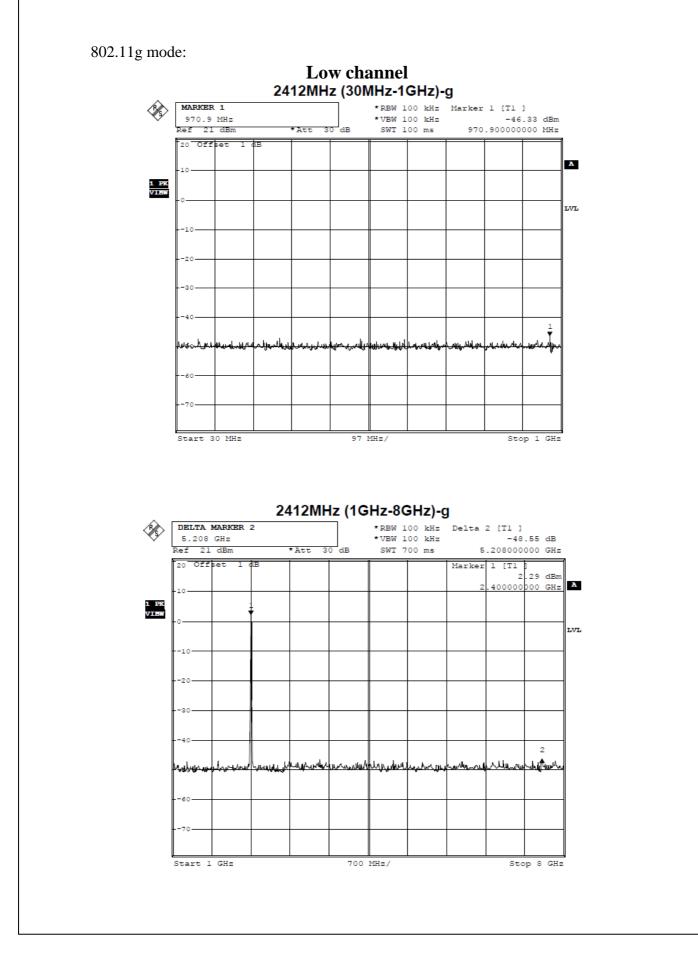
Horizontal

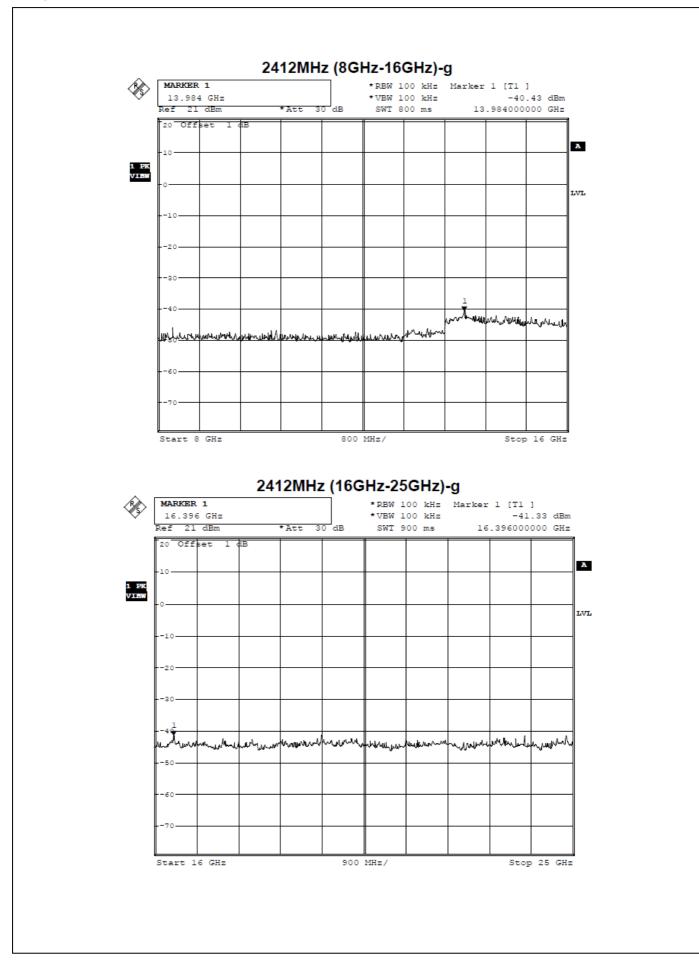

		Frequency	Correct	Reading	Measure	Margin	Peak	Average	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4904.150	-5.216	38.610	33.394	-40.606	74.000	54.000	PEAK
2		7356.350	0.823	37.539	38.363	-35.637	74.000	54.000	PEAK
3		9807.950	2.572	37.573	40.145	-33.855	74.000	54.000	PEAK
4	*	12261.650	5.879	37.028	42.906	-31.094	74.000	54.000	PEAK

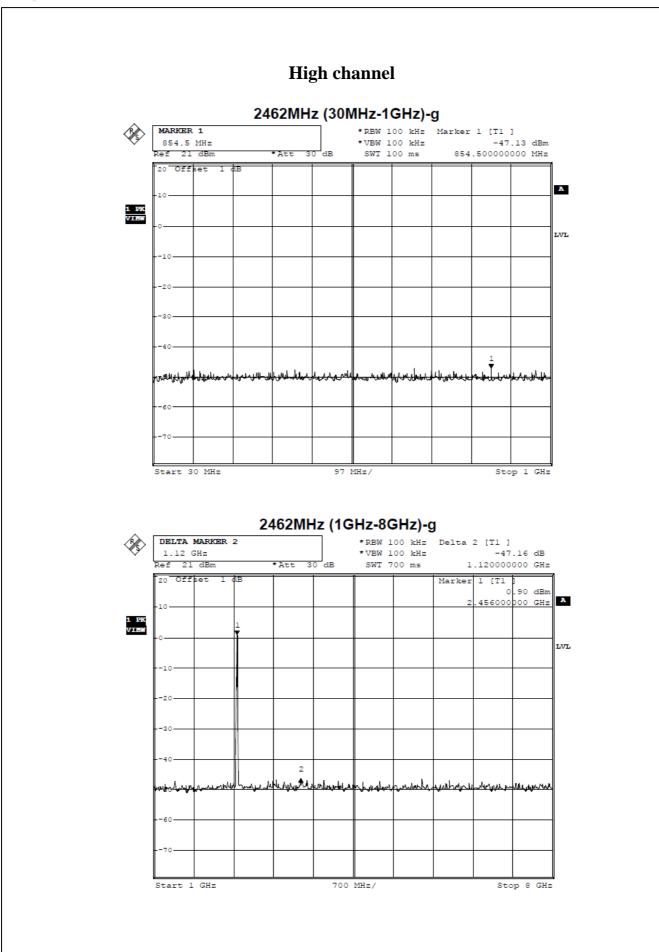

Vertical

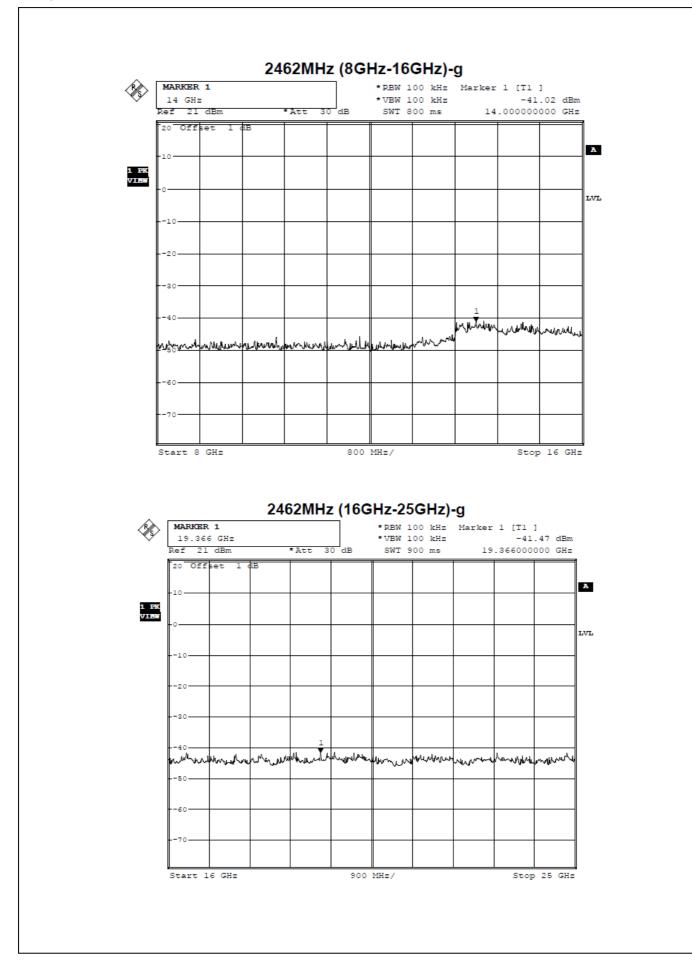

		Frequency	Correct	Reading	Measure	Margin	Peak	Average	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4903.500	-5.218	39.355	34.138	-39.862	74.000	54.000	PEAK
2		7356.450	0.824	37.079	37.903	-36.097	74.000	54.000	PEAK
3		9808.400	2.572	38.997	41.570	-32.430	74.000	54.000	PEAK
4	*	12260.400	5.878	37.482	43.359	-30.641	74.000	54.000	PEAK

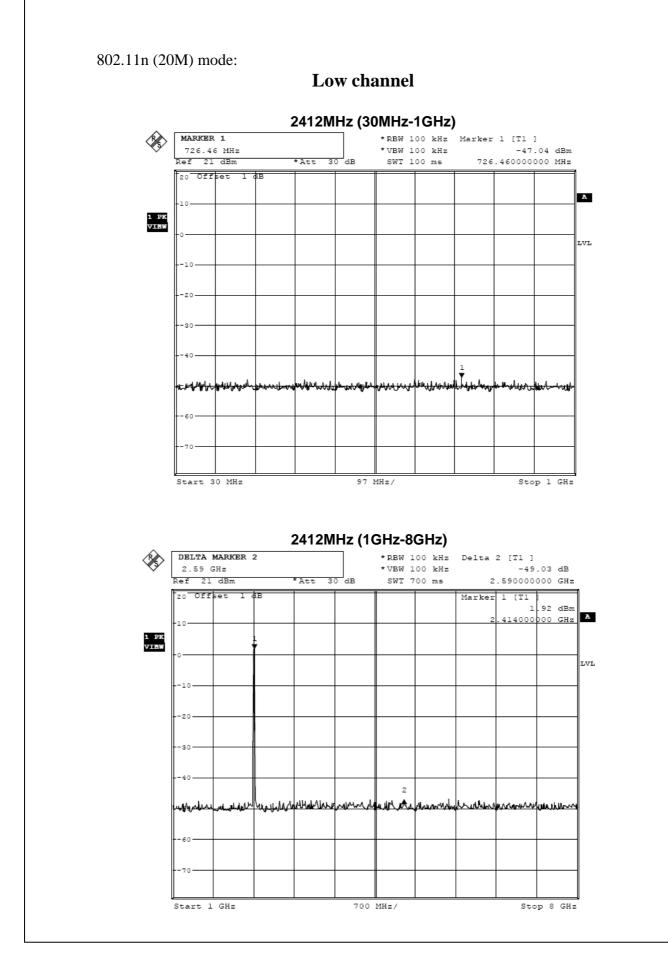

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

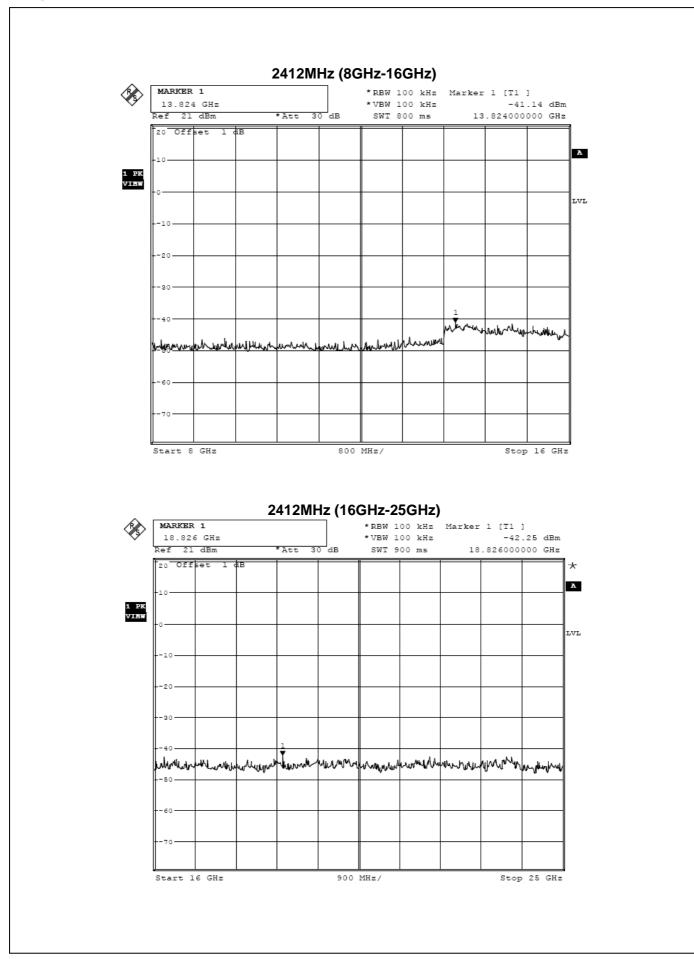

2. Measurement Level = Reading Level + Correct Factor.

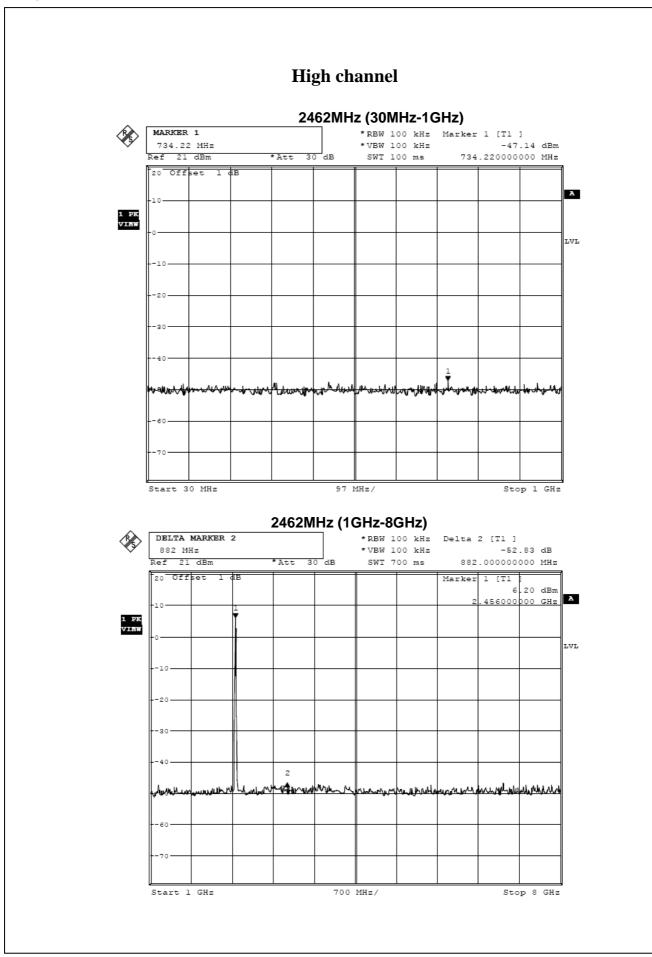


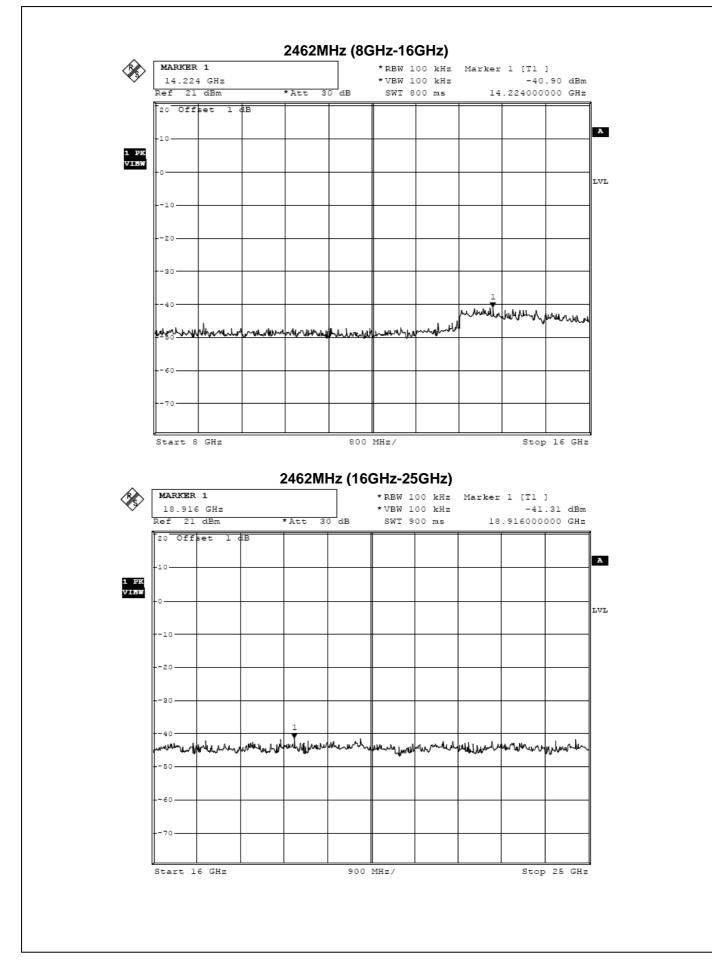


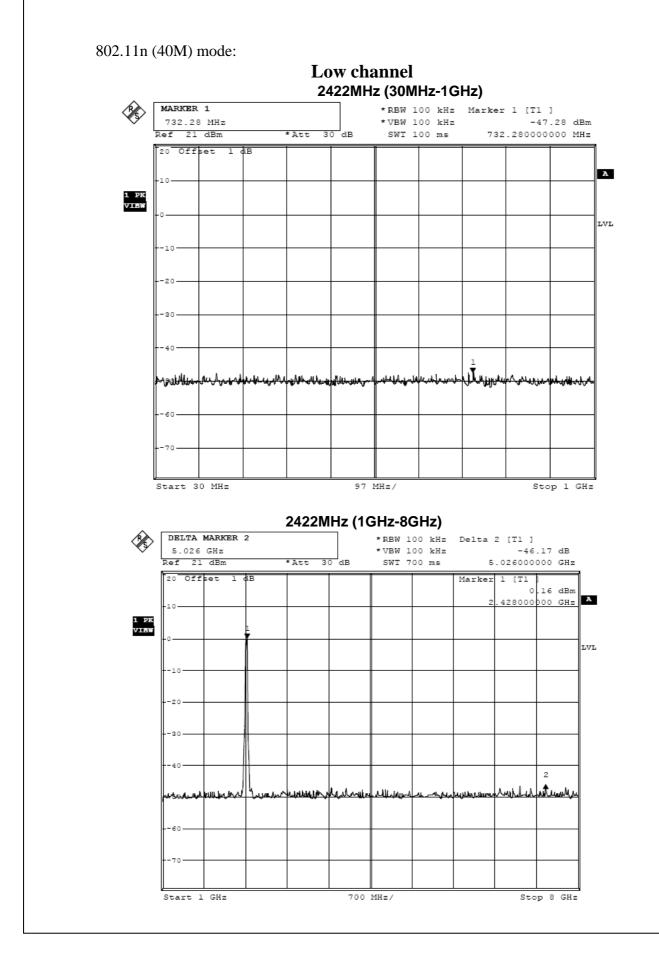


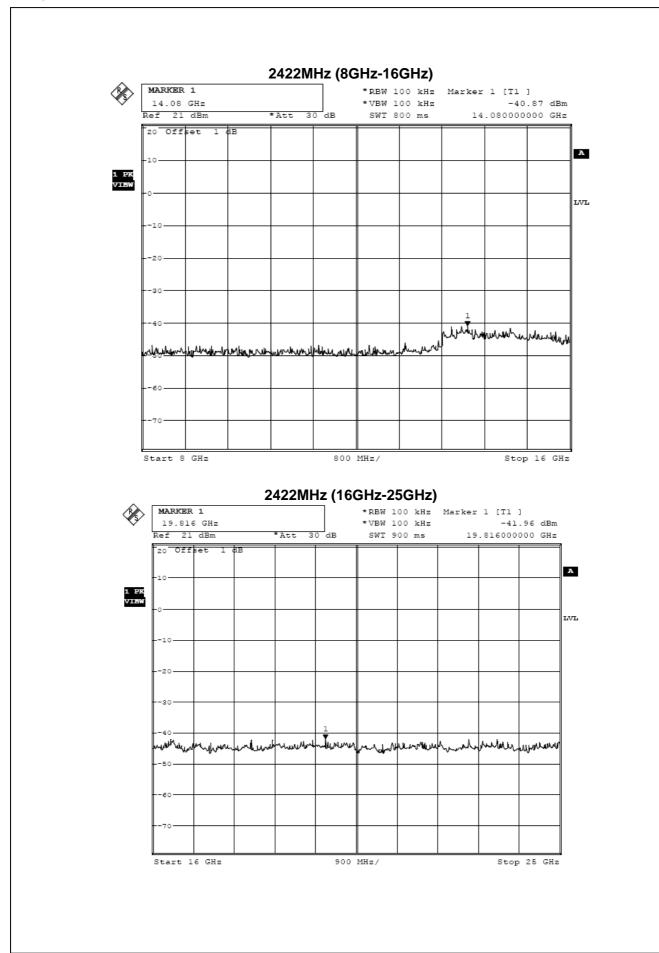


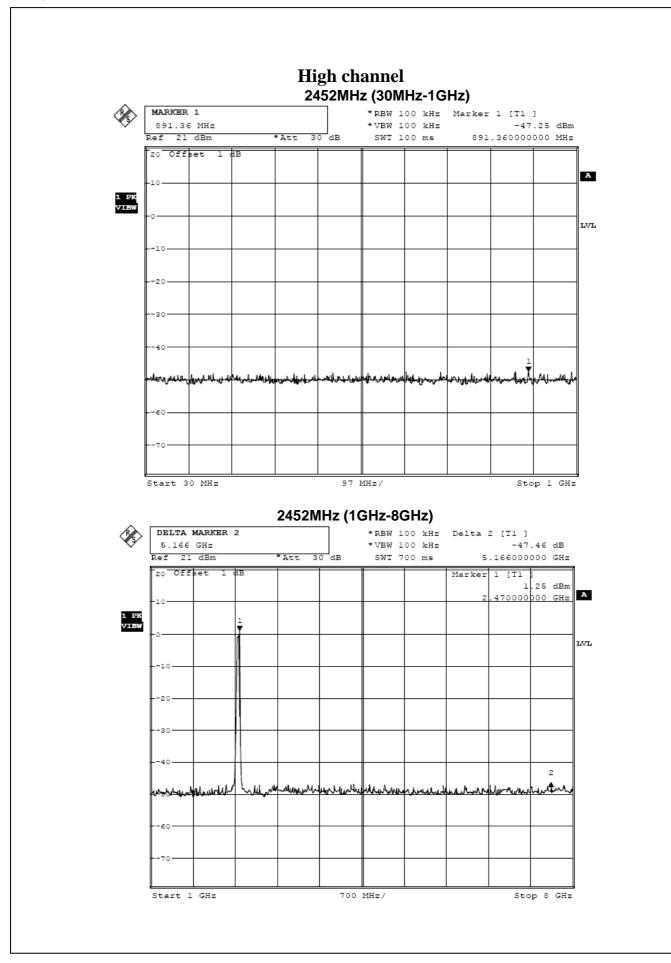


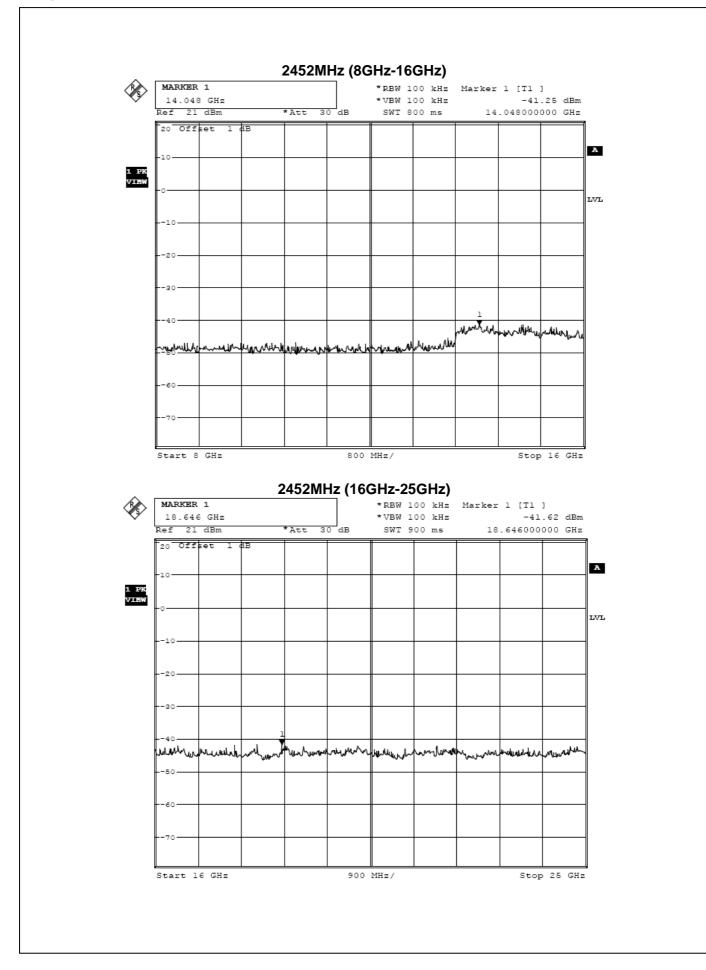












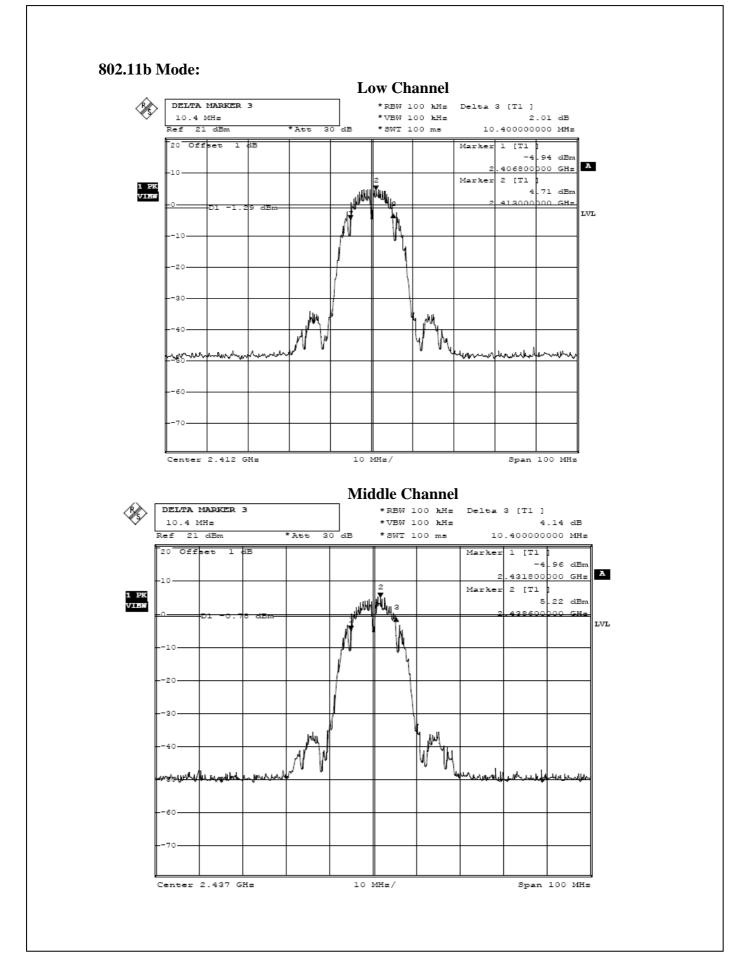
10. §15.247(A) (2) – 6DB BANDWIDTH TESTING

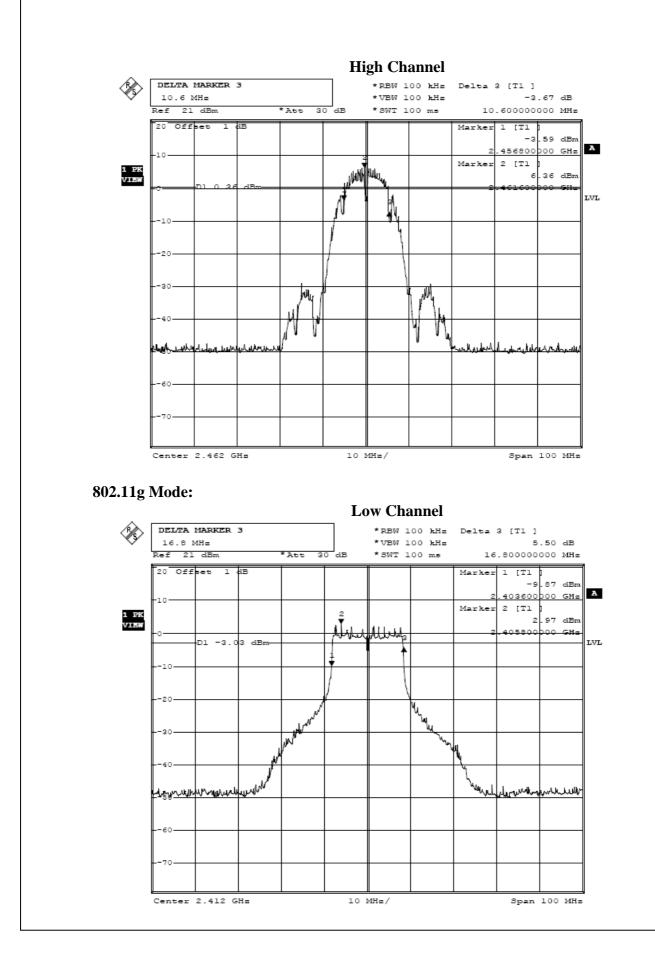
10.1. Test Equipment

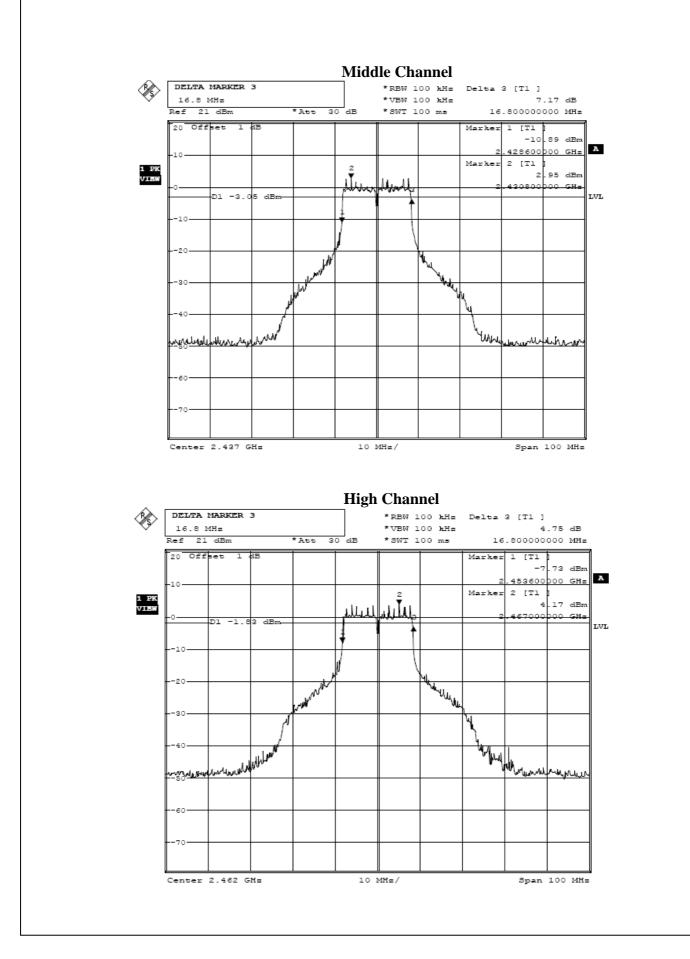
Please refer to Section 4 this report.

10.2.Test Procedure

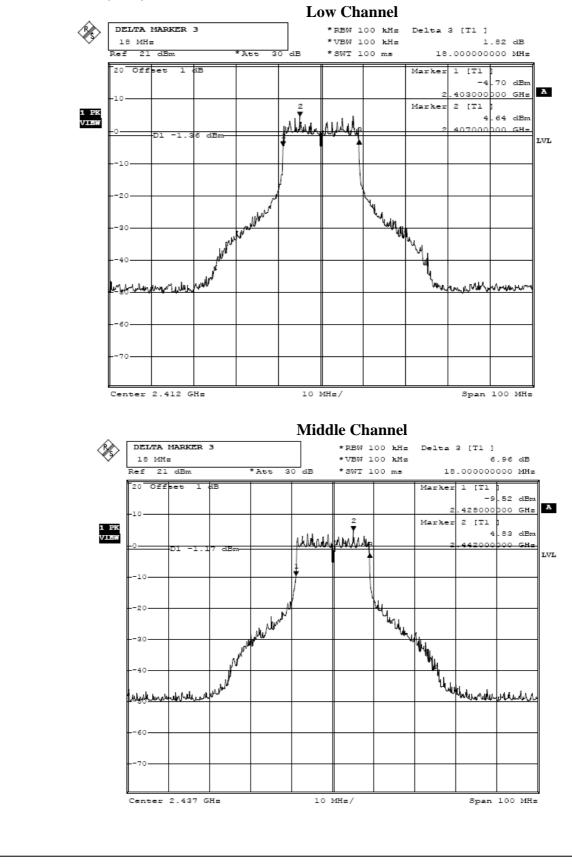
- Set EUT in the transmitting mode.
 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW=100KHz,VBW RBW,Span=100MHz,Sweep=auto.
- 4. Mark the peak frequency and -6dB(upper and lower)frequency.
- 5. Repeat until all the rest channels are investigated.

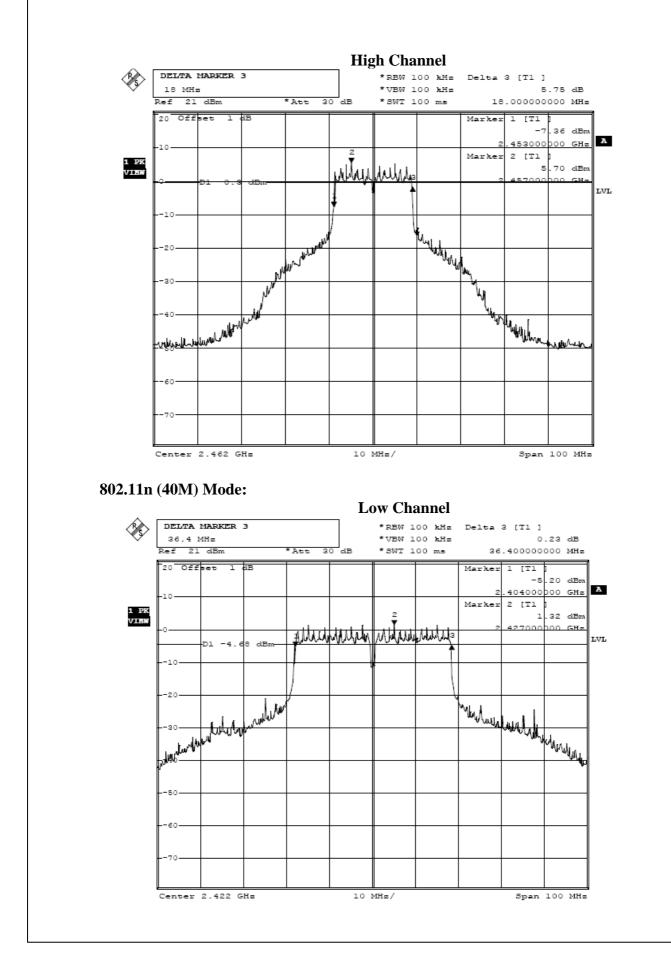

10.3.Applicable Standard

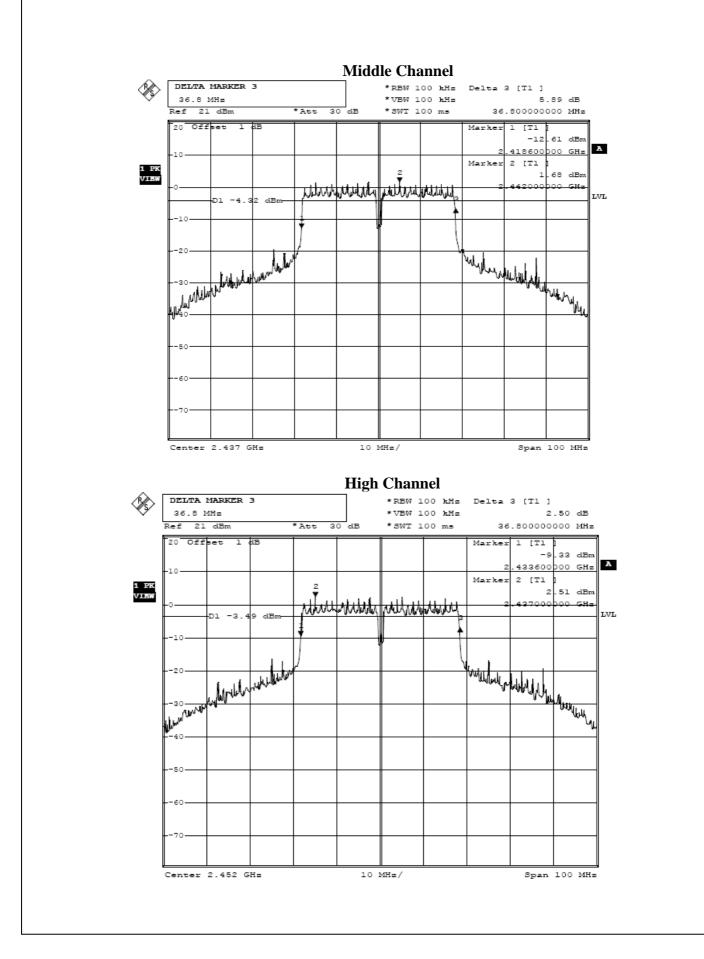

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.


10.4.Test Result:Pass.

Please refer to the following tables


Channel Frequency (MHz)	Data Rate (Mbps)	6dB Bandwidth (kHz)	Limit (kHz)	Result
	8	02.11b Mode		
2412	1	10400	> 500	Pass
2437	1	10400	> 500	Pass
2462	1	10600	> 500	Pass
	8	02.11g Mode		
2412	6	16800	> 500	Pass
2437	6	16800	> 500	Pass
2462	6	16800	> 500	Pass
	802.2	11n (20M) Mode		
2412	6.5	18000	> 500	Pass
2437	6.5	18000	> 500	Pass
2462	6.5	18000	> 500	Pass
	802.2	11n (40M) Mode		
2422	13	36400	> 500	Pass
2437	13	36800	> 500	Pass
2452	13	36800	> 500	Pass





11. §15.247(B) (3) - Maximum Peak Output Power

11.1. Test Equipment

Please refer to Section 4 this report.

11.2.Test Procedure

- 1. Set span to encompass the entire emission bandwidth (EBW) of the signal.
- 2. Set RBW = 1 MHz.
- 3. Set VBW 3 MHz.

4. Use sample detector mode if bin width (i.e., span/number of points in spectrum display) < 0.5 RBW. Otherwise use peak detector mode.

5. Use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at full control power for entire sweep of every sweep. If the device transmits continuously, with no off intervals or reduced power intervals, the trigger may be set to "free run".

6. Trace average 100 traces in power averaging mode.

7. Compute power by integrating the spectrum across the 26 dB EBW of the signal. The integration can be performed using the spectrum analyzer's band power measurement function with band limits set equal to the EBW band edges or by summing power levels in each 1 MHz band in linear power terms. The 1 MHz band power levels to be summed can be obtained by averaging, in linear power terms, power levels in each frequency bin across the 1 MHz.

11.3.Applicable Standard

According to §15.247(b) (3), for systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

11.4. Test Result

Pass

802.11b Mode:

Channel	Frequency (MHz)	Data Rate (Mbps)	Conducted Power (dBm)	Limit (dBm)
Low	2412	1	17.63	30
Mid	2437	1	17.25	30
High	2462	1	17.18	30

802.11g Mode:

Channel	Frequency (MHz)	Data Rate (Mbps)	Conducted Power (dBm)	Limit (dBm)
Low	2412	6	18.54	30
Mid	2437	6	18.68	30
High	2462	6	18.37	30

802.11n (20M) Mode:

Channel	Frequency (MHz)	Data Rate (Mbps)	Conducted Power (dBm)	Limit (dBm)
Low	2412	6.5	17.67	30
Mid	2437	6.5	17.86	30
High	2462	6.5	17.59	30

802.11n (40M) Mode:

Channel	Frequency (MHz)	Data Rate (Mbps)	Conducted Power (dBm)	Limit (dBm)
Low	2422	13.5	17.72	30
Mid	2437	13.5	17.91	30
High	2452	13.5	17.64	30

12. §15.247(D) – 100 KHZ Bandwidth of Frequency Band Edge

12.1.Test Equipment

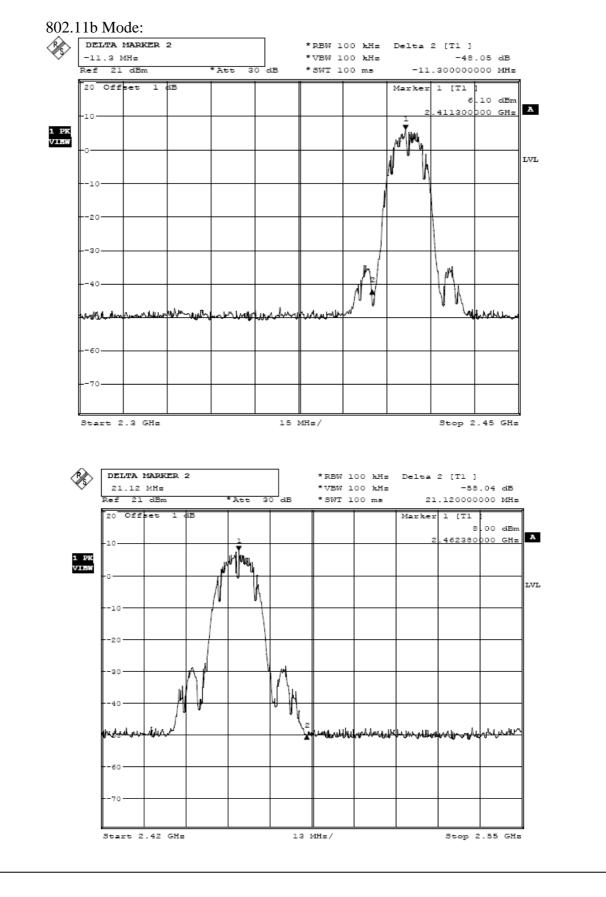
Please refer to Section 4 this report.

12.2.Test Procedure

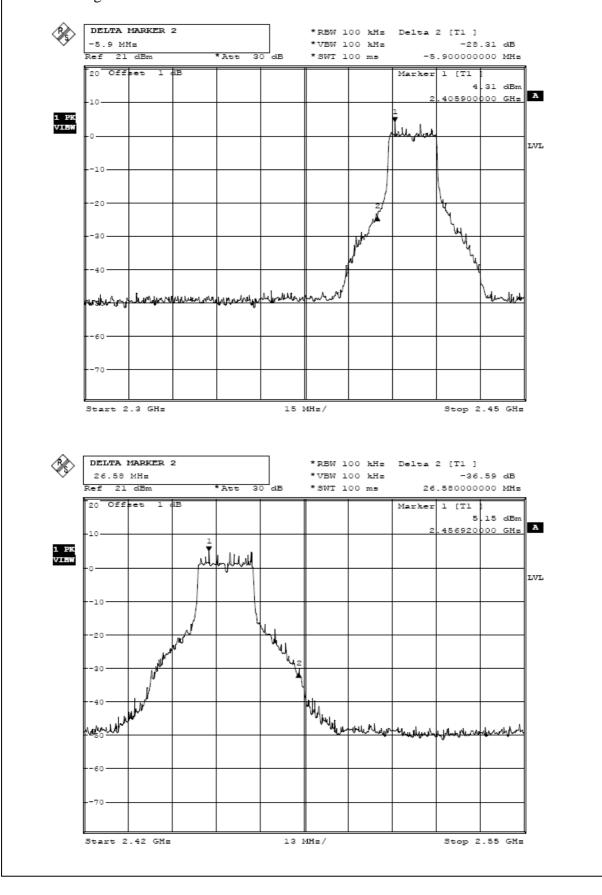
- 1, Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2, Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3, Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Note: For Rdstricted Band RBW=1MHz VBW=1 MHz

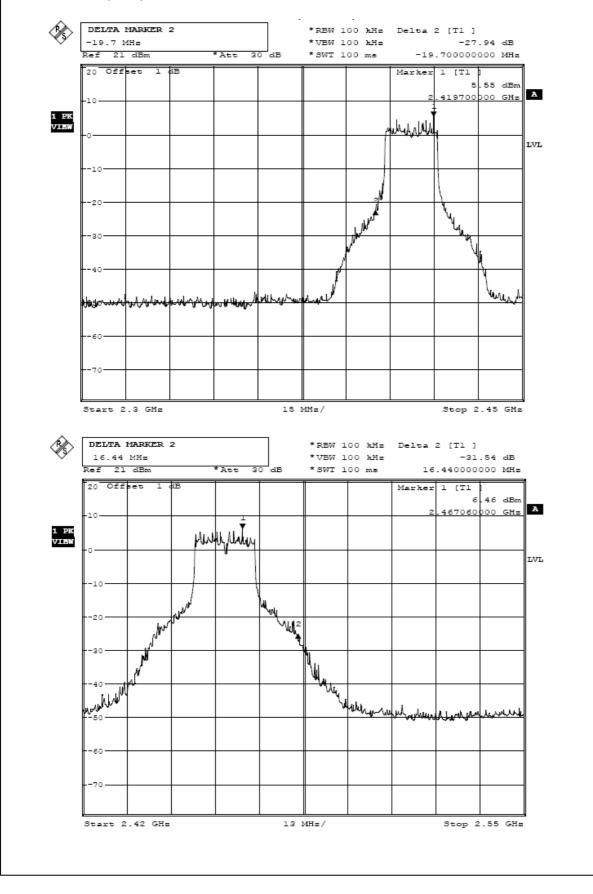
- 4, Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5, Repeat above procedures until all measured frequencies were complete.

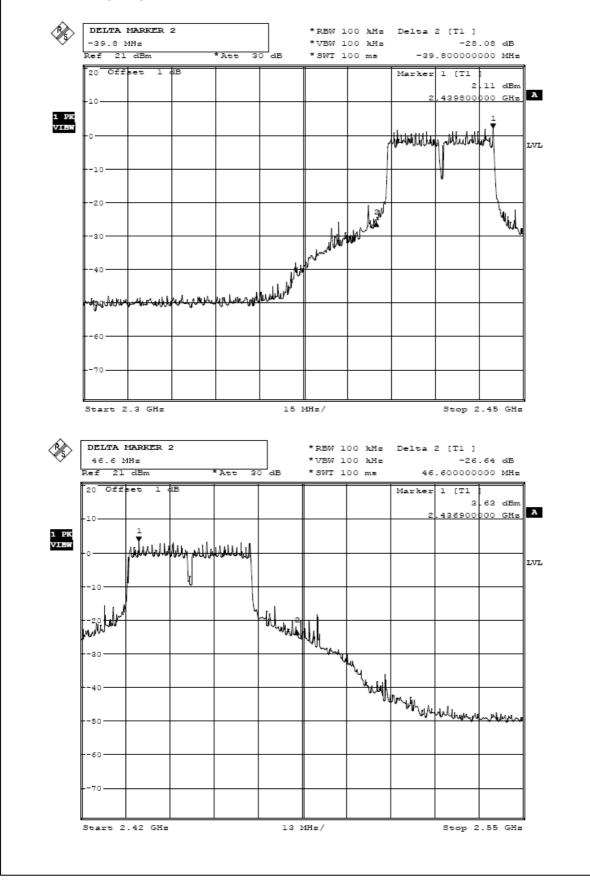

12.3.Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).


12.4.Test Result

Pass.


Conducted test

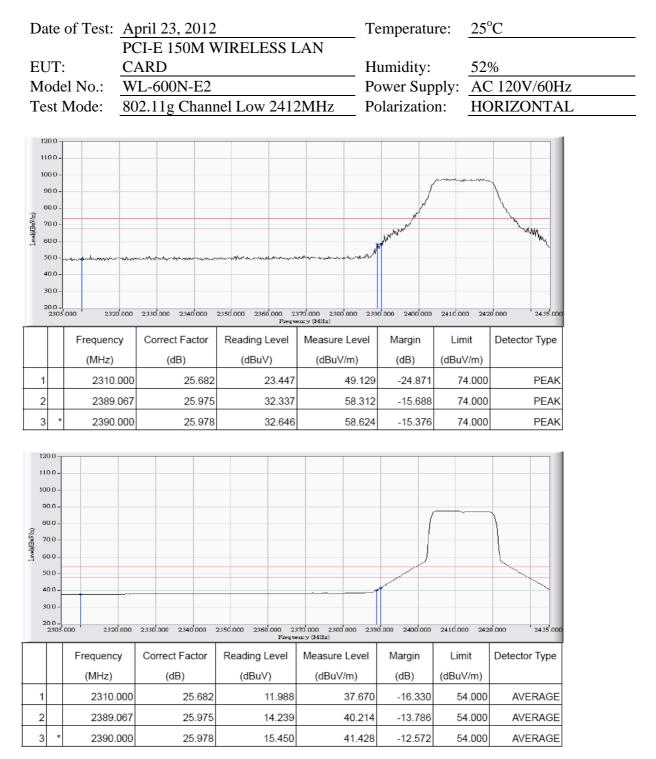

802.11g Mode:

802.11n (20M) Mode:

802.11n (40M) Mode:

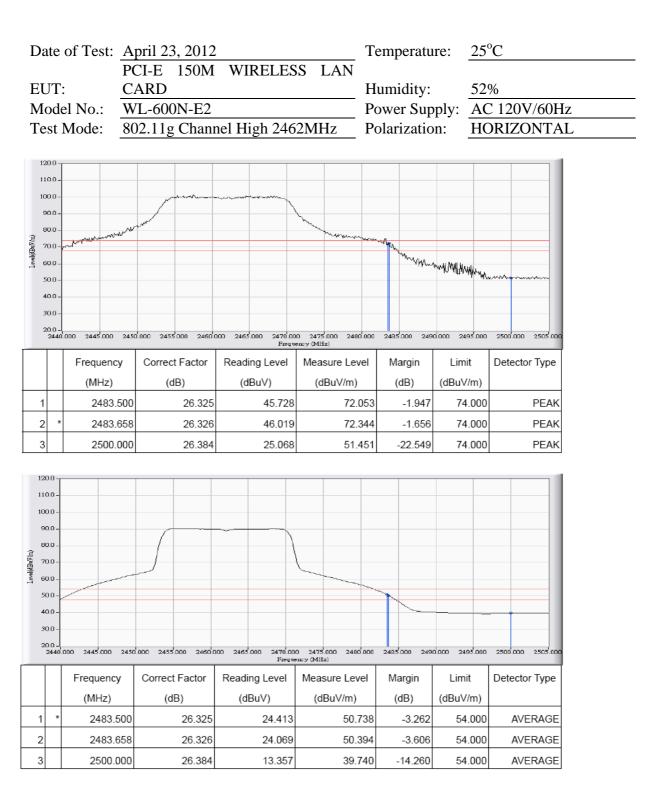
Radiated test

Dat	e c	of Test:								r	Гет	per	ature:	25°C		
EƯ Mo		l No.:	CA				REL	LESS	LAN		Hum Pow		•	<u>52%</u> AC 120V	/60Hz	
Гes	t N						Lo	w 241	2MH					HORIZO		
12	^{0.0} -r												1			
110	0.0 -															
10	0.0 -													\rightarrow		
90	0.0 -		_											-	\	
	0.0 -		_							_				/	<u>\</u>	
77	0.0 -													/	1	
															1	
ğ e	0.0 -		_										γ		\mathbb{N}	$\left\{ -\right\}$
-	0.D 0.D>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	e		~~~~~			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		m,			\sim			~
- - 4(0.0 - \ 0.0 -	- · · · · · · · · · · · · · · · · · · ·			~~~~~			****	~~~~~	A.,			\sim			~
- 4(30	0.0 - 0.0 - 0.0 -			******			~~~~	***.*		m,						~
- 4(30	0.0 - 0.0 -	000 :	320.000	2330.00	00 2340	 1000	2350.1	000 236		70,000 28 acy (MHz)	30.000		000 24000	0 2410,000 24	21'000	• 2435 000
- 4(30 20	0.0 - 0.0 - 0.0 - 0.0 -	000 s			00 2340 ect Fa			000 236 eading l	Fraque				0.000 2400.00 Margin	0 2410,000 24	20'000 Detecto	_
- 4(30 20	0.0 - 0.0 - 0.0 - 0.0 -		ncy						Fing to Level	ncy (MHz)	e Lev	vel				_
- 4(30 20	0.0 - 0.0 - 0.0 - 0.0 -	Freque (MH:	ncy		ect Fa (dB)			eading (dBu\	Fing to Level	Measur	e Lev V/m)	vel	Margin	Limit (dBuV/m)	Detecto	_
20 40 20 3	0.0 - 0.0 - 0.0 - 0.0 -	Freque (MH: 231	ncy ː)		ect Fa (dB) 25	ctor		eading I (dBu\ ;	Forgus Level /)	Measur	e Lev V/m) 50.	vel	Margin (dB)	Limit (dBuV/m) 7 74.000	Detecto	or Type


Note: 1. Measurement Level = Reading Level + Correct Factor.

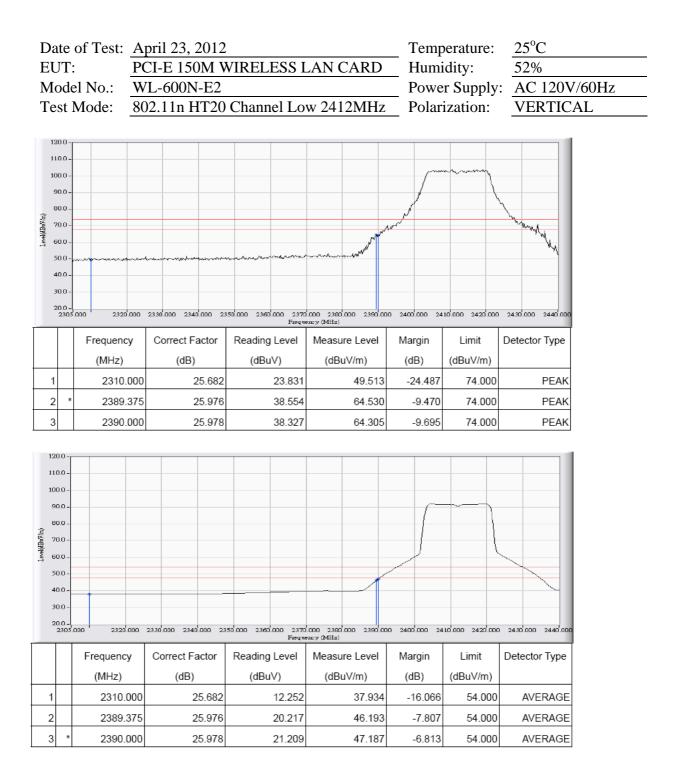
	ate U]		of Tes	PC		3, 2012 150M		VIR	ELES	SS I	.AN		mpe	rature: ity:		5°C 2%		
Μ	[00	del	l No.:	WI	60	0N-E2						Po	wer	Supply:	Α	C 120V/	60Hz	
Т	est	t N	/lode:	802	2.111	o Chan	nel	Lov	v 241	2MH	Z			ation:		ERTICA	L	
	120 110 90 80 70 50 40 30	.0			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	/			
	20																	
	2	305.	.000	2320,000	2330	0.000 2.340	000	2350.0	100 2360		70'.000 лару (MHz	2.380'.0 :)	100 23	90,000 2400	.000	2410.000 242	0.000	2435.000
				luency 1Hz)	Co	orrect Fao (dB)	ctor	Re	ading L (dBuV		Meas (dE	sure l BuV/r		Margir (dB)		Limit (dBuV/m)	Detecto	r Type
	1		2	2310.000)	25	682		2	25.273		5	50.955	-23.0)45	74.000		PEAK
	2	*	2	2386.250)	25	.964		2	27.175		5	53.139	-20.8	361	74.000		PEAK
	3		2	2390.000)	25	.978		2	26.296		5	52.274	-21.7	26	74.000		PEAK

Da	te c	of Test: <u>Apri</u>		/IRELESS I		Tempera	ature:	25°	°C			
	ode	CAP	RD 600N-E2			Humidit Power S	upply:	-	C 120V			
Tes	st N	Iode: <u>802.</u>	11b Channel H	High 2462MF	łz	Polariza	tion:	HC	DRIZO	NT	AL	
12	^{20.0} -1											
11	.0.0 -											- 11
10	0.0 -											- 11
9	90.0 -											- 1
	30.0 -				$\frac{1}{1}$							- 11
Level(dBu7(m) m1	70.0 -				N.	~~						
Level e	50.0 -				V		λ.					- 11
-	50.0 -											~~
4	10.0 -											- 11
3	80.0 -											- 11
3	20.0 - 2440	.000 2445.000 2450	0.000 2455.000 2460.0			75.000 2480.00	0 2485,000	2490	0.000 2495	.000	2500,000	2505.000
					twency (M							-
		Frequency	Correct Factor	Reading Level	Mea	asure Level	Margi	n	Limit		Detect	or Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)		(dBuV/n	n)		
1		2483.500	26.325	25.75	3	52.078	3 -21.	922	74.0	000		PEAK
2	*	2489.942	26.349	26.58	3	52.932	2 -21.	068	74.0	000		PEAK
3		2500.000	26.384	26.36	6	52.749	9 -21.	251	74.0	000		PEAK

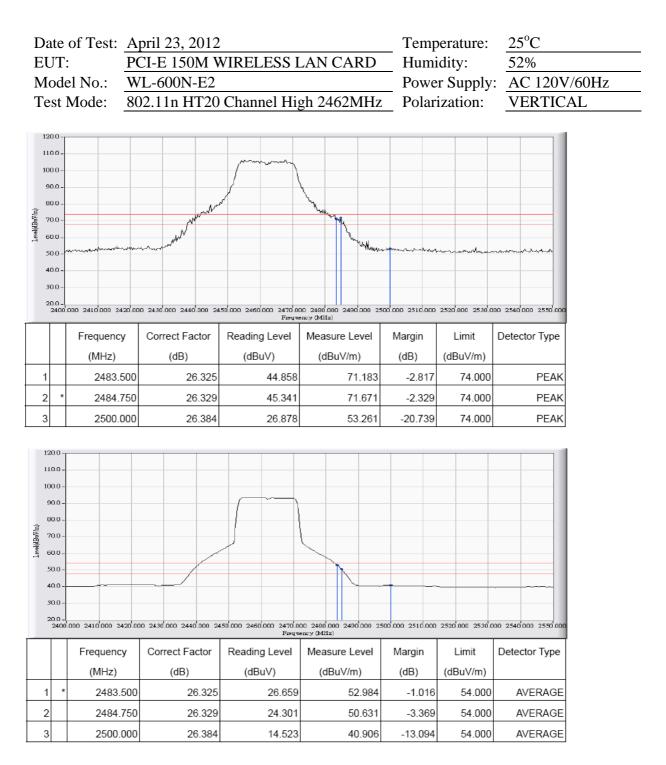

Date	of Test: A	pril 23, 2012			Tempe	eratu	re: 25'	°C
			WIRELES	S LAN	r			
EUT	: <u>C</u>	ARD			Humic	dity:	529	%
Aod	el No.: W	L-600N-E2			Power	: Sup	ply: AC	C 120V/60H
Test	Mode: 80	02.11b Chani	nel High 2462	2MHz	Polariz	zatio	n: VE	ERTICAL
120.0 -								
110.0 -								
90.0 -								
80.0 -								
70.0 -				$\overline{\}$				
70.0 - 60.0 -	nart				June .			
50.0 -						******	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Wedge and a product of the second
40.0 -								
30.0 -								
	1.000 2445.000 245	0.000 2455,000 2460)		о 2475 ¹ .000 2486 ласу (MHz)	0.000 2485.0	000 249	0.000 2495.000	2500.000 2505.00
	Frequency	Correct Factor	Reading Level	Measure Lev	vel Ma	irgin	Limit	Detector Type
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(d	IB)	(dBuV/m)	
1	2483.500	26.325	27.602	53.9	927 -2	20.073	74.000	PEAP
2 *	2486.800	26.337	27.789	54.	126 -1	19.874	74.000	PEAH
3	2500.000	26.384	26.635	53.	018 -2	20.982	74.000	PEAP
120.0 -								
110.0 -			~~~					
100.0 - 90.0 -		\sim	ľ N					
80.0 -								
70.0 -								_
60.0 -		\vee		\bigvee \searrow				
50.0 -					\mathbf{i}			
	~ _					-		_
40.0 -								_
40.0 - 30.0 - 20.0 - 2440	.000 2445.000 245	0.000 2455,000 2460,0	000 2465.000 2470.000		.000 24850	000 2490	0.000 2495.000	2500.000 2505.00
30.0 - 20.0 -	1		Freque	ncy (MHz)				
30.0 - 20.0 -	Frequency	Correct Factor	Farque: Reading Level	Measure Lev	el Mai	rgin	Limit	2500'000 2505'00 Detector Type
30.0 - 20.0 - 2440	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Lev (dBuV/m)	el Mar (d	rgin B)	Limit (dBuV/m)	Detector Type
30.0 - 20.0 - 2440	Frequency (MHz) 2483.500	Correct Factor (dB) 26.325	Reading Level (dBuV) 15.616	Measure Lev (dBuV/m) 41.8	el Mai (d 941 -1	rgin B) I2.059	Limit (dBuV/m) 54.000	Detector Type
30.0 - 20.0 - 2440	Frequency (MHz)	Correct Factor (dB) 26.325 26.337	Reading Level (dBuV)	Measure Lev (dBuV/m)	el Mar (d))41 -1 786 -1	rgin B)	Limit (dBuV/m)	Detector Type AVERAGE AVERAGE

Radiated test

Note: 1. Measurement Level = Reading Level + Correct Factor.

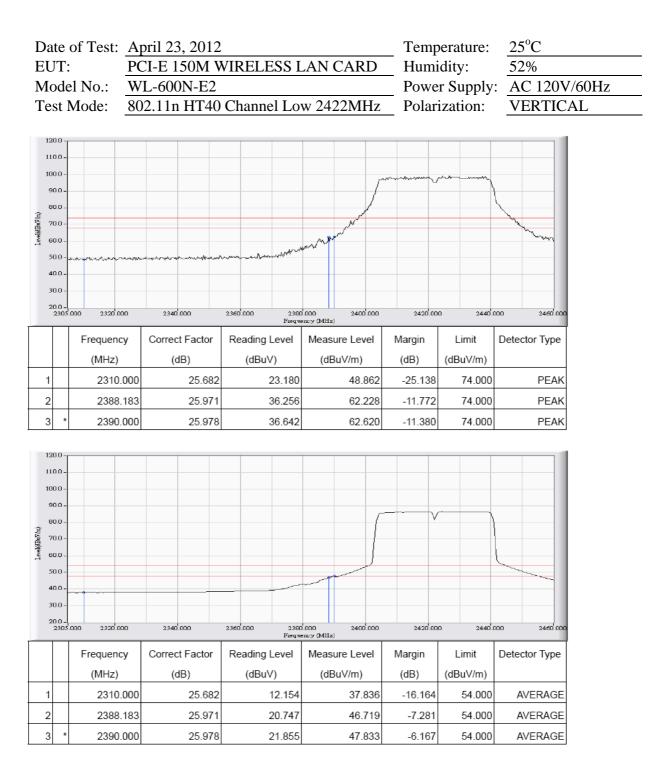


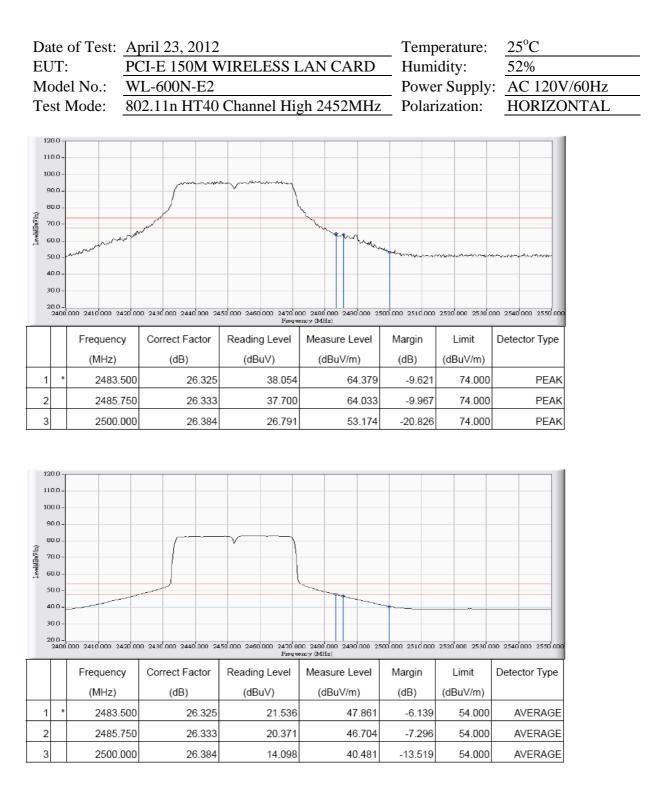
D.								
Da	te o		pril 23, 2012			Temperatu	$re: 25^\circ$	°C
EL.	T:		ARD	WIRELES	S LAN	Humidity:	529	0/6
			L-600N-E2			Power Sup		z 120V/60H
				nel High 246		Polarizatio	· · ·	ERTICAL
		<u> </u>	<u>2.115</u> chui			1 of all Luni	<u>, , , , , , , , , , , , , , , , , , , </u>	
120								
110			, and the man	manuska				
100	0.0 - 0.0 -							
80		wanner war			Mar and a constrained and a co			
70 60	0.0 - V	4 Marie				nn hu		
	0.0 -					and the second s	marken	-
	0.0 - 0.0 -							
	0.0 -							
	0.0 - 2440.00	0 2445.000 2450	.000 2455.000 2460	000 2465.000 2470.00	0 2475.000 2480	000 2485,000 249	90.000 2495.000	2500.000 2505.000
Τ				Frequ	ency (MHz)			
		Frequency	Correct Factor	Reading Level	Measure Lev	Ŭ	Limit	Detector Type
-	-	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2483.500	26.325		71.8			PEAK
2	^	2483.658	26.326	46.961	73.2	86 -0.714	74.000	PEAK
		2500.000	26.204	27 652	E4 0	26 10.064	74 000	DEAK
_		2500.000	26.384	27.653	54.0	36 -19.964	74.000	PEAK
		2500.000	26.384	27.653	54.0	36 -19.964	74.000	PEAK
120	0.0 -	2500.000	26.384	27.653	54.0	36 -19.964	74.000	PEAK
120 110 100).0 -).0 -	2500.000	26.384	27.653	54.0	36 -19.964	74.000	PEAK
120	0.0 - 0.0 -	2500.000	26.384	27.653	54.0	36 -19.964	74.000	PEAK
120 110 100 90).0 -).0 -).0 -	2500.000	26.384	27.653	54.0	36 -19.964	74.000	PEAK
120 110 100 90).0 -).0 -).0 -).0 -	2500.000	26.384	27.653	54.0	36 -19.964	74.000	PEAK
120 110 90 80 70 60 50) 0 -) 0 -) 0 -) 0 -) 0 -) 0 -	2500.000	26.384	27.653	54.0	36 -19.964	74.000	PEAK
1200 1110 900 800 700 600 500 400	10 - 10 - 10 - 10 - 10 - 10 -	2500.000	26.384	27.653	54.0	36 -19.964	74.000	
120 110 90 80 70 60 50 40 30 20	10 - 10 -							
1200 1110 900 800 700 600 500 400 300 200	10 - 10 -						74.000	2500.000 2505.000
1200 1110 900 900 700 600 500 400 300 200	10 - 10 -		000 2455.000 2460 Correct Factor	000 2465 000 2470 00 Freque Reading Level	0 2475.000 2400 mrzy (Milz) Measure Leve	000 2435000 249 el Margin	90.000 2495.000 Limit	
120 110 90 80 70 60 50 40 30 20 20	10 - 10 -	0 2445 000 2450 Frequency (MHz)	Correct Factor (dB)	2465.000 2470.00 Freque Reading Level (dBuV)	0 2475 000 2400 mzy (Attiz) Measure Leve (dBuV/m)	000 2435000 244 el Margin (dB)	2495.000 Limit (dBuV/m)	2500 000 2505.000 Detector Type
1200 1100 900 800 700 600 500 400 300 200 200 200 200 200 200 200 200 2	10 - 10 -	0 2445.000 2450 Frequency (MHz) 2483.500	000 2455000 2460 Correct Factor (dB) 26.325	2465 000 2470 00 Firequ Reading Level (dBuV) 25.280	0 2475 000 2400 ency (MEIz) Measure Leve (dBuV/m) 51.6	000 2435000 249 el Margin (dB) 05 -2.395	2495.000 Limit (dBuV/m) 54.000	2500 000 2505 000 Detector Type AVERAGE
120 110 90 80 70 60 50 40 30 20 20	10 - 10 -	0 2445 000 2450 Frequency (MHz)	Correct Factor (dB)	000 2465 000 2470 00 Freque Reading Level (dBuV) 25.280 24.833	0 2475 000 2400 mzy (Attiz) Measure Leve (dBuV/m)	000 2435000 244 Margin (dB) 05 -2.395 58 -2.842	2495.000 Limit (dBuV/m) 54.000 54.000	2500 000 2505.000 Detector Type

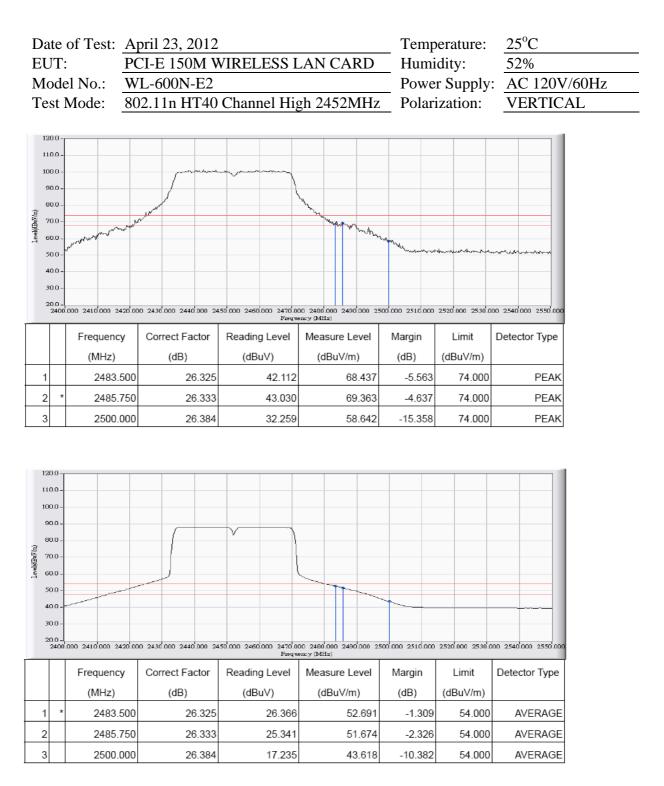

Radiated test

D	ate	of Test:	Aŗ	oril 23,	2012					Tem	perature:	25°C	
E	UT	:	PC	CI-E 15	OM V	VIREL	ESS L	LAN C	CARD	Hum	idity:	52%	
V	lode	el No.:	W	L-600N	I-E2					Powe	er Supply	: AC 120V/	60Hz
Г	est	Mode:	80	2.11n H	HT20	Chann	el Lo	w 241	2MHz	Pola	rization:	HORIZON	NTAL
	120.0							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~		MARKE MARK	
	2305	.000 2320	.000 :	2330.000 234	0.000 23	50.000 2360		.000 2390 лару (MHz)	.000 2390.00	0 2400,000 2	410.000 2420.000	24.30.000 2440.000	
		Frequenc	y	Correct F	actor	Reading	Level	Measu	ire Level	Margin	Limit	Detector Type	
		(MHz)	(dB)			(dBu	iV)	(dBuV/m)		(dB)	(dBuV/m)		
	(MHz) 1 2310.	.000 25.68		25.682	2 24.759		50.441		-23.559	74.000	PEAK		
	2 *	2388.	925		25.975		33.136		59.110	-14.890	74.000	PEAK	
	3	2390.	000		25.978		32.964		58.942	-15.058	74.000	PEAK	
	120.0 - 110.0 - 90.0 - 80.0 - 70.0 - 50.0 - 40.0 - 30.0 - 230.5	000 2320	.000 :	2330 000 234	0.000 23	50 000 2360	000 2370	000 23900	000 2390 00	0 2400,000 2	410.000 2422.000	2430 000 2440 000	
		Frequenc	y I	Correct F	actor	Reading		Measu	re Level	Margin	Limit	Detector Type	
		(MHz)		(dB)		(dBu			uV/m)	(dB)	(dBuV/m)		
_	1	2310.	000	. ,	25.682	,	12.010	,	37.692	-16.308		AVERAGE	
	2	2388.	925		25.975		15.537		41.511	-12.489	54.000	AVERAGE	
	3 *	2390.	000		25.978		16.755		42.733	-11.267	54.000	AVERAGE	

Note: 1. Measurement Level = Reading Level + Correct Factor.






Radiated test

			Test: A						A N.T. 4		<u> </u>		erature:	25°C	
	UT			<u>CI-E 1</u>			KELL	2881	LAN	CAR	D	_ Humi	-	52%	
				L-600				1 7					r Supply		
T	est	Mo	ode: <u>80</u>)2.11n	h HT4	$0 \mathrm{Cr}$	nanne	el Lo	w 242	22MI	Ηz	_ Polar	ization:	HORIZO	NTA
	120.0 -														
	110.0 -														
	100.0 -														
	90.0 -										-1	market ward	man		
_	80.0 -]				
Level/dBoY(m)	70.0 -									Å	/				
Level	60.0 -									Martin				Munn	
	50.0 -	hr	where we want	- John and a construction	ntrahan-s	Landa.	www	announdarya	h-1/""						
	40.0 -														
	30.0 -														
	20.0 - 2305	.000	2.320.000	2340	.000	2360		2390 Freque	.000 mcy (MHz)	2400	.000	2420.00	0 2440	000 2460.000	
		F	requency	Correc	t Factor	Re	eading			ure Lev	el	Margin	Limit	Detector Type	
			(MHz)	(0		(dBuV)			uV/m)		(dB)	(dBuV/m)			
	(MHz) 1 2310.00				2	22.644			48.326		-25.674	74.000	PEAK		
2	2 *		2389.217		25.97	5		32.875		58.8	350	-15.150	74.000	PEAK	
;	3		2390.000		25.97	8		30.932	56.910		-17.090	74.000	PEAK		
	120.0 - 110.0 -														
	100.0 -														
	90.0 -														
2	80.0 -										ſ	v			
Level(dBoY(m)	70.0 -														
Level	60.0 -														
	50.0 -)				
	40.0 -														
	30.0 -														
	20.0 - 2305	.000	2320.000	2340	.000	2360	000	2390 Frequ	.000 mcy (MHz)	2400	.000	2420.00	0 2440	000 2460.000	
		F	requency	Correc	t Factor	Re	eading	Level	Measu	ure Lev	el	Margin	Limit	Detector Type	
	_		(MHz)	(0	dB)		(dBu\	√)	(dB	uV/m)		(dB)	(dBuV/m)		
	1		2310.000		25.68	2		12.003		37.6	685	-16.315	54.000	AVERAGE	
	2		2389.217		25.97			17.053		43.0		-10.972	54.000	AVERAGE	
	3 *		2390.000		25.97	8		17.345		43.3	323	-10.677	54.000	AVERAGE	

Note: 1. Measurement Level = Reading Level + Correct Factor.

13. §15.247(E) - Power Spectral Density

13.1. Test Equipment

Please refer to Section 4 this report.

13.2.Test Procedure

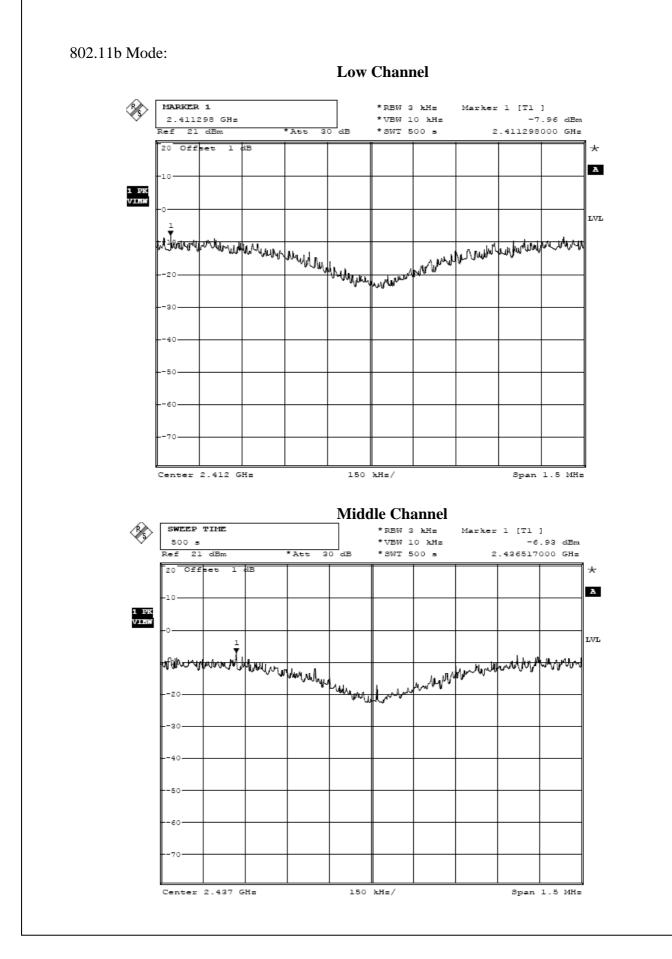
1,Set EUT in the transmitting mode.

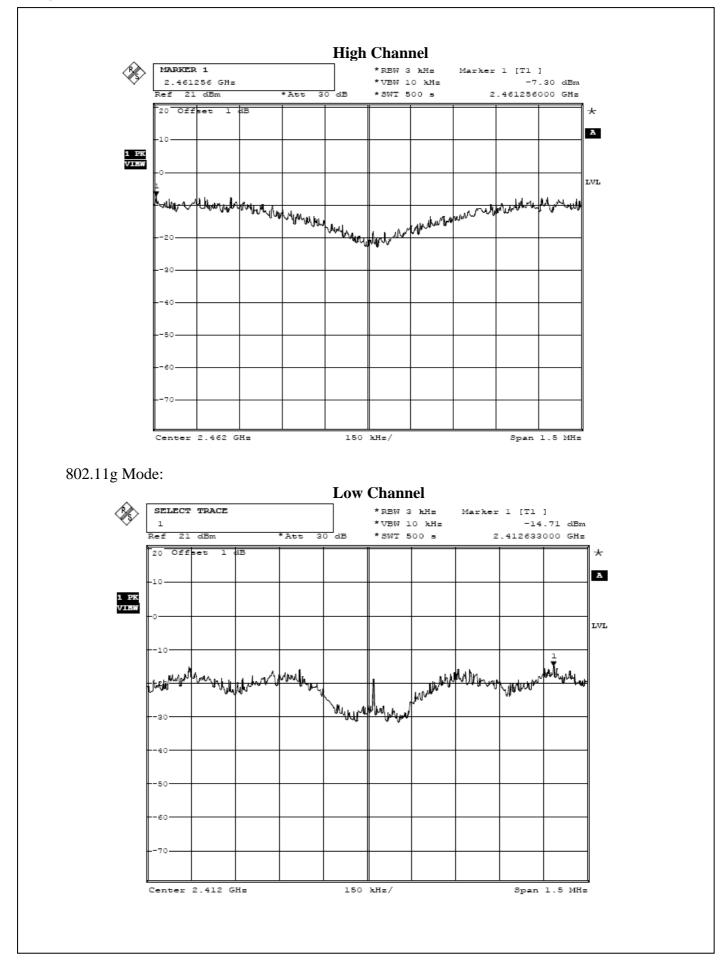
2, Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

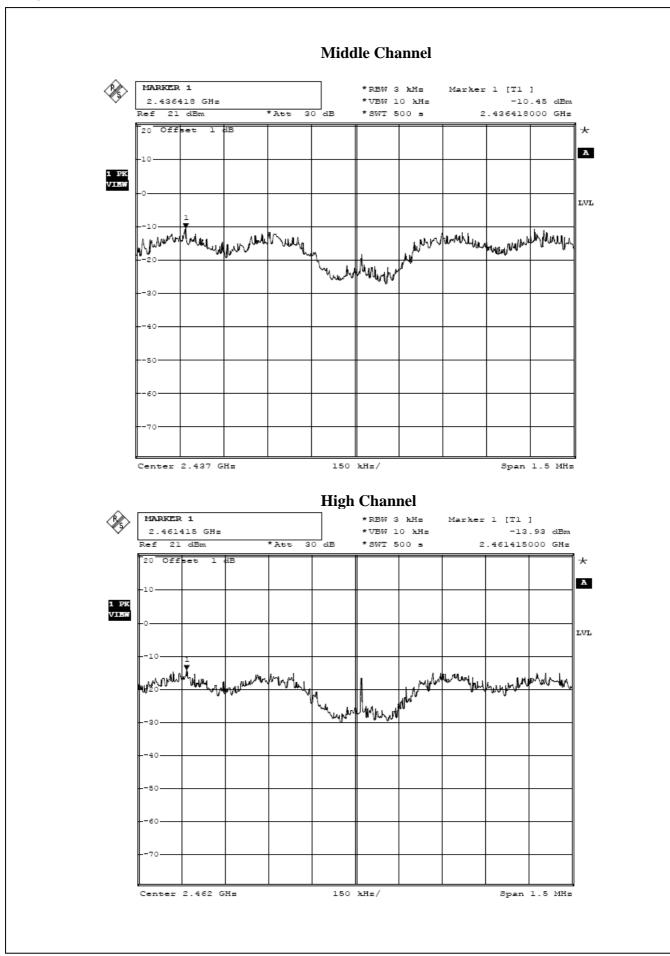
3,Set the spectrum analyzer as RBW=3KHz,VBW=10KHz,Span=1.5MHz,Sweep=500S.

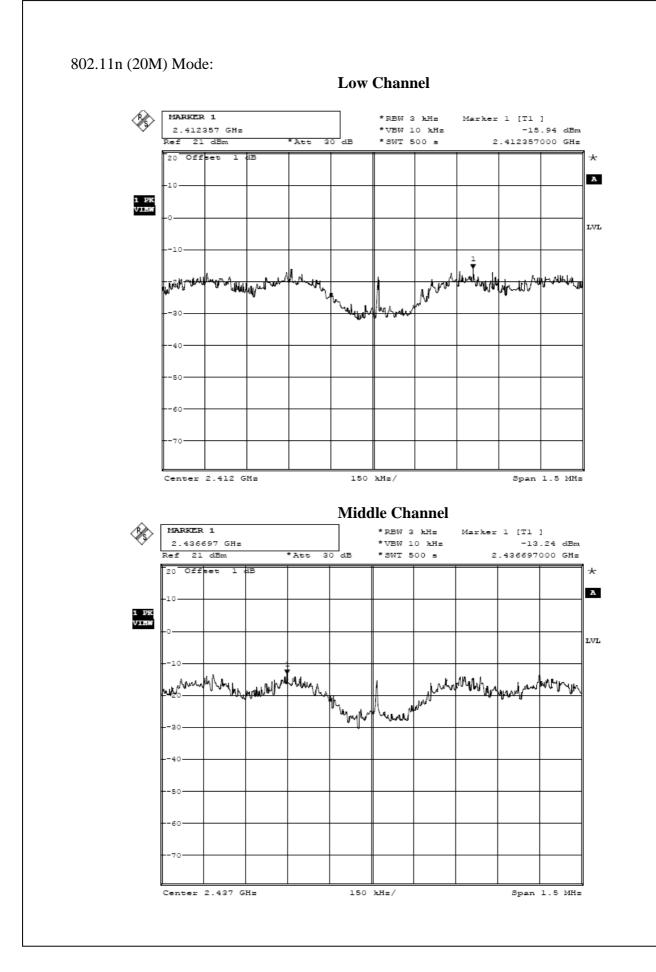
4,Record the max.reading

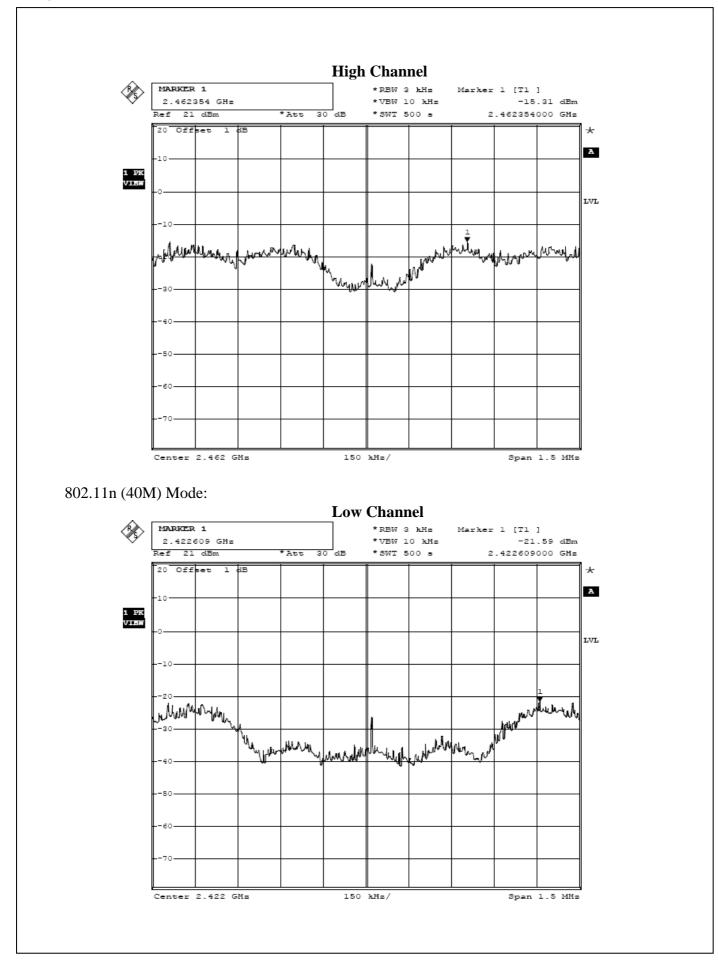
5, Repeat the above procedure until the measurements for all frequencies are completed.


13.3.Applicable Standard


For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.


13.4.Test Result


PASS


Channel Frequency (MHz)	Data Rate (Mbps)	PSD (dBm/3kHz)	Limit (dBm/3kHZ)	RESULT
	·	802.11b Mode		·
2412	1	-7.96	8	Compliant
2437	1	-6.93	8	Compliant
2462	1	-7.30	8	Compliant
		802.11g Mode		
2412	6	-14.71	8	Compliant
2437	6	-10.45	8	Compliant
2462	6	-13.93	8	Compliant
	8	802.11n (20M) Mode	9	
2412	6	-15.94	8	Compliant
2437	6	-13.24	8	Compliant
2462	6	-15.31	8	Compliant
	8	802.11n (40M) Mode	9	
2412	6	-21.59	8	Compliant
2437	6	-15.30	8	Compliant
2462	6	-20.65	8	Compliant

