TEST REPORT

	Dt&C	40 Verine en 454D	Dt&C Co., Ltd.				
U	DIAC		n-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 1704 : 031-321-2664, Fax : 031-321-1664				
1. Report No	: DRTFCC2311-0141(1)					
2. Customer							
• Name (F	CC) : Point Mobile Co., L	TD.					
• Address	(FCC) : B-9F Kabul Grea 08512	t Valley, 32, Digital-ro	9-gil, Geumcheon-gu, Seoul, South Korea,				
3. Use of Rep	oort : FCC Original Grant						
4. Product Na FCC ID : V	ime / Model Name : RFID 2X-RF88	//USN Wireless Devic	e / RF88				
-	ation(s): Part 15.247 d used: ANSI C63.10-201	3, KDB 558074D01v	05r02				
6. Date of Tes	t : 2023.09.06 ~ 2023.10	.18					
7. Location of	Test : 🛛 Permanent Te	sting Lab	On Site Testing				
8. Testing Env	rironment : See appended	d test report.					
9. Test Result	: Refer to the attached te	est result.					
			s) tested unless otherwise stated.				
	rt is not related to KOLAS	accreditation.	Testerial Management				
Affirmation	Tested by Name : SeokHo Han	(kignature)	Technical Manager				
		(Joighature)	Name : JaeJin Lee				
	2023.11.29.						
Dt&C Co., Ltd.							
lf thi	s report is required to con	firmation of authentic	ity, please contact to report@dtnc.net				

Test Report Version

Test Report No.	Date	Description	Revised by	Reviewed by
DRTFCC2311-0141	Nov. 10, 2023	Initial issue	SeokHo Han	JaeJin Lee
DRTFCC2311-0141(1)	Nov. 29, 2023	Modifying antenna specification	SeokHo Han	JaeJin Lee

Table of Contents

1. General Information	
1.1. Description of EUT	4
1.2. Testing Laboratory	5
1.3. Testing Environment	
1.4. Measurement Uncertainty	5
1.5. Test Equipment List	6
1.6. Conclusion of worst-case and operation mode	7
2. Antenna Reguirement	8
3. Summary of Test Results	
4. Maximum Peak Output Power Measurement	. 10
4.1. Test Setup	.10
4.2. Limit	.10
4.3. Test Procedure	.10
4.4. Test Results	.10
5. 20 dB BW	.13
5.1. Test Setup	.13
5.2. Limit	.13
5.3. Test Procedure	.13
5.4. Test Results	
6. Carrier Frequency Separation	
6.1. Test Setup	
6.2. Limit	
6.3. Procedure	.16
6.4. Test Results	
7. Number of Hopping Frequencies	-
7.1. Test Setup	
7.2. Limit	
7.3. Procedure	
7.4. Test Results	
8. Time of Occupancy (Dwell Time)	
8.1. Test Setup	
8.2. Limit	
8.3. Test Procedure	
8.4. Test Results	
9. Unwanted Emissions	
9.1. Test Setup	
9.2. Limit	
9.3. Test Procedures	
9.3.1. Test Procedures (Radiated)	
9.3.2. Test Procedures (Conducted)	
9.4. Test Results	
9.4.1. Unwanted Emission (Radiated)	.25
9.4.2. Unwanted Emissions (Conducted)	26
10. AC Power Line Conducted Emission	
10.1. Test Setup	
10.1. Test Setup	
10.2. Ennit	
10.3. Test Procedures	
APPENDIX I	

1. General Information

1.1. Description of EUT

Equipment Class	Part 15 Spread Spectrum Transmitter (DSS)
Product Name	RFID/USN Wireless Device
Model Name	RF88
Firmware Version Identification Number	98.00
EUT Serial Number	No Specified
Power Supply	DC 3.65 V
Frequency Range	902.75 - 927.25 MHz
Modulation Type	ASK
Number of Channels	50(Channel Spacing: 500kHz)
Antenna Type	Helix Antenna
Antenna Gain	PK : 3.31 dBic

1.2. Testing Laboratory

Dt&C Co., Lte	d.				
The 3 m test sit	te and	conducted measurement facility used to collect the radiated data are located at the			
42, Yurim-ro, 1	54beon	-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042.			
The test site complies with the requirements of Part 2.948 according to ANSI C63.4-2014. - FCC & IC MRA Designation No. : KR0034					
- ISED#: 5740A					
www.dtnc.net					
Telephone	:	+ 82-31-321-2664			
FAX : + 82-31-321-1664					

1.3. Testing Environment

Ambient Condition				
Temperature	+21 °C ~ +22 °C			
 Relative Humidity 	+40 % ~ +42 %			

1.4. Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014 and ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Parameter	Measurement uncertainty		
Antenna-port conducted emission	1.0 dB (The confidence level is about 95 %, $k = 2$)		
AC power-line conducted emission	3.4 dB (The confidence level is about 95 %, k = 2)		
Radiated emission (1 GHz Below)	4.8 dB (The confidence level is about 95 %, k = 2)		
Radiated emission (1 GHz ~ 18 GHz)	5.0 dB (The confidence level is about 95 %, k = 2)		
Radiated emission (18 GHz Above)	5.2 dB (The confidence level is about 95 %, k = 2)		

1.5. Test Equipment List

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	22/12/16	23/12/16	MY48010133
Spectrum Analyzer	Agilent Technologies	N9020A	23/06/23	24/06/23	US47360812
Spectrum Analyzer	Agilent Technologies	N9020A	22/12/16	23/12/16	MY50110097
DC Power Supply	Agilent Technologies	66332A	23/06/23	24/06/23	US37474125
Multimeter	FLUKE	17B+	22/12/16	23/12/16	36390701WS
Signal Generator	Rohde Schwarz	SMBV100A	22/12/16	23/12/16	255571
Signal Generator	ANRITSU	MG3695C	22/12/16	23/12/16	173501
Thermohygrometer	BODYCOM	BJ5478	22/12/16	23/12/16	120612-1
Thermohygrometer	BODYCOM	BJ5478	22/12/16	23/12/16	120612-2
Thermohygrometer	BODYCOM	BJ5478	23/06/23	24/06/23	N/A
Loop Antenna	ETS-Lindgren	6502	22/04/22	24/04/22	00203480
Hybrid Antenna	Schwarzbeck	VULB 9160	22/12/16	23/12/16	3362
Horn Antenna	ETS-Lindgren	3117	23/06/23	24/06/23	00143278
PreAmplifier	tsj	MLA-0118-B01-40	22/12/16	23/12/16	1852267
PreAmplifier	H.P	8447D	22/12/16	23/12/16	2944A07774
Band Reject Filter	Wainwright Instruments	WRCT800/960.0-2/40- 8SSK	23/06/23	24/06/23	32
High Pass Filter	Wainwright Instruments	WHKX12-935-1000- 15000-40SS	23/06/23	24/06/23	8
High Pass Filter	Wainwright Instruments	WHKX10-2838-3300- 18000-60SS	23/06/23	24/06/23	1
High Pass Filter	Wainwright Instruments	WHNX8.0/26.5-6SS	23/06/23	24/06/23	3
Attenuator	Hefei Shunze	SS5T2.92-10-40	23/06/23	24/06/23	16012202
Attenuator	Aeroflex/Weinschel	56-3	23/06/23	24/06/23	Y2370
Attenuator	SMAJK	SMAJK-2-3	23/06/23	24/06/23	3
Attenuator	SMAJK	SMAJK-2-3	23/06/23	24/06/23	2
Attenuator	Aeroflex/Weinschel	86-20-11	23/06/23	24/06/23	432
Power Meter & Wide Bandwidth Sensor	Anritsu	ML2496A MA2411B	22/12/16	23/12/16	1338004 1911481
EMI Test Receiver	ROHDE&SCHWARZ	ESCI	23/02/24	24/02/24	100364
PULSE LIMITER	Rohde Schwarz	ESH3-Z2	23/08/21	24/08/21	101333
LISN	SCHWARZBECK	NSLK 8128 RC	22/10/26	23/10/26	8128 RC-387
Thermo Hygro Meter	TESTO	608-H1	23/01/13	24/01/13	45084791
Cable	Dt&C	Cable	23/01/04	24/01/04	G-2
Cable	HUBER+SUHNER	SUCOFLEX 100	23/01/04	24/01/04	G-3
Cable	Dt&C	Cable	23/01/04	24/01/04	G-4
Cable	OMT	YSS21S	23/01/04	24/01/04	G-5
Cable	Junkosha	MWX241	23/01/03	24/01/03	mmW-1
Cable	Junkosha	MWX241	23/01/03	24/01/03	mmW-4
Cable	HUBER+SUHNER	SUCOFLEX100	23/01/04	24/01/04	M-01
Cable	HUBER+SUHNER	SUCOFLEX100	23/01/04	24/01/04	M-02
Cable	JUNKOSHA	MWX241/B	23/01/04	24/01/04	M-03
Cable	JUNKOSHA	J12J101757-00	23/01/04	24/01/04	M-07
Cable	HUBER+SUHNER	SUCOFLEX106	23/01/04	24/01/04	M-09
Cable	Dt&C	Cable	23/01/04	24/01/04	RFC-69
Test Software	tsj	Noise Terminal Measurement	NA	NA	Version 2.00.0185
Test Software	tsj	Radiated Emission Measurement	NA	NA	Version 2.00.0185

Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017. Note2: The cable is not a regular calibration item, so it has been calibrated by Dt&C itself.

1.6. Conclusion of worst-case and operation mode

Tested frequency information,

- Hopping Function: Enable

	TX Frequency (MHz)	RX Frequency (MHz)	
Hopping Band	902.75 ~ 927.25 MHz	902.75 ~ 927.25 MHz	

- Hopping Function: Disable

Channel	TX Frequency (MHz)	RX Frequency (MHz)	
Lowest Channel	902.75	902.75	
Middle Channel	915.25	915.25	
Highest Channel	927.25	927.25	

Operation test setup for EUT

- Test Software: RFID Demo (SDK:0.3.25 / App:0.1.24)

- Power setting: 290

2. Antenna Requirement

According to FCC 47 CFR §15.203

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

The antenna is attached on the device by means of unique connector. Therefore this E.U.T complies with the requirement of Part 15.203

3. Summary of Test Results

ier Frequency aration ber of Hopping uencies B Bandwidth II Time smitter Output er	<pre>>= 25 kHz or >= 20 dB BW, whichever is greater. >= 50 hops, if 20 dB BW < 250kHz >= 25 hops, if 20 dB BW >= 250kHz < 500 kHz =< 0.4 seconds</pre> For FCC =< 1 Watt, if CHs >= 50 =< 0.25 W, if CHs >= 25, < 50	Conducted	C C C C
uencies B Bandwidth II Time smitter Output	>= 25 hops, if 20 dB BW >= 250kHz < 500 kHz =< 0.4 seconds For FCC =< 1 Watt , if CHs >= 50	Conducted	C C
II Time smitter Output	=< 0.4 seconds For FCC =< 1 Watt , if CHs >= 50	Conducted	C
smitter Output	For FCC =< 1 Watt , if CHs >= 50	Conducted	
	=< 1 Watt , if CHs >= 50	Conducted	с
anted Emissions iducted)	The radiated emission to any 100 kHz of out-band shall be at least 20 dB below the highest in-band spectral density.		С
anted Emissions liated)	FCC 15.209 Limits (Reference to section 9)	Radiated	C ^{Note3}
Power Line ducted Emissions	FCC 15.207 Limits (Reference to section 10)	AC Line Conducted	С
nna Requirements	FCC 15.203 (Reference to section 2)	-	С
	ducted) Inted Emissions ated) ower Line ucted Emissions Ina Requirements C = Not Comply NT	Inted Emissions ducted)out-band shall be at least 20 dB below the highest in-band spectral density.Inted Emissions ated)FCC 15.209 Limits (Reference to section 9)Ower Line ucted EmissionsFCC 15.207 Limits (Reference to section 10)Intel EmissionsFCC 15.203 (Reference to section 10)Intel EmissionsFCC 15.203 (Reference to section 2)Intel EmissionsFCC 15.203 (Reference to section 2)	Inted Emissions ducted)out-band shall be at least 20 dB below the highest in-band spectral density.Inted Emissions ated)FCC 15.209 Limits (Reference to section 9)RadiatedInted Emissions ated)FCC 15.207 Limits (Reference to section 10)AC Line ConductedIntegrationFCC 15.203 (Reference to section 2)-

Note 3: This test item was performed in each axis and the worst case data was reported.

4. Maximum Peak Output Power Measurement

4.1. Test Setup

Refer to the APPENDIX I.

4.2. Limit

FCC Requirements

The maximum peak output power of the intentional radiator shall not exceed the following :

 §15.247(b)(2), For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

4.3. Test Procedure

- 1. The RF output power was measured with a spectrum analyzer connected to the RF Antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency, A spectrum analyzer was used to record the shape of the transmit signal.
- 2. The peak output power of the fundamental frequency was measured with the spectrum analyzer using;

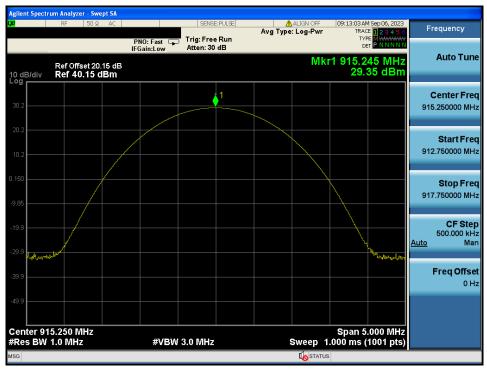
Span = approximately 5 times of the 20 dB bandwidth, centered on a hopping channel

RBW ≥ 20 dB BW VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold

4.4. Test Results

Test Mode	Tested Channel	Burst Average Output Power		Peak Output Power	
	Tested Channel	dBm	mW	dBm	mW
TM 1	Lowest	28.42	695.02	29.26	843.33
	Middle	28.39	690.24	29.35	860.99
	Highest	28.35	683.91	29.34	859.01

Note 1: See next pages for actual measured spectrum plots.


Peak Output Power

TM 1 Test Channel : Lowest

Peak Output Power

TM 1 Test Channel : Middle

Peak Output Power

TM 1 Test Channel : Highest

5. 20 dB BW

5.1. Test Setup

Refer to the APPENDIX I.

5.2. Limit

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

5.3. Test Procedure

- 1. The 20 dB bandwidth were measured with a spectrum analyzer connected to RF antenna Connector (conducted measurement) while EUT was operating in transmit mode. The analyzer center frequency was set to the EUT carrier frequency, using the analyzer.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using below setting:

RBW = 1% to 5% of the 20 dB BW

 $VBW \ge 3 \times RBW$

Span = between two times and five times the 20 dB bandwidth

Sweep = auto

Detector function = peak

Trace = max hold


5.4. Test Results

Test Mode	Tested Channel	20dB BW (kHz)		
	Lowest	54.75		
TM 1	Middle	55.93		
	Highest	55.07		

Note 1: See next pages for actual measured spectrum plots.

20 dB BW

TM 1 Test Channel : Lowest

20 dB BW

TM 1 Test Channel : Middle

20 dB BW

TM 1 Test Channel : Highest

6. Carrier Frequency Separation

6.1. Test Setup

Refer to the APPENDIX I.

6.2. Limit

Limit : \geq 25 kHz or \geq 20 dB BW whichever is greater.

6.3. Procedure

The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

After the trace being stable, the reading value between the peaks of the adjacent channels using the marker-delta function was recorded as the measurement results.

The spectrum analyzer is set to :

Span = wide enough to capture the peaks of two adjacent channels

RBW = Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to

best identify the center of each individual channel.

 $VBW \ge RBW$ Sweep = autoDetector function = peakTrace = max hold

6.4. Test Results

Test Mode	Hopping Mode	Peak of center channel (MHz)	Peak of adjacent Channel (MHz)	Test Result (kHz)	
TM 1	Enable	915.252	915.755	502.50	

Carrier Frequency Separation

Hopping mode : Enable SENSE:PULSE 59 PM Se TRACE TYPE DET Frequency Avg Type: Log-Pwr Trig: Free Run Atten: 30 dB PNO: Wide IFGain:Low Auto Tune ΔMkr1 502.5 kHz -0.01 dB Ref Offset 20.15 dB Ref 40.15 dBm <mark>↓</mark>1∆2 X2 **Center Freq** 915.250000 MHz Start Freq 914.500000 MHz Stop Freq 916.000000 MHz Center 915.2500 MHz #Res BW 150 kHz Span 1.500 MHz Sweep 1.000 ms (1001 pts) CF Step 150.000 kHz Man #VBW 470 kHz <u>Auto</u> -0.01 dE 29.29 dBm 502.5 kHz (Δ) 915.251 5 MHz Freq Offset 0 Hz **I**STATUS

7. Number of Hopping Frequencies

7.1. Test Setup

Refer to the APPENDIX I.

7.2. Limit

Limit: >= 50 hops

7.3. Procedure

The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while

EUT had its hopping function enabled.

To get higher resolution, two frequency ranges for FH mode within the 902 ~ 928 MHz were examined.

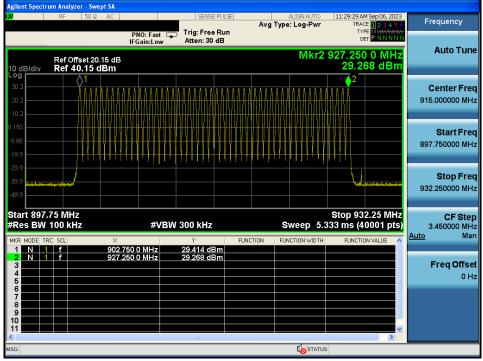
The spectrum analyzer is set to :

Span = 34.5 MHz Start Frequency = 897.75 MHz, Stop Frequency = 932.25 MHz RBW = To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. Sweep = auto

Trace = max hold

VBW ≥ RBW

Detector function = peak


7.4. Test Results

Test Mode	Hopping mode	Test Result (Total Hops)
TM 1	Enable	50

Number of Hopping Frequencies

Hopping mode : Enable

8. Time of Occupancy (Dwell Time)

8.1. Test Setup

Refer to the APPENDIX I.

8.2. Limit

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

8.3. Test Procedure

The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to :

 Center frequency = 915.25 MHz
 Span = zero

 RBW = 100 kHz (RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel)

 VBW ≥ RBW
 Detector function = peak

 Trace = max hold

8.4. Test Results

Test Mode	Hopping channels	Length (ms)	Number	Dwell Time (ms)
TM 1	50	194.0	2	388.0

Length(Hopping Mode)

Length(Hopping Mode)		Period(Hopping Mode)
Applient Spectrum Analyser - Swept SA Interesting Application Disc.011/940 Disc.011/9400 Disc.011/9400 Disc.011/9400 Disc.011/9400 Disc.011/9400 Disc.011/9400 Disc.011/9400 Disc.011/94000 Disc.011/94000 Disc.011/94000 Disc.011/94000 <thdisc.011 94000<="" th=""> Disc.011/94000 <thdis< th=""><th>Frequency</th><th>Applied Spectrum Analyzer - Swept SA Trig Dulp, 100 Part - State - Part - State</th></thdis<></thdisc.011>	Frequency	Applied Spectrum Analyzer - Swept SA Trig Dulp, 100 Part - State - Part - State
	4.0 ms 62 dB	ранотоне 10 dBidly Ref 40.15 dBm -73.81 dB
102 102 102 102 102	Center Freq 915.250000 MHz	002 Center Freq 915 25000 NH-2
199	52531 Start Freq 915.250000 MHz	110 INDEX Start Freq 8.6 INDEX Start Freq 915 25000 NH2
200 - 300 - 400 - Hondra David Statistical and a statistical and	Stop Freq 915.260000 MHz	333 39 July 1 Ju
	Auto Man	Center 915.250000 MHz Span 0 Hz Span 0 Hz CF Step 100.000 kHz Res BW 100 kHz #VBW 300 kHz Sweep 30.00 s (40001 pts) 100.000 kHz Mori Moci Inc Sq. X Y Factors / Factors
	Freq Offset C Hz	2 F 1 1 0000 mm 2000 mm 2000 mm Freq Offset 0 <th0< td=""></th0<>
e esa Costatus	2	Negi Costatus

9. Unwanted Emissions

9.1. Test Setup

Refer to the APPENDIX I.

9.2. Limit

Part 15.247(d), Part 15.205, Part 15.209

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of Part 15.247 the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

- Part 15.209: General requirements

Frequency (MHz)	FCC Limit (uV/m)	Measurement Distance (m)								
0.009 - 0.490	2 400 / F (kHz)	300								
0.490 - 1.705	24 000 / F (kHz)	30								
1.705 – 30.0	30	30								
Frequency (MHz)	FCC Limit (uV/m)	Measurement Distance (m)								
Frequency (MHz) 30 ~ 88	FCC Limit (uV/m) 100 **	Measurement Distance (m)								
		Measurement Distance (m)								

500

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

3

- Part 15.205(a): Restricted band of operation

Above 960

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.414 25 ~ 8.414 75	108 ~ 121.94	1 300 ~ 1 427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1 435 ~ 1 626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.173 5 ~ 2.190 5	12.519 75 ~ 12.520 25	149.9 ~ 150.05	1 645.5 ~ 1 646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.576 75 ~ 12.577 25	156.524 75 ~ 156.525 25	1 660 ~ 1 710	8.025 ~ 8.5	22.01 ~ 23.12
4.177 25 ~ 4.177 75	13.36 ~ 13.41	156.7 ~ 156.9	1 718.8 ~ 1 722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.207 25 ~ 4.207 75	16.42 ~ 16.423	162.012 5 ~ 167.17	2 200 ~ 2 300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.694 75 ~ 16.695 25	167.72 ~ 173.2	2 310 ~ 2 390	10.6 ~ 12.7	36.43 ~ 36.5
6.267 75 ~ 6.268 25	16.804 25 ~ 16.804 75	240 ~ 285	2 483.5 ~ 2 500	13.25 ~ 13.4	Above 38.6
6.311 75 ~ 6.312 25	25.5 ~ 25.67	322 ~ 335.4	2 655 ~ 2 900		
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3 260 ~ 3 267		
8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3 332 ~ 3 339		
8.376 25 ~ 8.386 75	74.8 ~ 75.2	960 ~ 1 240	3 345.8 ~ 3 358		
			3 600 ~ 4 400		

9.3. Test Procedures

9.3.1. Test Procedures (Radiated)

- The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 1 or 3 meter away from the interference-receiving antenna.
- 3. For measurements above 1GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.
- 4. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 6. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 7. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Measurement Instrument Setting

- Frequencies less than or equal to 1 000 MHz
 The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- Frequencies above 1 000 MHz

Peak Measurement

RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Sweep time = Auto, Trace mode = Max Hold until the trace stabilizes

Average Measurement> 1GHz

RBW = 1MHz, VBW = Reduce the video bandwidth until no significant variations in the displayed signal are observed in subsequent traces, provided the video bandwidth is no less than 1 Hz. (Actual VBW setting: 30Hz) Detector = Peak, Sweep Time = Auto, Trace Mode = Max Hold until the trace stabilizes

9.3.2. Test Procedures (Conducted)

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. The **reference level** of the fundamental frequency was measured with the spectrum analyzer using RBW = 100 kHz, VBW = 300 kHz.
- 3. The conducted spurious emission was tested each ranges were set as below.

```
Frequency range : 9 kHz ~ 30 MHz
RBW = 100 kHz, VBW = 300 kHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40 001
```

Frequency range : 30 MHz ~ 10 GHz RBW = 1 MHz, VBW = 3 MHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40 001

LIMIT LINE = 20 dB below of the reference level of above measurement procedure Step 2. (RBW = 100 kHz, VBW = 300 kHz)

If the emission level with above setting was close to the limit (ie, less than 3 dB margin) then zoom scan is required using RBW = 100 kHz, VBW = 300 kHz, SPAN = 100 MHz and BINS = 2 001 to get accurate emission level within 100 kHz BW.

Also the path loss for conducted measurement setup was used as described on the Appendix I of this test report.

9.4. Test Results

9.4.1. Unwanted Emission (Radiated)

Test Notes.

1. The radiated emissions above 1GHz were investigated up to 10 GHz. And no other spurious and harmonic emissions were found below listed frequencies.

2. Information of Distance Correction Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

In this case, the distance factor is applied to the result.

- Calculation of distance correction factor

At frequencies below 30 MHz = 40 log(tested distance / specified distance)

At frequencies at or above 30 MHz = $20 \log(\text{tested distance / specified distance})$

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.

3. Sample Calculation.

Margin = Limit - Result / Result = Reading + TF + DCCF + DCF / TF = AF + CL + HL + AL - AG

Where, TF = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, HL = High Pass filter Loss, AL = Attenuator Loss, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

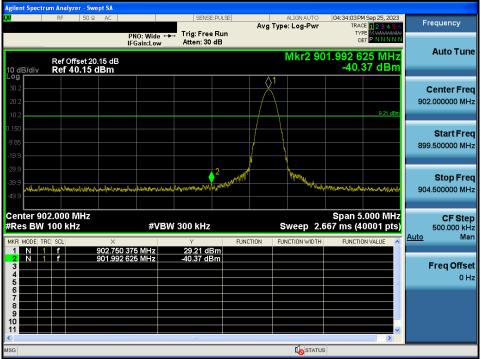
Frequency Range : 9 kHz ~ 10 GHz_TM 1

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2 708.35	Н	Х	PK	53.17	5.82	N/A	N/A	58.99	74.00	15.01
2 708.31	Н	Х	AV	45.96	5.82	N/A	N/A	51.78	54.00	2.22
3 611.10	Н	Х	PK	52.29	0.69	N/A	N/A	52.98	74.00	21.02
3 611.00	Н	Х	AV	43.59	0.69	N/A	N/A	44.28	54.00	9.72
4 513.74	Н	Y	PK	51.97	2.01	N/A	N/A	53.98	74.00	20.02
4 513.76	Н	Y	AV	43.39	2.01	N/A	N/A	45.40	54.00	8.60
5 416.54	Н	Y	PK	52.37	2.97	N/A	N/A	55.34	74.00	18.66
5 416.53	Н	Y	AV	45.59	2.97	N/A	N/A	48.56	54.00	5.44

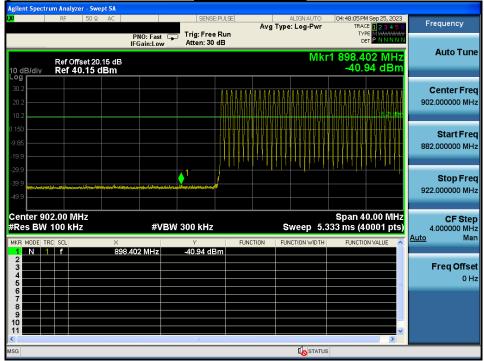
Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2 745.60	Н	Х	PK	51.72	5.86	N/A	N/A	57.58	74.00	16.42
2 745.76	Н	Х	AV	43.91	5.86	N/A	N/A	49.77	54.00	4.23
3 660.88	Н	Х	PK	50.87	0.69	N/A	N/A	51.56	74.00	22.44
3 660.96	Н	Х	AV	42.18	0.69	N/A	N/A	42.87	54.00	11.13
4 576.09	Н	Y	PK	51.12	1.93	N/A	N/A	53.05	74.00	20.95
4 576.19	Н	Y	AV	42.01	1.93	N/A	N/A	43.94	54.00	10.06


Highest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2 781.97	Н	Х	PK	50.93	5.89	N/A	N/A	56.82	74.00	17.18
2 781.76	Н	Х	AV	42.34	5.89	N/A	N/A	48.23	54.00	5.77
3 708.97	Н	Х	PK	51.94	0.86	N/A	N/A	52.80	74.00	21.20
3 709.05	Н	Х	AV	45.92	0.86	N/A	N/A	46.78	54.00	7.22
4 636.03	Н	Y	PK	51.70	1.85	N/A	N/A	53.55	74.00	20.45
4 636.21	Н	Y	AV	43.24	1.85	N/A	N/A	45.09	54.00	8.91

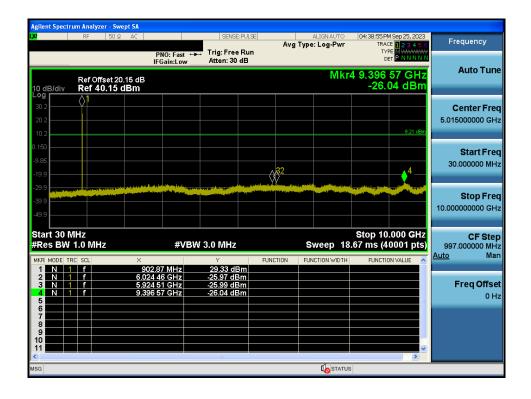
9.4.2. Unwanted Emissions (Conducted)


Low Band-edge

Lowest Channel

Low Band-edge

Hopping mode



Unwanted Emissions

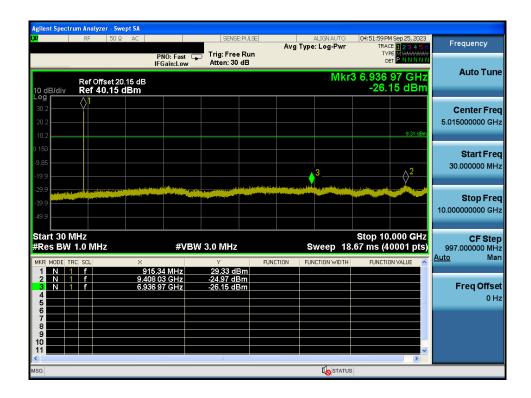
Lowest Channel

	um Analyzer - S									
L <mark>XI</mark>	RF 50	I Ω 🧥 DC 📗		SENSE	E:PULSE	Avg	ALIGN AUTO Type: Log-Pwr	TRACE	Sep 25, 2023	Frequency
	Ref Offset:	20.15 dB	PNO: Fast ← IFGain:Low	 Trig: Free Atten: 30 				TYPI DE Mkr1 299	9.2 kHz	Auto Tune
10 dB/div 30.2 20.2	Ref 40.15							-33.1	6 dBm	Center Freq 15.004500 MHz
10.2 0.150 -9.85 -19.9									9.21 dbm	Start Freq 9.000 kHz
-29.9	togen for each of the second	Vienter and the second seco	างระกำกับรู้การสู้ประสาท	eingenigesturktionstikk	l _e ladistanyaishin	h-blor lighten in	yn yn fel inneddhaind m	senioralitrisustenes (m)	hinikan ji ngalogija	Stop Freq 30.000000 MHz
Start 9 kH #Res BW	100 kHz	×	#VB	W 300 kHz		ICTION	Sweep 5.3			CF Step 2.999100 MHz <u>Auto</u> Man
1 N 1 2 3 4 5			299.2 kHz	-33.16 dE						Freq Offset 0 Hz
6 7 8 9 10										
MSG				EU				LDC Cou	>	

🛈 Dt&C

Reference for limit

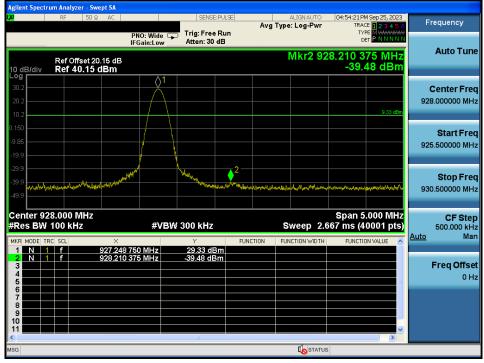
Middle Channel


Agilent Spectrum										
	RF 50 Ω	AC		SENSE	PULSE	Avg Typ	e: Log-Pwr	TRAC	1 Sep 25, 2023 E <mark>1 2 3 4 5 6</mark>	Frequency
			PNO: Wide(FGain:Low	Trig: Free Atten: 30				TYF	EMWWWWW TPNNNNN	
	Ref Offset 20 Ref 40.15 (.15 dB	1 Guilling				Mkr1 9	15.251	75 MHz 31 dBm	Auto Tune
-og 30.2					1					Center Free
20.2				/	}					915.250000 MH
10.2				+					9.31 dBm	
-9.85										Start Fre
-19.9										910.250000 MH:
-29.9					ha					Stop Free
-39.9	and south and the second second	logitedpotherasion	and white white	watter and the second	N. NAM	ronthrouting through	und march the open	man have the	www.www.	920.250000 MH
Center 915. #Res BW 10			#VB	W 300 kHz		4	Sweep 2.0		0.00 MHz 0001 pts)	CF Step 1.000000 MH
MKR MODE TRC	SCL	×		Y		JNCTION FL	INCTION WIDTH	FUNCTIO	N VALUE	<u>Auto</u> Mar
1 N 1 2 3	f	915.251	/5 MHz	29.31 dE	3m					Freq Offse
4										0 H
6 7										
8										
10									~	
<									>	

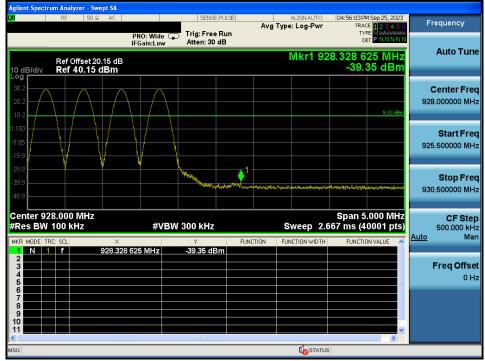
Middle Channel

Dt&C

Unwanted Emissions


Agilent Spectr	um Analyzer - Sw									
LXI	RF 50 Ω	<u>▲</u> DC		SENSE:	PULSE		ALIGN AUTO	TRAC	M Sep 25, 2023 CE <mark>1 2 3 4 5 6</mark>	Frequency
		P	NO: Fast 🖵 Gain:Low	Trig: Free Atten: 30		<u> </u>		TYI D	PE MWWWWW ET P N N N N N	Auto Tune
10 dB/div	Ref Offset 20 Ref 40.15								5.7 kHz 09 dBm	Auto Tune
Log 30.2 20.2 10.2									9.31 dBm	Center Freq 15.004500 MHz
0.150 -9.85 -19.9 1										Start Freq 9.000 kHz
-29.9 -39.9 -49.9	nista lapotenyegige yariftang	oddearkstechtechtechtechtechtechtechtechtechtech	häden, oni antonoostoonto		ni, Martina Martina Pr	e <mark>nne stadigetel</mark> telsete	h Lindong Tay angkar,	a palladara (i contra da sera d	ليار روايور اينانياريانيا مراجع المراجع ا	Stop Freq 30.000000 MHz
Start 9 kH #Res BW			#VBW	300 kHz		S	weep 5.3	Stop 3 333 ms (4	0.00 MHz 0001 pts)	CF Step 2.999100 MHz Auto Man
MKR MODE TF	RC SCL	× 285	.7 kHz	∀ -33.09 dB	FUNCT	ION FUN	ICTION WIDTH	FUNCTIO	ON VALUE	Auto Man
2 3 4 5 6									=	Freq Offset 0 Hz
7 8 9 10										
11				m					>	
MSG								上 DC Cou	upled	

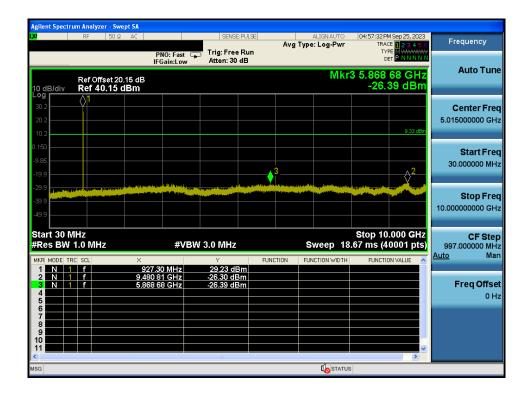
Dt&C


High Band-edge

Highest Channel

High Band-edge

Hopping mode



Unwanted Emissions

Highest Channel

Agilent Spectr										
L <mark>XI</mark>	RF	50 Ω <u>Λ</u> DC		SENS	E:PULSE	Avg Typ	e: Log-Pwr	TRAC	4 Sep 25, 2023	Frequency
	Ref Offs	et 20.15 dB	PNO: Fast IFGain:Low	Trig: Fre Atten: 30				TYF DE Mkr1 28		Auto Tune
10 dB/div 30.2 20.2 10.2	Ref 40.	15 dBm						-04.1	9.33 dBm	Center Freq 15.004500 MHz
0.150 -9.85 -19.9										Start Freq 9.000 kHz
-29.9		napil/sepit	etil i flemi) e fi terri	Nogel and an interfact, and the party	talanga yead	ifiid-attribt.cogailydd	porof Anarcasi tores			Stop Freq 30.000000 MHz
Start 9 kH #Res BW	100 kHz	×		300 kHz Y	FUN		Sweep 5.3	333 ms (4	0.00 MHz 0001 pts) IN VALUE	CF Step 2.999100 MHz <u>Auto</u> Man
1 N 1 2 3 4 5 6 7			281.9 kHz	-34.28 d	3m					Freq Offset 0 Hz
8 9 10 11				щ					~	
MSG								<mark>s</mark> 🚹 DC Cοι	upled	

10. AC Power Line Conducted Emission

10.1. Test Setup

See test photo graphs for the actual connections between EUT and support equipment.

10.2. Limit

According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Frequency Range (MHz)	Conducted Limit (dBuV)					
Frequency Range (Minz)	Quasi-Peak	Average				
0.15 ~ 0.5	66 to 56 *	56 to 46 *				
0.5 ~ 5	56	46				
5 ~ 30	60	50				

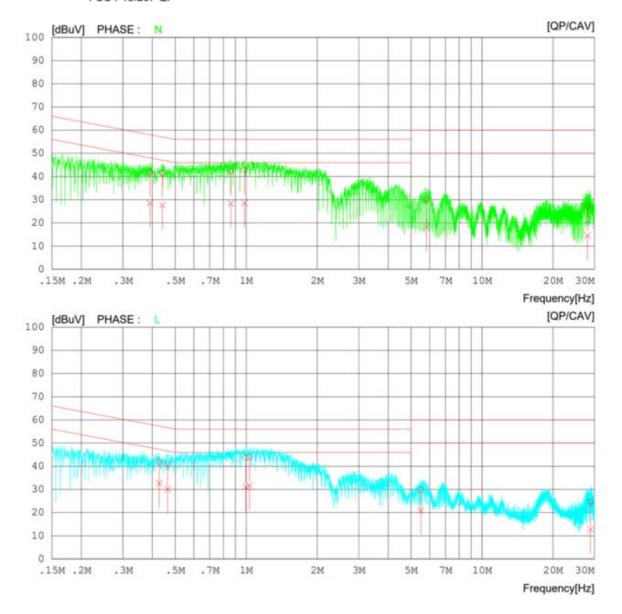
* Decreases with the logarithm of the frequency

10.3. Test Procedures

Conducted emissions from the EUT were measured according to the ANSI C63.10.

- The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

10.4. Test Results


AC Line Conducted Emissions (Graph) = Lowest Channel

Results of Conducted Emission

Date 2023-10-18

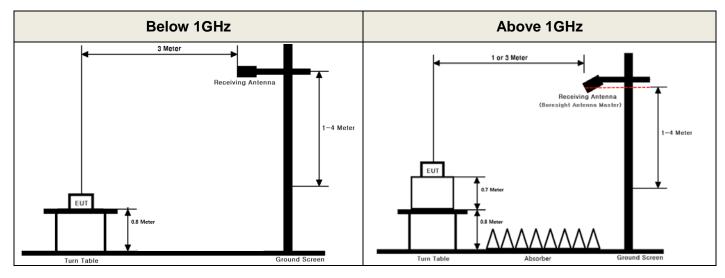
LIMIT : FCC P15.207 AV FCC P15.207 QP

AC Line Conducted Emissions (List) = Lowest Channel

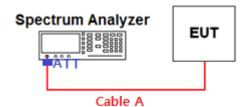
Results of Conducted Emission

Date 2023-10-18

Order No. Model Name RF88 Temp/Humi/Atm Test Condition RFID_902.75 MHz


LIMIT : FCC P15.207 AV FCC P15.207 QP

NC	FREQ	READING QP CAV [dBuV][dBuV]	C.FACTOR [dB]	RESULT QP CAV [dBuV][dBuV]	LIMIT QP CAV [dBuV][dBuV]	MARGIN QP CAV [dBuV][dBuV]	PHASE
1	0.39142	31.70 18.57	9.99	41.69 28.56	58.03 48.03	16.34 19.47	N
2	0.44136	31.48 17.69	10.00	41.48 27.69	57.04 47.04	15.56 19.35	N
3	0.86094	32.22 18.36	10.00	42.22 28.36	56.00 46.00	13.78 17.64	N
4	0.98291	32.75 18.60	10.01	42.76 28.61	56.00 46.00	13.24 17.39	N
5	5.81880	19.90 7.98	10.21	30.11 18.19	60.00 50.00	29.89 31.81	N
6	27.96440	16.60 3.89	10.65	27.25 14.54	60.00 50.00	32.75 35.46	N
7	0.42724	31.84 22.79	9.90	41.74 32.69	57.31 47.31	15.57 14.62	L
8	0.46476	31.00 20.12	9.90	40.90 30.02	56.61 46.61	15.71 16.59	L
9	0.99640	33.63 21.02	10.01	43.64 31.03	56.00 46.00	12.36 14.97	L
10	1.03260	33.95 21.64	10.01	43.96 31.65	56.00 46.00	12.04 14.35	L
11	5.50200	19.74 10.88	10.11	29.85 20.99	60.00 50.00	30.15 29.01	L
12	28.84040	14.33 2.49	10.37	24.70 12.86	60.00 50.00	35.30 37.14	L


APPENDIX I

Test set up diagrams

Radiated Measurement

Conducted Measurement

Path loss information

Frequency (MHz)	Path Loss (dB)	Frequency (MHz)	Path Loss (dB)
30	19.96	1 000	20.21
500	20.11	5 000	20.44
902.75 & 915.25 & 927.25	20.15	10 000	20.68
-	-	-	-

Note 1 : The path loss from EUT to Spectrum analyzer were measured and used for test.

Path loss (S/A's Correction factor) = Cable A + Attenuator



APPENDIX II

Unwanted Emissions (Radiated) Test Plot

TM 1 & Lowest & X & Hor

Detector Mode : AV

