TEST REPORT

	DLOC DT&C Co., Ltd.
Ψ	DI&C CO., Ltd.42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel : 031-321-2664, Fax : 031-321-1664
1. Report No	DRTFCC2105-0039
2. Customer	
	CC) : Point Mobile Co., LTD. / Name (IC) : POINTMOBILE CO.,LTD
	(FCC) : B-9F, Kabul Great Valley 32 Digital-ro 9-gil, Geumcheon-gu Seoul South Korea 153-709
	(IC) : B-9F Kabul Great Valley, 32, Digital-ro 9-gil, Geumcheon-gu Seoul Korea (Republic Of)
	port : FCC & IC Certification
	ame / Model Name : RFID/USN Wireless / RF300
FCC ID : \ IC : 10664	/2X-RF300 A-RF300
5. FCC Regu	ulation(s) : Part 15.247
IC Standa	rds(s) : RSS-247 Issue 2
Test Methe	od Used : ANSI C63.10-2013, KDB 558074D01v05r02
6. Date of Te	est : 21.04.06 ~ 2021.04.23
7. Location o	f Test : 🛛 Permanent Testing Lab 🛛 On Site Testing
8. Testing Er	vironment : See appended test report.
9. Test Resu	It : Refer to the attached test result.
The results s	hown in this test report refer only to the sample(s) tested unless otherwise stated.
	Tested by Reviewed by
Affirmation	Name : JaeHyeok Bang (Signature) Name : JaeJin Lee (Signature)
	2021.05.06.
	DT&C Co., Ltd.
Т	his test report is a general report that does not use the KOLAS accreditation mark and is not related to KS Q ISO/IEC 17025 and KOLAS accreditation.

Test Report Version

Test Report No.	Date	Description	Revised by	Reviewed by
DRTFCC2105-0039	May. 06, 2021	Initial issue	JaeHyeok Bang	JaeJin Lee

Table of Contents

1.General Information	
1.1 Testing Laboratory	4
1.2 Testing Environment	4
1.3 Measurement Uncertainty	
1.4 Details of Applicant	
1.5 Description of EUT	
1.6 Declaration by the manufacturer	5
1.7 Test Equipment List	6
1.8 Summary of Test Results	7
1.9 Conclusion of worst-case and operation mode	/ Q
2. Maximum Peak Output Power Measurement	
2.1 Test Setup	
2.2 Limit	
2.3 Test Procedure	
2.4 Test Results	
3. 20dB BW & Occupied BW	
3.1 Test Setup	
3.2 Limit	
3.3 Test Procedure	
3.4 Test Results	
4. Carrier Frequency Separation	15
4.1 Test Setup	
4.2 Limit	15
4.3 Procedure	15
4.4 Test Results	15
5. Number of Hopping Frequencies	16
5.1 Test Setup	
5.2 Limit	
5.3 Procedure	
5.4 Test Results	
6. Time of Occupancy (Dwell Time)	
6.1 Test Setup	
6.2 Limit	
6.3 Test Procedure	
6.4 Test Results	
7. Transmitter Radiated Spurious Emissions and Conducted Spurious Emiss	
7. Transmitter Radiated Spurious Emissions and Conducted Spurious Emiss 7.1 Test Setup	
7.1 Test Setup	
7.3 Test Procedures	
7.3.1 Test Procedures for Radiated Spurious Emissions	20
7.3.2 Test Procedures for Conducted Spurious Emissions	21
7.4 Test Results	
7.4.1 Radiated Emission	
7.4.2 Conducted Spurious Emissions	
8. Transmitter AC Power Line Conducted Emission	29
8.1 Test Setup	
8.2 Limit	
8.3 Test Procedures	
8.4. Test Results	
9. Antenna Requirement	
APPENDIX I	
APPENDIX II	

1.General Information

1.1 Testing Laboratory

DT&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042. The test site complies with the requirements of § 2.948 according to ANSI C63.4-2014.

- FCC & IC MRA Designation No. : KR0034

- ISED #: 5740A

www.dtnc.net		
Telephone	:	+ 82-31-321-2664
FAX	:	+ 82-31-321-1664

1.2 Testing Environment

Ambient Condition				
 Temperature 	+21 ℃ ~ +25 ℃			
 Relative Humidity 	38 % ~ 45 %			

1.3 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014 and ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Test items	Measurement uncertainty
Antenna-port conducted emission	0.9 dB (The confidence level is about 95 %, k = 2)
AC power-line conducted emission	3.6 dB (The confidence level is about 95 %, k=2)
Radiated emission (1 GHz Below)	4.9 dB (The confidence level is about 95 %, k = 2)
Radiated emission (1 GHz ~ 18 GHz)	5.1 dB (The confidence level is about 95 %, k = 2)
Radiated emission (18 GHz Above)	5.3 dB (The confidence level is about 95 %, k = 2)

1.4 Details of Applicant

Applicant (FCC)	:	Point Mobile Co., LTD.
Applicant (IC)	:	POINTMOBILE CO.,LTD
Address (FCC)	:	B-9F, Kabul Great Valley 32 Digital-ro 9-gil, Geumcheon-gu Seoul South Korea 153-709
Address (IC)	:	B-9F Kabul Great Valley, 32, Digital-ro 9-gil, Geumcheon-gu Seoul Korea (Republic Of)

1.5 Description of EUT

Equipment Class	Part 15 Spread Spectrum Transmitter (DSS)
EUT	RFID/USN Wireless
Model Name	RF300
Add Model Name	RF750
Firmware Version Identification Number	94.01
EUT Serial Number	2036310087(Conducted Sample), 2036310074(Radiated Sample)
Software version	94.01
Power Supply	DC 3.635 V
Frequency Range	902.75 ~ 927.25 MHz
Modulation Technique	ASK
Number of Channels	50(Channel Spacing: 500kHz)
Antenna Type	Antenna Type: Patch Antenna Gain: 2.21 dBi (PK)

1.6 Declaration by the manufacturer

- N/A

1.7 Test Equipment List

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	20/12/16	21/12/16	MY48010133
Spectrum Analyzer	Agilent Technologies	N9020A	20/12/16	21/12/16	MY48011700
Spectrum Analyzer	Agilent Technologies	N9020A	20/06/24	21/06/24	US47360812
DC Power Supply	Agilent Technologies	66332A	20/06/24	21/06/24	MY43000211
Multimeter	FLUKE	17B+	20/12/16	21/12/16	3630701WS
Signal Generator	Rohde Schwarz	SMBV100A	20/12/16	21/12/16	255571
Signal Generator	ANRITSU	MG3695C	20/12/16	21/12/16	173501
Thermohygrometer	BODYCOM	BJ5478	20/12/16	21/12/16	120612-1
Thermohygrometer	BODYCOM	BJ5478	20/12/16	21/12/16	120612-2
Thermohygrometer	BODYCOM	BJ5478	20/07/01	21/07/01	N/A
Loop Antenna	ETS-Lindgren	6502	21/01/28	23/01/28	00226186
BILOG ANTENNA	Schwarzbeck	VULB 9160	20/12/16	21/12/16	3362
Horn Antenna	ETS-Lindgren	3117	20/10/23	21/10/23	00143278
PreAmplifier	tsj	MLA-0118-B01-40	20/12/16	21/12/16	1852267
PreAmplifier	H.P	8447D	20/12/16	21/12/16	2944A07774
Band Reject Filter	Wainwright Instruments	WRCT800/960.0-2/40- 8SSK	20/06/24	21/06/24	32
High Pass Filter	Wainwright Instruments	WHKX12-935-1000-	20/06/24	21/06/24	8
High Pass Filter	Wainwright Instruments	15000-40SS WHKX10-2838-3300- 18000-60SS	20/06/24	21/06/24	1
High Pass Filter	Wainwright Instruments	WHNX8.0/26.5-6SS	20/06/24	21/06/24	3
Attenuator	Hefei Shunze	SS5T2.92-10-40	20/06/24	21/06/24	16012202
Attenuator	SRTechnology	F01-B0606-01	20/06/24	21/06/24	13092403
Attenuator	Aeroflex/Weinschel	56-3	20/06/24	21/06/24	Y2370
Attenuator	SMAJK	SMAJK-2-3	20/06/24	21/06/24	2
Attenuator	Aeroflex/Weinschel	86-20-11	20/06/24	21/06/24	432
Power Meter & Wide Bandwidth Sensor	Anritsu	ML2495A MA2490A	20/06/24	21/06/24	1306007 1249001
EMI Receiver	ROHDE&SCHWARZ	ESU	20/11/16	21/11/16	100469
PULSE LIMITER	Rohde Schwarz	ESH3-Z2	20/08/25	21/08/25	101333
LISN	SCHWARZBECK	NSLK 8128 RC	20/10/23	21/10/23	8128 RC-387
HYGROMETER	TESTO	608-H1	21/01/19	22/01/19	34862883
Cable	DT&C	Cable	21/01/08	22/01/08	G-1
Cable	DT&C	Cable	21/01/08	22/01/08	G-2
Cable	HUBER+SUHNER	SUCOFLEX 100	21/01/08	22/01/08	G-3
Cable	DT&C	Cable	21/01/08	22/01/08	G-4
Cable	HUBER+SUHNER	SUCOFLEX100	21/01/08	22/01/08	M-01
Cable	HUBER+SUHNER	SUCOFLEX100	21/01/08	22/01/08	M-02
Cable	JUNFLON	MWX241/B	21/01/08	22/01/08	M-03
Cable	JUNFLON	J12J101757-00	21/01/08	22/01/08	M-07
Cable	HUBER+SUHNER	SUCOFLEX106	21/01/08	22/01/08	M-09
Cable	Radiall	TESTPRO3	21/01/08	22/01/08	RFC-69
Test Software	tsj	Radiated Emission Measurement	NA	NA	Version 2.00.0177
Test Software	tsj	Noise Terminal Measurement	NA	NA	Version 2.00.0170

Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017. Note2: The cable is not a regular calibration item, so it has been calibrated by DT & C itself.

1.8 Summary of Test Results

FCC part section(s)	RSS section(s)	Test Description	Limit (Using in 902-928 MHz)	Test Condition	Status Note 1	
		Carrier Frequency Separation	>= 25 kHz or >= 20 dB BW, whichever is greater.		с	
15.247(a)	RSS-247[5.1]	Number of Hopping Frequencies	>= 50 hops, if 20 dB BW < 250kHz >= 25 hops, if 20 dB BW >= 250kHz		с	
		20 dB Bandwidth	< 500 kHz		С	
		Dwell Time	=< 0.4 seconds		С	
15.247(b)	RSS-247[5.4] Transmitter Output Power For FCC =< 1 Watt, if CHs >= 50 =< 0.25 W, if CHs >= 25, < 50		<pre>=< 1 Watt , if CHs >= 50 =< 0.25 W, if CHs >= 25, < 50 For IC if CHs >= 50 =< 1 Watt For Conducted Power =< 4 Watt For e.i.r.p, if CHs >= 25, < 50 =< 0.25 W For Conducted Power.</pre>	Conducted	с	
15.247(d)	RSS-247[5.5)	Conducted Spurious Emissions	The radiated emission to any 100 kHz of out-band shall be at least 20 dB below the highest in-band spectral density.		с	
-	RSS-Gen[6.7]	Occupied Bandwidth (99 %)	N/A		С	
15.247(d) 15.205 15.209	RSS-247[5.5] RSS-Gen[8.9] RSS-Gen[8.10]	Radiated Spurious Emissions	FCC 15.209 Limits (Refer to section 7)	Radiated	C ^{Note3}	
15.207	RSS-Gen[8.8]	AC Conducted Emissions	FCC 15.207 Limits (Refer to section 8)	AC Line Conducted	с	
15.203	-	Antenna Requirements	FCC 15.203 (Refer to section 9)	-	с	
Note 1: C = Comply NC = Not Comply NT = Not Tested NA = Not Applicable Note 2: For radiated emission tests below 30 MHz were performed on semi-anechoic chamber which is correlated with OATS. Note 3: This test item was performed in three orthogonal EUT positions and the worst case data was reported.						

1.9 Conclusion of worst-case and operation mode

Tested frequency information,

- Hopping Function: Enable

	TX Frequency (MHz)	RX Frequency (MHz)	
Hopping Band	902.75 ~ 927.25 MHz	902.75 ~ 927.25 MHz	

- Hopping Function: Disable

Channel	TX Frequency (MHz)	RX Frequency (MHz)
Lowest Channel	902.75	902.75
Middle Channel	915.25	915.25
Highest Channel	927.25	927.25

Operation test setup for EUT

- Test Software Version: RFID Settings / 1.1.5

- Power setting: 28

2. Maximum Peak Output Power Measurement

2.1 Test Setup

Refer to the APPENDIX I.

2.2 Limit

FCC Requirements

The maximum peak output power of the intentional radiator shall not exceed the following :

 §15.247(b)(2), For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

IC Requirements

1. RSS-247(5.4)(a), For FHSS operating in the band 902-928 MHz, the maximum peak conducted output power shall not exceed 1.0 W, and the e.i.r.p. shall not exceed 4 W if the hopset uses 50 or more hopping channels; the maximum peak conducted output power shall not exceed 0.25 W and the e.i.r.p. shall not exceed 1 W if the hopset uses less than 50 hopping channels.

2.3 Test Procedure

- 1. The RF output power was measured with a spectrum analyzer connected to the RF Antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency, A spectrum analyzer was used to record the shape of the transmit signal.
- 2. The peak output power of the fundamental frequency was measured with the spectrum analyzer using;

Span = approximately 5 times of the 20 dB bandwidth, centered on a hopping channel

RBW ≥ 20 dB BW VBW ≥ RBW

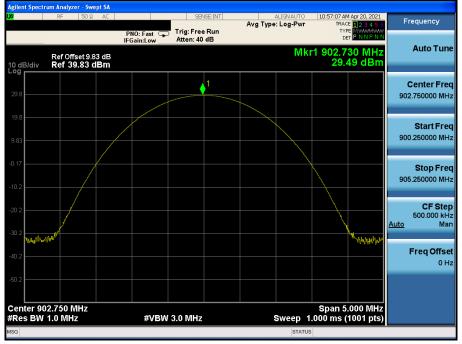
Sweep = auto

Detector function = peak

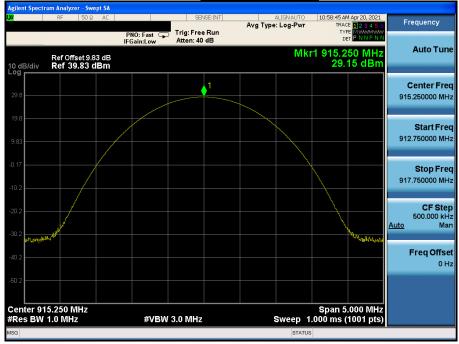
Trace = max hold

2.4 Test Results

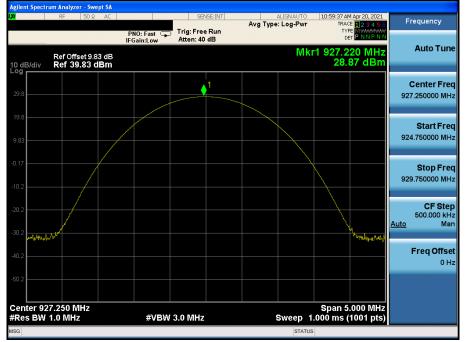
Tested Channel	Burst Average	Output Power	out Power	
	dBm	mW	dBm	mW
Lowest	28.76	751.62	29.49	889.20
Middle	28.37	687.07	29.15	822.24
Highest	28.21	662.22	28.87	770.90


Note 1: The average output power was tested using an average power meter for reference only.

Note 2: See next pages for actual measured spectrum plots.


Peak Output Power

Lowest Channel


Peak Output Power

Middle Channel

Peak Output Power

Highest Channel

3. 20dB BW & Occupied BW

3.1 Test Setup

Refer to the APPENDIX I.

3.2 Limit

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

3.3 Test Procedure

- 1. The 20 dB bandwidth were measured with a spectrum analyzer connected to RF antenna Connector (conducted measurement) while EUT was operating in transmit mode. The analyzer center frequency was set to the EUT carrier frequency, using the analyzer.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using below setting:
 RBW = 1% to 5% of the 20 dB BW & Occupied BW
 VBW ≥ 3 x RBW

Span = between two times and five times the 20 dB bandwidth & Occupied BW

Sweep = auto

Detector function = peak

Trace = max hold

3.4 Test Results

Tested Channel	20dB BW (kHz)	Occupied BW (kHz)
Lowest	39.16	52.07
Middle	40.95	53.14
Highest	41.14	51.73

Note 1: See next pages for actual measured spectrum plots.

IC: 10664A-RF300

20dB BW & Occupied BW

Lowest Channel

20dB BW & Occupied BW

Middle Channel

IC: 10664A-RF300

20dB BW & Occupied BW

<u>Highest Channel</u>

4. Carrier Frequency Separation

4.1 Test Setup

Refer to the APPENDIX I.

4.2 Limit

Limit : \geq 25 kHz or \geq 20 dB BW whichever is greater.

4.3 Procedure

The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

After the trace being stable, the reading value between the peaks of the adjacent channels using the marker-delta function was recorded as the measurement results.

The spectrum analyzer is set to :

Span = wide enough to capture the peaks of two adjacent channels

RBW = Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to

best identify the center of each individual channel.				
VBW ≥ RBW	Sweep = auto			
Detector function = peak	Trace = max hold			

4.4 Test Results

Hopping	Peak of center channel	Peak of adjacent Channel	Test Result	
Mode	(MHz)	(MHz)	(kHz)	
Enable	915.247	915.750		

Carrier Frequency Separation

Hopping mode : Enable

5. Number of Hopping Frequencies

5.1 Test Setup

Refer to the APPENDIX I.

5.2 Limit

Limit: >= 50 hops

5.3 Procedure

The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while

EUT had its hopping function enabled.

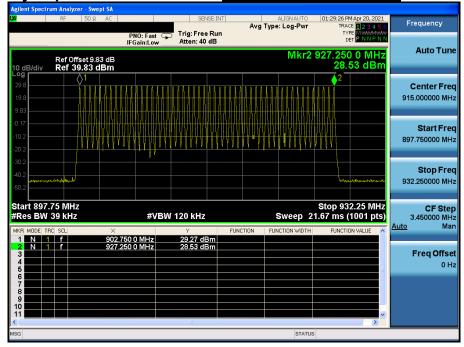
To get higher resolution, two frequency ranges for FH mode within the 902 ~ 928 MHz were examined.

The spectrum analyzer is set to :

Span = 20 MHzStart Frequency = 897.75 MHz,Stop Frequency = 932.25 MHzRBW = To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

VBW ≥ RBW

Detector function = peak


Sweep = auto Trace = max hold

5.4 Test Results

Hopping mode	Test Result (Total Hops)
Enable	50

Carrier Frequency Separation

Hopping mode : Enable

6. Time of Occupancy (Dwell Time)

6.1 Test Setup

Refer to the APPENDIX I.

6.2 Limit

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

6.3 Test Procedure

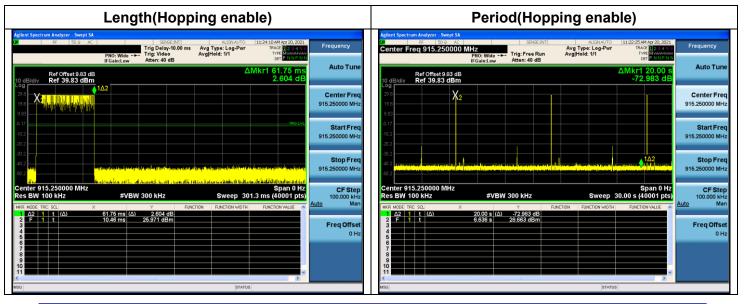
The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to :

Center frequency = 915.25 MHz

```
Span = zero
```

RBW = 100 kHz (RBW shall be \leq channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel)


VBW ≥ RBW

Detector function = peak

Trace = max hold

6.4 Test Results

Hopping channels	channels Length (ms)		Dwell Time (ms)	
50	61.75	2	123.500	

This test report is prohibited to copy or reissue in whole or in part without the approval of DT&C Co., Ltd. TRF-RF-225(04)210316

7. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission

7.1 Test Setup

Refer to the APPENDIX I.

7.2 Limit

Part 15.247(d), Part 15.205, Part 15.209 & RSS-247 [5.5], RSS-Gen [8.9], RSS-Gen [8.10]

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of Part 15.247 the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

- Part 15.209 & RSS-247[8.9]

Frequency (MHz)	FCC Limit (uV/m)	IC Limit (µA/m)	Measurement Distance (m)	
0.009 - 0.490	2 400 / F (kHz)	6.37/F (F in kHz)	300	
0.490 – 1.705	2 4000 / F (kHz)	63.7/F (F in kHz)	30	
1.705 – 30.0	30	0.08	30	

Frequency (MHz)	FCC Limit (uV/m)	IC Limit (uV/m)	Measurement Distance (m)
30 ~ 88	100 **	100	3
88 ~ 216	150 **	150	3
216 ~ 960	200 **	200	3
Above 960	500	500	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

- Part 15.205(a): Restricted band of operation

MHz	MHz	MHz	MHz	GHz	GHz						
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	4.5 ~ 5.15	14.47 ~ 14.5						
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	5.35 ~ 5.46	15.35 ~ 16.2						
2.1735 ~ 2.1905	12.51975 ~ 12.52025	149.9 ~ 150.05	1645.5 ~ 1646.5	7.25 ~ 7.75	17.7 ~ 21.4						
4.125 ~ 4.128	12.57675 ~ 12.57725	156.52475 ~	1660 ~ 1710	8.025 ~ 8.5	22.01 ~ 23.12						
4.17725 ~ 4.17775	13.36 ~ 13.41	156.52525	1718.8 ~ 1722.2	9.0 ~ 9.2	23.6 ~ 24.0						
4.20725 ~ 4.20775	16.42 ~ 16.423	156.7 ~ 156.9	2200 ~ 2300	9.3 ~ 9.5	31.2 ~ 31.8						
6.215 ~ 6.218	16.69475 ~ 16.69525	162.0125 ~ 167.17	2310 ~ 2390	10.6 ~ 12.7	36.43 ~ 36.5						
6.26775 ~ 6.26825	16.80425 ~ 16.80475	167.72 ~ 173.2	2483.5 ~ 2500	13.25 ~ 13.4	Above 38.6						
6.31175 ~ 6.31225	25.5 ~ 25.67	240 ~ 285	2655 ~ 2900								
8.291 ~ 8.294	37.5 ~ 38.25	322 ~ 335.4	3260 ~ 3267								
8.362 ~ 8.366	73 ~ 74.6	399.90 ~ 410	3332 ~ 3339								
8.37625 ~ 8.38675	74.8 ~ 75.2	608 ~ 614	3345.8 ~ 3358								
		960 ~ 1240	3600 ~ 4400								

- RSS-Gen[8.10]: Restricted frequency bands

MHz	MHz	MHz	MHz	GHz	GHz
0.090 ~ 0.110	8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3345.8 ~ 3358	9.0 ~ 9.2
0.495 ~ 0.505	8.37625 ~ 8.38675	74.8 ~ 75.2	960 ~ 1427	3500 ~ 4400	9.3 ~ 9.5
2.1735 ~ 2.1905	8.41425 ~ 8.41475	108 ~ 138	1435 ~ 1626.5	4500 ~ 5150	10.6 ~ 12.7
3.020 ~ 3.026	12.29 ~ 12.293	149.9 ~ 150.05	1645.5 ~ 1646.5	5350 ~ 5460	13.25 ~ 13.4
4.125 ~ 4.128	12.51975 ~ 12.52025	156.52475 ~	1660 ~ 1710	7250 ~ 7750	14.47 ~ 14.5
4.17725 ~ 4.17775	12.57675 ~ 12.57725	156.52525	1718.8 ~ 1722.2	8025 ~ 8500	15.35 ~ 16.2
4.20725 ~ 4.20775	13.36 ~ 13.41	156.7 ~ 156.9	2200 ~ 2300		17.7 ~ 21.4
5.677 ~ 5.683	16.42 ~ 16.423	162.0125 ~ 167.17	2310 ~ 2390		22.01 ~ 23.12
6.215 ~ 6.218	16.69475 ~ 16.69525	167.72 ~ 173.2	2483.5 ~ 2500		23.6 ~ 24.0
6.26775 ~ 6.26825	16.80425 ~ 16.80475	240 ~ 285	2655 ~ 2900		31.2 ~ 31.8
6.31175 ~ 6.31225	25.5 ~ 25.67	322 ~ 335.4	3260 ~ 3267		36.43 ~ 36.5
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3332 ~ 3339		Above 38.6

7.3 Test Procedures

7.3.1 Test Procedures for Radiated Spurious Emissions

- The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 1 or 3 meter away from the interference-receiving antenna.
- 3. For measurements above 1GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.
- 4. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 6. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 7. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Measurement Instrument Setting

- Frequencies less than or equal to 1 000 MHz
 The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- Frequencies above 1 000 MHz

Peak Measurement

RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Sweep time = Auto, Trace mode = Max Hold until the trace stabilizes

Average Measurement> 1GHz

RBW = 1MHz, VBW = Reduce the video bandwidth until no significant variations in the displayed signal are observed in subsequent traces, provided the video bandwidth is no less than 1 Hz. (Actual VBW setting: 30Hz) Detector = Peak, Sweep Time = Auto, Trace Mode = Max Hold until the trace stabilizes

7.3.2 Test Procedures for Conducted Spurious Emissions

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. The **reference level** of the fundamental frequency was measured with the spectrum analyzer using RBW = 100 kHz, VBW = 300 kHz.
- 3. The conducted spurious emission was tested each ranges were set as below.

Frequency range : 9 kHz ~ 30 MHz RBW = 100 kHz, VBW = 300 kHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40001

Frequency range : 30 MHz ~ 10 GHz RBW = 1 MHz, VBW = 3 MHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40001

LIMIT LINE = 20 dB below of the reference level of above measurement procedure Step 2. (RBW = 100 kHz, VBW = 300 kHz)

If the emission level with above setting was close to the limit (ie, less than 3 dB margin) then zoom scan is required using RBW = 100 kHz, VBW = 300 kHz, SPAN = 100 MHz and BINS = 2001 to get accurate emission level within 100 kHz BW.

Also the path loss for conducted measurement setup was used as described on the Appendix I of this test report.

7.4 Test Results

7.4.1 Radiated Emission

<u>Test Notes.</u>

1. The radiated emissions were investigated 9 kHz to 10 GHz. And no other spurious and harmonic emissions were found below listed frequencies.

2. Information of Distance Correction Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

In this case, the distance correction factor is applied to the result.

- Calculation of distance factor

At frequencies below 30 MHz = 40 log(tested distance / specified distance)

At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied. 3. Sample Calculation.

Margin = Limit – Result / Result = Reading + TF+ DCCF + DCF / TF = AF + CL + HL + AL – AG

Where, TF = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, HL = High pass filter Loss,

AL = Attenuator Loss, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

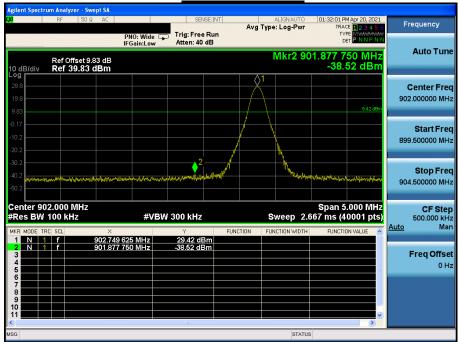
Radiated Emissions data

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2 708.100	Н	Х	PK	51.04	6.11	N/A	57.15	74.00	16.85
2 708.265	Н	Х	AV	41.15	6.11	N/A	47.26	54.00	6.74
3 610.732	Н	Y	PK	53.13	0.64	N/A	53.77	74.00	20.23
3 610.948	Н	Y	AV	47.16	0.64	N/A	47.80	54.00	6.20
5 416.586	Н	Y	PK	53.82	3.32	N/A	57.14	74.00	16.86
5 416.530	Н	Y	AV	48.14	3.32	N/A	51.46	54.00	2.54

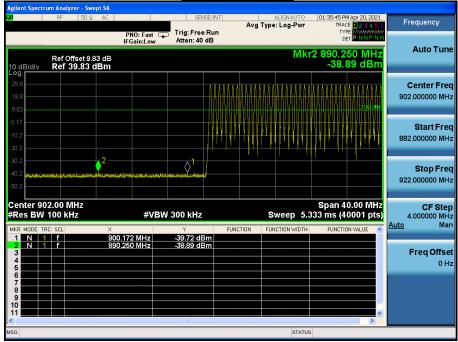
Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2 745.740	Н	Х	PK	50.88	5.98	N/A	56.86	74.00	17.14
2 745.734	Н	Х	AV	41.20	5.98	N/A	47.18	54.00	6.82
3 660.980	Н	Y	PK	51.35	0.74	N/A	52.09	74.00	21.91
3 661.022	Н	Y	AV	43.39	0.74	N/A	44.13	54.00	9.87
7 321.904	Н	Z	PK	47.65	8.20	N/A	55.85	74.00	18.15
7 321.961	Н	Z	AV	37.75	8.20	N/A	45.95	54.00	8.05


Highest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2 781.837	Н	Х	PK	49.91	5.99	N/A	55.90	74.00	18.10
2 781.762	Н	Х	AV	40.22	5.99	N/A	46.21	54.00	7.79
3 709.004	Н	Y	PK	50.77	0.84	N/A	51.61	74.00	22.39
3 708.987	Н	Y	AV	43.54	0.84	N/A	44.38	54.00	9.62
7 418.194	Н	Z	PK	47.50	8.19	N/A	55.69	74.00	18.31
7 418.005	Н	Z	AV	37.03	8.20	N/A	45.23	54.00	8.77

Lowest Channel


7.4.2 Conducted Spurious Emissions

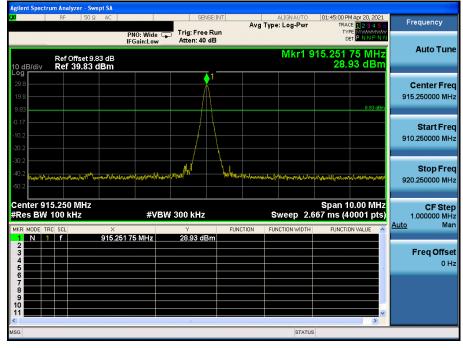
Low Band-edge

Low Band-edge

Hopping mode

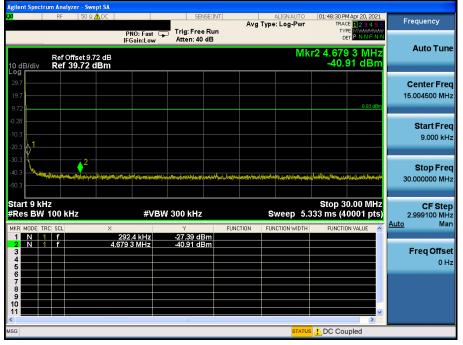
Conducted Spurious Emissions

Lowest Channel


RF 50 Ω	2 🛕 DC	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	01:39:22 PM Apr 20, 2021 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast IFGain:Low		Avg Type. Log-Fwi	TYPE MWWWWW DET P N N P N N	
Ref Offset 9. D dB/div Ref 39.72	72 dB		Mk	r2 3.206 8 MHz -40.30 dBm	Auto Tune
9.7				9.42 dBm	Center Fre 15.004500 MH
0.3					Start Fre 9.000 kH
0.3 2 0.3 4 2 0.3 6 2 0.3 6 2 0.3 6 2 0.3 6 2 0.4 10 0.4 1	การแบบระสร้างกับสร้างกับสายสร้างสร้างสร้างสร้างสร้าง	gta African Janima Parla Angeli Parla	heisen,miljester Heiser vor verheiter mit sont met der State	all and a state of the state of	Stop Fre 30.000000 M⊦
tart 9 kHz Res BW 100 kHz	#V	BW 300 kHz	Sweep 5.	Stop 30.00 MHz 333 ms (40001 pts)	CF Ste 2.999100 MH Auto Ma
KKR MODE TRC SCL 1 N 1 f 2 N 1 f 3	× 281.9 kHz 3.206 8 MHz	Y F -26.51 dBm -40.30 dBm	UNCTION FUNCTION WIDTH	FUNCTION VALUE	Freq Offse
6 7 8 9 0 0					
G			STATU	DC Coupled	

	RF	50 Ω	AC		SEN	SE:INT		ALIGN AUTO		M Apr 20, 2021	Frequency
				PNO: Fast	Trig: Free	Run	Avg T	ype:Log-Pwr	TY	CE 123456 PE MWWWWW	rrequency
				IFGain:Low	Atten: 40	dB				ET P N N P N N	Auto Tu
) dB/div	Ref Off Ref 40							Mkr		13 GHz 77 dBm	Auto Tu
og 10.5	\Diamond^{1}										Center Fr
20.5											5.015000000 G
0.5										9.42 dBm	
510											Otherst En
.49											Start Fr 30.000000 M
9.5				<mark>23</mark>			<mark>4</mark>				30.00000 W
9.5 Hardware		a para para di	and the second		and a dama to the second second	- (Principality)	and the second second	Alter and the second second second		al	
9.5		and a state of the									Stop Fr
9.5											10.00000000 G
tart 30 MI									Oton 40	.000 GHz	
Res BW 1		z		#VB\	V 3.0 MHz			Sweep 18			CF St 997.000000 M
KR MODE TRC	SCL		×		Y	FU	NCTION	FUNCTION WIDTH		DN VALUE	<u>Auto</u> M
1 N 1 2 N 1	f f			2.62 MHz 3 65 GHz	29.46 dE -25.17 dE						
3 N 1	f		3.29	3 68 GHz	-24.90 dE	m					Freq Offs
4 N 1 5	f		5.88	5 13 GHz	-25.77 dE	m				=	0
6										_	
8											
0											
1					ш					>	
G								STATUS			

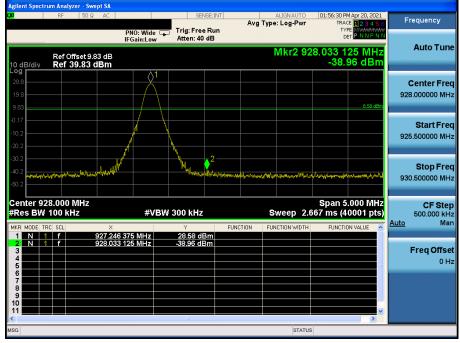
Dt&C


Reference for limit

Middle Channel

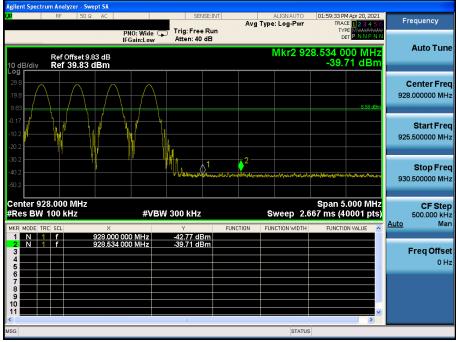
Middle Channel

Conducted Spurious Emissions


Ref Offset 10.51 dB IWKr4 5.597 37 GHz 0.00 dB/div Ref 40.51 dBm -26.16 dBm 0.00 dB/div -26.16 dBm -26.10 dBm 0.01 dB/div -26.10 dBm -26.10 dBm 0.02 dB/div -26.10 dBm -26.10 dBm 0.01 dB/div -26.10 dBm -26.10 dB		RF	50 Ω	AC			SENSE:I	NT		ALIGN AUTO	01:53:43 P	M Apr 20, 2021		
Ref Offset 10.51 dB MKR4 5.357 37 GHz 0 dB/div Ref 40.51 dBm -26.16 dBm 90.5 -26.16 dBm -26.16 dBm 90.5 -26.16 dBm -26.16 dBm 90.6 -26.16 dBm -26.16 dBm 90.6 -26.16 dBm -26.16 dBm 90.6 -26.16 dBm -26.16 dBm 91.6 -26.16 dBm -26.16 dBm 92.5 -26.16 dBm -26.16 dBm 92.5 -26.16 dBm -26.16 dBm 93.6 -26.16 dBm -26.16 dBm 94.7 -26.16 dBm -26.16 dBm 95.7 -26.16 dBm -26.16 dBm 95.7 -26.16 dBm -26.16 dBm 1 1 1 -26.16 dBm 1 1 1 -26.16 dBm 1 1 -26.16 dBm -26.16 dBm					PNO: Fast IFGain:Low			in	Avg Ty	pe: Log-Pwr	TY	PE MIAMANAN		
305 205	0 dB/div									Mkr			Au	to Tun
2.49 2 3 4 3 4 3	20.5											8.93 dBm		
9.5 Stop	.49				$2 2^3$			⁴						art Fre 000 MH
KR MODE #VBW 3.0 MHz Sweep 18.67 ms (40001 pts) 997.00000 KR MODE FUNCTION FUNCTION FUNCTION WIDTH FUNCTION VALUE Auto 1 N 1 F 915.34 MHz 29.85 dBm Auto 2 N 1 F 3.004 86 GHz -25.84 dBm Function Function Value Final State 3 N 1 f 3.284 427 GHz -25.21 dBm Final State Freq 0 4 N 1 f 5.557 37 GHz -26.16 dBm Final State Freq 0	9.5													op Fre 1000 GI
CR MODE THC Sct. X Y FUNCTION FUNCTION FUNCTION VALUE Y 1 N 1 f 915.34 MHz 29.85 dBm 29.85 dBm 20.85 dBm 29.85 dBm 20.85 dBm			z		#VE	3W 3.0 I	MHz			Sweep 18			997.000	
3 N 1 f 3.264 27 GHz -25.21 dBm Freq 0 4 N 1 f 5.557 37 GHz -26.16 dBm	1 N 1	f		91		29.	85 dBm	FUNC	CTION	UNCTION WIDTH	FUNCTI	ON VALUE	Auto	M
	3 N 1 4 N 1 5	f		3.26	4 27 GHz	-25.	21 dBm						Fre	q Offs 0 I
	7 1 8 1 9 1													
	1					1	U .							

ie Emiesione

🛈 Dt&C


High Band-edge

Highest Channel

High Band-edge

Hopping mode

Conducted Spurious Emissions

Highest Channel

	RF 50 Ω 🧥	DC	SENSE:IN		ALIGN AUTO Type: Log-Pwr	02:02:27 PM Apr 20, 2 TRACE 123	
		PNO: Fast IFGain:Low	Trig: Free Run Atten: 40 dB		, the road M	TYPE MUMAN DET P N N	diata:
	ef Offset 9.72 ef 39.72 de	dB			Mk	r2 4.527 1 M -40.87 dB	
29.7 19.7 9.72						8.55	Center Fre 15.004500 MH
0.28 10.3 20.3 1							Start Fre 9.000 kH
40.3 50.3	2	عن ^{ير} المراجع ا	^ก ารองใช้กระไข่สุด เหร็ด เหร็ดไข่ที่ได้ เกิดไประไป เรื่อง	oyal ya dha filman da iy a falaa d	ki taongan ayon yi singi da isi pelapa	argantenistis di Matauna inna	Stop Fre 30.000000 MH
tart 9 kHz Res BW 10		#VI	3W 300 kHz		Sweep 5.3	Stop 30.00 № 333 ms (40001 µ	
KR MODE TRC S	f f	× 281.9 kHz 4.527 1 MHz	Y -26.97 dBm -40.87 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	Freq Offs
6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9							
1			III		STATUS	DC Coupled	>

	RF	50 Ω	AC		SENS	E:INT		ALIGN AUTO	02:03:38 P	M Apr 20, 2021	_
				PNO: Fast	Trig: Free	Run	Avg T	ype: Log-Pwr	TY	CE 123456 PE MWWWWW	Frequency
				IFGain:Low	Atten: 40				D	ET P NNP NN	
dB/div		fset 10.9 0.51 d						Mkr		19 GHz 70 dBm	Auto Tur
)g).5	^1										Center Fre
0.5											5.015000000 Gi
0.5										8.58 dBm	
10											Start Fre
49											30.000000 M
9.5		<mark>2</mark>		() ³			_ \ 4				
9.5 Hereite		a de Aleman Secondaria									Stop Fr
9.5											10.000000000 G
9.5											
art 30 M										.000 GHz	CF Ste
Res BW	1.0 MH	Z		#VBV	/ 3.0 MHz			Sweep 18	.67 ms (4	0001 pts)	997.000000 M Auto M
R MODE TR			×	7.30 MHz	۲ 29.20 dB		NCTION	FUNCTION WIDTH	FUNCTI	ON VALUE	Auto Mi
2 N 1	f		1.70	4 46 GHz	-27.01 dB	m					Freq Offs
4 N 1	f			6 03 GHz 2 19 GHz	-24.63 dB -24.70 dB						01
5										=	
7											
1										~	
			_					STATUS			

8. Transmitter AC Power Line Conducted Emission

8.1 Test Setup

See test photo graphs for the actual connections between EUT and support equipment.

8.2 Limit

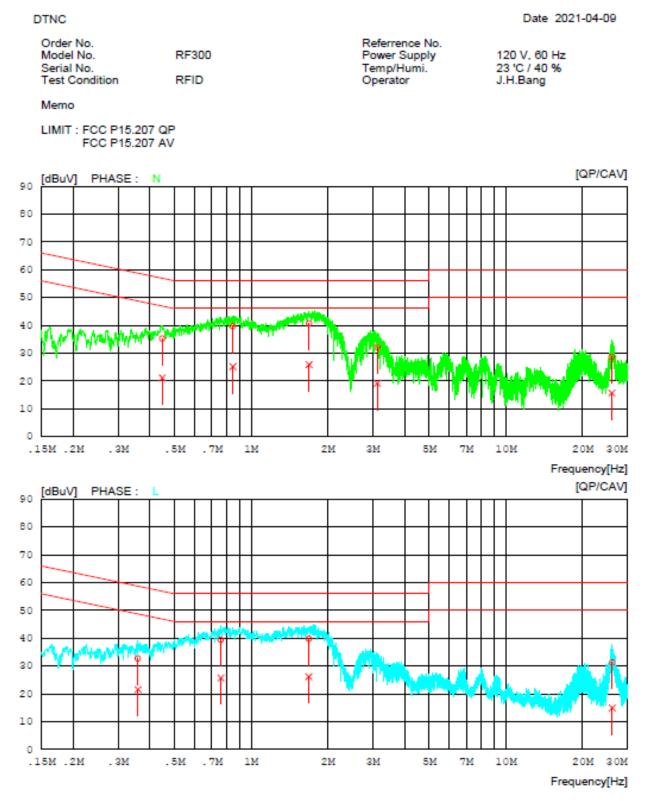
According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

	Conducted Limit (dBuV)						
Frequency Range (MHz)	Quasi-Peak	Average					
0.15 ~ 0.5	66 to 56 *	56 to 46 *					
0.5 ~ 5	56	46					
5 ~ 30	60	50					

* Decreases with the logarithm of the frequency

8.3 Test Procedures


Conducted emissions from the EUT were measured according to the ANSI C63.10.

- 1. The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

8.4. Test Results

AC Line Conducted Emissions (Graph) = Middle Channel

Results of Conducted Emission

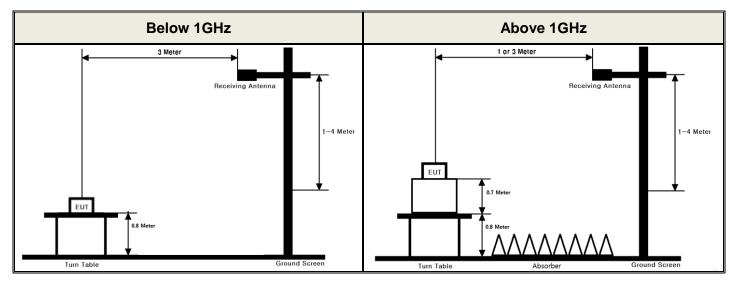
AC Line Conducted Emissions (List) = Middle Channel

Results of Conducted Emission

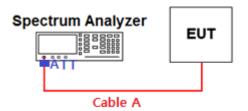
DTN	С							Date	2021-04-09	
Mo Sei	Order No. Model No. Serial No. Test Condition		RF300 RFID	RF300			e No. pply ni.		120 V, 60 Hz 23 'C / 40 % J.H.Bang	
Me	mo									
LIN	IT	FCC P15.								
1	ΝО	FREQ	READING QP CAV [dBuV][dBuV]	C.FACTOR] [dB]	RESULT QP CAV [dBuV][dBuV	QP		MARGIN QP CAV] [dBuV] [dBuV	PHASE /]	
	4 5 2 6 7 8	0.84801 1.68849 3.12959 26.02653 0.36002 0.76016 1.68365	18.08 5.09 22.6811.60 29.4215.77	9.96 9.97 10.01 10.08 10.60 9.95 9.96 10.02 10.55	35.2121.10 39.6225.21 40.7025.89 32.1119.13 28.6815.69 32.6321.55 39.3825.73 39.6926.20 31.1914.93	56.91 56.00 56.00 60.00 58.73 56.00 56.00 56.00 60.00	46.91 46.00 46.00 50.00 48.73 46.00 46.00 50.00	21.7025.81 16.3820.79 15.3020.11 23.8926.87 31.3234.31 26.1027.18 16.6220.27 16.3119.80 28.8135.07	N N N L L L L	

9. Antenna Requirement

According to FCC 47 CFR §15.203


"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

The antenna employs a unique antenna connector. (Refer to Internal Photo file.) Therefore this E.U.T Complies with the requirement of §15.203


APPENDIX I

Test set up diagrams

Radiated Measurement

Conducted Measurement

Path loss information

Frequency (MHz)	Path Loss (dB)	Frequency (MHz)	Path Loss (dB)
30	9.72	1 000	9.89
500	9.78	5 000	10.10
902.75 & 915.25 & 927.25	9.83	10 000	10.51
-	-	-	-

Note 1 : The path loss from EUT to Spectrum analyzer were measured and used for test.

Path loss (S/A's Correction factor) = Cable A + Attenuator

APPENDIX II

Unwanted Emissions (Radiated) Test Plot

Highest & Y & Ver

