TEST REPORT

Dt&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel: 031-321-2664, Fax: 031-321-1664

1. Report No: DRTFCC2307-0103(1)

2. Customer

• Name (FCC): Point Mobile Co., LTD. / Name (IC): POINTMOBILE CO., LTD

Address (FCC): B-9F Kabul Great Valley, 32, Digital-ro 9-gil, Geumcheon-gu, Seoul, South Korea, 08512
 Address (IC): B-9F Kabul Great Valley, 32, Digital-ro 9-gil, Geumcheon-gu Seoul Korea (Republic Of)

3. Use of Report: FCC & IC Certification

4. Product Name / Model Name : MOBILE COMPUTER / PM86W

FCC ID: V2X-PM86W IC: 10664A-PM86W

5. FCC Regulation(s): Part 15.225

IC Standard(s): RSS-210 Issue 10, RSS-Gen Issue 5

Test Method used: ANSI C63.10-2013

6. Date of Test: 2023.05.26 ~ 2023.06.22, 2023.07.04

7. Location of Test: Permanent Testing Lab On Site Testing

8. Testing Environment: See appended test report.

9. Test Result: Refer to the attached Test Result

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

This test report is not related to KOLAS accreditation.

Affirmation Name : SeungMin Gil Technical Manager

2023.07.27.

Dt&C Co., Ltd.

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

FCC ID: V2X-PM86W

IC: 10664A-PM86W

Test Report Version

Test Report No.	Date	Description	Revised by	Reviewed by
DRTFCC2307-0103	Jul. 20, 2023	Initial issue	SeungMin Gil	JaeJin Lee
DRTFCC2307-0103(1)	Jul. 27, 2023	Revised the section 1.1	SeungMin Gil	JaeJin Lee

CONTENTS

1. General Information	4
1.1 Explanations for Reference Test Data	4
1.1.1. Introduction	4
1.1.2. Explain the Differences	4
1.1.3. Spot Check Verification Data	4
1.1.4. Reference Section	5
1.2. Description of EUT	6
1.3. Declaration by the applicant / manufacturer	6
1.4. Testing Laboratory	7
1.5. Testing Environment	7
1.6. Measurement Uncertainty	7
1.7. Test Equipment List	8
2. Test Methodology	9
2.1. EUT Configuration	9
2.2. EUT Exercise	9
2.3. General Test Procedures	9
2.4. Description of Test Mode	9
2.5. Tested frequency	9
3. Antenna Requirements	10
4. Summary of Test Result	11
5. Test Result	12
5.1. 20dB bandwidth & Occupied Bandwidth	12
5.2. In-band emissions	13
5.3. Out-of-band emissions	15
5.4. Frequency Stability	17
5.5. AC Power-Line Conducted Emissions	18

Pages: 4 / 20

1. General Information

1.1 Explanations for Reference Test Data

1.1.1. Introduction

This report includes the NFC test data of FCC ID: V2X-PM86 / IC: 10664A-PM86 with reference to KDB 484596 D01v01. The applicant takes full responsibility that the test data as reference section below represents compliance for FCC ID: V2X-PM86W / IC: 10664A-PM86W.

Reference FCC ID / IC	Exhibit type	Separated FCC ID / IC		
FCC ID: V2X-PM86 /	Original Grant /	FCC ID: V2X-PM86W /		
IC: 10664A-PM86	New Single Certification	IC: 10664A-PM86W		

Report No.: DRTFCC2307-0103(1)

1.1.2. Explain the Differences

FCC ID: V2X-PM86W / IC: 10664A-PM86W is same the internal printed circuit board with FCC ID: V2X-PM86 / IC: 10664A-PM86. For FCC ID: V2X-PM86W / IC: 10664-PM86W, WWAN transmitter has been removed. (It does not changed the SW/HW component of NFC.)

1.1.3. Spot Check Verification Data

Test data from the variant device(FCC ID: V2X-PM86W / IC: 10664A-PM86W)

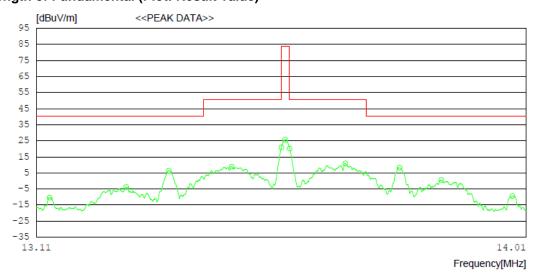
Test item	Freq. [MHz]	Reading Level [dBuV]	TF [dB/m]	Field Strength @3 m [dBuV/m]	Field Strength @30 m [dBuV/m]	Limit [dBuV/m]	Margin [dB]
Field strength of Fundamental (In-band emissions)	13.560	54.0	11.2	65.2	25.2	84.0	58.8

Note 1. This test item was performed at 3 m and the data were extrapolated to the specified measurement distance of 30 m using the square of an inverse linear distance extrapolation factor (40 dB/decade) as specified in §15.31(f)(2).

• Extrapolation Factor = 40 log(3m / 30m) = -40

Note 2. All data were recorded using a spectrum analyzer employing a peak detector.

If PK results were meet Quasi-peak limit, Quasi-peak measurements were omitted.


Note 3. Sample Calculation.

Margin = Limit - Field Strength @ 30 m / Field Strength @ 30 m = Field Strength @ 3 m - 40 dB

I TF = AF + CL Field Strength @ 3 m = Reading + TF

Where, TF = Total Factor, AF = Antenna Factor, CL = Cable Loss

Field strength of Fundamental (Plot: Result value)

This test report is prohibited to copy or reissue in whole or in part without the approval of Dt&C Co., Ltd.

FCC ID: V2X-PM86W

Pages: 5 / 20

Comparison results between reference device and variant device

Equipment Class	FCC Part/ RSS Std.	Mode	TX Freq. (MHz)	Test item	Detector	Refere FCC ID: V2) IC: 10664A	K-PM86 /	Separat FCC ID: V2X-I IC: 10664A-F	PM86W /	Limit (dBuV/m)	Deviation
(capability)	KSS Std.		(WITZ)		Mode	Frequency (MHz)	Result (dBuV/m)	Frequency (MHz)	Result (dBuV/m)	(dBuV/III)	(dB)
DXX (NFC)	15.225 / RSS-210	Continuous transmitting	13.56	Field strength @3m	Peak	13.56	65.6	13.56	65.2	84.0	-0.4

Note1: The spot check were performed based on worst-case results reported in the original test report.

The spot check test results show good correlation between two products.

1.1.4. Reference Section

Reference FCC ID: V2X-PM86 / IC: 10664A-PM86

FCC Equipment Class	FCC Part/ RSS Std.	Capability	Band(MHz)	Exhibit type	Report title	Reference Sections
DXX	15.225 / RSS-210	NFC	13.56	Original Grant / New Single Certification	DXX	All

FCC ID: V2X-PM86W

1.2. Description of EUT

Equipment Class	Low Power Communications Device Transmitter (DXX)
Product Name	MOBILE COMPUTER
Model Name	PM86W
Add Model Name	-
Firmware Version Identification Number	86.00
EUT Serial Number (Reference product)Note1	Radiated: 23070A0126
EUT Serial Number (Separated product) Note2	Radiated: 23070A0070
Power Supply	DC 3.8 V
Frequency Range	13.560 MHz
Modulation Type	ASK
Antenna Type	LDS Antenna

Note1: Reference FCC ID: V2X-PM86 / IC: 10664A-PM86 Note2: Separated FCC ID: V2X-PM86W / IC: 10664A-PM86W

1.3. Declaration by the applicant / manufacturer

N/A

TRF-RF-203(09)210316 Pages: 6 / 20

FCC ID: V2X-PM86W

1.4. Testing Laboratory

Dt&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042.

The test site complies with the requirements of § 2.948 according to ANSI C63.4-2014.

- FCC & IC MRA Designation No.: KR0034

- ISED#: 5740A

www.dtnc.net	www.dtnc.net					
Telephone	:	+ 82-31-321-2664				
FAX	:	+ 82-31-321-1664				

1.5. Testing Environment

Ambient Condition	
Temperature	+21 °C ~ +24 °C
 Relative Humidity 	40 % ~ 43 %

1.6. Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014 and ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Parameter	Measurement uncertainty
AC power-line conducted emission	3.4 dB (The confidence level is about 95 %, k = 2)
Radiated emission (Below 1 GHz)	4.8 dB (The confidence level is about 95 %, k = 2)

FCC ID: **V2X-PM86W**IC: **10664A-PM86W**

1.7. Test Equipment List

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	22/06/24 23/06/23	23/06/24 24/06/24	MY46471622
Spectrum Analyzer	Agilent Technologies	N9020A	22/06/24 23/06/23	23/06/24 24/06/23	US47360812
DC Power Supply	Agilent Technologies	66332A	22/06/24 23/06/23	23/06/24 24/06/23	US37474125
Multimeter	FLUKE	17B+	22/12/16	23/12/16	36390701WS
Signal Generator	Rohde Schwarz	SMBV100A	22/12/16	23/12/16	255571
Thermohygrometer	BODYCOM	BJ5478	22/12/16	23/12/16	120612-1
Thermohygrometer	BODYCOM	BJ5478	22/12/16	23/12/16	120612-2
Loop Antenna	ETS-Lindgren	6502	22/04/22	24/04/22	00203480
Hybrid Antenna	Schwarzbeck	VULB 9160	22/12/16	23/12/16	3362
PreAmplifier	H.P	8447D	22/12/16	23/12/16	2944A07774
Temp & Humi Test Chamber	ESPEC	SU-261	22/06/22 23/06/23	23/06/22 24/06/23	92006578
EMI Test Receiver	ROHDE&SCHWARZ	ESCI7	23/01/31	24/01/31	100910
PULSE LIMITER	Rohde Schwarz	ESH3-Z2	22/08/22	23/08/22	101333
LISN	SCHWARZBECK	NSLK 8128 RC	22/10/26	23/10/26	8128 RC-387
Thermo Hygro Meter	TESTO	608-H1	23/01/13	24/01/13	45084791
Cable	HUBER+SUHNER	SUCOFLEX100	23/01/04	24/01/04	M-01
Cable	HUBER+SUHNER	SUCOFLEX100	23/01/04	24/01/04	M-02
Cable	JUNKOSHA	MWX241/B	23/01/04	24/01/04	M-03
Cable	JUNKOSHA	J12J101757-00	23/01/04	24/01/04	M-07
Cable	HUBER+SUHNER	SUCOFLEX106	23/01/04	24/01/04	M-09
Cable	Dt&C	Cable	23/01/04	24/01/04	RFC-69
Test Software	tsj	Radiated Emission Measurement	NA	NA	Version 2.00.0147
Test Software	tsj	Noise Terminal Measurement	NA	NA	Version 2.00.0185

Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017.

Note2: The cable is not a regular calibration item, so it has been calibrated by Dt&C itself.

FCC ID: V2X-PM86W

2. Test Methodology

The tests were performed according to the ANSI C63.10-2013.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the test mode to fix the TX frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the FCC and IC rules.

2.3. General Test Procedures

Conducted Emissions

According to the requirements in Section 6.2 of ANSI C63.10, the EUT is placed on the wooden table, which is 0.8 m above ground plane and the conducted emissions from the EUT are measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and Average detector.

Radiated Emissions

The EUT is placed on a non-conductive table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the highest emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.3 of ANSI C63.10

2.4. Description of Test Mode

Test mode1	Continuous transmitting mode

The EUT has been tested with the operating condition for maximizing the emission characteristics.

2.5. Tested frequency

Channel	Tested Frequency(MHz)
Lowest	13.560
Middle	-
Highest	-

TRF-RF-203(09)210316 Pages: 9 / 20

FCC ID: V2X-PM86W

3. Antenna Requirements

An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The antenna is attached on the device by means of unique coupling method. Therefore this E.U.T complies with the requirement of Part 15.203

TRF-RF-203(09)210316 Pages: 10 / 20

4. Summary of Test Result

FCC part section(s)	RSS section(s)	Test Description	Limit	Test condition	Status Note 1
15.215(c)	-	20 dB Bandwidth	-		С
-	RSS-Gen [6.7]	Occupied Bandwidth	-		С
15.225(a)	RSS-210 [B6(a)]	In-Band Emissions	15,848 μV/m @ 30 m 13.553 MHz – 13.567 MHz		C Note 3
15.225(b)	RSS-210 [B6(b)]	In-Band Emissions	334 μV/m @ 30 m 13.410 MHz – 13.553 MHz 13.567 MHz – 13.710 MHz	Radiated	C Note 3
15.225(c)	RSS-210 [B6(c)]	In-Band Emissions	106 μV/m @ 30 m 13.110 MHz – 13.410 MHz 13.710 MHz – 14.010 MHz		C Note 3
15.225(d) 15.209	RSS-210 [B6(d)] RSS-Gen [8.9]	Out-of Band Emissions	Emissions outside of the specified band (13.110 MHz - 14.010 MHz) must meet the radiated limits detailed in 15.209 (Refer to section 5.3)		C Note 3
15.225(e)	RSS-210 [B6]	Frequency Stability	±0.01 % of operating frequency	Temp & Humid Test Chamber	С
15.207	RSS-Gen [8.8]	AC Conducted Emissions	Part 15.207 (Refer to section 5.5)	AC Line Conducted	С
15.203	-	Antenna Requirements	Part 15.203 (Refer to section 3)	-	С

Note 1: C = Comply NC = Not Comply NT = Not Tested NA = Not Applicable

TRF-RF-203(09)210316

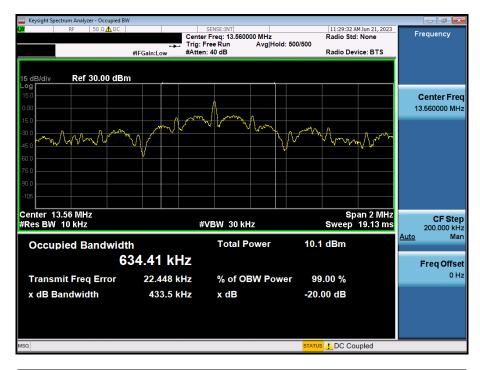
Pages: 11 / 20

Note 2: For radiated emission tests below 30 MHz were performed on semi-anechoic chamber which is correlated with OATS.

Note 3: This test item was performed in three orthogonal EUT positions and the worst case data was reported.

Report No.: DRTFCC2307-0103(1)

5. Test Result

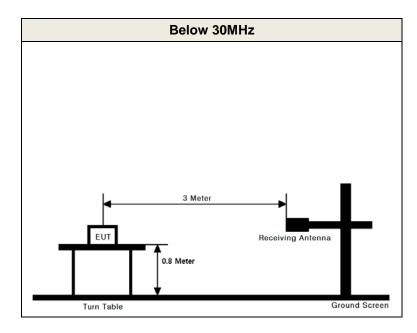

5.1. 20dB bandwidth & Occupied Bandwidth

- Procedure: ANSI C63.10-2013 Section 6.9.2, RSS-Gen [6.7]

The 20 dB Bandwidth is measured with a spectrum analyzer connected via a receive antenna placed near the EUT while the EUT is operating in transmission mode.

- Center frequency = EUT channel center frequency
- 2. Span = $2 \sim 5$ times the OBW
- 3. RBW = 1 % ~ 5 % OBW
- 4. VBW ≥ 3 x RBW
- 5. Detector = Peak
- 6. Trace = Max hold
- 7. The trace was allowed to stabilize
- 8. Determine the reference value = Set the spectrum analyzer marker to the highest level of the displayed trace
- 9. Using the marker-delta function of the instrument, determine the "-xx dB down amplitude" using [(reference value) xx].
- 10. Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth.

- Measurement Data: Comply


Tested Frequency (MHz)	20 dB BW (MHz)	Occupied BW (MHz)
13.560	0.434	0.634

- Minimum Standard: NA

5.2. In-band emissions

- Test Configuration

- Procedure: The radiated emission was tested according to the section 6.4 of the ANSI C63.10-2013.

The EUT was placed on a 0.8 m high non-conductive table and it was placed at 3m distance from the antenna. Measurements were performed for each of the three antenna orientations. (ie. parallel, perpendicular, and ground-parallel)

Also, measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

RBW = As specified in below table, VBW \geq 3 x RBW, Sweep = Auto, Detector = Peak Trace mode = Max Hold until the trace stabilizes.

Frequency	RBW
9 - 150 kHz	200 - 300 Hz
0.15- 30 MHz	9 - 10 kHz
30 - 1 000 MHz	100 - 120 kHz
> 1000 MHz	1 MHz

- Minimum Standard: Part 15.225(a), (b), (c) & RSS-210 [B6(a), (b), (c)]

Frequency Band (MHz)	Limit at 30 m measurement distance		
Trequency Bana (Minz)	(uV/m)	(dBuV/m)	
13.553 - 13.567	15,848	84.0	
13.410 - 13.553 13.567 - 13.710	334	50.5	
13.110 - 13.410 13.710 - 14.010	106	40.5	

FCC ID: V2X-PM86W

- Measurement Data:

Test Frequency Band [MHz]	Freq. [MHz]	EUT Axis.	ANT (Note 1)	Reading Level [dBuV]	TF [dB/m]	Field Strength @3 m [dBuV/m]	Field Strength @30 m [dBuV/m]	Limit [dBuV/m]	Margin [dB]
13.110 ~ 13.410	13.348	Z	Р	35.0	11.2	46.2	6.2	40.5	34.3
13.410 ~ 13.553	13.553	Z	Р	49.6	11.2	60.8	20.8	50.5	29.7
13.553 ~ 13.567	13.560	Z	р	54.4	11.2	65.6	25.6	84.0	58.4
13.567 ~ 13.710	13.568	Z	Р	48.8	11.2	60.0	20.0	50.5	30.5
13.710 ~ 14.010	13.772	Z	Р	37.0	11.2	48.2	8.2	40.5	32.3

Note 1. Loop antenna orientation

Note 2. This test item was performed at 3 m and the data were extrapolated to the specified measurement distance of 30 m using the square of an inverse linear distance extrapolation factor (40 dB/decade) as specified in §15.31(f)(2).

Note 3. All data were recorded using a spectrum analyzer employing a peak detector.

If PK results were meet Quasi-peak limit, Quasi-peak measurements were omitted.

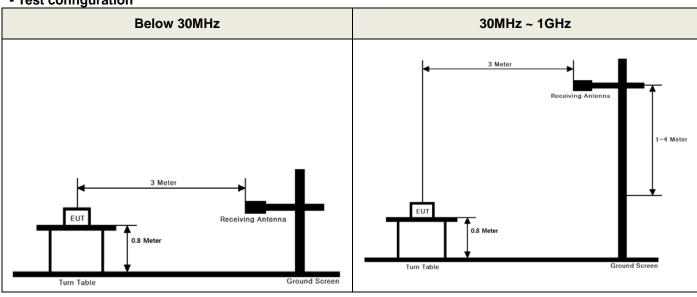
Note 4. Sample Calculation.

Margin = Limit - Field Strength @ 30 m / Field Strength @ 30 m = Field Strength @ 3 m - 40 dB

Field Strength @ 3 m = Reading + TF I TF = AF + CL

Where, TF = Total Factor, AF = Antenna Factor, CL = Cable Loss

[&]quot;P": Parallel, "V": perpendicular, "G": ground-parallel


Extrapolation Factor = 40 log(3m / 30m) = -40

IC: 10664A-PM86W

5.3. Out-of-band emissions

- Test configuration

- Procedure: The radiated emission was tested according to the section 6.4, 6.5 of the ANSI C63.10-2013.

For below 30 MHz, measurements were performed as descripted in section 4.2.3. For above 30 MHz;

The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the highest emission, the relative positions of the EUT were rotated through three orthogonal axes.

RBW = As specified in below table, VBW ≥ 3 x RBW, Sweep = Auto, Detector = Peak

Trace mode = Max Hold until the trace stabilizes.

Frequency	RBW
9 - 150 kHz	200 - 300 Hz
0.16- 30 MHz	9 - 10 kHz
30 - 1 000 MHz	100 - 120 kHz
> 1000 MHz	1 MHz

- Minimum Standard: Part 15.209, 225(d) & RSS-210[B6(d)], RSS-Gen[8.9]

The field strength of any emissions appearing outside of the 13.110 - 14.010 MHz band shall not exceed the general radiated emission limits as below.

Frequency (MHz)	FCC Limit (uV/m)	IC Limit (μA/m)	Measurement Distance (m)
0.009 - 0.490	2 400 / F (kHz)	6.37/F (F in kHz)	300
0.490 - 1.705	2 4000 / F (kHz)	63.7/F (F in kHz)	30
1.705 – 30.0	30	0.08	30

Frequency (MHz)	FCC Limit (uV/m)	IC Limit (uV/m)	Measurement Distance (m)
30 ~ 88	100 **	100	3
88 ~ 216	150 **	150	3
216 ~ 960	200 **	200	3
Above 960	500	500	3

^{**}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

This test report is prohibited to copy or reissue in whole or in part without the approval of Dt&C Co., Ltd.

- Measurement Data:

Frequency [MHz]	EUT Axis.	ANT (Note 1)	Reading [dBuV]	TF [dB/m]	DCF [dB]	Electric Field Strength [dBuV/m]	Magnetic Field Strength [dBuA/m]	Limit [dBuV/m]	Limit [dBuA/m]	Margin [dB]
14.200	Z	Р	23.4	11.2	-40.0	-5.4	-56.9	29.5	-21.9	34.9
27.120	Z	Р	15.2	9.3	-40.0	-15.5	-67.0	29.5	-21.9	45.0
40.670	Z	V	35.5	-8.9	NA	26.6	-	40.0	-	13.4
271.530	Z	Н	44.4	-5.5	NA	38.9	-	46.0	-	7.1
950.517	Z	V	25.7	8.5	NA	34.2	-	46.0	-	11.8
-	-	-	ı	1	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-

Note 1. No other spurious and harmonic emissions were reported greater than listed emissions above table.

Note 2. All data were recorded using a spectrum analyzer employing a peak detector.

If PK results were meet Quasi-peak limit, Quasi-peak measurements were omitted.

Note 3. Loop antenna orientation (30 MHz Below)

"P"= Parallel, "V"= perpendicular, "G"= ground-parallel

Bilog antenna polarization (30 MHz above)

"H"= Horizontal, "V"= Vertical

Note 4. Information of Distance Correction Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

In this case, the distance factor is applied to the result.

- Calculation of distance correction factor

At frequencies below 30 MHz = $40 \log(\text{ tested distance} / \text{ specified distance})$

At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.

Note 5. Sample calculation

 $Margin = Limit[dBuV/m] - Electric \ Field \ Strength$

Electric Field Strength (dBuV/m) = Reading + TF - DCF

Magnetic Field Strength (dBuA/m) = Electric Field Strength - 51.5 dB

TF = AF + CL - AG

Where, TF = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCF = Distance Factor

FCC ID: V2X-PM86W

5.4. Frequency Stability

- Procedure:

Part 15.225 requires that devices operating in the 13.553 – 13.567 MHz shall maintain the carrier frequency within 0.01 % of the operating frequency over the temperature variation of -20 degrees to + 50 degrees C at normal supply voltage.

- Measurement Data: Comply

Operating Frequency : 13,560,000 Hz

VOLTAGE (%)	POWER (V _{DC})	TEMP (°C)	Frequency (Hz)	Freq. Dev. (Hz)	Deviation (%)
100%		+20(ref)	13,559,960	-40.205	-0.000 296
100%		-20	13,560,041	41.339	0.000 305
100%		-10	13,560,039	38.675	0.000 285
100%	1	0	13,560,015	14.798	0.000 109
100%	3.80	+10	13,559,976	-23.52	-0.000 173
100%		+20	13,559,959	-40.66	-0.000 300
100%	1	+30	13,559,905	-94.798	-0.000 699
100%		+40	13,559,890	-109.651	-0.000 809
100%		+50	13,559,888	-111.84	-0.000 825
115%	4.37	20	13,559,965	-35.208	-0.000 260
Batt.End point	3.20	20	13,559,962	-38.491	-0.000 284

- Minimum Standard: Part 15. 225(e) & RSS-210 [B6]

The frequency tolerance of the carrier signal shall be maintained within ±0.01 % of the operating frequency.

TRF-RF-203(09)210316

Pages: 17 / 20

FCC ID: V2X-PM86W

5.5. AC Power-Line Conducted Emissions

- Test Requirements and limit, Part 15.207 & RSS-Gen [8.8]

An intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Francisco Paraca (MILL)	Conducted Limit (dBuV)				
Frequency Range (MHz)	Quasi-Peak	Average			
0.15 ~ 0.5	66 to 56 *	56 to 46 *			
0.5 ~ 5.0	56	46			
5 ~ 30	60	50			

^{*} Decreases with the logarithm of the frequency

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

- Test Configuration

See test photographs for the actual connections between EUT and support equipment.

- Test Procedure

Conducted emissions from the EUT were measured according to the ANSI C63.10-2013.

- 1. The test procedure is performed in a 6.5 m \times 3.5 m \times 3.5 m (L \times W \times H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) \times 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

- **Measurement Data: Comply** (refer to the next page)

FCC ID: V2X-PM86W

IC: 10664A-PM86W

21 'C / 41 %

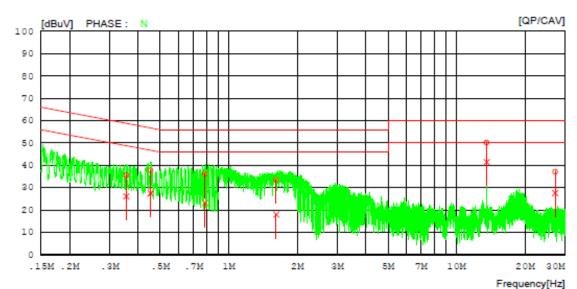
S.M.Gil

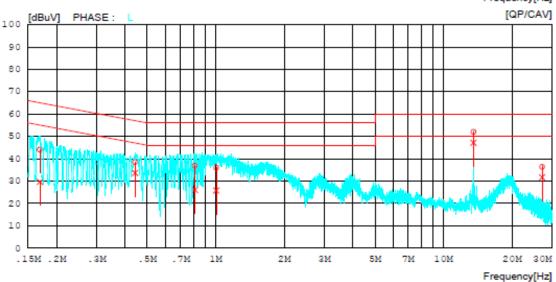
Measurement Data

Results of Conducted Emission

 DTNC
 Date 2023-05-26

 Order No.
 Referrence No.


 Model No.
 PM86
 Power Supply


 Serial No.
 Temp/Humi.

 Test Condition
 NFC
 Operator

Memo

LIMIT : FCC P15.207 AV FCC P15.207 QP

Report No.: DRTFCC2307-0103(1)

FCC ID: **V2X-PM86W**IC: **10664A-PM86W**

Measurement Data

Results of Conducted Emission

DTNC Date 2023-05-26

 Order No.
 Reference No.

 Model No.
 PM86
 Power Supply

 Serial No.
 Temp/Huming

Serial No. Temp/Humi. 21 'C / 41 % Test Condition NFC Operator S.M.Gil

Memo

LIMIT : FCC P15.207 AV FCC P15.207 QP

NC	FREQ	READING QP CAV [dBuV][dBuV	C.FACTOR] [dB]	QP CAV	QP	IMIT CAV 7][dBuV	MARGIN QP CAV] [dBuV][dBuV	PHASE
1	0.35522	25.6516.15	9.99	35.6426.14	58.84	48.84	23.20 22.70	N
2	0.45343	27.80 17.48	10.00	37.80 27.48	56.81	46.81	19.0119.33	N
3	0.78695	26.2113.14	10.00	36.2123.14	56.00	46.00	19.7922.86	N
4	1.61500	23.60 7.96	10.03	33.6317.99	56.00	46.00	22.37 28.01	N
5	13.56000	39.60 30.97	10.50	50.10 41.47	60.00	50.00	9.90 8.53	N
6	27.11980	26.54 17.00	10.64	37.18 27.64	60.00	50.00	22.82 22.36	N
7	0.16888	34.1919.78	9.90	44.0929.68	65.02	55.02	20.9325.34	L
8	0.44179	28.53 23.68	9.90	38.4333.58	57.03	47.03	18.60 13.45	L
9	0.80935	26.8616.11	9.90	36.7626.01	56.00	46.00	19.24 19.99	L
10	1.00460	26.0015.72	10.01	36.0125.73	56.00	46.00	19.9920.27	L
11	13.55960	41.65 36.74	10.33	51.98 47.07	60.00	50.00	8.02 2.93	L
12	27.12020	25.9921.37	10.37	36.3631.74	60.00	50.00	23.64 18.26	L