
IC: 10664A-PM86

Time of Occupancy (AFH) <u>Hopping mode : Enable& TM1 &DH5</u>

Time of Occupancy (AFH) <u>Hopping mode : Enable& TM1 &2-DH5</u>

Pages: 49 / 89

Report No.: DRTFCC2307-0084 IC: 10664A-PM86

Time of Occupancy (AFH)

Hopping mode: Enable& TM1 &3-DH5

TRF-RF-237(07)210316 Pages: 50 / 89

FCC ID: **V2X-PM86**IC: **10664A-PM86**

9. Unwanted Emissions

9.1. Test Setup

Refer to the APPENDIX I.

9.2. Limit

Part 15.247(d), Part 15.205, Part 15.209 & RSS-247 [5.5], RSS-Gen [8.9], RSS-Gen [8.10] In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of Part 15.247 the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

- Part 15.209 & RSS-Gen[8.9]: General requirement

Frequency (MHz)	FCC Limit (uV/m)	IC Limit (μA/m)	Measurement Distance (m)
0.009 - 0.490	2 400 / F (kHz)	6.37/F (F in kHz)	300
0.490 - 1.705	24 000 / F (kHz)	63.7/F (F in kHz)	30
1.705 – 30.0	30	0.08	30

Frequency (MHz)	FCC Limit (uV/m)	IC Limit (uV/m)	Measurement Distance (m)
30 ~ 88	100 **	100	3
88 ~ 216	150 **	150	3
216 ~ 960	200 **	200	3
Above 960	500	500	3

^{**}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §15.231 and 15.241.

FCC ID: **V2X-PM86**IC: **10664A-PM86**

- Part 15.205(a): Restricted band of operation

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.414 25 ~ 8.414 75	108 ~ 121.94	1 300 ~ 1 427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1 435 ~ 1 626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.173 5 ~ 2.190 5	12.519 75 ~ 12.520 25	149.9 ~ 150.05	1 645.5 ~ 1 646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.576 75 ~ 12.577 25	156.524 75 ~ 156.525 25	1 660 ~ 1 710	8.025 ~ 8.5	22.01 ~ 23.12
4.177 25 ~ 4.177 75	13.36 ~ 13.41	156.7 ~ 156.9	1 718.8 ~ 1 722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.207 25 ~ 4.207 75	16.42 ~ 16.423	162.012 5 ~ 167.17	2 200 ~ 2 300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.694 75 ~ 16.695 25	167.72 ~ 173.2	2 310 ~ 2 390	10.6 ~ 12.7	36.43 ~ 36.5
6.267 75 ~ 6.268 25	16.804 25 ~ 16.804 75	240 ~ 285	2 483.5 ~ 2 500	13.25 ~ 13.4	Above 38.6
6.311 75 ~ 6.312 25	25.5 ~ 25.67	322 ~ 335.4	2 655 ~ 2 900		
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3 260 ~ 3 267		
8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3 332 ~ 3 339		
8.376 25 ~ 8.386 75	74.8 ~ 75.2	960 ~ 1 240	3 345.8 ~ 3 358		
			3 600 ~ 4 400		

- RSS-GEN[8.10]: Restricted frequency bands

-	NALL-	•	MII-	NAL 1-	011-
MHz	MHz	MHz	MHz	MHz	GHz
0.090 ~ 0.110	8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3 345.8 ~ 3 358	9.0 ~ 9.2
0.495 ~ 0.505	8.376 25 ~ 8.386 75	74.8 ~ 75.2	960 ~ 1 427	3 500 ~ 4 400	9.3 ~ 9.5
2.173 5 ~ 2.190 5	8.414 25 ~ 8.414 75	108 ~ 138	1 435 ~ 1 626.5	4 500 ~ 5 150	10.6 ~ 12.7
3.020 ~ 3.026	12.29 ~ 12.293	149.9 ~ 150.05	1 645.5 ~ 1 646.5	5 350 ~ 5 460	13.25 ~ 13.4
4.125 ~ 4.128	12.519 75 ~ 12.520 25	156.524 75 ~	1 660 ~ 1 710	7 250 ~ 7 750	14.47 ~ 14.5
4.177 25 ~ 4.177 75	12.576 75 ~ 12.577 25	156.525 25	1 718.8 ~ 1 722.2	8 025 ~ 8 500	15.35 ~ 16.2
4.207 25 ~ 4.207 75	13.36 ~ 13.41	156.7 ~ 156.9	2 200 ~ 2 300		17.7 ~ 21.4
5.677 ~ 5.683	16.42 ~ 16.423	162.01 25 ~ 167.17	2 310 ~ 2 390		22.01 ~ 23.12
6.215 ~ 6.218	16.694 75 ~ 16.695 25	167.72 ~ 173.2	2 483.5 ~ 2 500		23.6 ~ 24.0
6.267 75 ~ 6.268 25	16.804 25 ~ 16.804 75	240 ~ 285	2 655 ~ 2 900		31.2 ~ 31.8
6.311 75 ~ 6.312 25	25.5 ~ 25.67	322 ~ 335.4	3 260 ~ 3 267		36.43 ~ 36.5
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3 332 ~ 3 339		Above 38.6

FCC ID: **V2X-PM86**IC: **10664A-PM86**

Pages: 53 / 89

9.3. Test Procedures

9.3.1. Test Procedures for Unwanted Emissions(Radiated)

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 1 or 3 meter away from the interference-receiving antenna.
- 3. For measurements above 1 GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.
- 4. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 7. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Measurement Instrument Setting

- Frequencies less than or equal to 1 000 MHz
 The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- Frequencies above 1 000 MHz

The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1 GHz.

The result of Average measurement is calculated using PK result and duty correction factor.

FCC ID: **V2X-PM86**IC: **10664A-PM86**

9.3.2. Test Procedures for Unwanted Emissions(Conducted)

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. The **reference level** of the fundamental frequency was measured with the spectrum analyzer using RBW = 100 kHz, VBW = 300 kHz.
- 3. The conducted spurious emission was tested each ranges were set as below.

Frequency range: 9 kHz ~ 30 MHz

RBW = 100 kHz, VBW = 300 kHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40 001

Frequency range: 30 MHz ~ 10 GHz, 10 GHz ~ 25 GHz

RBW = 1 MHz, VBW = 3 MHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40 001

LIMIT LINE = 20 dB below of the reference level of above measurement procedure Step 2. (RBW = 100 kHz, VBW = 300 kHz)

If the emission level with above setting was close to the limit (ie, less than 3 dB margin) then zoom scan is required using RBW = 100 kHz, VBW = 300 kHz, SPAN = 100 MHz and BINS = 2 001 to get accurate emission level within 100 kHz BW.

Also the path loss for conducted measurement setup was used as described on the Appendix I of this test report.

Report No.: DRTFCC2307-0084 IC: 10664A-PM86

FCC ID: V2X-PM86

9.4. Test Results

9.4.1. Unwanted Emissions(Radiated)

■ Test Notes.

- 1. The radiated emissions were investigated 9 kHz to 25 GHz. And no other spurious and harmonic emissions were found below listed frequencies.
- 2. Information of Distance Correction Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations. In this case, the distance correction factor is applied to the result.

- Calculation of distance factor

At frequencies below 30 MHz = 40 log(tested distance / specified distance)

At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.

- 3. DCCF Calculation. (DCCF = Duty Cycle Correction Factor)
 - Time to cycle through all channels = $\Delta t = T$ [ms] X 20 minimum hopping channels , where T = pulse width = **2.88 ms**
 - 100 ms / Δt [ms] = H -> Round up to next highest integer, to account for worst case, H' = 100 / (2.88 X 20) = 1.74 = 2
 - The Worst Case Dwell Time = $T [ms] \times H' = 2.88 \text{ ms } X 2 = 5.76 \text{ ms}$
 - DCCF = 20 Log(The Worst Case Dwell Time / 100 ms) dB = 20 log(5.76 / 100) = -24.79 dB
- 4. Sample Calculation.

Margin = Limit - Result / Result = Reading + TF+ DCCF + DCF / TF = AF + CL + HL + AL - AG

Where, TF = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, HL = High pass filter Loss,

AL = Attenuator Loss, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

9 kHz ~ 25 GHz Data (TM1 & GFSK)

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2 387.88	Н	Υ	PK	51.54	4.61	N/A	N/A	56.15	74.00	17.85
2 387.88	Н	Υ	AV	51.54	4.61	-24.79	N/A	31.36	54.00	22.64
4 803.84	Н	Υ	PK	49.43	2.43	N/A	N/A	51.86	74.00	22.14
4 803.84	Н	Υ	AV	49.43	2.43	-24.79	N/A	27.07	54.00	26.93

Middle Channel

	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	4 882.28	Н	Υ	PK	49.93	2.40	N/A	N/A	52.33	74.00	21.67
Ī	4 882.28	Н	Υ	AV	49.93	2.40	-24.79	N/A	27.54	54.00	26.46

Highest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2 483.54	Τ	Υ	PK	53.33	5.62	N/A	N/A	58.95	74.00	15.05
2 483.54	Ι	Υ	AV	53.33	5.62	-24.79	N/A	34.16	54.00	19.84
4 960.25	Н	Υ	PK	49.09	2.69	N/A	N/A	51.78	74.00	22.22
4 960.25	Η	Υ	AV	49.09	2.69	-24.79	N/A	26.99	54.00	27.01

9 kHz ~ 25 GHz Data (TM2 & GFSK)

Highest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2 485.54	Τ	Υ	PK	52.12	5.65	N/A	N/A	57.77	74.00	16.23
2 485.54	Τ	Υ	AV	52.12	5.65	-24.79	N/A	32.98	54.00	21.02
4 958.83	I	Υ	PK	48.79	2.67	N/A	N/A	51.46	74.00	22.54
4 958.83	Н	Υ	AV	48.79	2.67	-24.79	N/A	26.67	54.00	27.33

FCC ID: V2X-PM86

9 kHz \sim 25 GHz Data (TM 1 & π /4DQPSK)

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2 387.87	Н	Υ	PK	51.92	4.61	N/A	N/A	56.53	74.00	17.47
2 387.87	Н	Υ	AV	51.92	4.61	-24.79	N/A	31.74	54.00	22.26
4 805.89	Н	Υ	PK	49.35	2.42	N/A	N/A	51.77	74.00	22.23
4 805.89	Н	Y	AV	49.35	2.42	-24.79	N/A	26.98	54.00	27.02

Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4 880.29	Н	Υ	PK	49.58	2.35	N/A	N/A	51.93	74.00	22.07
4 880.29	Н	Y	AV	49.58	2.35	-24.79	N/A	27.14	54.00	26.86

Highest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2 483.61	Η	Υ	PK	52.84	5.62	N/A	N/A	58.46	74.00	15.54
2 483.61	Н	Υ	AV	52.84	5.62	-24.79	N/A	33.67	54.00	20.33
4 961.64	Н	Y	PK	49.34	2.69	N/A	N/A	52.03	74.00	21.97
4 961.64	Η	Υ	AV	49.34	2.69	-24.79	N/A	27.24	54.00	26.76

9 kHz ~ 25 GHz Data (TM 1 & 8DPSK)

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2 388.87	Н	Υ	PK	51.99	4.60	N/A	N/A	56.59	74.00	17.41
2 388.87	Н	Υ	AV	51.99	4.60	-24.79	N/A	31.80	54.00	22.20
4 802.76	Н	Y	PK	48.77	2.43	N/A	N/A	51.20	74.00	22.80
4 802.76	Н	Υ	AV	48.77	2.43	-24.79	N/A	26.41	54.00	27.59

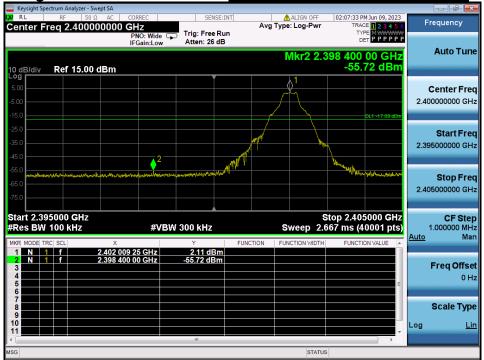
Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4 882.66	Н	Υ	PK	48.84	2.40	N/A	N/A	51.24	74.00	22.76
4 882.66	Н	Y	AV	48.84	2.40	-24.79	N/A	26.45	54.00	27.55

Highest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2 483.57	Н	Υ	PK	52.09	5.62	N/A	N/A	57.71	74.00	16.29
2 483.57	Н	Υ	AV	52.09	5.62	-24.79	N/A	32.92	54.00	21.08
4 961.20	Н	Υ	PK	48.68	2.69	N/A	N/A	51.37	74.00	22.63
4 961.20	Н	Υ	AV	48.68	2.69	-24.79	N/A	26.58	54.00	27.42

IC: 10664A-PM86



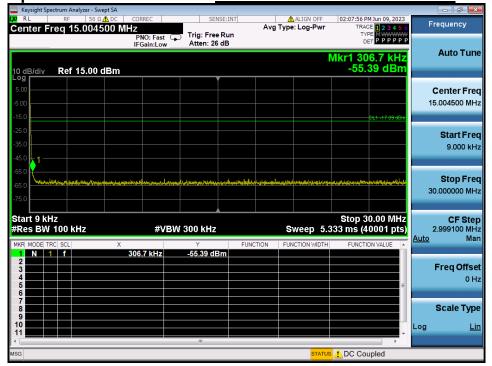
FCC ID: **V2X-PM86**IC: **10664A-PM86**

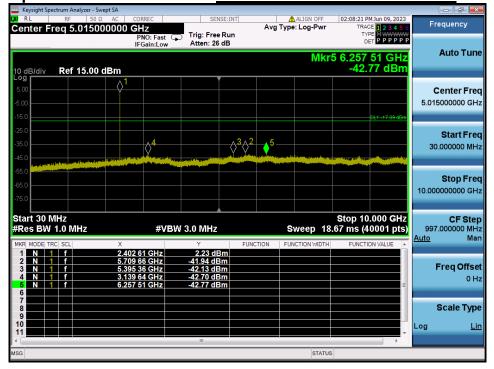


9.4.2. Unwanted Emissions(Conducted)

Low Band-edge <u>TM1 & Lowest Channel & GFSK</u>

Low Band-edge TM1 & Hopping mode & GFSK


TRF-RF-237(07)210316 Pages: 57 / 89


07-0084 IC: 10664A-PM86

Conducted Spurious Emissions TM1 & Lowest Channel & GFSK

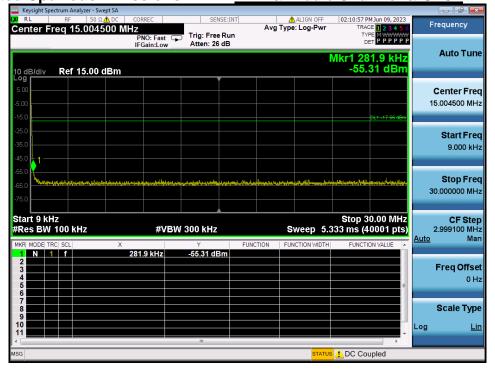
Conducted Spurious Emissions <u>TM1 & Lowest Channel & GFSK</u>

FCC ID: V2X-PM86

307-0084 IC: 10664A-PM86

Conducted Spurious Emissions <u>TM1 & Lowest Channel & GFSK</u>

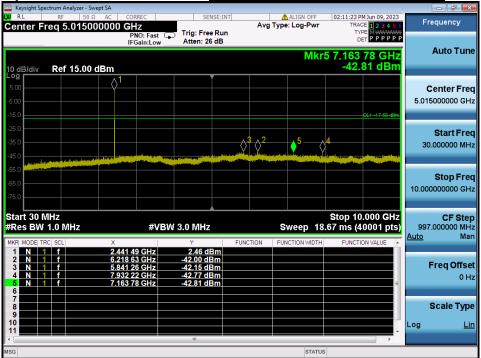
IC: 10664A-PM86


Reference for limit

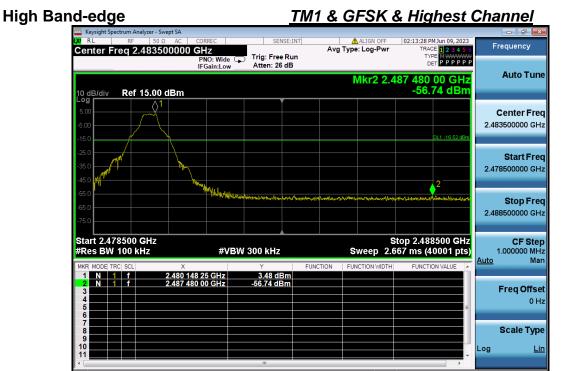
TM1 & Middle Channel & GFSK

Conducted Spurious Emissions

TM1 & Middle Channel & GFSK

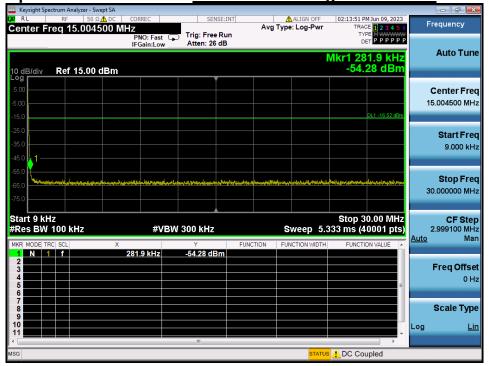

TRF-RF-237(07)210316 Pages: 60 / 89

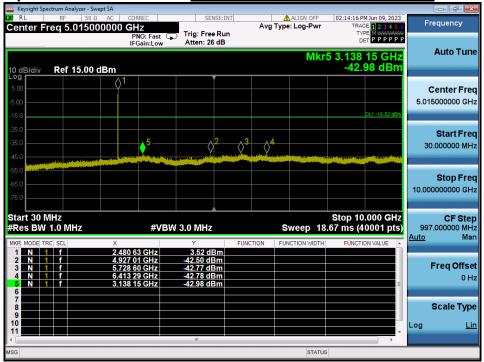
IC: 10664A-PM86



Conducted Spurious Emissions TM1 & Middle Channel & GFSK

TDt&C Report No.: DRTFCC2307-0084 IC: 10664A-PM86



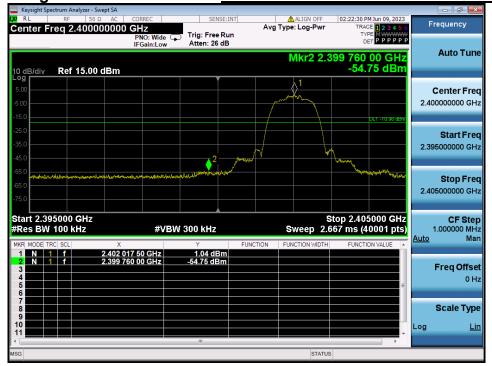

IC: 10664A-PM86

TM1 & GFSK & Highest Channel **Conducted Spurious Emissions**

Conducted Spurious Emissions TM1 & GFSK & Highest Channel

FCC ID: **V2X-PM86**IC: **10664A-PM86**

Conducted Spurious Emissions TM1 & GFSK & Highest Channel



TRF-RF-237(07)210316 Pages: 64 / 89

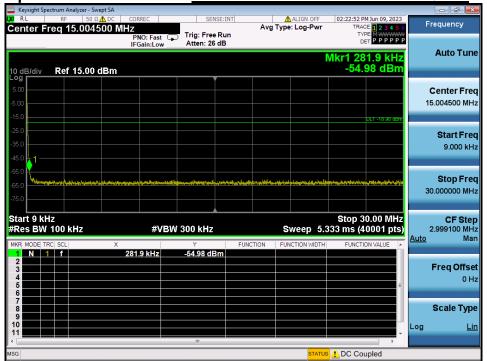
TDt&C Report No.: DRTFCC2307-0084 IC: 10664A-PM86

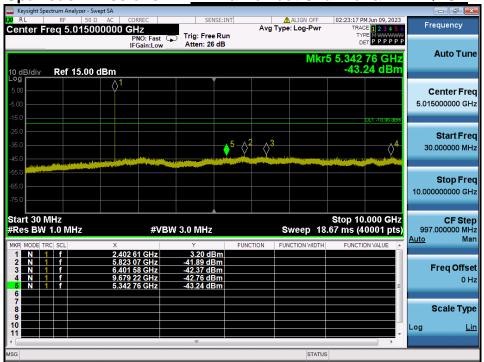
Low Band-edge

TM1 & Lowest Channel & π/4DQPSK

Low Band-edge

TM1 & Hopping mode & π/4DQPSK


TRF-RF-237(07)210316


Report No.: DRTFCC2307-0084 IC: 10664A-PM86

TM1 & Lowest Channel & π/4DQPSK **Conducted Spurious Emissions**

Conducted Spurious Emissions TM1 & Lowest Channel & π/4DQPSK

FCC ID: **V2X-PM86**IC: **10664A-PM86**

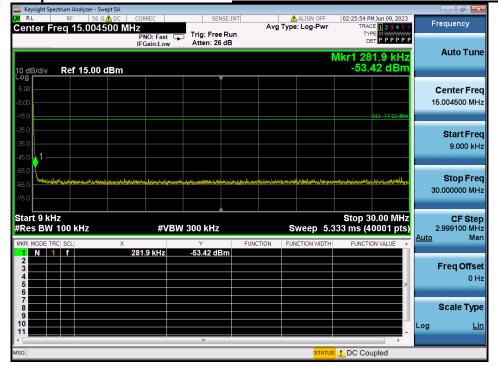
Pages: 67 / 89

Conducted Spurious Emissions <u>TM1 & Lowest Channel & π/4DQPSK</u>

TRF-RF-237(07)210316

IC: 10664A-PM86

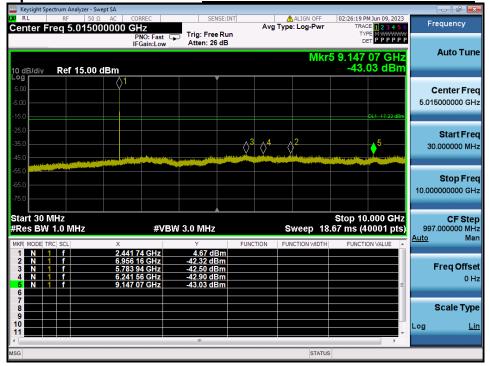
TD Dt&C

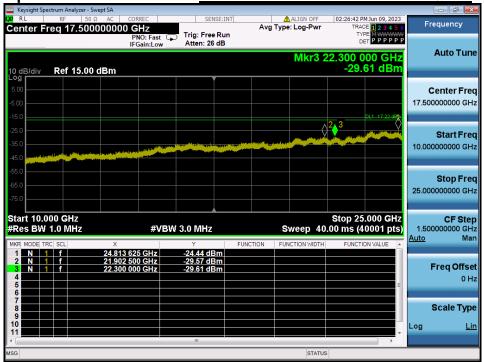

Reference for limit

TM1 & Middle Channel & π/4DQPSK

Conducted Spurious Emissions <u>TM1</u>

TM1 & Middle Channel & π/4DQPSK


TRF-RF-237(07)210316 Pages: 68 / 89


IC: 10664A-PM86

Conducted Spurious Emissions TM1 & Middle Channel & π/4DQPSK

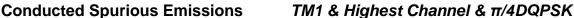
Conducted Spurious Emissions TM1 & Middle Channel & π/4DQPSK

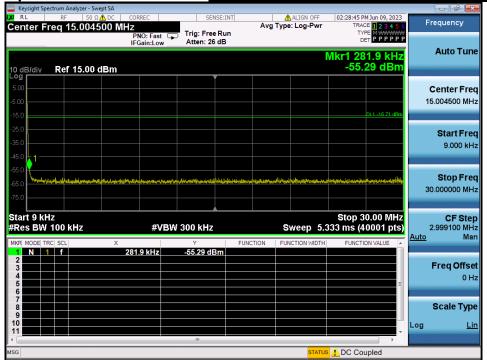
Report No.: **DRTFCC2307-0084** IC: **10664A-PM86**

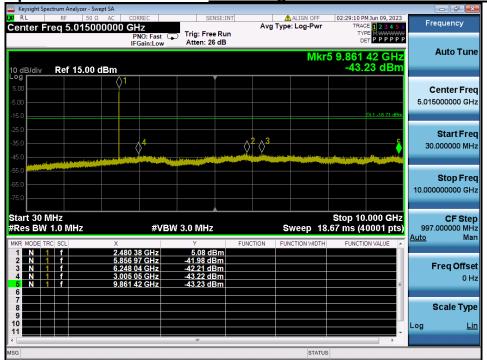
TM1 & Highest Channel & π/4DQPSK

High Band-edge

TM1 & Hopping mode & π/4DQPSK




TRF-RF-237(07)210316 Pages: 70 / 89


FCC ID: **V2X-PM86**IC: **10664A-PM86**

TDt&C

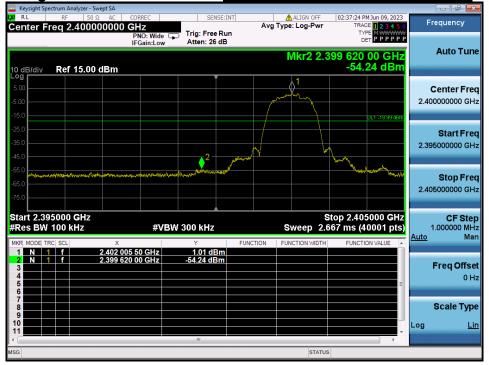
Conducted Spurious Emissions <u>TM1 & Highest Channel & π/4DQPSK</u>

FCC ID: V2X-PM86

IC: 10664A-PM86

Conducted Spurious Emissions <u>TM1 & Highest Channel & π/4DQPSK</u>

TRF-RF-237(07)210316 Pages: 72 / 89

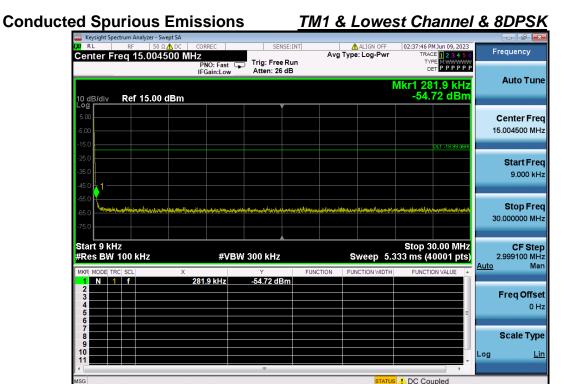


IC: 10664A-PM86

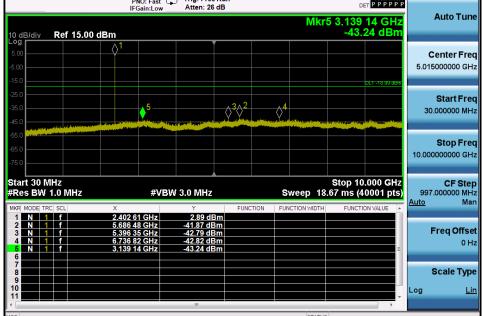
TM1 & Lowest Channel & 8DPSK

Low Band-edge

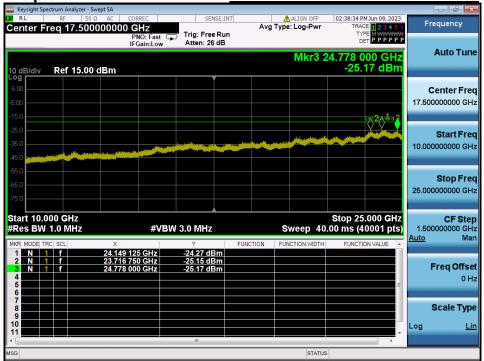
TM1 & Hopping mode & 8DPSK



TRF-RF-237(07)210316 Pages: 73 / 89



IC: 10664A-PM86



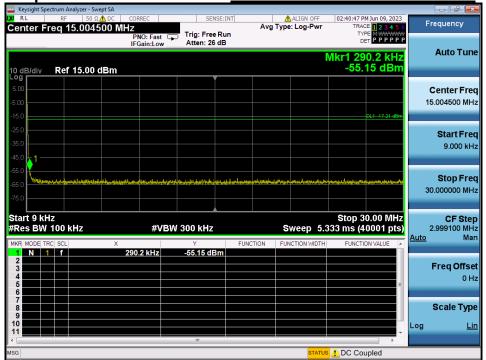
FCC ID: V2X-PM86

IC: 10664A-PM86

Conducted Spurious Emissions <u>TM1 & Lowest Channel & 8DPSK</u>

TRF-RF-237(07)210316 Pages: 75 / 89

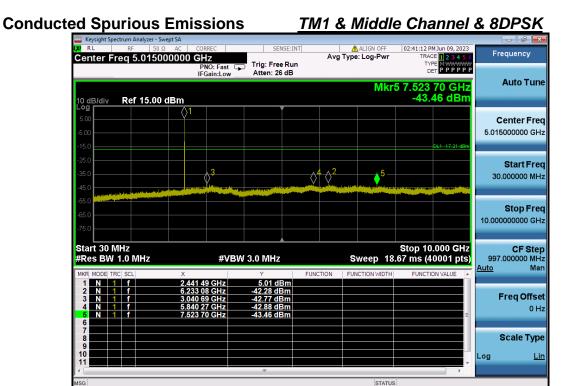
IC: 10664A-PM86


Reference for limit

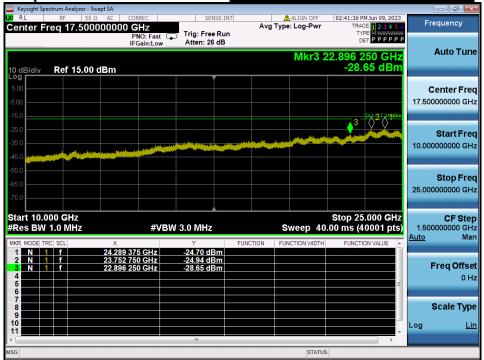
TM1 & Middle Channel & 8DPSK

Conducted Spurious Emissions

TM1 & Middle Channel & 8DPSK



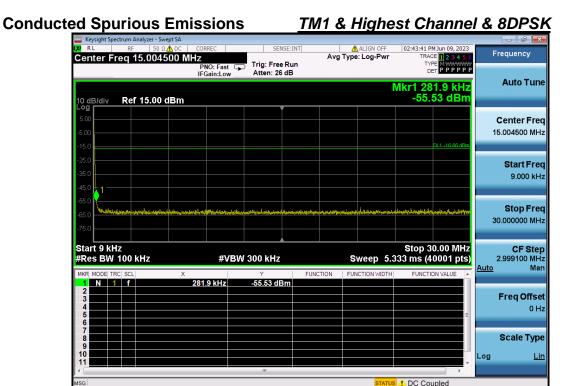
TRF-RF-237(07)210316



IC: 10664A-PM86

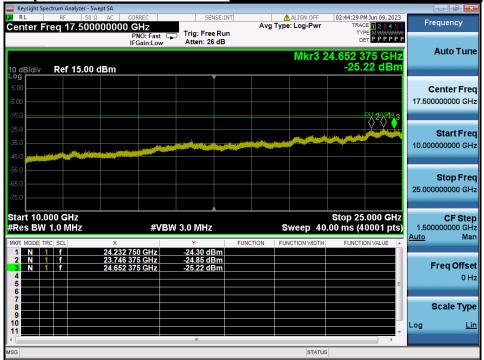

FCC ID: **V2X-PM86**IC: **10664A-PM86**

High Band-edge TM1 & Highest Channel & 8DPSK



TRF-RF-237(07)210316 Pages: 78 / 89

IC: 10664A-PM86



TRF-RF-237(07)210316 Pages: 79 / 89

Report No.: **DRTFCC2307-0084** IC: **10664A-PM86**

Conducted Spurious Emissions TM1 & Highest Channel & 8DPSK

TRF-RF-237(07)210316 Pages: 80 / 89

FCC ID: **V2X-PM86**IC: **10664A-PM86**

10. AC Power-Line Conducted Emissions

10.1. Test Setup

See test photographs for the actual connections between EUT and support equipment.

10.2. Limit

According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Fraguency Pango (MHz)	Conducted Limit (dBuV)					
Frequency Range (MHz)	Quasi-Peak	Average				
0.15 ~ 0.50	66 to 56 *	56 to 46 *				
0.5 ~ 5.0	56	46				
5 ~ 30	60	50				

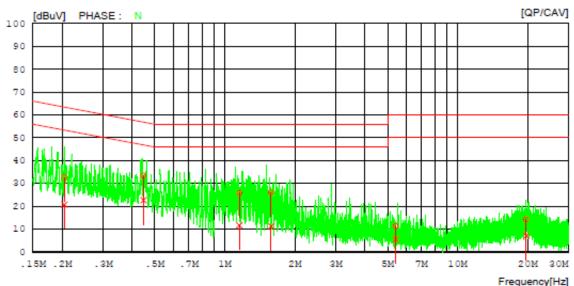
^{*} Decreases with the logarithm of the frequency

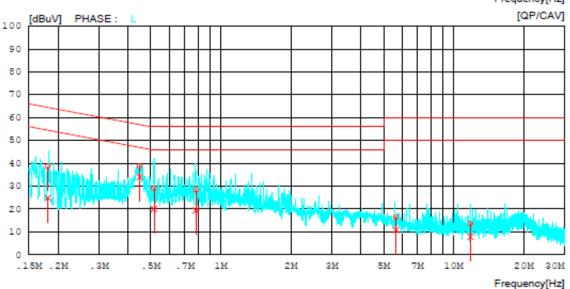
10.3. Test Procedure

Conducted emissions from the EUT were measured according to the ANSI C63.10.

- 1. The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

IC: 10664A-PM86


10.4. Test Results


AC Power-Line Conducted Emissions (Graph) = Modulation : GFSK

Results of Conducted Emission

DTNC Date 2023-05-26 Order No. Referrence No. Power Supply Model No. PM86 Serial No. Temp/Humi. 21 'C / 41 % Test Condition BT Operator S.M.Gil 1M_2402 Memo

LIMIT : FCC P15.207 AV FCC P15.207 QP

Pages: 82 / 89

FCC ID: V2X-PM86

AC Power-Line Conducted Emissions (List) = Modulation : 8DPSK

Results of Conducted Emission

Date 2023-05-26 DTNC

Order No. Model No.

Referrence No. PM86 Power Supply

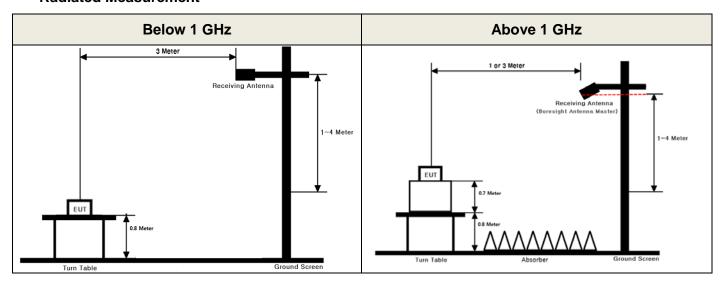
21 'C / 41 % Temp/Humi. Serial No. **Test Condition** BT Operator S.M.Gil

Memo 1M_2402

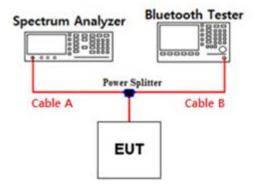
LIMIT: FCC P15.207 AV FCC P15.207 QP

NC	FREQ [MHz]	READING QP CAV [dBuV][dBuV	C.FACTOR	RESULT QP CAV [dBuV][dBuV	~	CAV	MARGIN QP CAV	PHASE
	[11112]	[GDGV][GDGV] [GD]	[abav][abav] [abav][abavj (a	ouv][ubuv]	
1	0.20441	22.74 10.85	9.98	32.72 20.83	63.43 53	3.43 30.7	1 32.60	N
2	0.44686	23.47 12.68	10.00	33.47 22.68	56.93 46	5.93 23.4	1624.25	N
3	1.15500	15.73 1.67	10.01	25.7411.68	56.00 46	5.00 30.2	2634.32	N
4	1.57920	16.08 1.32	10.03	26.1111.35	56.00 46	5.00 29.8	9 34.65	N
5	5.42220	1.16-4.60	10.21	11.37 5.61	60.00 50	0.00 48.6	3 44.39	N
6	19.70560	3.70 -3.49	10.56	14.26 7.07	60.00 50	0.00 45.7	74 42.93	N
7	0.18068	28.74 15.01	9.89	38.6324.90	64.45 54	1.45 25.8	32 29.55	L
8	0.44891	28.8224.04	9.90	38.7233.94	56.90 46	5.90 18.1	.8 12.96	L
9	0.51577	19.1510.08	9.90	29.0519.98	56.00 46	5.00 26.9	5 26.02	L
10	0.78068	18.49 9.39	9.90	28.3919.29	56.00 46	5.00 27.6	1 26.71	L
11	5.66740	6.35 0.77	10.11	16.4610.88	60.00 50	0.00 43.5	4 39.12	L
12	11.80000	3.33 -2.47	10.28	13.61 7.81	60.00 50	0.00 46.3	39 42.19	L

IC: 10664A-PM86


IC: 10664A-PM86

APPENDIX I


Test set up diagrams

TD Dt&C

Radiated Measurement

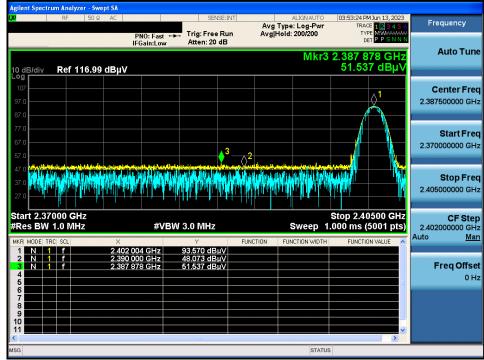
Conducted Measurement

Path loss information

Frequency (GHz)	Path Loss (dB)	Frequency (GHz)	Path Loss (dB)	
0.03	6.53	15	7.83	
1	6.83	20	8.09	
2.402 & 2.441 & 2.480	6.96	25	8.69	
5	7.04	-	-	
10	7.38	-	-	

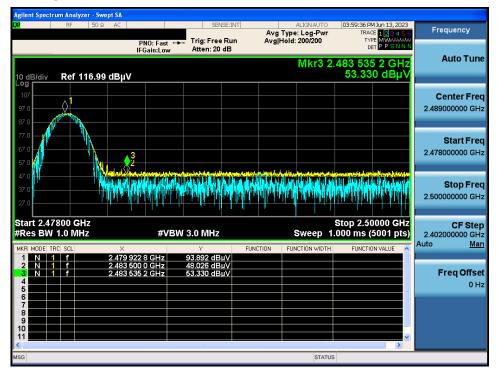
Note 1: The path loss from EUT to Spectrum analyzer was measured and used for test. Path loss (S/A's correction factor) = Cable A + Power Splitter

IC: 10664A-PM86



TDt&C

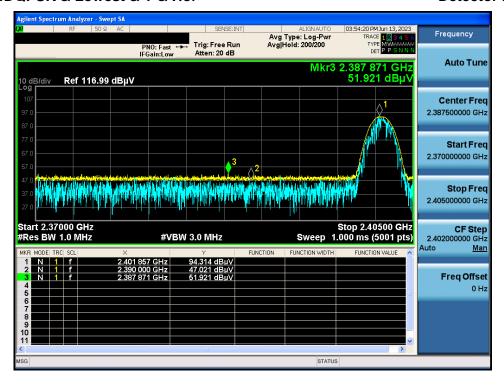
Unwanted Emissions (Radiated) Test Plot


TM1 & GFSK & Lowest & Y & Hor

TM1 & GFSK & Highest & Y & Hor

Detector Mode: PK

TRF-RF-237(07)210316 Pages: 85 / 89

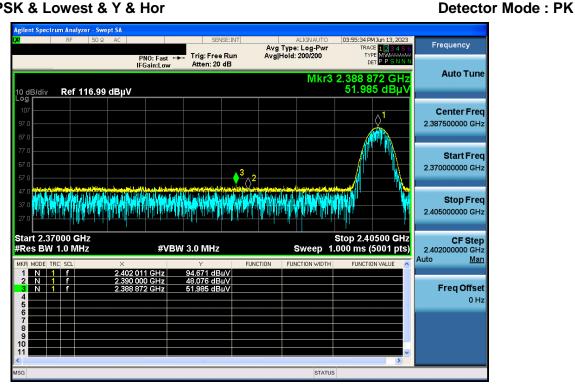



TM1 & π/4DQPSK & Lowest & Y & Hor

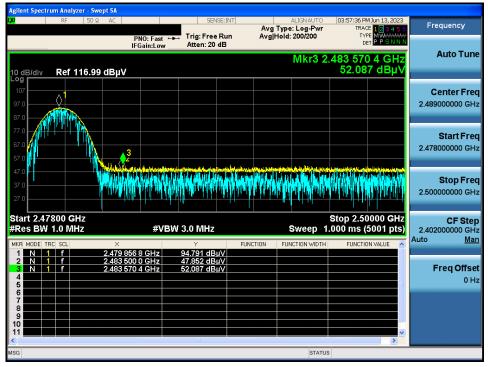
Detector Mode: PK

TM1 & $\pi/4DQPSK$ & Highest & Y & Hor

Detector Mode: PK

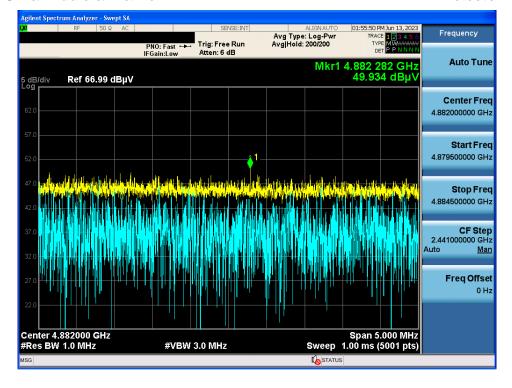

Pages: 86 / 89

IC: 10664A-PM86 Report No.: DRTFCC2307-0084

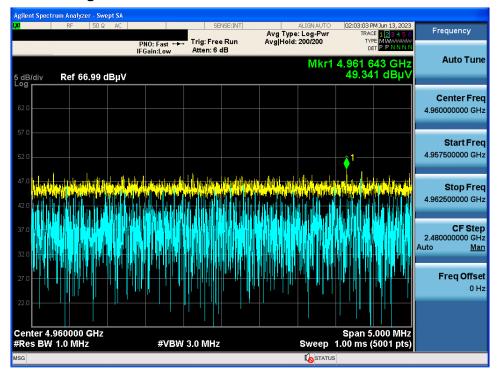

TM1 & 8DPSK & Lowest & Y & Hor

TDt&C

TM1 & 8DPSK & Highest & Y & Hor



IC: 10664A-PM86

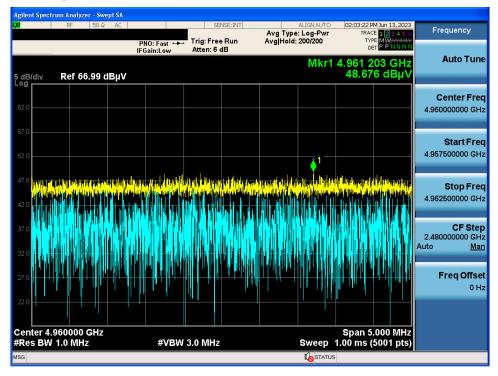

TM1 & GFSK & Middle & Y & Hor

Detector Mode: PK

TM1 & π/4DQPSK & Highest & Y & Hor

Detector Mode: PK

TRF-RF-237(07)210316 Pages: 88 / 89



IC: 10664A-PM86

TM1 & 8DPSK & Highest & Y & Hor

Detector Mode: PK

