TEST REPORT

Dt&C

Dt&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel : 031-321-2664, Fax : 031-321-1664

1. Report No : DRRFCC2402-0012(1)							
2. Customer							
Name : Point Mobile Co., LTD.							
• Address : B-9F Kabul Great Valley, 32, Digital-ro 9-gil, Geumcheon-gu, Seoul South Korea 08512							
3. Use of Report : FCC Original Grant							
4. Product Name / Model Name : Mobile Computer / PM84W							
FCC ID : V2X-PM84W							
5. FCC Regulation(s) : CFR 47 Part 2 subpart 2.1093							
Test Method Used : IEEE 1528-2013, FCC SAR KDB Publications (Details in test report)							
IEC/IEEE 62209-1528							
6. Date of Test : 2024.01.24 ~ 2024.01.29							
7. Location of Test : I Permanent Testing Lab I On Site Testing							
8. Testing Environment : Refer to appended test report.							
9. Test Result : Refer to attached test report.							
The results shown in this test report refer only to the sample(s) tested unless otherwise stated.							
This test report is not related to KOLAS accreditation.							
Affirmation Tested by Reviewed by							
Name : DongHyeok Gwak / Mame : HakMin Kim							
2024 . 02 . 29 .							
2024.02.23.							
Dt&C Co., Ltd.							

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description	Tested by	Reviewed by
DRRFCC2402-0012	Feb. 23, 2024	Initial issue	DuHee Lee	HakMin Kim
DRRFCC2402-0012(1)	Feb. 29, 2024	Typographical error	DongHyeok Gwak	HakMin Kim

Table of Contents

1. DESCRIPTION OF DEVICE	4
1.1 General Information	
1.2 Power Reduction for SAR	
1.3 Nominal and Maximum Output Power Specifications 1.4 DUT Antenna Locations	5
1.5 Miscellaneous SAR Test Considerations	
1.6 Guidance Applied	6
1.7 Device Serial Numbers	
2. INTROCUCTION	
3. DOSIMETRIC ASSESSMENT	
3.1 Measurement Procedure	
4.1 Ear Reference Point	
4.2 Handset Reference Points	
5. TEST CONFIGURATION POSITIONS FOR HANDSETS	
5.1 Device Holder 5.2 Positioning for Cheek/Touch	
5.3 Positioning for Ear / 15 ° Tilt	
5.4 Body-Worn Accessory Configurations	
5.5 Extremity Exposure Configurations	
6. RF EXPOSURE LIMITS	
7. FCC MEASUREMENT PROCEDURES	
7.1 Measured and Reported SAR	14
7.2 SAR Testing with 802.11 Transmitters 7.2.1 General Device Setup	
7.2.2 U-NII and U-NII-2A	
7.2.3 U-NII-2C and U-NII-3	
7.2.4 Initial Test Position Procedure	
7.2.5 2.4 GHz SAR Test Requirements	
7.2.6 OFDM Transmission Mode and SAR Test Channel Selection	
7.2.7 Initial Test Configuration Procedure	
7.2.8 Subsequent Test Configuration Procedures	
8. RF CONDUCTED POWERS	17
8.1 WLAN Nominal and Maximum Output Power Spec and Conducted Powers	
8.2 Bluetooth Conducted Powers	
9.1 Tissue Verification 9.2 Test System Verification	
10. SAR TEST RESULTS.	
10.1 Head SAR Results	
10.2 Standalone Body-Worn SAR Worn SAR Results	
10.3 Standalone Phablet SAR Results	
10.4 SAR Test Notes 11. SAR MEASUREMENT VARIABILITY	
11.1 Measurement Variability	
11.2 Measurement Uncertainty	
12. EQUIPMENT LIST	32
13. MEASUREMENT UNCERTAINTIES	33
14. CONCLUSION	
15. REFERENCES	37
APPENDIX A. – Probe Calibration Data	39
APPENDIX B. – Dipole Calibration Data	84
APPENDIX C. – SAR Tissue Specifications	
APPENDIX D. – SAR SYSTEM VALIDATION	
APPENDIX E. – Description of Test Equipment	

1. DESCRIPTION OF DEVICE

1.1 General Information

EUT type	Mobile Computer	Mobile Computer								
FCC ID	V2X-PM84W									
Equipment model name	PM84W									
Equipment add model name	N/A									
Equipment serial no.	Identical prototype									
FVIN (Firmware Version Identification Number)	84.00									
FCC & ISED MRA Designation No.	KR0034									
ISED#	5740A									
Mode(s) of Operation	2.4 G W-LAN (802.11b)	/g/n-HT20/n-HT40), 5 G W	-LAN (802.11a/n-HT20/n-H	T40/ac-VHT20/ac-VHT40/ac-VH	T80), Bluetooth, NFC					
	Band	Mode	Operating Modes	Bandwidth	Frequency					
	2.4 GHz W-LAN	802.11b/g/n	Voice/Data	HT20	2 412 ~ 2 462 MHz					
	2.4 GHZ W-LAN	802.11n	Voice/Data	HT40	2 422 ~ 2 452 MHz					
		802.11a/n/ac	Voice/Data	HT20/VHT20	5 180 ~ 5 240 MHz					
	5.2 GHz W-LAN	802.11n/ac	Voice/Data	HT40/VHT40	5 190 ~ 5 230 MHz					
		802.11ac	Voice/Data	VHT80	5 210 MHz					
		802.11a/n/ac	Voice/Data	HT20/VHT20	5 260 ~ 5 320 MHz					
	5.3 GHz W-LAN	802.11n/ac	Voice/Data	HT40/VHT40	5 270 ~ 5 310 MHz					
TX Frequency Range		802.11ac	Voice/Data	VHT80	5 290 MHz					
		802.11a/n/ac	Voice/Data	HT20/VHT20	5 500 ~ 5 720 MHz					
	5.6 GHz W-LAN	802.11n/ac	Voice/Data	HT40/VHT40	5 510 ~ 5 710 MHz					
		802.11ac	Voice/Data	VHT80	5 530 ~ 5 690 MHz					
	-	802.11a/n/ac	Voice/Data	HT20/VHT20	5 745 ~ 5 825 MHz					
	5.8 GHz W-LAN	802.11n/ac	Voice/Data	HT40/VHT40	5 755 ~ 5 795 MHz					
		802.11ac	Voice/Data	VHT80	5 775 MHz					
	Bluetooth	-	Data	-	2 402 ~ 2 480 MHz					
	NFC		Data		13.56 MHz					
		802.11b/g/n	Voice/Data	HT20	2 412 ~ 2 462 MHz					
	2.4 GHz W-LAN	802.11b/g/ii	Voice/Data	HT40	2 412 ~ 2 452 MHz					
		802.11a/n/ac	Voice/Data	HT20/VHT20	5 180 ~ 5 240 MHz					
	5.2 GHz W-LAN	802.11a/1/ac	Voice/Data	HT20/VHT20 HT40/VHT40	5 190 ~ 5 230 MHz					
	5.2 GHZ W-LAN	802.111ac	Voice/Data	VHT80	5 210 MHz					
		802.11a/n/ac	Voice/Data	HT20/VHT200	5 260 ~ 5 320 MHz					
	5.3 GHz W-LAN	802.11a/h/ac 802.11n/ac	Voice/Data Voice/Data	HT20/VHT200 HT40/VHT40	5 260 ~ 5 320 MHz 5 270 ~ 5 310 MHz					
	5.5 GHZ W-LAN	802.111/ac	Voice/Data	VHT80	5 290 MHz					
RX Frequency Range										
	5.6 GHz W-LAN	802.11a/n/ac 802.11n/ac	Voice/Data Voice/Data	HT20/VHT20	5 500 ~ 5 720 MHz					
	5.0 GHZ W-LAN		Voice/Data Voice/Data	HT40/VHT40 VHT80	5 510 ~ 5 710 MHz					
		802.11ac			5 530 ~ 5 690 MHz					
		802.11a/n/ac	Voice/Data	HT20/VHT20	5 745 ~ 5 825 MHz					
	5.8 GHz W-LAN	802.11n/ac	Voice/Data	HT40/VHT40	5 755 ~ 5 795 MHz					
		802.11ac	Voice/Data	VHT80	5 775 MHz					
	Bluetooth	-	Data	-	2 402 ~ 2 480 MHz					
	NFC	-	Data	-	13.56 MHz					

SAR Summary Table

		Reported SAR				
Equipment Class	Band	1g SA	10g SAR (W/kg)			
		Head Body-Worn		Phablet		
DTS	2.4 GHz W-LAN	0.66	0.16	0.57		
U-NII-1	5.2 GHz W-LAN	-	-	-		
U-NII-2A	5.3 GHz W-LAN	0.77	0.44	0.55		
U-NII-2C	5.6 GHz W-LAN	0.63	0.48	0.59		
U-NII-3	5.8 GHz W-LAN	0.67	0.39	0.70		
DSS	Bluetooth	< 0.1	< 0.1	< 0.1		
DSS	Bluetooth LE	< 0.1	< 0.1	< 0.1		
DXX	NFC	-	-	< 0.1		
Simultaneous SA	R per KDB 690783 D01v01r03	0.85	0.48	0.72		
FCC Equipment Class	Part 15 Spread Spectrum Transmitter(DSS) Digital Transmission System(DTS) Unlicensed National Information Infrastructure (UNII) Low Power Communications Device Transmitter (DXX)					
Date(s) of Tests	2024.01.24 ~ 2024.01.29					
Antenna Type	Internal Antenna					
Functions	 VoIP is supported. 					

1.2 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

1.3 Nominal and Maximum Output Power Specifications

The Nominal and Maximum Output Power Specifications are in section 9 of this test report.

1.4 DUT Antenna Locations

The overall dimensions of this device are > 9 x 5 cm. A diagram showing the location of the device of the device antenna can be found in (PM75)_Antenna Location. Since the diagonal dimension of this device is < 160 mm and the diagonal display is < 150 mm, it is not considered a "phablet".

Mode	Device Sides for SAR Testing					
Mode	Тор	Bottom	Front	Rear	Right	Left
2.4G W-LAN	0	Х	0	0	0	Х
5G W-LAN	0	Х	0	0	0	Х
Bluetooth	0	Х	0	0	0	Х
NFC	0	0	0	0	0	0

Note 1: Particular DUT edges were not required to be evaluated for Phablet SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 648474 D04v01r03. The antenna document shows the distances between the transmit antennas and the edges of the device.

Note 2: O - Test / X - Not test.

Note 3: This DUT has NFC operations. The NFC antenna is integrated into the back side.

A diagram showing the location of the device antenna can be found in (PM84)_Antenna Location.

1.5 Miscellaneous SAR Test Considerations

WIFI

Since U-NII-1 and U-NII-2A bands have the same maximum output power and the highest reported SAR for U-NII-2A is less than 1.2 W/kg, SAR is not required for U-NII-1 band according to FCC KDB publication 248227 D01v02r02.

1.6 Guidance Applied

- IEEE 1528-2013
- IEC/IEEE 62209-1528
- FCC KDB Publication 248227 D01v02r02 (802.11 Wi-Fi SAR)
- FCC KDB Publication 447498 D01v06 (General RF Exposure Guidance)
- FCC KDB Publication 648474 D04v01r03 (Handset SAR)
- FCC KDB Publication 690783 D01v01r03 (SAR Listings on Grants)
- FCC KDB Publication 865664 D01v01r04 (SAR Measurement 100 MHz to 6 GHz)
- FCC KDB Publication 865664 D02v01r02 (RF Exposure Reporting)
- April 2015 TCB Workshop Notes (Simultaneous transmission summation clarified)
- October 2016 TCB Workshop Notes (Bluetooth Duty Factor)
- April 2019 TCB Workshop Notes (Tissue Simulating Liquids)

1.7 Device Serial Numbers

The serial numbers used for each test are indicated alongside the results in Section 10.

2. INTROCUCTION

The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ) It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 3.1)

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

Fig. 3.1 SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

 ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

3. DOSIMETRIC ASSESSMENT

3.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4.1) and IEEE1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

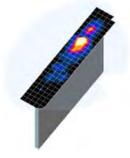


Figure 4.1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4.1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4.1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

			\leq 3 GHz	>3 GHz	
Maximum distance fro (geometric center of pr		measurement point ors) to phantom surface	$5 \mathrm{mm} \pm 1 \mathrm{mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \operatorname{mm} \pm 0.5 \operatorname{mm}$	
Maximum probe angle surface normal at the p			30°±1°	20°±1°	
			$\leq 2 \text{ GHz}: \leq 15 \text{ mm}$ 2 – 3 GHz: $\leq 12 \text{ mm}$	$\begin{array}{l} 3-4 \ \text{GHz}; \leq 12 \ \text{mm} \\ 4-6 \ \text{GHz}; \leq 10 \ \text{mm} \end{array}$	
Maximum area scan sp	patial reso	lution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		
Maximum zoom scan	spatial res	olution: $\Delta x_{Zoom}, \Delta y_{Zoom}$	$\leq 2 \text{ GHz}$: $\leq 8 \text{ mm}$ 2 – 3 GHz: $\leq 5 \text{ mm}$	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*	
	uniform grid: Δz _{Zoon} (n)		≤ 5 mm	$\begin{array}{c} 3-4 \ \mathrm{GHz:} \leq 4 \ \mathrm{mm} \\ 4-5 \ \mathrm{GHz:} \leq 3 \ \mathrm{mm} \\ 5-6 \ \mathrm{GHz:} \leq 2 \ \mathrm{mm} \end{array}$	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: bet n, normal to surface graded to phantom su	$\Delta z_{Zoom}(1)$: between 1^{st} two points closest to phantom surface	≤4 mm	3 – 4 GHz: ≤3 mm 4 – 5 GHz: ≤2.5 mm 5 – 6 GHz: ≤2 mm
	grid Δz _{Zoom} (n>1): between subsequent points		≤1.5·Δzz	_{nom} (n-1) mm	
Minimum zoom scan volume	x, y, z		\geq 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

 Table 3.1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

4. DEFINITION OF REFERENCE POINTS

4.1 Ear Reference Point

Figure 5.1 shows the front, back and side views of the SAM Twin Phantom. The point"M" is the reference point for the center of the mouth, "LE" is the left ear reference point(ERP), and "RE" is the right ERP. The ERPs are 15 mm posterior to the entrance to the Ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5.1. The plane Passing, through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck- Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 5.1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning.

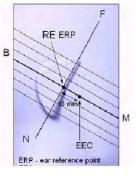


Figure 5.1 Close-up side view of ERP

4.2 Handset Reference Points

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Fig. 5.3). The "test device reference point" was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at it's top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

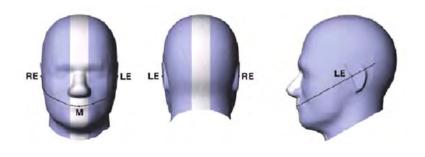


Figure 5.2 Front, back and side view SAM Twin Phantom

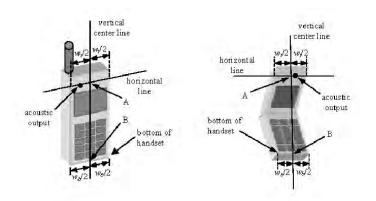


Figure 5.3 Handset Vertical Center & Horizontal Line Reference Points

5. TEST CONFIGURATION POSITIONS FOR HANDSETS

5.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02.

5.2 Positioning for Cheek/Touch

1. The test device was positioned with the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6.1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6.1 Front, Side and Top View of Cheek/Touch Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane).
- 4. The phone was hen rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, the handset was rotated about the line NF until any point on the handset made contact with a phantom point below the ear (cheek). (See Figure 6.2)

5.3 Positioning for Ear / 15 ° Tilt

With the test device aligned in the "Cheek/Touch Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15 degree.
- 2. The phone was then rotated around the horizontal line by 15 degree.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the phone touches the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6.3).

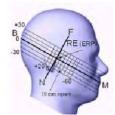


Figure 6.2 Side view w/relevant markings

Figure 6.3 Front, Side and Top View of Ear/15° Position

5.4 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6.4). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when

Figure 6.4 Sample Body-Worn Diagram

applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

5.5 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v06, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

6. RF EXPOSURE LIMITS

Uncontrolled Environment:

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment:

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

	HUMAN EXPOSURE LIMITS		
	General Public Exposure (W/kg) or (mW/g)	Occupational Exposure (W/kg) or (mW/g)	
SPATIAL PEAK SAR * (Brain)	1.60	8.00	
SPATIAL AVERAGE SAR ** (Whole Body)	0.08	0.40	
SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist)	4.00	20.0	

Table 8.1.SAR Human Exposure Specified in ANSI/IEEE C95.1-1992

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e.as a result of employment or occupation).

7. FCC MEASUREMENT PROCEDURES

Power measurements were performed using a base station simulator under digital average power.

7.1 Measured and Reported SAR

Dt&C

Per FCC KDB Publication 447498 D01v06, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported SAR. The highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

7.2 SAR Testing with 802.11 Transmitters

The normal network operating configurations are not suitable for measuring the SAR of 802.11 b/g/n transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227D01v02r02 for more details.

7.2.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the in the transmission, a maximum transmission duty factor of 92-96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

7.2.2 U-NII and U-NII-2A

For devices that operate in only one of the U-NII-1 and U-NII-2A bands, the normally required SAR procedures for OFDM configurations are applied. For devices that operate in both U-NII bands using the same transmitter and antenna(s), SAR test reduction is determined according to the following, with respect to the highest reported SAR and maximum output power specified for production units. The procedures are applied independently to each exposure configuration; for example, head, body, hotspot mode etc.

- When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR.
- 2) When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise,

each band is tested independently for SAR.

7.2.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements.

When Terminal Doppler Weather Rader (TDWR) restriction applies, the channels at 5.60 – 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification.

Unless band gap channels are permanently disabled, SAR must be considered for these channels. When band gap channels are disabled, each band is tested independently according to the normally required OFDM SAR measurements and probe calibration frequency points requirements.

7.2.4 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all position in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR position until the reported SAR result is ≤ 0.8 W/kg or all test position are measured.

7.2.5 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.

7.2.6 OFDM Transmission Mode and SAR Test Channel Selection

For the 2.4 GHz and 5 GHz bands, when the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a and 802.11n or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 80211n or 802.11g then 802.11n is used for SAR measurement. When the maximum output power ware the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

7.2.7 Initial Test Configuration Procedure

For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, and lowest data rate. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2 W/kg or all channels are measured.

7.2.8 Subsequent Test Configuration Procedures

For OFDM configurations, in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure, when applicable. When the highest reported SAR for the initial test configuration, adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power is \leq 1.2 W/kg, no additional SAR testing for the subsequent test configurations is required.

8. RF CONDUCTED POWERS

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06

8.1 WLAN Nominal and Maximum Output Power Spec and Conducted Powers

Band	Mode	Ch	Modulated Av	erage[dBm]
(GHz)	Mode		Maximum	Nominal
		1	20.5	19.0
	802.11b	6	20.5	19.0
		11	20.5	19.0
		1	16.5	15.0
	802.11g	6	16.5	15.0
0.4		11	16.5	15.0
2.4	000.44	3	15.5	14.0
	802.11n (HT-20)	6	15.5	14.0
	(11-20)	9	15.5	14.0
	802.11n	3	14.0	12.5
	(HT-40)	6	14.0	12.5
	(111-40)	9	14.0	12.5

Table 8.1.1 Nominal and Maximum Output Power Spec

Mode	Freq. (MHz)	Channel	IEEE 802.11 (2.4 GHz) Conducted Power[dBm]
	2 412	1	19.73
802.11b	2 4 12	6	20.00
002.110	2 462	11	20.02
	2 412	1	16.05
802.11g	2 437	6	16.15
-	2 462	11	15.93
000.44	2 412	1	15.02
802.11n	2 437	6	15.20
(HT-20)	2 462	11	14.96
	2 422	3	13.79
802.11n (HT-40)	2 437	6	13.60
(111-40)	2 452	9	13.87

Table 8.1.2 IEEE 802.11 Average RF Power

Report No.: DRRFCC2402-0012(1)

FCC ID: V2X-PM84W

Band Mode	Mada	Mada	Modulated Average[dBm]	
(GHz)	wode	Ch	Maximum	Nominal
		36-64	15.5	14.0
		100-144	16.0	14.5
	802.11a	149	16.5	15.0
		157	16.0	14.5
		165	15.0	13.5
		36-144	15.0	13.5
5 (11)	802.11n/ac	149	16.0	14.5
5 (UNII)	(20MHz)	157	15.0	13.5
		165	14.5	13.0
	000 44=/==	38-142	14.0	12.5
	802.11n/ac	151	14.5	13.0
	(40MHz)	159	14.0	12.5
	802.11ac	42-138	11.0	9.5
	(80MHz)	155	11.5	10.0

Table 8.1.3 Nominal and Maximum Output Power Spec

Mada	Mode Freq. (MHz)	Channel	IEEE 802.11a (5 GHz) Conducted Power[dBm]
Wode		Channel	
	5 180	36	15.03
	5 200	40	14.96
	5 220	44	14.83
	5 240	48	14.95
	5 260	52	14.47
	5 280	56	14.63
	5 300	60	14.20
802.11a	5 320	64	14.34
	5 500	100	14.94
	5 580	116	15.21
	5 660	132	15.63
	5 720	144	15.40
	5 745	149	16.07
	5 785	157	15.53
	5 825	165	14.89

Table 8.1.4 IEEE 802.11a Average RF Power

Mode	Freq.	Channel	IEEE 802.11n HT20 (5 GHz) Conducted Power[dBm]
Mode	(MHz)	Channel	
	5 180	36	14.21
	5 200	40	14.30
	5 220	44	13.97
	5 240	48	14.06
	5 260	52	13.61
	5 280	56	13.74
000 11-	5 300	60	13.28
802.11n (HT-20)	5 320	64	13.55
(111-20)	5 500	100	14.26
	5 580	116	14.45
	5 660	132	14.80
	5 720	144	14.62
	5 745	149	15.65
	5 785	157	14.80
	5 825	165	14.27

Table 8.1.5 IEEE 802.11n HT20 Average RF Power

Mode	Freq.	Channel	IEEE 802.11ac VHT20 (5 GHz) Conducted Power[dBm]
Mode	(MHz)	Channel	
	5 180	36	14.12
	5 200	40	14.16
	5 220	44	13.91
	5 240	48	14.03
	5 260	52	13.42
	5 280	56	13.68
000 44	5 300	60	13.17
802.11ac (VHT-20)	5 320	64	13.25
(VIII-20)	5 500	100	14.11
	5 580	116	14.32
	5 660	132	14.72
	5 720	144	14.42
	5 745	149	15.56
	5 785	157	14.54
	5 825	165	13.94

Table 8.1.6 IEEE 802.11ac VHT20 Average RF Power

Mode	Freq.	Channel	IEEE 002 44m HT40 /5 CHr) Conducted Dowerld Pm1					
wode	(MHz)	Channel	IEEE 802.11n HT40 (5 GHz) Conducted Power[dBm]					
	5 190	38	13.17					
	5 230	46	12.91					
	5 270	54	12.57					
	5 310	62	12.21					
802.11n	5 510	102	13.11					
(HT-40)	5 550	110	13.05					
	5 670	134	13.36					
	5 710	142	13.63					
	5 755	151	14.22					
	5 795	159	13.36					

Table 8.1.7 IEEE 802.11n HT40 Average RF Power

Mode	Freq.	Channel	IEEE 802.11ac VHT40 (5 GHz) Conducted Power[dBm]					
Wode	(MHz)	Channel						
	5 190	38	13.05					
	5 230	46	12.82					
	5 270	54	12.50					
	5 310	62	12.19					
802.11ac	5 510	102	13.10					
(VHT-40)	5 550	110	13.03					
	5 670	134	13.34					
	5 710	142	13.67					
	5 755	151	14.17					
	5 795	159	13.32					

Table 8.1.8 IEEE 802.11ac VHT40 Average RF Power

Mode	Freq.	Channel	IEEE 802.11ac VHT80 (5 GHz) Conducted Power[dBm]				
wode	(MHz)	Channel					
	5 210	42	10.33				
802.11ac	5 290	58	10.01				
(VHT-80)	5 530	106	10.21				
(111-00)	5 690	138	10.36				
	5 775	155	11.26				

Table 8.1.9 IEEE 802.11ac VHT80 Average RF Power

Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
 For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, duo to an even number of channels, both channels were measured.
- Output Power and SAR is not required for 802.11 g/n HT20/ac VHT20 channels when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjust SAR is ≤ 1.2 W/kg.
- The underlined data rate and channel above were tested for SAR.

The average output powers of this device were tested by below configuration.

Figure 8.1 Power Measurement Setup

8.2 Bluetooth Conducted Powers

Channel	Frequency (MHz)	Frame AVG Output Power (1Mbps) (dBm)	Frame AVG Output Power (2Mbps) (dBm)	Frame AVG Output Power (3Mbps) (dBm)		
Low	2 402	6.35	3.35	3.35		
Mid	2 441	6.35	3.35	3.35		
High	2 480	6.35	3.35	3.35		

Table 8.2.1 Nominal and Maximum Output Power Spec (Frame)

Channel	Frequency	Frame AVG Output Power (1Mbps)	Frame AVG Output Power (2Mbps)	Frame AVG Output Power (3Mbps)
	(MHz)	(dBm)	(dBm)	(dBm)
Low	2 402	5.53	2.75	2.75
Mid	2 441	5.87	2.61	2.61
High	2 480	6.16	3.07	3.08

Table 8.2.2 Bluetooth Burst and Frame Average RF Power

Channel	Frequency	Frame AVG Output Power(LE / 1Mbps)	Frame AVG Output Power(LE / 2Mbps)		
Channer	(MHz)	(dBm)	(dBm)		
Low	2 402	4.30	2.58		
Mid	2 440	4.30	2.58		
High	2 480	4.30	2.58		

Table 8.2.3 Nominal and Maximum Output Power Spec (Frame)

Channel	Frequency (MHz)	Frame AVG Output Power(LE / 1Mbps) (dBm)	Frame AVG Output Power(LE / 2Mbps) (dBm)
Low	2 402	2.82	1.44
Mid	2 440	4.25	2.55
High	2 480	3.07	1.44

Table 8.2.4 Bluetooth LE Burst and Frame Average RF Power

Bluetooth Conducted Powers procedures

- 1. Bluetooth (BDR, EDR)
 - 1) Enter DUT mode in EUT and operate it.
 - When it operating, The EUT is transmitting at maximum power level and duty cycle fixed.
 - 2) Instruments and EUT were connected like Figure 9.5.1.
 - 3) The maximum output powers of BDR(1 Mbps), EDR(2, 3 Mbps) and each frequency were set by a Bluetooth Tester.
 - 4) Power levels were measured by a Power Meter.

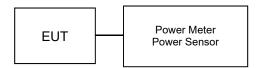


Figure 8.2.1 Average Power Measurement Setup

• Bluetooth Transmission Plot

Center Fre	er Freq 2.441000000 G		COFFEC SENSE-INT GHZ PNO: Fast IFGain:Low Atten: 30 dB		Avg Type: Log		05:19:38 PMDec: 11, 2023 TRACE 2 2 4 5 5 TYPE DET P P P P P P		
	Ref 20.00	dBm				Δ	Mkr3 3.750 ms 0.01 dB	Auto Tune	
16.0 D.00		Xa						Center Free 2.441000000 GH	
-30.0		-						Start Free 2.441000000 GH	
-50.0 ⁴² -60.0		hat the second		W Nare	<u>v</u>	-diyu		Stop Free 2.441000000 GH	
Center 2.44 Res BW 1.0	MHz	GHz ×	#VBW	3.0 MHz	SWer	-	Span 0 Hz 00 ms (1001 pts)	CF Ste 1.000000 MH Auto Ma	
2 F	t (Δ) t t (Δ) t	4.046	ms (Δ)	0.67 dB 7.57 dBm 0.01 dB 7.57 dBm				Freq Offse 0 H	
8 9 10 11									

Figure 8.2.2 Bluetooth Transmission Plot

• Bluetooth Duty Cycle Calculation

Duty Cycle = Pulse/Period * 100% = (2.880/3.750) * 100 = 76.8%

• Bluetooth LE Transmission Plot

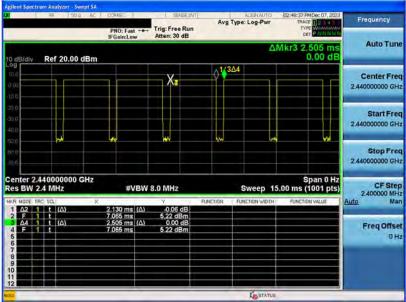


Figure 8.2.3 Bluetooth Transmission Plot

• Bluetooth LE Duty Cycle Calculation

Duty Cycle = Pulse/Period * 100% = (2.130/2.505) * 100 = 85.0%

9. SYSTEM VERIFICATION

9.1 Tissue Verification

					MEASURED TISSUE PARA	METERS				
Date(s)	Tissue Type	Ambient Temp.[°C]	Liquid Temp.[°C]	Measured Frequency [MHz]	Target Dielectric Constant, εr	Target Conductivity, σ (S/m)	Measured Dielectric Constant, ɛr	Measured Conductivity, σ (S/m)	Er Deviation [%]	σ Deviation [%]
				12.0	55.000	0.750	54.789	0.746	-0.38	-0.53
1 05 0004	13	04.0	04.7	13.0	55.000	0.750	54.755	0.747	-0.45	-0.40
Jan. 25. 2024	Head	21.2	21.7	13.6	55.000	0.750	54.708	0.747	-0.53	-0.40
				14.0	55.000	0.750	54.684	0.748	-0.57	-0.27
				2 402.0	39.282	1.757	40.068	1.762	2.00	0.28
				2 412.0	39.265	1.766	40.035	1.773	1.96	0.40
				2 437.0	39.222	1.788	39.954	1.802	1.87	0.78
				2 440.0	39.217	1.791	39.943	1.806	1.85	0.84
Jan. 24. 2024	2 450	21.2	21.6	2 441.0	39.215	1.792	39.940	1.807	1.85	0.84
Jan. 24. 2024	Head	21.2	21.0	2 450.0	39.200	1.800	39.914	1.817	1.82	0.94
				2 462.0	39.184	1.813	39.882	1.831	1.78	0.99
				2 467.0	39.177	1.818	39.868	1.836	1.76	0.99
				2 472.0	39.171	1.823	39.855	1.841	1.75	0.99
				2 480.0	39.160	1.832	39.827	1.851	1.70	1.04
				5 260.0	35.940	4.720	35.113	4.885	-2.30	3.50
			21.7	5 270.0	35.930	4.730	35.099	4.897	-2.31	3.53
	5 300			5 280.0	35.920	4.740	35.089	4.907	-2.31	3.52
Jan. 25. 2024	Head	21.2		5 290.0	35.910	4.750	35.071	4.917	-2.34	3.52
				5 300.0	35.900	4.760	35.045	4.927	-2.38	3.51
				5 310.0	35.890	4.770	35.027	4.941	-2.40	3.58
				5 320.0	35.880	4.780	35.016	4.954	-2.41	3.64
				5 500.0	35.650	4.965	36.197	5.067	1.53	2.05
				5 510.0 5 530.0	35.635 35.605	4.976 4.997	36.180	5.076 5.100	1.53 1.49	2.01
				5 530.0	35.605	4.997	36.136 36.101	5.100	1.49	2.06
				5 580.0	35.530	5.049	36.023	5.120	1.40	2.03
	5 600	600		5 600.0	35.500	5.070	35.997	5.183	1.40	2.14
Jan. 26. 2024	Head	21.4	21.8	5 660.0	35.440	5.130	35.889	5.245	1.40	2.23
				5 670.0	35.430	5.140	35.862	5.255	1.22	2.24
				5 690.0	35.410	5.160	35.812	5.283	1.14	2.38
				5 710.0	35.390	5.180	35.781	5.308	1.10	2.47
				5 720.0	35.380	5.190	35.767	5.317	1.09	2.45
				5 800.0	35.300	5.270	35.595	5.412	0.84	2.69
				5 745.0	35.355	5.215	35.127	5.045	-0.64	-3.26
				5 755.0	35.345	5.225	35.101	5.055	-0.69	-3.25
				5 775.0	35.325	5.245	35.068	5.071	-0.73	-3.32
Jan. 29. 2024	5 800	21.5	21.7	5 785.0	35.315	5.255	35.044	5.081	-0.77	-3.31
0an. 20. 2024	Head	21.5	21.1	5 795.0	35.305	5.265	35.022	5.093	-0.80	-3.27
				5 800.0	35.300	5.270	35.012	5.101	-0.82	-3.21
		1		5 825.0	35.275	5.296	34.996	5.136	-0.79	-3.02

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB 865664 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- The probe was immersed in the sample which was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight 2) angle.
- 3)
- The complex admittance with respect to the probe aperture was measured The complex relative permittivity, for example from the below equation (Pournaropoulos and 4) Misra):

$$W = \frac{j2\omega\varepsilon_r\varepsilon_0}{\left[\ln(b/a)\right]^2} \int_a^b \int_a^b \int_0^\pi \cos\phi' \frac{\exp\left[-j\omega r(\mu_0\varepsilon_r\varepsilon_0)^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + {\rho'}^2 - 2\rho\rho' \cos \phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

9.2 Test System Verification

Prior to assessment, the system is verified to the ± 10 % of the specifications at using the SAR Dipole kit(s). (Graphic Plots Attached)

Table 9.2.1 System Verification Results (1g)

	SYSTEM DIPOLE VERIFICATION TARGET & MEASURED												
SAR System #	Freq. [MHz]	SAR Dipole kits	Date(s)	Tissue Type	Ambient Temp. [°C]	Liquid Temp. [°C]	Probe S/N	Input Power (mW)	1 W Target SAR _{1g} (W/kg)	Measured SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation [%]	
F	2 450	D2450V2, SN: 726	Jan. 24. 2024	Head	21.2	21.6	3866	100	52.7	5.31	53.10	0.76	
F	5 300	D5GHzV2, SN:1212	Jan. 25. 2024	Head	21.2	21.7	3866	100	79.9	8.08	80.80	1.13	
F	5 500	D5GHzV2, SN:1212	Jan. 26. 2024	Head	21.4	21.8	3866	100	83.1	8.38	83.80	0.84	
F	5 600	D5GHzV2, SN:1212	Jan. 26. 2024	Head	21.4	21.8	3866	100	84.4	8.72	87.20	3.32	
F	5 800	D5GHzV2, SN:1212	Jan. 26. 2024	Head	21.4	21.8	3866	100	78.8	8.26	82.60	4.82	
F	5 800	D5GHzV2, SN:1212	Jan. 29. 2024	Head	21.5	21.7	3866	100	78.8	8.18	81.80	3.81	

Table 9.2.2 System Verification Results (10g)

	SYSTEM DIPOLE VERIFICATION TARGET & MEASURED													
SAR System #	Freq. [MHz]	SAR Dipole kits	Date(s)	Tissue Type	Ambient Temp. [°C]	Liquid Temp. [°C]	Probe S/N	Input Power (mW)	1 W Target SAR _{10g} (W/kg)	Measured SAR _{10g} (W/kg)	1 W Normalized SAR _{10g} (W/kg)	Deviation [%]		
F	2 450	D2450V2, SN: 726	Jan. 24. 2024	Head	21.2	21.6	3866	100	24.8	2.45	24.50	-1.21		
F	5 300	D5GHzV2, SN:1212	Jan. 25. 2024	Head	21.2	21.7	3866	100	22.8	2.27	22.70	-0.44		
F	5 500	D5GHzV2, SN:1212	Jan. 26. 2024	Head	21.4	21.8	3866	100	23.7	2.35	23.50	-0.84		
F	5 600	D5GHzV2, SN:1212	Jan. 26. 2024	Head	21.4	21.8	3866	100	24.0	2.49	24.90	3.75		
F	5 800	D5GHzV2, SN:1212	Jan. 26. 2024	Head	21.4	21.8	3866	100	22.2	2.33	23.30	4.95		
F	5 800	D5GHzV2, SN:1212	Jan. 29. 2024	Head	21.5	21.7	3866	100	22.2	2.29	22.90	3.15		
В	13	CLA13, SN:1030	Jan. 25. 2024	Head	21.2	21.7	3916	250	0.324	0.080	0.320	-1.23		

Note(s):

System Verification was measured with input 100 mW and normalized to 1W.
 Full system validation status and results can be found in Attachment 3.

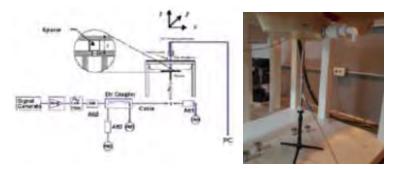


Figure 10.1 Dipole Verification Test Setup Diagram & Photo

10. SAR TEST RESULTS

10.1 Head SAR Results

-						Table	10.1.1 D	TS Head	SAR							
FREQUENCY	[Maximum	Conducted	ſ		MEASUREME			Data		10	I	Scaling	1g	
MHz Ch			Allowed Power [dBm]	Conducted Power [dBm]	Drift Power [dB]	Phant Posit	ion	Device Serial Number	Peak SAR o Area Scan		Duty Cycle	1g SAR (W/kg)	Scaling Factor	Factor (Duty Cycle)	Scaled SAR (W/kg)	Plots #
2 462.0 11 2 462.0 11	802.11 802.11		20.50 20.50	20.02	-0.050	Left To Right T		FCC #2 FCC #2	0.602	1	99.5 99.5	0.590	1.117	1.005	0.662 0.291	A1
2 462.0 11 2 462.0 11		b	20.50 20.50	20.02 20.02	-0.060 -0.020	Left Right	Tilt	FCC #2 FCC #2	0.421	1	99.5 99.5	0.404	1.117 1.117	1.005	0.454 0.304	
2 402.0	002.11			E C95.1-1992– SAFETY LIMI Spatial Peak		rugni	-	100 #2	0.200	·	55.5	ŀ	Head kg (mW/g)	1.000	0.004	-
			Uncontrolled Expo	osure/General Population E	xposure								d over 1 gram			
						Ad	justed SAR resu	ults for OFDM SA	AR							
FREQUENC	Ch	Mode/ Ante	onna Servi	ice Maximum Allowed Power [dBm]	1g Scaled SAR (W/kg)	F	REQUENCY [MHz]	м	lode	Service	Maximum Allowed Power IdBm	Ratio o to D	of OFDM DSSS	1g Adjusted SAR (W/kg)	Determine OFDM	I SAR
2 462.0	11	802.111		SS 20.50	0.662		2 437.0		2.11g	OFDM	16.50		398	0.263	X	
2 462.0 2 462.0	11 11	802.111			0.662		2 437.0 2 437.0		n (HT20) n (HT40)	OFDM OFDM	15.50 14.00		316 224	0.209 0.148	X	
			EE C95.1-1992– SAFET Spatial Peak		-			_			Head 1.6 W/kg (m					
Note: SA			posure/General Popula owing 2.4 GHz OFI	ation Exposure DM conditions. When th	e highest reporte	ed SAR for D	SSS is adjust	ted by the ratio	o of OFDM to D	SSS specified n	averaged over naximum outp		the adjusted	SAR is ≤ 1.2 W/	ka.	
			5		5 1		-	NII Head					,		5	
						Iable	MEASUREME		JAR							
FREQUENCY	Mode		Maximum Allowed	Conducted Power	Drift Power	Phant		Device Serial	Peak SAR of	Data Rate	Duty	1g SAR	Scaling	Scaling Factor	1g Scaled	Plots
MHz Ch	(Antenn		Power [dBm]	[dBm]	[dB]	Posit		Number	Area Scan	[Mbps]	Cycle	(W/kg)	Factor	(Duty Cycle)	SAR (W/kg)	#
5 280.0 56 5 280.0 56	802.11 802.11		15.50 15.50	14.63 14.63	0.130	Left To Right T		FCC #2 FCC #2	0.561 0.478	6	96.9 96.9	0.611 0.522	1.222	1.032	0.771 0.658	A2
5 280.0 56	802.11	а	15.50	14.63	0.080	Left	Tilt	FCC #2	0.379	6	96.9	0.426	1.222	1.032	0.537	
5 280.0 56	802.11	a	15.50 ANSI / IEEE	14.63 E C95.1-1992- SAFETY LIMI	0.090 T	Right	rill	FCC #2	0.414	6	96.9		1.222 Head	1.032	0.566	<u> </u>
			Uncontrolled Expo	Spatial Peak osure/General Population E	xposure								kg (mW/g) i over 1 gram			
						Adjusted	SAR results for	r UNII-1 and UNII	-2A SAR							
FREQUENC	Y	Mode/ Ante		Maxir Allo	mum wed	1g Scaled	FREQUE	NCY	Mada	Oraniaa	Maxim		Adjusted	1g Adjusted SAR	SAR for the ban	d with lower
MHz	Ch	Mode/ Ante	enna S	ervice Pov [dB	ver	SAR (W/kg)	[MHz		Mode	Service	Pow [dBi		Factor	SAR (W/kg)	maximum outp	
5 280.0	56	802.11	a C	FDM 15	.5	0.771	5 180	0.0	802.11a	OFDM	15.	5 ead	1.000	0.771	X	
			Spatial Peak Exposure/General Po								1.6 W/k	over 1 gram				
Note:				naximum output power i cified maximum output												n
	is adjusted by	the facto of h	lower to nighter spe	cined maximum output	power for the two		-		-	not required for	ule ballo wiu		um output po	wei in that test o	oninguration.	
						lable	MEASUREME	UNII Hea	d SAR							
FREQUENCY	_	lode	Maximum Allowed	Conducted	Drift Power	Phant		Device	Peak SAR of	Data	Duty	1g	Scaling	Scaling Factor	1g Scaled	Plots
MHz Cł		tenna)	Power [dBm]	Power [dBm]	[dB]	Posit	ion	Serial Number	Area Scan	Rate [Mbps]	Cycle	1g SAR (W/kg)	Factor	(Duty Cycle)	SAR (W/kg)	#
5 660.0 13		2.11a	16.00	15.63	0.150	Left To		FCC #2	0.523	6	96.9	0.559	1.089	1.032	0.628	A3
5 660.0 13 5 660.0 13	2 803	2.11a 2.11a	16.00 16.00	15.63 15.63	-0.110 0.060	Right T Left	Tilt	FCC #2 FCC #2	0.417	6 6	96.9 96.9	0.426	1.089	1.032	0.479 0.480	
5 660.0 13	2 802	2.11a	16.00 ANSI / IEEE	15.63 E C95.1-1992– SAFETY LIMI	0.040 T	Right	Tilt	FCC #2	0.360	6	96.9	0.407	1.089 Head	1.032	0.457	
			Uncontrolled Expo	Spatial Peak osure/General Population E	xposure							1.6 W/ averaged	kg (mW/g) i over 1 gram			
						Table	່ 10.1.4 ເ	UNII Hea	d SAR							
FREQUENCY			Maximum	Continued			MEASUREME			Data		4-	T	Scaling	1g	
MHz Ch		lode tenna)	Allowed Power	Conducted Power [dBm]	Drift Power [dB]	Phant Posit	tom ion	Device Serial Number	Peak SAR of Area Scan	Rate [Mbps]	Duty Cycle	1g SAR (W/kg)	Scaling Factor	Factor (Duty	Scaled SAR	Plots #
5 745.0 14		2.11a	[dBm] 16.50	16.07	0.090	Left To	buch	FCC #2	0.524	6	96.9	0.589	1.104	Cycle) 1.032	(W/kg) 0.671	A4
5 745.0 14 5 745.0 14	9 80:	2.11a 2.11a	16.50 16.50	16.07 16.07	0.020	Right T Left		FCC #2 FCC #2	0.352 0.442	6 6	96.9 96.9	0.383 0.455	1.104	1.032 1.032	0.436 0.518	
5 745.0 14		2.11a	16.50	16.07 E C95.1-1992– SAFETY LIMI	0.080	Right		FCC #2	0.346	6	96.9	0.413	1.104 Head	1.032	0.471	
				2 C95.1-1992– SAFETY LIMI Spatial Peak osure/General Population E								1.6 W/	Head kg (mW/g) i over 1 gram			
<u> </u>						able 10.	.1.5 Blue	etooth He	ead SAR			<u>v</u>	2			
					-			NT RESULTS							-	
FREQUENCY	Mod		Maximum Allowed	Conducted	Drift	Phant		Device	Rate	Duty	1g SAR	Sc	aling	Scaling Factor	1g Scaled	Plots
MHz CI	ו Mod		Power [dBm]	Power [dBm]	Power [dB]	Posit	ion	Serial Number	[Mbps]	Cycle (%)	SAR (W/kg)		ictor	(Duty Cycle)	SAR (W/kg)	#
2 441.0 39			6.35	5.87	-0.020	Left To		FCC #2	1	76.8	0.054		.117	1.302	0.079	A5
2 441.0 39 2 441.0 39	Blueto	oth	6.35 6.35	5.87 5.87	0.110 0.030	Right T Left	Tilt	FCC #2 FCC #2	1 1	76.8 76.8	0.012	1.	.117 .117	1.302	0.017 0.036	
2 441.0 39	Blueto	oth	6.35 ANSI / IEEE 0	5.87 C95.1-1992– SAFETY LIMIT	-0.070	Right	Tilt	FCC #2	1	76.8	0.014		.117 ad	1.302	0.020	
				Spatial Peak sure/General Population Exp	oosure							1.6 W/kg averaged o	g (mW/g)			
				· · · ·			6 Plust			<u> </u>						
					iac				Head SAF	•						
FREQUENCY			Maximum	Conducted	Drift			Device	The second s	Duty			alling	Scaling	1g	
MHz CI	n Me	ode	Allowed Power	Power [dBm]	Power [dB]	Phant Posit	ion	Serial Number	Rate [Mbps]	Cycle (%)	SAR (W/kg)		aling actor	Factor (Duty	Scaled SAR	Plots #
2 441.0 19) Blueto	ooth LE	[dBm] 4.30	4.25	-0.080	Left To		FCC #2	1	85.0	0.014	1	.012	Cycle) 1.176	(W/kg) 0.017	A6
2 441.0 19) Blueto	ooth LE	4.30	4.25	-0.120	Right T	ouch	FCC #2	1	85.0	0.006	1.	.012	1.176	0.007	
2 441.0 19 2 441.0 19		ooth LE ooth LE	4.30 4.30	4.25 4.25	-0.010 -0.040	Left Right		FCC #2 FCC #2	1 1	85.0 85.0	0.012	1.	.012 .012	1.176 1.176	0.014 0.010	
	-			C95.1-1992– SAFETY LIMIT Spatial Peak	-							1.6 W/kg	ad g (mW/g)		-	
			Uncontrolled Expos	ure/General Population Exp	oosure							averaged o	ver 1 gram			

10.2 Standalone Body-Worn SAR Results

						Та	ble 10.2.1 D	TS Body-V	Norn SAR							
-			-				MEASU	IREMENT RESULTS	-	-		-	-	-	-	
FREQUEN	CY Ch	Mode	Maximum Allowed Power		onducted Power [dBm]	Drift Power [dB]	Phantom Position	Device Serial Number	Peak SAR of Area Scan	Data Rate [Mbps]	Duty Cycle	1g SAR (W/kg)	Scaling Factor	Scaling Factor (Duty	SAR (W/kg)	Plots #
2 462.0	11	802.11b	[dBm] 20.50		20.02	0.020	15 mm [Front]	FCC #2	0.129	1	99.5	0.138	1.117	Cycle) 1.005	0.155	A7
2 462.0	11	802.11b	20.50		20.02	0.010	15 mm [Rear]	FCC #2	0.100	1	99.5	0.097	1.117	1.005	0.109	
				/ IEEE C95.1-199 Spatial P	eak							Boo 1.6 W/kg	(mW/g)			
			Uncontrolle	d Exposure/Gene	ral Population Exp	oosure						averaged ov	ver 1 gram			
-							Adjusted SA	R results for OFDM	SAR							
	QUENCY	N	lode/ Antenna	Service	Maximum Allowed	1g Scaled SAR	FREQUEN [MHz]	сү	Mode	Service	Maximum Allowed Power	Ratio of to D	f OFDM	1g Adjusted SAR	Determine OFDN	I SAR
MHz		Ch "			Power [dBm]	(W/kg)					[dBm			(W/kg)		
2 462.0 2 462.0		11 11	802.11b 802.11b	DSSS DSSS	20.50	0.155	2 437.0 2 437.0		02.11g 11n (HT20)	OFDM OFDM	16.50 15.50	0.3		0.062	<u> </u>	
2 462.0		11	802.11b	DSSS	20.50	0.155	2 437.0		11n (HT40)	OFDM	14.00	0.2		0.035	X	
			ANSI / IEEE C95.1-1992 Spatial Pe	ak							Body 1.6 W/kg (m	W/g)				
Note:	: SAR is n		rolled Exposure/Gener			highest reported	SAR for DSSS is a	diusted by the ratio	o of OFDM to DS	SS specified m	averaged over aximum output		e adiusted SA	R is ≤ 1.2 W/	ka.	
11010.		iot roquirou ior								ee opeenieu iii	axinani oupu	ponor and an	o adjaolod of		.9.	
						Та	ble 10.2.2 U		Vorn SAR							
			Maximum				MEASU	IREMENT RESULTS					T	Scaling	19	
FREQUEN	ICY	Mode	Allowed Power	Co	Power	Drift Power [dB]	Phantom Position	Device Serial	Peak SAR of Area Scan	Rate	Duty Cycle	1g SAR	Scaling Factor	Factor (Duty	1g Scaled SAR	Plots #
MHz	Ch	000 11	[dBm]		[dBm]			Number		[Mbps]		(W/kg)		Cycle)	(W/kg)	
5 280.0 5 280.0	56 56	802.11a 802.11a	15.50 15.50		14.63 14.63	-0.070 -0.040	15 mm [Front] 15 mm [Rear]	FCC #2 FCC #2	0.138	6	96.9 96.9	0.131 0.348	1.222	1.032	0.165 0.439	A8
					05- SAFETY LIMI	ŕ		÷		-		В	lody kg (mW/g)	-	<u>.</u>	
			Uncontrol	led Exposure/Ger	eral Population E:	xposure						averaged	over 1 gram			
							Adjusted SAR resi	ults for UNII-1 and UN	III-2A SAR							1
FRE	QUENCY				Maxir	num					Maxim	um		1g		
MHz		Ch	Node/ Antenna	Service	Allov	ver	SAR	REQUENCY [MHz]	Mode	Service	Allow	er	Adjusted Factor	1g Adjusted SAR	SAR for the band maximum outp	a with lower
5 280.0		56	802.11a	OFDM	[dB 15		(W/kg) 0.439	5 180.0	802.11a	OFDM	[dBr 15.5		1.000	(W/kg) 0.439.	X	
			ANSI / IEEE C95.1-1	992– SAFETY LIN Il Peak							Bo	ody g (mW/g)				
			controlled Exposure/Ge	neral Population							averaged	over 1 gram				
	Note: U-N is a	VII-1 and U-NII- adjusted by the	2A Bands: When dif	erent maximum	n output power i	s specified for the	e bands, begin SAR									
			ratio of lower to high	ner specified ma	aximum output j	power for the two	bands. When the a	djusted SAR is ≤	1.2 W/kg, SAR is	not required for	r the band with	lower maximu	ignest reporte	ver in that test	configuration.	n
		aajaotoa by 110	ratio of lower to high	ner specified ma	aximum output	power for the two	bands. When the a	djusted SAR is ≤	1.2 W/kg, SAR is	not required for	r the band with	lower maximu	um output pow	ver in that test	configuration.	n
		adjaotod by the	ratio of lower to hig	ner specified ma	aximum output		bands. When the a	djusted SAR is ≤ [·]	1.2 W/kg, SAR is	not required for	r the band with	lower maximu	um output pow	ver in that test	configuration.	n
			ratio of lower to high	ner specified ma	aximum output		bands. When the a	djusted SAR is ≤ [·]	1.2 W/kg, SAR is	not required for	r the band with	lower maximu	um output pow	ver in that test	configuration.	n
FREQUE			Maximum	C	aximum output onducted	Tab	ble 10.2.3 UN	djusted SAR is ≤ III Body-W IREMENT RESULTS Device	1.2 W/kg, SAR is	not required for	r the band with	lower maximu	um output pow	ver in that test	configuration.	
FREQUE	NCY	Mode	Maximum Allowed Power	C	aximum output		bands. When the a	djusted SAR is ≤	1.2 W/kg, SAR is	not required for	Duty Cycle	1g SAR (W/kg)	Scaling Factor	Scaling Factor (Duty	configuration.	Plots
FREQUEI MHz 5 660.0	NCY Ch 132	Mode 802.11a	Maximum Allowed Power [dBm] 16.00	Ca	onducted Power [dBm] 15.63	Tab Drift Power [dB] 0.050	bands. When the a	djusted SAR is ≤ III Body-W IREMENT RESULTS Device Serial Number FCC #2	1.2 W/kg, SAR is orn SAR Peak SAR of Area Scan 0.162	Data Rate [Mbps] 6	Duty Cycle 96.9	lower maximu 1g SAR (W/kg) 0.136	Scaling Factor 1.089	Scaling Factor (Duty Cycle) 1.032	1g Scaled SAR (Wikg) 0.153	Plots #
MHz 5 660.0 5 660.0	NCY Ch 132 132	Mode 802.11a 802.11a	Maximum Allowed Power [dBm] 16.00 16.00	Ca	nducted Power [dBm] 15.63 15.63	Tab Drift Power [dB] 0.050 -0.110	ble 10.2.3 UN MEASL Phantom Position 15 mm [Front] 15 mm [Rear]	djusted SAR is ≤ III Body-W IREMENT RESULTS Device Serial Number FCC #2 FCC #2	1.2 W/kg, SAR is orn SAR Peak SAR of Area Scan 0.162 0.386	Data Rate [Mbps] 6 6	Duty Cycle 96.9 96.9	1g SAR (W/kg) 0.136 0.425	Scaling Factor 1.089 1.089	Scaling Factor (Duty Cycle) 1.032 1.032	1g Scaled SAR (W/kg) 0.153 0.478	
MHz 5 660.0	NCY Ch 132	Mode 802.11a	Maximum Allowed Power [dBm] 16.00	Ca	onducted Power [dBm] 15.63	Tab Drift Power [dB] 0.050	b bands. When the a ble 10.2.3 UN MEASL Phantom Position 15 mm [Front]	djusted SAR is ≤ III Body-W IREMENT RESULTS Device Serial Number FCC #2	1.2 W/kg, SAR is orn SAR Peak SAR of Area Scan 0.162	Data Rate [Mbps] 6	Duty Cycle 96.9	lower maximu 1g SAR (W/kg) 0.136	Scaling Factor 1.089	Scaling Factor (Duty Cycle) 1.032	1g Scaled SAR (Wikg) 0.153	Plots #
MHz 5 660.0 5 660.0 5 745.0	NCY Ch 132 132 149	Mode 802.11a 802.11a 802.11a	Maximum Allowed (dBm) 16.00 16.00 16.50 16.50	Co	aximum output ponducted Power [GBm] 15.63 15.63 15.63 16.07 16.07 16.07	Tab Drift Power [dB] 0.050 -0.010 -0.080 -0.010	bands. When the a ble 10.2.3 UN MEASU Phantom Position 15 mm [Front] 15 mm [Front]	djusted SAR is ≤ III Body-W REMENT RESULTS Device Sorial Number FCC #2 FCC #2 FCC #2	1.2 W/kg, SAR is orn SAR Peak SAR of Area Scan 0.162 0.386 0.164	Data Rato [Mbps] 6 6 6	Duty Cycle 96.9 96.9 96.9 96.9	1g SAR (W/kg) 0.136 0.425 0.154 0.342 B	Scaling Factor 1.089 1.104 1.104 004	Scaling Factor (Duty Cycle) 1.032 1.032	1g Scaled SAR (W/kg) 0.153 0.478 0.175	Plots # A9
MHz 5 660.0 5 660.0 5 745.0	NCY Ch 132 132 149	Mode 802.11a 802.11a 802.11a	Maximum Allowed Power [dBm] 16.00 16.00 16.50 16.50 AN	SI / IEEE C95.1-19 Spatial	aximum output ponducted Power [GBm] 15.63 15.63 15.63 16.07 16.07 16.07	Drift Power [dB] 0.050 -0.110 -0.080 -0.010	bands. When the a ble 10.2.3 UN MEASU Phantom Position 15 mm [Front] 15 mm [Front]	djusted SAR is ≤ III Body-W REMENT RESULTS Device Sorial Number FCC #2 FCC #2 FCC #2	1.2 W/kg, SAR is orn SAR Peak SAR of Area Scan 0.162 0.386 0.164	Data Rato [Mbps] 6 6 6	Duty Cycle 96.9 96.9 96.9 96.9	1g SAR (W/kg) 0.136 0.425 0.154 0.342 B 1.6 W/k	Scaling Factor 1.089 1.104 1.104	Scaling Factor (Duty Cycle) 1.032 1.032	1g Scaled SAR (W/kg) 0.153 0.478 0.175	Plots # A9
MHz 5 660.0 5 660.0 5 745.0	NCY Ch 132 132 149	Mode 802.11a 802.11a 802.11a	Maximum Allowed Power [dBm] 16.00 16.00 16.50 16.50 AN	SI / IEEE C95.1-19 Spatial	aximum output Power [dBm] 15.63 15.63 15.63 16.07 16.07 16.07 192- SAFETY LIMIP Peak	Drift Power [dB] 0.050 -0.110 -0.080 -0.010 - T xposure	bands. When the a ble 10.2.3 UN MEASU Phantom Position 15 mm [Front] 15 mm [Rear] 15 mm [Rear]	ill Body-W REMENT RESULTS Bevica Number FCC #2 FCC #2 FCC #2 FCC #2	1.2 W/kg, SAR is orn SAR Peak SAR of Area Scan 0.162 0.336 0.164 0.339	Data Rate [Mbps] 6 6 6 6 6 6	Duty Cycle 96.9 96.9 96.9 96.9	1g SAR (W/kg) 0.136 0.425 0.154 0.342 B 1.6 W/k	Scaling Factor 1.089 1.089 1.089 1.089 1.0104 0:00y 0:00y 0; (mW/g)	Scaling Factor (Duty Cycle) 1.032 1.032	1g Scaled SAR (W/kg) 0.153 0.478 0.175	Plots # A9
MHz 5 660.0 5 660.0 5 745.0	NCY Ch 132 132 149	Mode 802.11a 802.11a 802.11a	Maximum Allowed Power [dBm] 16.00 16.00 16.50 16.50 AN	SI / IEEE C95.1-19 Spatial	aximum output Power [dBm] 15.63 15.63 15.63 16.07 16.07 16.07 192- SAFETY LIMIP Peak	Drift Power [dB] 0.050 -0.110 -0.080 -0.010 - T xposure	bands. When the a ble 10.2.3 UN MEASU Phantom Position 15 mm [Front] 15 mm [Rear] 15 mm [Rear] 15 mm [Rear] 10.2.4 Bluete	djusted SAR is ≤ III Body-W REMENT RESULTS Device Device Perc #2 FCC #2	1.2 W/kg, SAR is orn SAR Peak SAR of Area Scan 0.162 0.386 0.164 0.339	Data Rate [Mbps] 6 6 6 6 6 6	Duty Cycle 96.9 96.9 96.9 96.9	1g SAR (W/kg) 0.136 0.425 0.154 0.342 B 1.6 W/k	Scaling Factor 1.089 1.089 1.089 1.089 1.0104 0:00y 0:00y 0; (mW/g)	Scaling Factor (Duty Cycle) 1.032 1.032	1g Scaled SAR (W/kg) 0.153 0.478 0.175	Plots # A9
MHz 5 660.0 5 660.0 5 745.0 5 745.0	NCY Ch 132 132 149 149	Mode 802.11a 802.11a 802.11a	Maximum Allowed Power [dbm] 16.00 16.50 16.50 16.50 Uncontrol	SI / IEEE C95.1-19 Spatial Spatial	aximum output p Pouted [dBm] 15.63 16.07 16.07 16.07 Peak Peak Peral Population E:	Drift Power [dB] 0.050 -0.110 -0.080 -0.010 - T xposure	bands. When the a ble 10.2.3 UN MEASU Phantom Position 15 mm [Front] 15 mm [Rear] 15 mm [Rear] 15 mm [Rear] 10.2.4 Bluete	djusted SAR is s III Body-W REMENT RESULTS Device Device Sevical Number FCC #2 FCC #2	1.2 W/kg, SAR is orn SAR Peak SAR of Area Scan 0.162 0.386 0.164 0.339	Data Rate [Mbps] 6 6 6 6 6 6 8	Duty Cyce 96.9 96.9 96.9 96.9 96.9	1g SAR (W/kg) 0.136 0.425 0.154 0.342 B 1.6 W/k	Scaling Factor 1.089 1.089 1.089 1.089 1.0104 0:00y 0:00y 0; (mW/g)	Scaling Factor (Duty) 1.032 1.032 1.032	1g Scaled Scaled Scaled Scaled O.153 O.478 O.175 O.390	Plots # A9
MHz 5 660.0 5 660.0 5 745.0 5 745.0 FREQUEN	NCY Ch 132 132 149 149 149	Mode 802.11a 802.11a 802.11a	Maximum Allowed Power [dBm] 16.00 16.50 16.50 AN Uncontrol	SI / IEEE C95.1-15 Spatial Spatial Leed Exposure/Ger	aximum output p poducted power [dBm] 15.63 16.07 16.07 16.07 92–SAFETY LIMI Peak peral Population E: poducted Power	Drift Power [d8] 0.050 -0.010 -0.080 -0.010 -0.080 -0.010 T Xposure Table Drift Power Drift Power	b bands. When the a ble 10.2.3 UN MEASU Phantom Phantom Phantom 15 mm [Front] 15 mm [Front] 15 mm [Rear] 10.2.4 Blueto MEASUF Phantom	ill Body-W III Body-W REMENT RESULTS Device PFCC #2 FFCC #2	1.2 Wikg, SAR is orn SAR Peak SAR of Area Scan 0.162 0.386 0.164 0.339 - Worn SAR 'S Rate	Data Rate [Mbps] 6 6 6 6 6 6 6 8	Duty Cycle 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9	10 50 600 13 50 70 13 60 142 50 0.134 0.142 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.155 0.15	Scaling Factor 1.089 1.089 1.04 1.104 over 1 gram	Scaling Factor Cycle) 1.032 1.032 1.032 5caling Factor	1g Scaled SAR (W/kg) 0.153 0.478 0.175 0.390	Plots # A9
MHz 5 660.0 5 745.0 5 745.0 5 745.0 FREQUEN MHz	NCY Ch 132 132 1349 149 149 ICY Ch	Mode 802.11a 802.11a 802.11a 802.11a	Maximum Allowed Power [dBm] 16.00 16.00 16.50 16.50 AN Uncontrol Maximum Allowed Power [dBm]	SI / IEEE C95.1-15 Spatial Spatial Leed Exposure/Ger	aximum output p onducted Power [dBm] 15.63 16.07 16.07 16.07 16.07 29.2 SAFETY LIMF Peak Peak Peak Peak Peak Peak Peak Peak	Tab Drift Power [dB] 0.050 -0.110 -0.080 -0.010 T xposure Table 7 Drift Power [dB]	bands. When the a ble 10.2.3 UN MEASU Phantom Position 15 mm [Front] 15 mm [Rear] 15 mm [Rear] 15 mm [Rear] 10.2.4 Bluetto MEASUF Phantom Position	djusted SAR is s III Body-W REMENT RESULTS Povice Sorial Number FCC #2 FCC #2 FCC #2 FCC #2 Dooth Body REMENT RESULT Sorial Number	1.2 W/kg, SAR is orn SAR Peak SAR of Area Scan 0.162 0.386 0.164 0.339 -Worn SAR rs Rate [Mbps]	Data Rate [Mbps] 6 6 6 6 6 6 8	r the band with Duty Cycle 96.9 96.9 96.9 96.9 96.9 96.9 96.9	lower maximu 1g SAR (WKg) 0.136 0.425 0.154 0.342 B 1.6 WK averaged Sec Fa	Scaling Factor 1.089 1.009 1.104 1.104 00y (g (mWg) over 1 gram	Scaling Factor (Dyty Cycle) 1.032 1.032 1.032 1.032 Scaling Factor (Duty Cycle) Cycle) Cycle) Cycle	1g Scaled Scaled SR (W/kg) 0.153 0.478 0.175 0.390	Plots # A9 A10
MHz 5 660.0 5 745.0 5 745.0 FREQUEN MHz 2 441.0	NCY Ch 132 132 149 149 149 (CY Ch 39	Mode 802.11a 802.11a 802.11a 802.11a 802.11a	Maximum Allowed Power [dBm] 16.00 16.50 16.50 AN Uncontrol Maximum Allowed Poer [dBm] 6.35	SI / IEEE C95.1-15 Spatial Spatial Leed Exposure/Ger	aximum output p poducted power [dBm] 15.63 16.07 16.07 16.07 92–SAFETY LIMI Peak peral Population E: poducted Power	Drift Power [d8] 0.050 -0.010 -0.080 -0.010 -0.080 -0.010 T Xposure Table Drift Power Drift Power	bands. When the a ble 10.2.3 UN MEASU Phantom Position 15 mm [Front] 15 mm [Front] 15 mm [Rear] 10.2.4 Bluetto MEASUF Phantom Phantom Phantom 15 mm [Front]	djusted SAR is s	1.2 Wikg, SAR is orn SAR Peak SAR of Area Scan 0.162 0.386 0.164 0.339 - Worn SAR 'S Rate	Data Rate (Mbps) 6 6 6 6 6 7 8	Duty Cycle 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9	19 SAR (WHS) 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 8 4 8 4 8 8 5 6 8 5 6 8 6 8 6 8 8 7 6 8 8 8 8 8 8 8 8 8 8 8	Scaling Factor 1.089 1.089 1.04 1.104 over 1 gram	Scaling Factor (Duck) 1.032 1.032 1.032 1.032 1.032	1g Scaled Scaled Scaled Scaled 0.153 0.478 0.175 0.390	Piots # A9 A10
MHz 5 660.0 5 745.0 5 745.0 5 745.0 FREQUEN MHz	NCY Ch 132 132 1349 149 149 ICY Ch	Mode 802.11a 802.11a 802.11a 802.11a	Maximum Allowed Power (dBm) 16.00 16.50 16.50 16.50 Maximum Allowed Power (dBm) 6.35 6.35	SI / IEEE C95.1-19 Spatial led Exposure/Ger	aximum output p producted Power [dBm] 15.63 15.63 15.63 15.63 16.07 16.07 16.07 16.07 192- SAFETY LIMIT 5.87 5.87 2. SAFETY LIMIT	Tab Drift Power [dB] 0.050 -0.110 -0.080 -0.010 T xposure Table 7 Drift Power [dB] -0.100	bands. When the a ble 10.2.3 UN MEASU Phantom Position 15 mm [Front] 15 mm [Rear] 15 mm [Rear] 15 mm [Rear] 10.2.4 Bluetto MEASUF Phantom Position	djusted SAR is ≤ III Body-W REMENT RESULTS Device Sorial Number FCC #2 FCC #2	1.2 Wikg, SAR is orn SAR Peak SAR of Area Scan 0.162 0.386 0.164 0.339 -Worn SAF rs Rate [Mbps] 1	Data Rate [Mbps] 6 6 6 6 6 6 8	Duty Cycle 96.9 90.0 90.0 90.0 90.0 90.0	10 Sec 1 Sec	Scaling Factor 1.089 1.089 1.104 ody gr(mVg) over 1 gram	Scaling Factor (Dyty Cycle) 1.032 1.032 1.032 1.032 Scaling Factor (Duty Cycle) Cycle) Cycle) Cycle	1g Scaled Scaled SR (W/kg) 0.153 0.478 0.175 0.390	Plots # A9 A10
MHz 5 660.0 5 745.0 5 745.0 FREQUEN MHz 2 441.0	NCY Ch 132 132 149 149 149 (CY Ch 39	Mode 802.11a 802.11a 802.11a 802.11a 802.11a	Maximum Allowed Power [dBm] 16.00 16.00 16.50 16.50 AN Uncontrol Maximum Allowed Power [dBm] 6.35 6.35	St / IEEE C95.1-19 St / IEEE C95.1-19 Ieed Exposure/Ger	aximum output p producted Power [dBm] 15.63 15.63 15.63 15.63 16.07 16.07 16.07 16.07 192- SAFETY LIMIT 5.87 5.87 2. SAFETY LIMIT	Drift Power [d8] 0.050 -0.010 -0.080 -0.010 -0.010 Table 2 Drift Power [d8] -0.100 -0.100 -0.100	bands. When the a ble 10.2.3 UN MEASU Phantom Position 15 mm [Front] 15 mm [Front] 15 mm [Rear] 10.2.4 Bluetto MEASUF Phantom Phantom Phantom 15 mm [Front]	djusted SAR is s	1.2 Wikg, SAR is orn SAR Peak SAR of Area Scan 0.162 0.386 0.164 0.339 -Worn SAF rs Rate [Mbps] 1	Data Rate (Mbps) 6 6 6 6 6 7 8	Duty Cycle 96.9 90.0 90.0 90.0 90.0 90.0	lower maximu 19 SAR (WNs) 0.136 0.425 0.154 0.342 B 1.6 Wik averaged Scc Fa 1.1 1. 1.	Scaling Factor 1.089 1.014 004 9 0ver 1 gram	Scaling Factor (Duck) 1.032 1.032 1.032 1.032 1.032	1g Scaled Scaled Scaled Scaled 0.153 0.478 0.175 0.390	Plots # A9 A10
MHz 5 660.0 5 745.0 5 745.0 FREQUEN MHz 2 441.0	NCY Ch 132 132 149 149 149 (CY Ch 39	Mode 802.11a 802.11a 802.11a 802.11a 802.11a	Maximum Allowed Power [dBm] 16.00 16.00 16.50 16.50 AN Uncontrol Maximum Allowed Power [dBm] 6.35 6.35	St / IEEE C95.1-19 St / IEEE C95.1-19 Ieed Exposure/Ger	aximum output p poducted power [dBm] 15.63 16.07 16.	Tab Drift Power [d8] 0.050 -0.010 -0.080 -0.010 T xposure Table 2 Drift Power [d8] -0.100 -0.010	bands. When the a ble 10.2.3 UN MEASU Phantom Postion 15 mm [Front] 15 mm [Front] 15 mm [Rear] 10.2.4 Bluetto MEASUF Phantom Postion 15 mm [Front] 15 mm [Front] 15 mm [Front] 15 mm [Front] 15 mm [Rear]	III Body-W IREMENT RESULTS Price #2 FCC #2	1.2 W/kg, SAR is orn SAR Peak SAR of Area Scan 0.162 0.386 0.164 0.339 -Worn SAF (Mbps) 1 1	Data Rate (Mbps) 6 6 6 6 6 6 7 6 8	Duty Cycle 96.9 90.0 90.0 90.0 90.0 90.0	lower maximu 19 SAR (WKg) 0.136 0.425 0.154 0.342 B 1.6 WK averaged Scc Fa 1. 1. Boo 1.6 WG	Scaling Factor 1.089 1.014 004 9 0ver 1 gram	Scaling Factor (Duck) 1.032 1.032 1.032 1.032 1.032	1g Scaled Scaled Scaled Scaled 0.153 0.478 0.175 0.390	Plots # A9 A10
MHz 5 660.0 5 745.0 5 745.0 FREQUEN MHz 2 441.0	NCY Ch 132 132 149 149 149 (CY Ch 39	Mode 802.11a 802.11a 802.11a 802.11a 802.11a	Maximum Allowed Power [dBm] 16.00 16.00 16.50 16.50 AN Uncontrol Maximum Allowed Power [dBm] 6.35 6.35	St / IEEE C95.1-19 St / IEEE C95.1-19 Ieed Exposure/Ger	aximum output p poducted power [dBm] 15.63 16.07 16.	Tab Drift Power [d8] 0.050 -0.010 -0.080 -0.010 T xposure Table 2 Drift Power [d8] -0.100 -0.010	bands. When the a ble 10.2.3 UN MEASU Phantom Position 15 mm [Front] 15 mm [Front] 15 mm [Rear] 10.2.4 Blueto MEASUF Phantom Ph	djusted SAR is s	1.2 W/kg, SAR is orn SAR Peak SAR of Area Scan 0.162 0.386 0.164 0.339 -Worn SAF (Mbps) 1 1 1	Data Rate (Mbps) 6 6 6 6 6 6 7 6 8	Duty Cycle 96.9 90.0 90.0 90.0 90.0 90.0	lower maximu 19 SAR (WKg) 0.136 0.425 0.154 0.342 B 1.6 WK averaged Scc Fa 1. 1. Boo 1.6 WG	Scaling Factor 1.089 1.014 004 9 0ver 1 gram	Scaling Factor (Duck) 1.032 1.032 1.032 1.032 1.032	1g Scaled Scaled Scaled 0.153 0.478 0.175 0.390	Plots # A9 A10
MHz 5 660.0 5 660.0 5 745.0 5 745.0 PREQUEN MHz 2 441.0 2 441.0	NCY Ch 132 132 149 149 149 149 CY Ch 39 39	Mode 802.11a 802.11a 802.11a 802.11a 802.11a	Maximum Allowed Power (dBm) 16.00 16.50 16.50 16.50 Uncontrol Power (dBm) 6.35 6.35 ANS Uncontrolle	SI / IEEE C95.1-19 SI / IEEE C95.1-19 Spatial led Exposure/Gene //IEEE C95.1-199 //IEEE C95.1-199 //IEEE C95.1-199	aximum output p poducted Power [dBm] 15.63 15.63 15.63 15.63 15.63 16.07 16.07 16.07 Peak eral Population E: poducted Power [dBm] 5.87 5.87 2- SAFETY LIMIT eak	Tab Drift Power [d8] 0.050 -0.010 -0.080 -0.010 T xposure Table 2 Drift Power [d8] -0.100 -0.010	bands. When the a ble 10.2.3 UN MEASU Phantom Position 15 mm [Front] 15 mm [Front] 15 mm [Rear] 10.2.4 Blueto MEASUF Phantom Ph	djusted SAR is s	1.2 W/kg, SAR is orn SAR Peak SAR of Area Scan 0.162 0.386 0.164 0.339 -Worn SAF (Mbps) 1 1 1	Data Rate (Mbps) 6 6 6 6 6 7 6 8	Duty Cycle 96.9 90.03 90.003	lower maximu 19 SAR (WKg) 0.136 0.425 0.154 0.342 B 1.6 WK averaged Scc Fa 1. 1. Boo 1.6 WG	Scaling Factor 1.089 1.014 004 9 0ver 1 gram	Scaling Factor (Cycle) 1.032 1.032 1.032 1.032 1.032 1.032 1.032 1.032 1.032 1.032 1.032 1.032	1g Scaled Scaled 0.153 0.478 0.175 0.390	Plots # A9 A10
MHz 5 660.0 5 660.0 5 745.0 5 745.0 FREQUEN MHz 2 441.0 2 441.0 FREQUEN	NCY Ch 132 132 134 149 149 149 149 149 149 149 14	Mode 802.11a 802.11a 802.11a 802.11a 802.11a	Maximum Allowed Power (dBm) 16.00 16.00 16.50 16.50 16.50 Maximum Allowed Maximum Allowed	SI / IEEE C95.1.15 SI / IEEE C95.1.15 Spatial led Exposure/Ger Co	aximum output p power [dBm] 15.63 15.63 16.07 16.07 16.07 16.07 16.07 16.07 16.07 16.07 16.07 16.07 15.83 16.07 16.07 15.83 16.07 16.07 15.83 16.07 17.07 17	Drift Power [dB] Drift Power (dB] 0.050 -0.110 -0.080 -0.010 Table 7 Table 7 Drift Power [dB] -0.100 -0.100 -0.070 -0.070 -0.070	bands. When the a ble 10.2.3 UN MEASU Phantom Position 15 mm [Front] 15 mm [Front] 15 mm [Rear] 10.2.4 Bluetton Phantom Phantom Position 15 mm [Front] 15 mm [Front] 15 mm [Front] 25 Bluetoo MEASUF Phantom	ill Body-W IREMENT RESULTS Perice Serial Number FCC #2 FCC #2	1.2 W/kg, SAR is orn SAR Peak SAR of Area Scan 0.162 0.386 0.164 0.339 -Worn SAF (Mbps) 1 1 1 1 1 1 5 y-Worn SA	Data Rate (Mbps) 6 6 6 6 6 7 6 8	r the band with Duty Cycle 96.9 97.000 97.000 97.000 97.0000 97.0000 97.0000 97.0000 97.0000 97.0000 97.0000 97.0000 97.00000 97.00000 97.00000 97.000000 97.000000000000000000000000000000000000	lower maximu 1g SAR (Wing) 0.136 0.425 0.154 0.425 0.154 0.425	Scaling Factor 1.089 1.089 1.089 0.089 1.014 ody ig (mVg) over 1 (gram	Scaling Factor (Cycle) 1.032 1.032 1.032 1.032 1.032 1.032 1.032 1.032 1.032	1g Scaled Scaled Scaled Scaled Scaled 0.153 0.478 0.175 0.390 Scaled Scaled Scaled 0.478 0.175 0.390 0.390 0.009 0.004 Scaled	Plots # A9 A10
MHz 5 660.0 5 660.0 5 745.0 5 745.0 FREQUEN MHz 2 441.0 2 441.0 FREQUEN MHz	NCY Ch 132 132 134 149 149 149 149 149 149 149 14	Mode 802.11a 802.11a 802.11a 802.11a 802.11a Bluetooth Bluetooth Bluetooth	Maximum Allowed Power (dBm) 16.00 16.00 16.50 16.50 16.50 Maximum Allowed Power (dBm) Maximum Allowed Power (dBm)	SI / IEEE C95.1.15 SI / IEEE C95.1.15 Spatial led Exposure/Ger Co	aximum output p poducted Power [dBm] 15.63 15.63 16.07 18.2 SAFETY LIMI Peak eral Population E: Power 6.87 5.87 5.87 5.87 2. SAFETY LIMIT 2. S	Drift Power [d8] Drift Power (d8] 0.050 -0.110 -0.080 -0.010 r Table 10 Drift Power [d8] -0.100 -0.010 -0.100 -0.070 Joint Power [d8] Drift Power [d8] Drift Power [d8]	Ale 10.2.3 UN MEASU Phantom Position 15 mm [Front] 15 mm [Rear] 15 mm [Rear] 10.2.4 Bluett MEASUF Phantom Phantom 2.5 Bluetoo MEASUF	djusted SAR is s	1.2 W/kg, SAR is orn SAR Peak SAR of 0.162 0.386 0.164 0.339 -Worn SAF (Mbps) 1 1 1 1 1 5 Rate (Mbps)	Duty Cycle (%) 76.8 76.8	r the band with Duty Cycle 96.9 97.9	lower maximu 1g SAR (Wing) 0.425 0.154 0.342 0.342 0.342 0.342 0.354 0.354 0.354 0.354 0.354 0.354 0.354 0.354 0.354 0.354 0.354 0.354 0.354 0.354 0.354 0.354 0.355 0.354 0.355 0.354 0.3555 0.355 0.3555 0.3555 0.3555 0.3555 0.3555	Scaling 1.089 1.089 1.089 0.089 1.0104 ody ug (mVig) over 1 gram aling aling aling	Scaling Factor Cycle) 1.032 1.032 1.032 1.032 1.032 1.032 1.032	1g Scaled Scaled 0.153 0.478 0.175 0.390	Plots # A9 A10 Plots # A11 A11 Plots #
MHz 5 660.0 5 660.0 5 745.0 5 745.0 5 745.0 9 744.0 9 744.0 9 7	NCY Ch 132 132 149 149 149 149 Ch 39 39 39 CY Ch 19	Mode 802.11a 802.11a 802.11a 802.11a 802.11a 802.11a 802.11a 802.11a 802.11a 802.11a	Maximum Allowed Power [dBm] 16.00 16.00 16.50 AN Uncontrol Allowed Power (dBm] 6.35 6.35 ANS Uncontrolle	SI / IEEE C95.1.15 SI / IEEE C95.1.15 Spatial led Exposure/Ger	aximum output provided power [dBm] 15.63 15.63 15.63 15.63 15.63 15.63 15.63 15.63 16.07 10.07 1	Drift Power [d8] Drift Power [d8] 0.050 -0.110 -0.080 -0.010 Table 7 Drift Power [d8] Output 0.070 -0.070 -osure 0.070 Drift Power [d8] -0.100 -0.070 -0.070 -osure 0.070	bands. When the a ble 10.2.3 UN MEASU Phantom Position 15 mm [Front] 15 mm [Front] 15 mm [Rear] 10.2.4 Blueto MEASUF Phantom Position 15 mm [Front] 15 mm [Rear] .2.5 Bluetoo MEASUF Phantom Position 15 mm [Front] 15 mm [Front] Phantom	djusted SAR is s	1.2 W/kg, SAR is orn SAR Peak SAR of Area Scan 0.162 0.386 0.164 0.339 -Worn SAF (Mbps) 1 1 1 1 1 1 5 y-Worn SA	Data Rato [Mbps] 6 6 6 6 6 7 6 8 7 6 8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6 8 8 7 6 8 8 8 8 8 8 8 8 8 8 8 8 8	r the band with Duty Cycle 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 0.003	10 Sec. 10 Sec	Scaling Factor 1.089 1.089 1.04 1.04 1.04 sign (mWg) over 1 gram aling (mWg) wer 1 gram aling (mWg) aling 012	Scaling Factor (Out) 1.032 1.032 1.032 1.032 1.032 1.032 1.032 1.302 1.302	1g Scaled SAR (W/kg) 0.153 0.478 0.175 0.390	Piots # A9 A10 Piots # A11
MHz 5 660.0 5 660.0 5 745.0 5 745.0 FREQUEN MHz 2 441.0 2 441.0 FREQUEN MHz	NCY Ch 132 132 134 149 149 149 149 149 149 149 14	Mode 802.11a 802.11a 802.11a 802.11a 802.11a Bluetooth Bluetooth Bluetooth	Maximum Allowed Power (dBm) 16.00 16.00 16.50 16.50 AN Uncontrol 6.35 6.35 6.35 ANS Uncontrol 6.35 ANS Uncontrol 6.35 4NS Uncontrol 6.35 4NS Uncontrol 6.35 4NS Uncontrol 6.35 4NS Uncontrol 6.35 4NS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SI / IEEE C95.1-15	aximum output p anducted Power [dBm] 15.63 15.63 16.07 17.07	Drift Power [d8] Drift Power (d8] 0.050 -0.110 -0.080 -0.010 r Table 10 Drift Power [d8] -0.100 -0.010 -0.100 -0.070 Joint Power [d8] Drift Power [d8] Drift Power [d8]	Ale 10.2.3 UN MEASU Phantom Position 15 mm [Front] 15 mm [Rear] 15 mm [Rear] 10.2.4 Bluett MEASUF Phantom Phantom 2.5 Bluetoo MEASUF	djusted SAR is s	1.2 W/kg, SAR is orn SAR Peak SAR of Area Scan 0.162 0.386 0.164 0.339 -Worn SAF (Mbps) 1 1 1 1 1 1 1 1 1 1 1 1 1	Duty Cycle (%) 76.8 76.8	r the band with Duty Cycle 96.9 97.9	19 SAR (Wikg) (Wikg) (Wikg) 0.136 0.425 0.142 0.342 B 1.6 Wikg averaged Sec FF 1.1 1.1 Boo 1.6 Wikg averaged 0.136 0.136 0.125 0.134 0.136 0.136 0.1425 0.134 0.134 0.134 0.136 0.1425 0.134 0.134 0.136 0.1425 0.134 0.134 0.136 0.1425 0.134 0.136 0.1425 0.134 0.136 0.1425 0.134 0.136 0.136 0.1425 0.134 0.136 0.136 0.1425 0.134 0.136 0.156 0.15	Scaling Factor 1.089 1.089 1.089 1.04 over 1 gram	Scaling Factor Cycle) 1.032 1.032 1.032 1.032 1.032 1.032 1.032	1g Scaled Scaled 0.153 0.478 0.175 0.390	Plots # A9 A10 Plots # A11 A11 Plots #
MHz 5 660.0 5 660.0 5 745.0 5 745.0 5 745.0 9 744.0 9 744.0 9 7	NCY Ch 132 132 149 149 149 149 Ch 39 39 39 CY Ch 19	Mode 802.11a 802.11a 802.11a 802.11a 802.11a 802.11a 802.11a 802.11a 802.11a 802.11a	Maximum Allowed Power (dBm) 16.00 16.50 16.50 AN Uncontrol 0.35 6.35 6.35 ANS Uncontrolle	Spatial P Co SI / IEEE C95.1-19 Spatial Co Co Co Co Co Co Co Co Co Co	aximum output p anducted Power [dBm] 15.63 15.63 16.07 17.07	Drift Power [dB] Drift Power (dB] 0.050 -0.110 -0.010 -0.010 r Table 2 Drift Power [dB] -0.100 -0.070 -0.100 -0.000 -0.010 -0.100 -0.010 -0.100 -0.010 -0.100 -0.070 Drift Power [dB] -0.100 -0.100 -0.070	bands. When the a ble 10.2.3 UN MEASU Phantom Position 15 mm [Front] 15 mm [Front] 15 mm [Rear] 10.2.4 Blueto MEASUF Phantom Position 15 mm [Front] 15 mm [Rear] .2.5 Bluetoo MEASUF Phantom Position 15 mm [Front] 15 mm [Front] Phantom	djusted SAR is s	1.2 W/kg, SAR is orn SAR Peak SAR of Area Scan 0.162 0.386 0.164 0.339 -Worn SAF (Mbps) 1 1 1 1 1 1 1 1 1 1 1 1 1	Data Rato [Mbps] 6 6 6 6 6 7 6 8 7 6 8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6 8 8 7 6 8 8 8 8 8 8 8 8 8 8 8 8 8	r the band with Duty Cycle 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 0.003	19 SAR (Wing) 0.425 0.154 0.342 0.34	Scaling Factor 1.089 1.089 1.089 1.04 ody over 1 gram	Scaling Factor (Out) 1.032 1.032 1.032 1.032 1.032 1.032 1.032 1.302 1.302	1g Scaled SAR (W/kg) 0.153 0.478 0.175 0.390	Plots # A9 A10 Plots # A11 A11 Plots #
MHz 5 660.0 5 660.0 5 745.0 5 745.0 5 745.0 9 744.0 9 744.0 9 7	NCY Ch 132 132 149 149 149 149 Ch 39 39 39 CY Ch 19	Mode 802.11a 802.11a 802.11a 802.11a 802.11a 802.11a 802.11a 802.11a 802.11a 802.11a	Maximum Allowed Power (dBm) 16.00 16.50 16.50 AN Uncontrol 0.35 6.35 6.35 ANS Uncontrolle	Spatial P Co SI / IEEE C95.1-19 Spatial Co Co Co Co Co Co Co Co Co Co	aximum output p onducted Power [dBm] 15.63 15.63 16.07 17.07	Drift Power [dB] Drift Power (dB] 0.050 -0.110 -0.010 -0.010 r Table 2 Drift Power [dB] -0.100 -0.070 -0.100 -0.000 -0.010 -0.100 -0.010 -0.100 -0.010 -0.100 -0.070 Drift Power [dB] -0.100 -0.100 -0.070	bands. When the a ble 10.2.3 UN MEASU Phantom Position 15 mm [Front] 15 mm [Front] 15 mm [Rear] 10.2.4 Blueto MEASUF Phantom Position 15 mm [Front] 15 mm [Rear] .2.5 Bluetoo MEASUF Phantom Position 15 mm [Front] 15 mm [Front] Phantom	djusted SAR is s	1.2 W/kg, SAR is orn SAR Peak SAR of Area Scan 0.162 0.386 0.164 0.339 -Worn SAF (Mbps) 1 1 1 1 1 1 1 1 1 1 1 1 1	Data Rato [Mbps] 6 6 6 6 6 7 6 8 7 6 8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6.8 7 6 8 8 7 6 8 8 8 8 8 8 8 8 8 8 8 8 8	r the band with Duty Cycle 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 0.003	lower maximu 19 3AR (Wing) 0.425	Scaling Factor 1.089 1.089 1.04 ody over 1 gram	Scaling Factor (Out) 1.032 1.032 1.032 1.032 1.032 1.032 1.032 1.302 1.302	1g Scaled SAR (W/kg) 0.153 0.478 0.175 0.390	Plots # A9 A10 Plots # A11 A11 Plots #

10.3 Standalone Phablet SAR Results

						Table	10.3.1 DTS		AR							
							MEASU	REMENT RESULTS								
FREQUENO MHz	CY Ch	Mode	Maximum Allowed Power [dBm]	Condu Pow [dB	/er	Drift Power [dB]	Phantom Position	Device Serial Number	Peak SAR of Area Scan	Data Rate [Mbps]	Duty Cycle	10g SAR (W/kg)	Scaling Factor	Scaling Factor (Duty Cycle)	10g Scaled SAR (W/kg)	Plots #
2 462.0	11	802.11b	20.50	20.	02	-0.140	0 mm [Top]	FCC #2	0.326	1	99.5	0.303	1.117	1.005	0.340	
2 462.0	11	802.11b	20.50	20.		0.000	0 mm [Front]	FCC #2	0.481	1	99.5	0.419	1.117	1.005	0.470	
2 462.0	11	802.11b	20.50	20.		-0.090	0 mm [Rear]	FCC #2	0.331	1	99.5	0.320	1.117	1.005	0.359	
2 462.0	11	802.11b	20.50	20.		0.160	0 mm [Right]	FCC #2	0.530	1	99.5	0.511	1.117	1.005	0.574	A13
				/ IEEE C95.1-1992- Spatial Pe d Exposure/Genera	ak							4.0 W/	nablet kg (mW/g) over 10 gram			
							Adjusted SA	R results for OFDM \$	AR							
FREQ	UENCY	h Moo	le/ Antenna	Service	Maximum Allowed Power [dBm]	10g Scaled SAR (W/kg)	FREQUENC [MHz]	SY	Mode	Service	Maximum Allowed Power [dBm	Ratio c to E	of OFDM DSSS	10g Adjusted SAR (W/kg)	Determine OFDM	SAR
2 462.0	1	1 8	02.11b	DSSS	20.50	0.574	2 437.0	8	02.11a	OFDM	16.50	0:	398	0.228	X	
2 462.0	1		02.11b	DSSS	20.50	0.574	2 437.0		1n (HT20)	OFDM	15.50		316	0.181	X	
2 462.0	1	1 8	02.11b	DSSS	20.50	0.574	2 437.0	802.1	1n (HT40)	OFDM	14.00	0.1	224	0.129	X	
			Spatial I	92– SAFETY LIMIT Peak eral Population Exp	osure	-		-	_	a	Phable 4.0 W/kg (m veraged over	W/g)	<u> </u>	<u>-</u>		
FREQUENCY MHz 5 280.0 5 280.0 5 280.0 5 280.0	сн 56 56 56	Mode 802.11a 802.11a 802.11a	Maximum Allowed Power [dBm] 15.50 15.50 15.50	Condu Pow [dB: 14. 14. 14.	er n] 63 63	Drift Power [dB] 0.050 0.120 0.050	Phantom Position 0 mm [Top] 0 mm [Front] 0 mm [Rear]	FCC #2 FCC #2 FCC #2	Peak SAR of Area Scan 0.116 0.266 0.405	Data Rate [Mbps] 6 6 6	Duty Cycle 96.9 96.9 96.9 96.9	10g SAR (Wikg) 0.117 0.287 0.439	Scaling Factor 1.222 1.222 1.222	Scaling Factor (Duty Cycle) 1.032 1.032 1.032	10g Scaled SAR (Wikg) 0.148 0.362 0.554	Plots g A14
5 280.0	56	802.11a	15.50	14.		0.020	0 mm [Right]	FCC #2	0.384	6	96.9	0.406	1.222	1.032	0.512	
			Ur	ANSI / IEEE C95.1-1992– S Spatial Peak acontrolled Exposure/General P				•				4.0 W	Phablet //kg (mW/g) d over 10 gram	·		
	UENCY			F Contraction of the second se	Maxim	um	Adjusted SAR resu	Its for UNII-1 and UN	II-2A SAR	-	Maxim	um		10g	r	
MHz		Ch Ma	de/ Antenna	Service	Allow Powe [dBm	ed S er		EQUENCY [MHz]	Mode	Service	Allow Powe [dBr	ed er	Adjusted Factor	Adjusted SAR (W/kg)	SAR for the band maximum output	
5 280.0	5	56	802.11a	OFDM	15.5	5 (0.554	5 180.0	802.11a	OFDM	15.5	5	1.000	0.554.	X	
	-		Spat	1992– SAFETY LIN ial Peak eneral Population		-		-		-		iblet g (mW/g) ver 10 gram		-	-	
		NIII 1 and LL NIII	2A Bondo: M/hon	different maximum	output nower	is specified for t	he bands, begin SA	R measurement in	the band with hid	aher specified n	naximum outp	ut power. The	highest repo	ted SAR for the	tested configuratio	n
N				higher specified max		t power for the tv		adjusted SAR is	≦ 3.0 W/kg, SAR i							

						MEASUR	EMENT RESULTS								
FREQ MHz	UENCY Ch	Mode	Maximum Allowed Power	Conducted Power	Drift Power [dB]	Phantom Position	Device Serial	Peak SAR of Area Scan	Data Rate	Duty Cycle	10g SAR	Scaling Factor	Scaling Factor (Duty	10g Scaled SAR	Plots
WITZ	- Cil		[dBm]	[dBm]	11		Number		[Mbps]	-,	(W/kg)		Cycle)	(W/kg)	
5 660.0	132	802.11a	16.00	15.63	0.010	0 mm [Top]	FCC #2	0.174	6	96.9	0.180	1.089	1.019	0.200	
5 660.0	132	802.11a	16.00	15.63	0.030	0 mm [Front]	FCC #2	0.168	6	96.9	0.167	1.089	1.019	0.185	
5 660.0	132	802.11a	16.00	15.63	-0.090	0 mm [Rear]	FCC #2	0.478	6	96.9	0.533	1.089	1.019	0.591	A15
5 660.0	132	802.11a	16.00	15.63	-0.120	0 mm [Right]	FCC #2	0.388	6	96.9	0.420	1.089	1.019	0.466	
5 745.0	149	802.11a	16.50	16.07	0.090	0 mm [Top]	FCC #2	0.174	6	96.9	0.177	1.104	1.032	0.202	
5 745.0	149	802.11a	16.50	16.07	-0.020	0 mm [Front]	FCC #2	0.281	6	96.9	0.293	1.104	1.032	0.334	
5 745.0	149	802.11a	16.50	16.07	0.060	0 mm [Rear]	FCC #2	0.517	6	96.9	0.611	1.104	1.032	0.696	A16
5 745.0	149	802.11a	16.50	16.07	-0.110	0 mm [Right]	FCC #2	0.656	6	96.9	0.602	1.104	1.032	0.686	
	ANSI / IEEE C95.1-1992– SAFETY LİMIT Spatial Peak Uncontrolled Exposure/General Population Exposure						Phablet 4.0 W/kg (mW/g) averaged over 10 gram								

Table	10.3.4	Bluetooth	Phablet SAR

						MEASUR	EMENT RESULTS								
FREQUEN	NCY		Maximum Allowed	Conducted	Drift Power	Phantom	Device	Rate	Duty	10g	Scaling	Scaling Factor	10g Scaled	Plots	
MHz	Ch	Mode	Power [dBm]	Power [dBm]	[dB]	Position	Serial Number	[Mbps]	Cycle (%)	SAR (W/kg)	Factor	(Duty Cycle)	SAR (W/kg)	#	
2 441.0	39	Bluetooth	6.35	5.87	-0.150	0 mm [Top]	FCC #2	1	76.8	0.011	1.117	1.302	0.016	T	
2 441.0	39	Bluetooth	6.35	5.87	-0.060	0 mm [Front]	FCC #2	1	76.8	0.020	1.117	1.302	0.029		
2 441.0	39	Bluetooth	6.35	5.87	0.120	0 mm [Rear]	FCC #2	1	76.8	0.019	1.117	1.302	0.028		
2 441.0	39	Bluetooth	6.35	5.87	-0.020	0 mm [Right]	FCC #2	1	76.8	0.021	1.117	1.302	0.031	A17	
	ANSI / IEEE C95.1-1992- SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Exposure						-	Phablet 4.0 W/Kg (mWg) averaged over 10 gram							

Table 10.3.5 Bluetooth LE Phablet SAR

						MEASUR	EMENT RESULTS							
FREQUE	NCY		Maximum Allowed	Conducted	Drift Power	Phantom	Device	Rate	Duty	10g	Scaling	Scaling Factor	10g Scaled	Plots
MHz	Ch	Mode	Power [dBm]	Power [dBm]	[dB]	Position	Serial Number	[Mbps]	Cycle (%)	SAR (W/kg)	Factor	(Duty Cycle)	SAR (W/kg)	#
2 441.0	19	Bluetooth LE	4.30	4.25	-0.020	0 mm [Top]	FCC #2	1	85.0	0.002	1.012	1.176	0.002	
2 441.0	19	Bluetooth LE	4.30	4.25	-0.070	0 mm [Front]	FCC #2	1	85.0	0.003	1.012	1.176	0.004	
2 441.0	19	Bluetooth LE	4.30	4.25	-0.010	0 mm [Rear]	FCC #2	1	85.0	0.003	1.012	1.176	0.004	
2 441.0	19	Bluetooth LE	4.30	4.25	-0.190	0 mm [Right]	FCC #2	1	85.0	0.004	1.012	1.176	0.005	A18
	ANSI / IEEE C95.1-1992– SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Exposure						-	Phablet 4.0 W/kg (mW/g) averaged over 10 gram						

Table 10.3.6 NFC Phablet SAR

				MEASUREMENT RESULTS				
FREQUE	INCY	Mode	Drift Power	Phantom	Device Serial	Duty	10 g SAR	Plots
MHz	Ch	Mode	[dB]	Position	Number	Cycle (%)	SAR (W/kg)	#
13.6	13600	NFC	0.000	0 mm [Top]	FCC #1	100	0.002	
13.6	13600	NFC	0.000	0 mm [Bottom]	FCC #1	100	< 0.001	
13.6	13600	NFC	0.040	0 mm [Front]	FCC #1	100	0.023	A19
13.6	13600	NFC	0.000	0 mm [Rear]	FCC #1	100	0.001	
13.6	13600	NFC	0.000	0 mm [Right]	FCC #1	100	0.001	
13.6	13600	NFC	0.000	0 mm [Left]	FCC #1	100	0.001	
		ANSI / IEEE Uncontrolled Expo		4.0	blet/Extremity W/kg (mW/g) jed over 10 gram	-		

10.4 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements. A standard battery was used for all SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported boy-worn SAR was not > 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were performed.
- 8. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v02r01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated.
- 9. SAR measurements were performed using the DASY5 automated system. The procedure for spatial peak SAR evaluation has been implemented according to the IEEE 1528 standard. During a maximum search, global and local maxima searches are automatically performed in 2-D after each area scan measurement. The algorithm will find the global maximum and all local maxima within 2 dB of the global maxima for all SAR distributions. All local maxima within 2 dB of the global maximum were searched and passed for the Zoom Scan measurement.

WLAN Notes:

- The initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required duo to the maximum allowed powers and the highest reported DSSS SAR when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output and the adjust SAR is ≤ 1.2 W/kg.
- 3. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI single transmission chain operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg.
- 4. When the maximum reported 1g averaged SAR ≤ 0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test channels were measured.
- 5. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor to determine compliance.

Bluetooth Notes:

 Bluetooth SAR was measured with the device connected to a call with hopping disabled with DH5 operation. Per October 2016 TCB Workshop Notes, the reported SAR was scaled to the 100% transmission duty factor to determine compliance. Refer to section 8.2 for the time-domain plot and calculation for the duty factor of the device.

11. FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

11.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to handsets with built-in unlicensed transmitters such as 802.11b/g/n and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

11.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the sum 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤ 1.6 W/kg. The different test positon in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1-g or 10-g SAR.

11.3 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06.

No.	Capable Transmit Configuration	Head SAR	Body-Worn SAR	Phablet SAR	Note								
1	Bluetooth 2.4 GHz + Wi-Fi 5GHz	Yes	Yes	Yes									
2 Wi-Fi 5 GHz + NFC N/A N/A Yes													
Notes: 1. Bluetooth and WiFi can not transmit simultaneously at 2.4G band.													

Table 11.3.1 Simultaneous SAR Cases

11.4 Head SAR Simultaneous Transmission Analysis

Table 11.4.1 Simultaneous Transmission Scenario : Bluetooth + 5 GHz W-LAN (Held to Ear)

Exposure	Mode	Configuration	Bluetooth SAR (W/kg)	5G W-LAN SAR (W/kg)	ΣSAR (W/kg)
Condition	Mode	Configuration	1	2	1+2
		Left Touch	0.079	0.771	0.850
	5.3G W-LAN	Right Touch	0.017	0.658	0.675
	5.3G W-LAN	Left Tilt	0.036	0.537	0.573
		Right Tilt	0.020	0.566	0.586
		Left Touch	0.079	0.628	0.707
Head	5.6G W-LAN	Right Touch	0.017	0.479	0.496
SAR	5.0G W-LAN	Left Tilt	0.036	0.480	0.516
		Right Tilt	0.020	0.457	0.477
		Left Touch	0.079	0.671	0.750
	5.8G W-LAN	Right Touch	0.017	0.436	0.453
	3.66 W-LAN	Left Tilt	0.036	0.518	0.554
		Right Tilt	0.020	0.471	0.491

11.5 Body-Worn Simultaneous Transmission Analysis

Table 11.5.1 Simultaneous Transmission Scenario : Bluetooth + 5 GHz W-LAN (Body-Worn at 10 mm)

Exposure	Mode	Configuration	Bluetooth SAR (W/kg)	5G W-LAN SAR (W/kg)	ΣSAR (W/kg)
Condition	mode	configuration	1	2	1+2
	5.3G W-LAN	Front	0.009	0.165	0.174
	5.3G W-LAN	Rear	0.004	0.439	0.443
Body-Worn	5.6G W-LAN	Front	0.009	0.153	0.162
SAR	5.00 W-DAN	Rear	0.004	0.478	0.482
	E RC W/ LAN	Front	0.009	0.175	0.184
	5.8G W-LAN	Rear	0.004	0.390	0.394

11.6 Phablet SAR Simultaneous Transmission Analysis

Per FCC KDB Publication 941225 D06v02r01, the device edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-").

Table 11.6.1 Simultaneous Transmission Scenario : Bluetooth + 5 GHz W-LAN (Phablet at 0 mm)

Exposure	Mode	Configuration	Bluetooth SAR (W/kg)	5G W-LAN SAR (W/kg)	ΣSAR (W/kg)
Condition	wode	Configuration	1	2	1+2
		Тор	0.016	0.148	0.164
		Bottom	-	-	-
	5.3G W-LAN	Front	0.029	0.362	0.391
	3.30 W-EAN	Rear	0.028	0.554	0.582
		Right	0.031	0.512	0.543
		Left	-	-	-
Г	5.6G W-LAN	Тор	0.016	0.200	0.216
		Bottom	-	-	-
Phablet		Front	0.029	0.185	0.214
SAR	0.00 11 2 11	Rear	0.028	0.591	0.619
0/11		Right	0.031	0.466	0.497
		Left	-	-	
		Тор	0.016	0.202	0.218
	5.8G W-LAN	Bottom	-	-	-
		Front	0.029	0.334	0.363
		Rear	0.028	0.696	0.724
		Right	0.031	0.686	0.717
		Left			

Table 11.6.2 Simultaneous Transmission Scenario : NFC + 5 GHz W-LAN (Phablet at 0 mm)

Exposure	Mode	Configuration	NFC SAR (W/kg)	5G W-LAN SAR (W/kg)	ΣSAR (W/kg)
Condition	Mode	Configuration	1	2	1+2
		Тор	0.002	0.148	0.150
		Bottom	< 0.001	-	< 0.001
	5.3G W-LAN	Front	0.023	0.362	0.385
	3.30 W-EAN	Rear	0.001	0.554	0.555
		Right	0.001	0.512	0.513
		Left	0.001	-	0.001
	5.6G W-LAN	Тор	0.002	0.200	0.202
		Bottom	< 0.001	-	< 0.001
Phablet		Front	0.023	0.185	0.208
SAR	3.00 W-EAN	Rear	0.001	0.591	0.592
0,44		Right	0.001	0.466	0.467
		Left	0.001		0.001
		Тор	0.002	0.202	0.204
	5.8G W-LAN	Bottom	< 0.001	-	< 0.001
		Front	0.023	0.334	0.357
		Rear	0.001	0.696	0.697
		Right	0.001	0.686	0.687
		Left	0.001	-	0.001

11.7 Phablet SAR Simultaneous Transmission Analysis

Per FCC KDB Publication 648474 D04 Handset SAR, Phablet SAR tests were not required of Hotspot 1g SAR (scaled to maximum output power, including tolerance) < 1.2 W/kg. Therefore no further analysis was required to for Phablet Simultaneous Transmission Analysis.

11.8 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013 Section 6.3.4.1.2.

12. SAR MEASUREMENT VARIABILITY

12.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1. When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.
- A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- A third repeated measurement was performed only if the original, first or second repeated measurement was ≥
 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is >
 1.20.
- 4. Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg
- 5. The same procedures should be adapted for measurements according to extremity exposure limits by applying a factor of 2.5 for extremity exposure to the corresponding SAR thresholds.

12.2 Measurement Uncertainty

The measured SAR was < 1.5 W/kg for 1g and < 3.75 W/kg for 10g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

13. EQUIPMENT LIST

	Туре	Manufacturer	Model	Cal.Date	Next.Cal.Date	S/N
	SEMITEC Engineering	SEMITEC	N/A	N/A	N/A	Shield Room
	SEMITEC Engineering	SEMITEC	N/A	N/A	N/A	Shield Room
	Robot	SPEAG	TX60L	N/A	N/A	F14/5VR2A1/A/01
	Robot	SPEAG	TX60L	N/A	N/A	F14/5WV5D1/A/01
	Robot Controller	SPEAG	CS8C	N/A	N/A	F14/5VR2A1/C/01
	Robot Controller	SPEAG	CS8C	N/A	N/A	F14/5WV5D1/C/01
	Joystick	SPEAG	N/A	N/A	N/A	D21142605A
	Joystick	SPEAG	P21142605A	N/A	N/A	005695
	Intel Xeon W-2 253 3.70 GHz Windows 11 Professional	N/A	N/A	N/A	N/A	N/A
	Intel Xeon W-2 253 3.70 GHz Windows 11 Professional	N/A	N/A	N/A	N/A	N/A
	Probe Alignment Unit LB	N/A	N/A	N/A	N/A	SE UKS 030 AA
1	Probe Alignment Unit LB	N/A	N/A	N/A	N/A	SE UKS 030 AA
	Device Holder	SPEAG	SD000H01KA	N/A N/A	N/A	N/A
	Device Holder Device Holder	SPEAG	SD000H01KA SD000H01KA	N/A N/A	N/A N/A	N/A N/A
1	Twin SAM Phantom	SPEAG SPEAG	QD000P40CD	N/A	N/A	1837
]	2mm Oval Phantom ELI5		QDOVA002AA	N/A	N/A	1166
	Data Acquisition Electronics	SPEAG	DAE4V1	2023-09-20	2024-09-20	1453
	Data Acquisition Electronics	SPEAG	DAE4V1	2023-08-23	2024-08-23	1396
	Dosimetric E-Field Probe	SPEAG	EX3DV4	2023-03-22	2024-03-22	3916
	Dosimetric E-Field Probe	SPEAG	EX3DV4	2023-05-04	2024-05-04	3866
	Confined Loop Antenna (13 MHz)	SPEAG	CLA13	2023-11-14	2024-11-14	1030
	2 450MHz SAR Dipole	SPEAG	D2450V2	2023-07-19	2025-07-19	726
	5GHz SAR Dipole	SPEAG	D5GHzV2	2023-11-23	2025-11-23	1212
	Signal Generator	Agilent	E4438C	2023-06-23	2024-06-23	US41461520
	Broadband Amplifier	SUNGSAN	SA1077	2023-03-17	2024-03-17	SA1077-001
	Amplifier	EMPOWER	BBS3Q7ELU	2023-06-23	2024-06-23	1020
	High Power RF Amplifier	EMPOWER	BBS3Q8CCJ	2023-06-23	2024-06-23	1005
	Power Meter	HP	EPM-442A	2023-12-15	2024-12-15	GB37170267
	Power Meter	Anritsu	ML2488B	2023-12-15	2024-12-15	0846003
	Power Sensor	Anritsu	MA2472D	2023-12-15	2024-12-15	0845419
	Power Sensor	HP	8481A	2023-12-15	2024-12-15	2702A65976
	Power Sensor	HP	8481A	2023-12-15	2024-12-15	2702A61707
	Dual Directional Coupler	Agilent	778D-012	2023-12-15	2024-12-15	50399
	Directional Coupler	HP	772D	2023-12-15	2024-12-15	2839A00902
	Low Pass Filter 3.0 GHz	MICROLAB	LA-30N	2023-06-23	2024-06-23	2
	Low Pass Filter 6.0 GHz	MICROLAB	LA-60N	2023-12-15	2024-12-15	03942
	Attenuators(10 dB)	WEINSCHEL	23-10-34	2023-12-15	2024-12-15	BP4387
	Attenuators	Saluki	3.5TS2-3dB-26.5G	2023-06-23	2024-06-23	21090703
	Dielectric Probe kit	SPEAG	DAKS-12	2023-09-21	2024-09-21	1040
-		SPEAG	R60	2023-09-21	2024-09-21	22323001
1	Dielectric Probe kit	SPEAG SPEAG	DAK-3.5 R140	2023-07-17 2023-07-31	2024-07-17 2024-07-31	1046 0101213

NOTE(S): 1. The E-field probe was calibrated by SPEAG, by temperature measurement procedure. Dipole Verification measurement is performed by DT&C before each test. The brain and muscle simulating material are calibrated by DT&C using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain and muscle-equivalent material. Each equipment item was used solely within its respective calibration period. 2. CBT(Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements.

14. MEASUREMENT UNCERTAINTIES

750 ~ 2 600 MHz Head (SN: 3866)

	Uncertainty	Probability	D	(Ci)	(Ci)	Standard	Standard	Ci x Ui	Ci x Ui	vi 2 or
Error Description	value %	Distribution	Divisor	1 g	10 g	1 g (%)	10 g (%)	1 g	10 g	Veff
Measurement System					•					
Probe calibration	6.0	Normal	1	1	1	6.0	6.0	6.0	6.0	∞
Axial isotropy	4.7	Rectangular	√3	1	1	2.7	2.7	2.7	2.7	×
Hemispherical isotropy	9.6	Rectangular	√3	1	1	5.5	5.5	5.5	5.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Boundary Effects	0.8	Rectangular	√3	1	1	0.46	0.46	0.46	0.46	∞
Probe Linearity	4.7	Rectangular	√3	1	1	2.7	2.7	2.7	2.7	∞
Probe modulation response	2.4	Rectangular	√3	1	1	1.4	1.4	1.4	1.4	×
Detection limits	0.25	Rectangular	√3	1	1	0.14	0.14	0.14	0.14	×
Readout Electronics	1.0	Normal	1	1	1	1.0	1.0	1.0	1.0	×
Response time	0.8	Rectangular	√3	1	1	0.46	0.46	0.46	0.46	∞
Integration time	2.6	Rectangular	√3	1	1	1.5	1.5	1.5	1.5	∞
RF Ambient Conditions – Noise	3.0	Rectangular	√3	1	1	1.8	1.8	1.8	1.8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
RF Ambient Conditions – Reflections	3.0	Rectangular	√3	1	1	1.8	1.8	1.8	1.8	×
Probe Positioner	0.4	Rectangular	√3	1	1	0.23	0.23	0.23	0.23	×
Probe Positioning	2.9	Rectangular	√3	1	1	1.7	1.7	1.7	1.7	∞
Spatial x-y-Resolution	10.0	Rectangular	√3	1	1	5.8	5.8	5.8	5.8	×
Fast SAR z-Approximation	7.0	Rectangular	√3	1	1	4.0	4.0	4.0	4.0	×
Test Sample Related						•			-	
Device Positioning	2.9	Normal	1	1	1	2.9	2.9	2.9	2.9	145
Device Holder	3.6	Normal	1	1	1	3.6	3.6	3.6	3.6	5
Power Drift	5.0	Rectangular	√3	1	1	2.9	2.9	2.9	2.9	×
SAR Scaling	2.0	Rectangular	√3	1	1	1.2	1.2	1.2	1.2	×
Physical Parameters										
Phantom Shell	7.6	Rectangular	√3	1	1	4.4	4.4	4.4	4.4	∞
Liquid conductivity (Target)	5.0	Rectangular	√3	0.64	0.43	1.8	1.2	1.2	0.5	×
Liquid conductivity (Meas.)	4.2	Normal	1	0.78	0.71	3.3	3.0	2.6	2.1	10
Liquid permittivity (Target)	5.0	Rectangular	√3	0.60	0.49	1.7	1.4	1.0	0.7	×
Liquid permittivity (Meas.)	4.1	Normal	1	0.23	0.26	0.94	1.1	0.22	0.28	10
Temp. unc Conductivity	2.0	Rectangular	√3	0.78	0.71	0.90	0.82	0.70	0.58	∞
Temp. unc Permittivity	2.1	Rectangular	√3	0.23	0.26	0.28	0.32	0.06	0.08	×
Combined Standard Uncertainty						13	13			330
Expanded Uncertainty (k=2)						26	26			

 $U(1 g) = k \cdot u_c$

= 2 · 13 %

= 26 % (The confidence level is about 95 % k = 2)

 $U(10 g) = k \cdot u_c$ = 2 \cdot 13 %

= 26 % (The confidence level is about 95 % k = 2)

3 500 ~ 5 800 MHz Head (SN: 3866)

	Uncertainty	Probability	Divisor	(Ci)	(Ci)	Standard	Standard	Ci x Ui	Ci x U _i	vi 2 or
Error Description	value %	Distribution	Divisor	1 g	10 g	1 g (%)	10 g (%)	1 g	10 g	Veff
Measurement System									•	
Probe calibration	6.6	Normal	1	1	1	6.6	6.6	6.6	6.6	∞
Axial isotropy	4.7	Rectangular	√3	1	1	2.7	2.7	2.7	2.7	×
Hemispherical isotropy	9.6	Rectangular	√3	1	1	5.5	5.5	5.5	5.5	×
Boundary Effects	0.8	Rectangular	√3	1	1	0.46	0.46	0.46	0.46	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Probe Linearity	4.7	Rectangular	√3	1	1	2.7	2.7	2.7	2.7	∞
Probe modulation response	2.4	Rectangular	√3	1	1	1.4	1.4	1.4	1.4	×
Detection limits	0.25	Rectangular	√3	1	1	0.14	0.14	0.14	0.14	×
Readout Electronics	1.0	Normal	1	1	1	1.0	1.0	1.0	1.0	×
Response time	0.8	Rectangular	√3	1	1	0.46	0.46	0.46	0.46	∞
Integration time	2.6	Rectangular	√3	1	1	1.5	1.5	1.5	1.5	∞
RF Ambient Conditions – Noise	3.0	Rectangular	√3	1	1	1.8	1.8	1.8	1.8	∞
RF Ambient Conditions – Reflections	3.0	Rectangular	√3	1	1	1.8	1.8	1.8	1.8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Probe Positioner	0.4	Rectangular	√3	1	1	0.23	0.23	0.23	0.23	∞
Probe Positioning	2.9	Rectangular	√3	1	1	1.7	1.7	1.7	1.7	×
Spatial x-y-Resolution	10.0	Rectangular	√3	1	1	5.8	5.8	5.8	5.8	∞
Fast SAR z-Approximation	7.0	Rectangular	√3	1	1	4.0	4.0	4.0	4.0	×
Test Sample Related		•	•			•				
Device Positioning	2.9	Normal	1	1	1	2.9	2.9	2.9	2.9	145
Device Holder	3.6	Normal	1	1	1	3.6	3.6	3.6	3.6	5
Power Drift	5.0	Rectangular	√3	1	1	2.9	2.9	2.9	2.9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SAR Scaling	2.0	Rectangular	√3	1	1	1.2	1.2	1.2	1.2	×
Physical Parameters										
Phantom Shell	7.6	Rectangular	√3	1	1	4.4	4.4	4.4	4.4	∞
Liquid conductivity (Target)	5.0	Rectangular	√3	0.64	0.43	1.8	1.2	1.2	0.5	×
Liquid conductivity (Meas.)	4.0	Normal	1	0.78	0.71	3.1	2.8	2.4	2.0	10
Liquid permittivity (Target)	5.0	Rectangular	√3	0.60	0.49	1.7	1.4	1.0	0.7	×
Liquid permittivity (Meas.)	3.9	Normal	1	0.23	0.26	0.90	1.0	0.21	0.26	10
Temp. unc Conductivity	2.0	Rectangular	√3	0.78	0.71	0.90	0.82	0.70	0.58	~
Temp. unc Permittivity	2.0	Rectangular	√3	0.23	0.26	0.27	0.30	0.06	0.08	∞
Combined Standard Uncertainty		-				14	13			330
Expanded Uncertainty (k=2)						28	26			

 $U(1 g) = k \cdot u_c$

= 2 · 14 %

= 28 % (The confidence level is about 95 % k = 2)

 $U(10 g) = k \cdot u_c$

 $= 2 \cdot 13 \%$

= 26 % (The confidence level is about 95 % k = 2)

13 MHz Head (SN: 3916)

Emer Description	Uncertainty	Probability	Distant	(Ci)	(Ci)	Standard	Standard	Ci x Ui	Ci x U _i	vi 2 or
Error Description	value %	Distribution	Divisor	1 g	10 g	1 g (%)	10 g (%)	1 g	10 g	Veff
Measurement System		•	•					•		
Probe calibration	6.7	Normal	1	1	1	6.7	6.7	6.7	6.7	∞
Axial isotropy	4.0	Rectangular	√3	1	1	2.7	2.7	2.7	2.7	∞
Hemispherical isotropy	9.6	Rectangular	√3	1	1	5.5	5.5	5.5	5.5	×
Boundary Effects	0.8	Rectangular	√3	1	1	0.46	0.46	0.46	0.46	∞
Probe Linearity	4.7	Rectangular	√3	1	1	2.7	2.7	2.7	2.7	×
Probe modulation response	2.4	Rectangular	√3	1	1	1.4	1.4	1.4	1.4	×
Detection limits	0.3	Rectangular	√3	1	1	0.14	0.14	0.14	0.14	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Readout Electronics	1.0	Normal	1	1	1	1.0	1.0	1.0	1.0	×
Response time	0.8	Rectangular	√3	1	1	0.46	0.46	0.46	0.46	∞
Integration time	2.6	Rectangular	√3	1	1	1.5	1.5	1.5	1.5	∞
RF Ambient Conditions – Noise	3.0	Rectangular	√3	1	1	1.7	1.7	1.7	1.7	×
RF Ambient Conditions – Reflections	3.0	Rectangular	√3	1	1	1.7	1.7	1.7	1.7	×
Probe Positioner	0.4	Rectangular	√3	1	1	0.23	0.23	0.23	0.23	~
Probe Positioning	2.9	Rectangular	√3	1	1	1.7	1.7	1.7	1.7	×
Spatial x-y-Resolution	10.0	Rectangular	√3	1	1	5.8	5.8	5.8	5.8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Fast SAR z-Approximation	7.0	Rectangular	√3	1	1	4.0	4.0	4.0	4.0	×
Test Sample Related										
Device Positioning	2.9	Normal	1	1	1	2.9	2.9	2.9	2.9	145
Device Holder	3.6	Normal	1	1	1	3.6	3.6	3.6	3.6	5
Power Drift	5.0	Rectangular	√3	1	1	2.9	2.9	2.9	2.9	ø
SAR Scaling	2.0	Rectangular	√3	1	1	1.2	1.2	1.2	1.2	ø
Physical Parameters										
Phantom Shell	7.6	Rectangular	√3	1	1	4.4	4.4	4.4	4.4	×
Liquid conductivity (Target)	5.0	Rectangular	√3	0.64	0.43	1.8	1.2	1.2	0.5	∞
Liquid conductivity (Meas.)	3.5	Normal	1	0.78	0.71	2.7	2.5	2.1	1.8	10
Liquid permittivity (Target)	5.0	Rectangular	√3	0.60	0.49	1.7	1.4	1.0	0.7	×
Liquid permittivity (Meas.)	3.8	Normal	1	0.23	0.26	0.87	1.0	0.20	0.26	10
Temp. unc Conductivity	1.9	Rectangular	√3	0.78	0.71	0.86	0.78	0.67	0.55	×
Temp. unc Permittivity	2.0	Rectangular	√3	0.23	0.26	0.27	0.30	0.06	0.08	∞
Combined Standard Uncertainty						14	13			330
Expanded Uncertainty (k=2)						28	26			

 $U(1 g) = k \cdot u_c$

= 2 · 14 %

= 28 % (The confidence level is about 95 % k = 2)

 $U(10 g) = k \cdot u_c$

= 2 · 13 %

= 26 % (The confidence level is about 95 % k = 2)

15. CONCLUSION

Measurement Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under the worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are every complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role impossible biological effect are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease).

Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

16. REFERENCES

[1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.

[2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.

[3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.

[4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.

[5] IEEE Standards Coordinating Committee 39 –Standards Coordinating Committee 34 – IEEE Std. 1528-2003,Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.

[6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.

[7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.

[8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. -124.

[9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.

[10] Schmid& Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.

[11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct.1996, pp. 1865-1873.

[12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.

[13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bio electromagnetics, Canada: 1987, pp. 29-36.

[14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.

[15] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992.

[16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

[17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

[18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.

[19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.

[20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3 GHz), Feb. 2005.

[21] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radio communication Apparatus (All Frequency Bands) Issue 5, March 2015.

[22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz – 300 GHz, 2009

[23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225,D01-D07

[24] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227 D01v02

[25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474D02-D04

[26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04

[27] FCC SAR Measurement and Reporting Requirements for 100MHz – 6 GHz, KDB Publications 865664 D01-D02

[28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02

[29] 615223 D01 802 16e WI-Max SAR Guidance v01, Nov. 13, 2009

[30] Anexo à Resolução No. 533, de 10 de September de 2009.

[31] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body(frequency range of 30 MHz to 6 GHz), Mar. 2010.

APPENDIX A. – Probe Calibration Data

Calibration Laboratory of Schweizerischer Kallbrierdienst S Service suisse d'étalonnage Schmid & Partner С ac-MR Servizio svizzero di taratura Engineering AG S Swiss Calibration Service Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) Accreditation No.: SCS 0108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Dt&C Certificate No. EX-3866 May23 Gyeonggi-do, Republic of Korea CALIBRATION CERTIFICATE Object EX3DV4 - SN:3866 QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, Calibration procedure(s) QA CAL-25.v8 Calibration procedure for dosimetric E-field probes Calibration date May 04, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID Cal Date (Certificate No.) Scheduled Calibration Power meter NRP2 SN: 104778 30-Mar-23 (No. 217-03804/03805) Mar-24 Power sensor NRP-Z91 SN: 103244 30-Mar-23 (No. 217-03804) Mar-24 OCP DAK-3.5 (weighted) SN: 1249 20-Oct-22 (OCP-DAK3.5-1249_Oct22) Oct-23 OCP DAK-12 SN: 1016 20-Oct-22 (OCP-DAK12-1016 Oct22) Oct-23 Reference 20 dB Attenuator SN: CC2552 (20x) 30-Mar-23 (No. 217-03809) Mar-24 DAE4 SN: 660 16-Mar-23 (No. DAE4-660 Mar23) Mar-24 Reference Probe ES3DV2 SN: 3013 06-Jan-23 (No. ES3-3013_Jan23) Jan-24 Secondary Standards ID Check Date (in house) Scheduled Check Power meter E4419B SN: GB41293874 06-Apr-16 (in house check Jun-22) In house check: Jun-24 Power sensor E4412A SN: MY41498087 06-Apr-16 (in house check Jun-22) In house check: Jun-24 Power sensor E4412A SN: 000110210 06-Apr-16 (in house check Jun-22) In house check: Jun-24 RF generator HP 8648C SN: US3642U01700 04-Aug-99 (in house check Jun-22) In house check: Jun-24 Network Analyzer E8358A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct-24

	Name	Function	Signature
Calibrated by	Jeton Kastrati	Laboratory Technician	14
Approved by	Sven Kühn	Technical Manager	4
This calibration certifica	te shall not be reproduced except i	n full without written approval of the labo	Issued: May 07, 2023

Certificate No: EX-3866_May23

Page 1 of 21

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Hac-MRA

•

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura Servizio Service

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 8	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization ϑ = 0 (f ≤ 900MHz in TEM-cell; t > 1800MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP
 does not depend on frequency nor media.
- · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum
 calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX-3866_May23

Page 2 of 21

May 04, 2023

Parameters of Probe: EX3DV4 - SN:3866

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k = 2)
Norm $(\mu V/(V/m)^2)^A$	0.41	0.33	0.36	±10.1%
DCP (mV) B	102.0	106.0	106.0	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E k = 2
0	CW	X	0.00	0.00	1.00	0.00	161.0	±3.0%	±4.7%
		Y	0.00	0.00	1.00		147.8	1	
		Z	0.00	0.00	1.00		148.6	5	
10352	Pulse Waveform (200Hz, 10%)	X	20.00	91.39	22.12	10.00	60.0	±2.8%	±9.6%
		Y	12.31	83.14	17.59	1	60.0	1	
		Z	4.05	70.23	13.28		60.0	1	
10353	Pulse Waveform (200Hz, 20%)	X	20.00	90.73	20.43	6.99	80.0 ±1	±1.6%	±9.6%
		Y	20.00	88.60	17.97		80.0	1	
		Z	3.80	71.96	12.74		80.0		
10354	Pulse Waveform (200Hz, 40%)	X	20.00	90.75	18.84	3.98	95.0	±1.0%	±9.6%
		Y	20.00	90.05	17.26		95.0		
		Z	2.74	71.52	11.18		95.0		
10355	Pulse Waveform (200Hz, 60%)	X	20.00	90.63	17.34	2.22	120.0	±0.9%	±9.6%
		Y	20.00	91.26	16.57		120.0		
		Z	0.65	63.93	7.23		120.0		
10387	QPSK Waveform, 1 MHz	X	1.78	65.56	14.95	1.00	150.0	±3.1%	±9.6%
		Y	1.59	66.17	14.75		150.0		
		Z	1.39	64.85	13.64		150.0	1	
10388	QPSK Waveform, 10 MHz	X	2.37	68.44	15.57	0.00	150.0	±0.9%	±9.6%
		Y	2.12	67.84	15.52		150.0		
		Z	1.88	66.16	14.53		150.0		
10396	64-QAM Waveform, 100 kHz	X	3.92	72.94	19.51	3.01	150.0	±0.7%	±9.6%
		Y	3.30	73.24	19.74		150.0		
		Z	2.97	71.55	19.00		150.0	1	
10399	64-QAM Waveform, 40 MHz	X	3.61	67.42	15.76	0.00	150.0	±2.7%	±9.6%
		Y	3.42	67.08	15.64		150.0		
		Z	3.24	66.25	15.13		150.0		
10414	WLAN CCDF, 64-QAM, 40 MHz	X	4.91	65.26	15.24	0.00	150.0	±4.6%	±9.6%
		Y	4.76	65.65	15.43		150.0		
		Z	4.59	65.22	15.15		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5). ^B Linearization parameter uncertainty for maximum specified field strength.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX-3866_May23

Page 3 of 21

May 04, 2023

Parameters of Probe: EX3DV4 - SN:3866

Sensor Model Parameters

	C1 fF	C2 fF	ν ^α V ⁻¹	T1 ms V ⁻²	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ^{−1}	Т6
х	68.4	510.41	35.43	21.39	1.15	5.07	0.50	0.69	1.01
у	42.4	307.64	33.80	11.34	0.29	5.05	1.97	0.11	1.01
Z	37.6	275.45	34.28	8.52	0.69	5.01	1.79	0.12	1.01

Other Probe Parameters

Connector Angle Mechanical Surface Detection Mode Optical Surface Detection Mode Probe Overall Length Probe Body Diameter	
Optical Surface Detection Mode Probe Overall Length Probe Body Diameter	-118.0°
Probe Overall Length Probe Body Diameter	enabled
Probe Body Diameter	disabled
	337 mm
in Leanth	10 mm
ip Length	9 mm
ip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Certificate No: EX-3866_May23

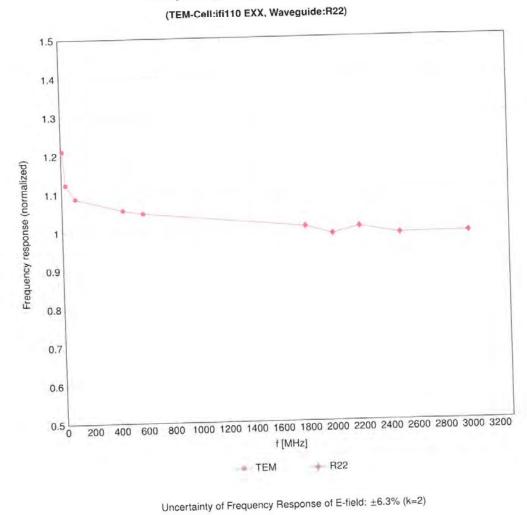
Page 4 of 21

May 04, 2023

Parameters of Probe: EX3DV4 - SN:3866

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
750	41.9	0.89	9.52	9.52	9.52	0.63	0.80	±12.0%
835	41.5	0.90	9.11	9.11	9.11	0.63	0.80	±12.0%
900	41.5	0.97	8.99	8.99	8.99	0.43	0.92	±12.0%
1750	40.1	1.37	7.98	7.98	7.98	0.29	0.86	±12.0%
1900	40.0	1.40	7.67	7.67	7.67	0.32	0.86	±12.0%
2300	39.5	1.67	7.45	7.45	7.45	0.31	0.90	±12.0%
2450	39.2	1.80	7.12	7.12	7.12	0.33	0.90	±12.0%
2600	39.0	1.96	7.01	7.01	7.01	0.29	0.90	±12.0%
5200	36.0	4.66	5.19	5.19	5.19	0.40	1.80	±14.0%
5300	35.9	4.76	5.04	5.04	5.04	0.40	1.80	±14.0%
5500	35.6	4.96	4.50	4.50	4.50	0.40	1.80	±14.0%
5600	35.5	5.07	4.41	4.41	4.41	0.40	1.80	±14.0%
5800	35.3	5.27	4.60	4.60	4.60	0.40	1.80	±14.0%

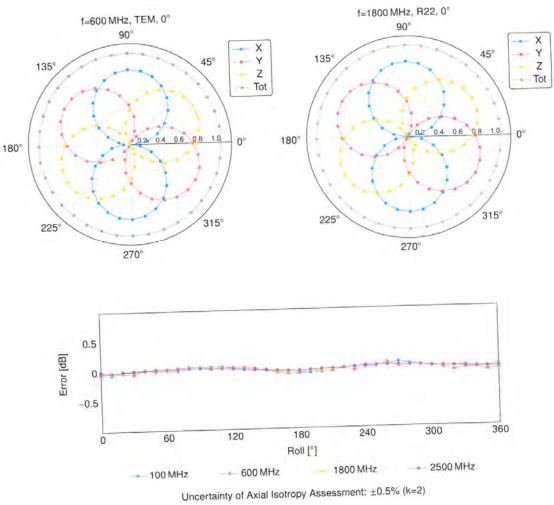

^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than ±5% from the target values (typically better than ±3%) and are valid for TSL with deviations of up to ±10%. If TSL with deviations from the target of less than ±5% are used, the calibration uncertainties are 11.1% for 0.7 and 20 MHz for 0.6 MHz.

for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

May 04, 2023

Frequency Response of E-Field

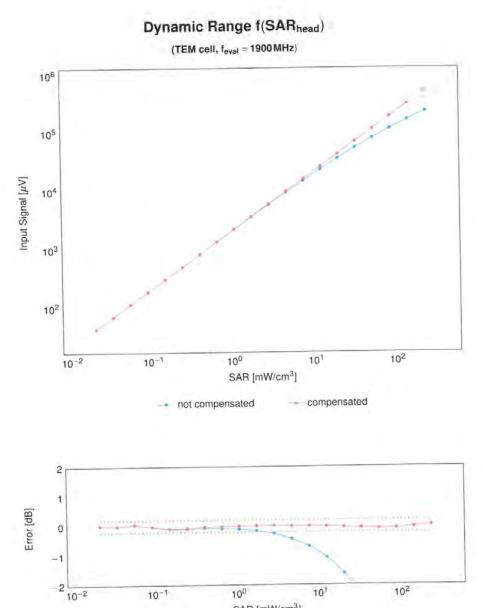

Certificate No: EX-3866_May23

Page 6 of 21

May 04, 2023

EX3DV4 - SN:3866

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


Certificate No: EX-3866_May23

Page 7 of 21

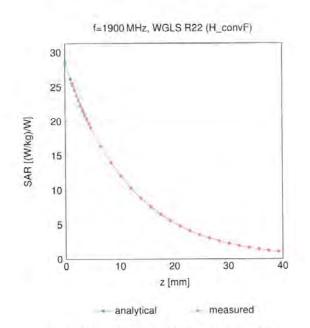
t&C

D

May 04, 2023

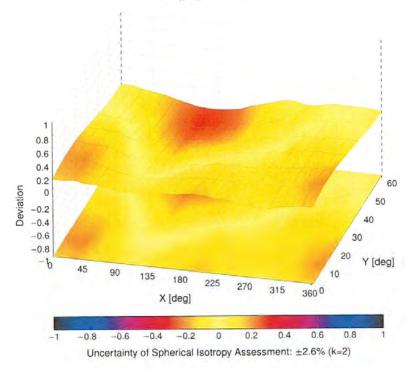
100 107 10-1 SAR [mW/cm3]

compensated not compensated


Uncertainty of Linearity Assessment: ±0.6% (k=2)

Certificate No: EX-3866_May23

Page 8 of 21


May 04, 2023

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ , θ), f = 900 MHz

Certificate No: EX-3866_May23

Page 9 of 21

May 04, 2023

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k =
0		CW	CW	0.00	±4.7
10010	CAB	SAR Validation (Square, 100 ms, 10 ms)	Test	10.00	±9.6
0011	CAC	UMTS-FDD (WCDMA)	WCDMA	2.91	±9.6
0012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	±9.6
0013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	±9.6
0021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	±9.6
0023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	±9.6
0023	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	±9.6
0024	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	±9.6
0025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	±9.6
0026	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	±9.6
		GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	±9.6
0028	DAC		GSM	7.78	±9.6
0029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	Bluetooth	5.30	±9.6
0030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	1.87	±9.6
0031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.16	±9.6
0032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)		7.74	±9.6
0033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth		
0034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	±9.6
0035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	±9.6
0036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	±9.6
0037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	±9.6
0038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	±9.6
0039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	±9.6
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	±9.6
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	±9.6
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	±9.6
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	±9.6
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	±9.6
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	±9.6
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	±9.6
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	±9.6
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	±9.6
10062	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	±9.6
10063	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	±9.6
10064	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	±9.6
10065	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	±9.6
10066	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	±9.6
10067	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	±9.6
10068	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	±9.6
10069	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	±9.6
	CAB	IEEE 802.11g/WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	±9.6
10071	-		WLAN	9.62	±9.6
10072		IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.94	±9.6
10073		IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	10.30	±9.6
10074		IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	±9.6
10075	-	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.94	±9.6
10076		IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	11.00	±9.6
10077		IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	CDMA2000	3.97	±9.6
10081	CAB	CDMA2000 (1xRTT, RC3)	AMPS	4.77	
10082		IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)		6.56	±9.6
10090		GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM		
10097	_	UMTS-FDD (HSDPA)	WCDMA	3.98	±9.6
10098	_	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	±9.6
10099	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	±9.6
10100	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	±9.6
10101	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
10102	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10103		LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	±9.6
10104	-	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.97	±9.6
10105		LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-TDD	10.01	±9.6
10108	_	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-FDD	5.80	±9.6
	-		LTE-FDD	6.43	±9.6
10100					_
10109	_	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	5.75	±9.6

Certificate No: EX-3866_May23

Page 10 of 21

TRF-RF-601(03)161101

May 04, 2023

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k =
0112	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	±9.6
0113	CAH	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
0114	CAD	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	±9.6
0115	CAD	IEEE 802,11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	±9.6
0116	CAD	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	±9.6
0117	CAD	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	±9.6
0118	CAD	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	±9.6
0119	CAD	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	±9.6
	CAF	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
0140	CAF	LTE-FDD (SC-FDMA, 100% RB, 15MHz, 64-QAM)	LTE-FDD	6.53	+9.6
0141		LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6
0142	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	+9.6
0143	CAF		LTE-FDD	6.65	±9.6
0144	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	5.76	±9.6
0145	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	6.41	±9.6
0146	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.72	±9.6
0147	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)		6.42	±9.6
0149	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD		
0150	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
0151	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	±9.6
0152	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	±9.6
0153	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	±9.6
0154	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	±9.6
0155	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
0156	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	±9.6
0157	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
0158	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10159	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	±9.6
10160	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	±9.6
10161	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	±9.6
10162		LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	±9.6
10166	CAG		LTE-FDD	6.21	±9.6
10167	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	±9.6
10168	CAG		LTE-FDD	5.73	+9.6
10169	CAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	6.52	+9.6
10170	CAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.49	+9.6
10171	AAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	9.21	±9.6
10172	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)		9.48	±9.6
10173	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD		±9.6
10174	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	
10175	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	±9.6
10176	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10177	CAJ	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	±9.6
10178	CAH	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10179	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10180	-	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10181	CAF	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.72	±9.6
10182		LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10183	-	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10183	_	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6
10185	-	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	±9.6
		LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10186			LTE-FDD	5.73	±9.6
10187	_		LTE-FDD	6.52	±9.6
10188			LTE-FDD	6.50	±9.6
10189			WLAN	8.09	±9.0
10193			WLAN	8.12	±9.0
10194			WLAN	8.21	±9.6
10195	_				
10196	G CAD		WLAN	8.10	±9.6
10197	CAD		WLAN	8.13	±9.6
10198	CAD	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	±9.0
10219	_	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	±9.
10220			WLAN	8.13	±9.6
10221			WLAN	8.27	±9.6
10222	_		WLAN	8.06	±9.6
10223			WLAN	8.48	±9.
10223		IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	8.08	±9.6

Certificate No: EX-3866_May23

Page 11 of 21

May 04, 2023

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10225	CAC	UMTS-FDD (HSPA+)	WCDMA	5.97	±9.6
10226	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	±9.6
10227	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	±9.6
10228	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	±9.6
10229	CAE	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10230	CAE	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10231	CAE	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	±9.6
10232	CAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10233	CAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10234	CAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	9.21	±9.6
10235	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10236	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10237	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9.21	±9.6
10238	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10239	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10240	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	9.21	±9.6
10241	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	±9.6
10242	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	±9.6
10243	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	±9.6
10244	CAE	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	±9.6
10245	CAE	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	±9.6
10246	CAE	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	±9.6
10247	CAH	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	±9.6
10248	CAH	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	±9.6
10249	CAH	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	±9.6
10250	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	±9.6
10251	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	±9.6
10252	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	±9.6
10253	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	±9.6
10254	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	±9.6
10255	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	±9.6
10256	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	±9.6 ±9.6
10257	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.34	±9.6
10258	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.98	±9.6
10259	CAE	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.97	±9.6
10260	CAE	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.24	±9.6
10261	CAE	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.83	±9.6
10262	CAH	LTE-TDD (SC-FDMA, 100% RB, 5MHz, 16-QAM)	LTE-TDD	10.16	±9.6
10263	CAH	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	±9.6
10264	CAH	LTE-TDD (SC-FDMA, 100% RB, 510Hz, QF3R)	LTE-TDD	9.92	±9.6
10265	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 10 QAM)	LTE-TDD	10.07	±9.6
10266	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	±9.6
	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16 QAM)	LTE-TDD	10.06	±9.6
10268	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	±9.6
	-	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	±9.6
10270		UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	±9.6
10274	_	UMTS-FDD (HSUPA, Sublest 5, 3GPP Rel8.4)	WCDMA	3.96	±9.6
10275	-	PHS (QPSK)	PHS	11.81	±9.6
10277		PHS (QPSK) PHS (QPSK, BW 884 MHz, Rolloff 0.5)	PHS	11.81	±9.6
10278		PHS (QPSK, BW 884 MHz, Rolloff 0.38)	PHS	12.18	±9.6
10279		CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	±9.6
10290		CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	±9.6
10291		CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	±9.6
10292		CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	±9.6
10295	_	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	±9.6
10293	_	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	±9.6
10298	_	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	±9.6
10290		LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD	6.39	±9.6
10299	_	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10300		IEEE 802.16e WIMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC)	WiMAX	12.03	±9.6
10301	-	IEEE 802.16e WIMAX (29:18, 5ms, 10 MHz, QPSK, PUSC, 3 CTRL symbols)	WiMAX	12.57	±9.6
10302	_	IEEE 802.16e WIMAX (25.18, 5ms, 10 MHz, 64QAM, PUSC)	WIMAX	12.52	±9.6
10303		IEEE 802.16e WIMAX (29:18, 5 ms, 10 MHz, 64QAM, PUSC)	WIMAX	11.86	±9.6
10304	_	IEEE 802.16e WIMAX (23.16, 5115, 10 ms, 10 MHz, 64QAM, PUSC, 15 symbols)	WiMAX	15.24	±9.6
10305	AAA	IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, 64QAM, POSC, 18 symbols)	WiMAX	14.67	±9.6

Certificate No: EX-3866_May23

Page 12 of 21

Dt&C

Ο

May 04, 2023

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10307	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, QPSK, PUSC, 18 symbols)	WiMAX	14.49	±9.6
10308	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 16QAM, PUSC)	WiMAX	14.46	±9.6
10309	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 16QAM, AMC 2x3, 18 symbols)	WiMAX	14.58	±9.6
10310	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, QPSK, AMC 2x3, 18 symbols)	WiMAX	14.57	±9.6
10311	AAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	±9.6
10313	AAA	iDEN 1:3	iDEN	10.51	±9.6
10314	AAA	IDEN 1:6	IDEN	13.48	±9.6
10315	AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	WLAN	1.71	±9.6
10316	AAB	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	±9.6
10317	AAD	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	±9.6
10352	AAA	Pulse Waveform (200Hz, 10%)	Generic	10.00	±9.6
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	±9.6
10354	AAA	Pulse Waveform (200Hz, 40%)	Generic	3.98	±9.6
10355	AAA	Pulse Waveform (200Hz, 60%)	Generic	2.22	±9.6
10356	AAA	Pulse Waveform (200Hz, 80%)	Generic	0.97	±9.6
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.10	±9.6
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	±9.6
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	±9.6
10399	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	±9.6
10400	AAE	IEEE 802.11ac WiFi (20 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.37	±9.6
10401	AAE	IEEE 802.11ac WiFi (40 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.60	±9.6
10402	AAE	IEEE 802.11ac WiFi (80 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.53	±9.6
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	±9.6
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	±9.6
10406	AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	5.22	±9.6
10410	AAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)	LTE-TDD	7.82	±9.6
10414	AAA	WLAN CCDF, 64-QAM, 40 MHz	Generic	8.54	±9.6
10415	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	WLAN	1.54	±9.6
10416	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10417	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	WLAN	8.14	±9.6
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	WLAN	8.19	±9.6
10422	AAC	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	±9.6
10423	AAC	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	±9.6
10424	AAC	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	±9.6
10425	AAC	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	±9.6
10426	AAC	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.45	±9.6
10427	AAC	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN	8.41	±9.6
10430	AAE	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	LTE-FDD	8.28	±9.6
10431	AAE	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	±9.6
10432	AAD	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
10433	AAD	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
10434	AAB	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8.60	±9.6
10435	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10447	AAE	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	±9.6
10448	AAE	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	LTE-FDD	7.53	±9.6
10449	AAD	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	LTE-FDD	7.51	±9.6
10450	AAD	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.48	±9.6
10451	AAB	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.59	±9.6
10453	AAE	Validation (Square, 10 ms, 1 ms)	Test	10.00	±9.6
10456	AAC	IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.63	±9.6
10457	AAB	UMTS-FDD (DC-HSDPA)	WCDMA	6.62	±9.6
10458	AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	±9.6
10459	AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	8.25	±9.6
10460	AAB	UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	±9.6
10461	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10462	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.30	±9.6
10463	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.56	±9.6
10464	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10465	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10466	AAG	LTE-TDD (SC-FDMA, 1 RB, 5MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10466				_	-
10467		LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2.3.4.7.8.9)	LTE-TDD	8.32	±9.6
10467 10468	AAG	LTE-TDD (SC-FDMA, 1 RB, 5MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 1 RB, 5MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD LTE-TDD	8.32	±9.6
10467		LTE-TDD (SC-FDMA, 1 RB, 5MHz, 16-QAM, UL Subtrame=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 1 RB, 5MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD LTE-TDD LTE-TDD	8.32 8.56 7.82	±9.6 ±9.6

Certificate No: EX-3866_May23

Page 13 of 21

Dt&C

Ο

May 04, 2023

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k = 2$
10472	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10473	AAF	LTE-TDD (SC-FDMA, 1 RB, 15MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10474	AAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10475	AAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10477	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10478	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10479	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10480	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.18	±9.6
10481	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	±9.6
10482	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.71	±9.6
10483	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.39	±9.6
10484	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.47	±9.6
10485	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.59	±9.6
10486	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.38	±9.6
10487	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.60	±9.6
10488	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.70	±9.6
10489	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	±9.6
10490	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	±9.6
10491	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10492	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.41	±9.6
10493	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.55	±9.6
10494	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10495	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.37	±9.6
10496	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	±9.6
10497	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.67	±9.6
10498	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.40	±9.6
10499	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.68	±9.6
10500	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.67	±9.6
10501	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.44	±9.6
10502	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.52	±9.6
10503	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.72	±9.6
10504	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	±9.6
10505	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	±9.6
10506	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10507	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.36	±9.6
10508	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.55	±9.6
10509	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.99	±9.6
10510	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.49	±9.6
10511	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.51	±9.6
10512	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10513	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.42	±9.6
10514	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	±9.6
10515	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	WLAN	1.58	±9.6
10516	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	WLAN	1.57	±9.6
10517	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	WLAN	1.58	±9.6
10518	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10519	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.39	±9.6
10520	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.12	±9.6
10521	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	WLAN	7.97	±9.6
10522	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.45	±9.6
10523	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.08	±9.6
10524	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.27	±9.6
10525	AAC	IEEE 802.11ac WiFi (20 MHz, MCS0, 99pc duty cycle)	WLAN	8.36	±9.6
10526	AAC	IEEE 802.11ac WiFi (20 MHz, MCS1, 99pc duty cycle)	WLAN	8.42	±9.6
10527	AAC	IEEE 802.11ac WiFi (20 MHz, MCS2, 99pc duty cycle)	WLAN	8.21	±9.6
10528	AAC	IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc duty cycle)	WLAN	8.36	±9.6
10529	AAC	IEEE 802.11ac WiFi (20 MHz, MCS4, 99pc duty cycle)	WLAN	8.36	±9.6
10531	AAC	IEEE 802.11ac WiFi (20 MHz, MCS6, 99pc duty cycle)	WLAN	8.43	±9.6
10532	AAC	IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.6
10533	AAC	IEEE 802.11ac WiFi (20 MHz, MCS8, 99pc duty cycle)	WLAN	8.38	±9.6
10534	AAC	IEEE 802.11ac WiFi (40 MHz, MCS0, 99pc duty cycle)	WLAN	8.45	±9.6
10535	AAC	IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc duty cycle)	WLAN	8.45	±9.6
10536	AAC	IEEE 802.11ac WiFi (40 MHz, MCS2, 99pc duty cycle)	WLAN	8.32	±9.6
		IEEE 802.11ac WiFi (40 MHz, MCS3, 99pc duty cycle)	WLAN	8.44	±9.6
10537	AAC	TELE OVE. THE WITT (TO WITE, WOOD, SOPE GUTY CYCIE)			
	AAC	IEEE 802.11ac WiFi (40 MHz, MCS4, 99pc duty cycle)	WLAN	8.54	±9.6

Certificate No: EX-3866_May23

Page 14 of 21

May 04, 2023

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10541	AAC	IEEE 802.11ac WiFi (40 MHz, MCS7, 99pc duty cycle)	WLAN	8.46	±9.6
10542	AAC	IEEE 802.11ac WiFi (40 MHz, MCS8, 99pc duty cycle)	WLAN	8.65	±9.6
10543	AAC	IEEE 802.11ac WiFi (40 MHz, MCS9, 99pc duty cycle)	WLAN	8.65	±9.6
0544	AAC	IEEE 802.11ac WiFi (80 MHz, MCS0, 99pc duty cycle)	WLAN	8.47	±9.6
0545	AAC	IEEE 802.11ac WiFi (80 MHz, MCS1, 99pc duty cycle)	WLAN	8.55	±9.6
0546	AAC	IEEE 802.11ac WiFi (80 MHz, MCS2, 99pc duty cycle)	WLAN	8.35	±9.6
10547	AAC	IEEE 802.11ac WiFi (80 MHz, MCS3, 99pc duty cycle)	WLAN	8.49	±9.6
10548	AAC	IEEE 802.11ac WiFi (80 MHz, MCS4, 99pc duty cycle)	WLAN	8.37	±9.6
10550	AAC	IEEE 802.11ac WiFi (80 MHz, MCS6, 99pc duty cycle)	WLAN	8.38	±9.6
10551	AAC	IEEE 802.11ac WiFi (80 MHz, MCS7, 99pc duty cycle)	WLAN	8.50	±9.6
10552	AAC	IEEE 802.11ac WiFi (80 MHz, MCS8, 99pc duty cycle)	WLAN	8.42	±9.6
10553	AAC	IEEE 802.11ac WiFi (80 MHz, MCS9, 99pc duty cycle)	WLAN	8.45	±9.6
10554	AAD	IEEE 802.11ac WiFi (160 MHz, MCS0, 99pc duty cycle)	WLAN	8.48	±9.6
10555	AAD	IEEE 802.11ac WiFi (160 MHz, MCS1, 99pc duty cycle)	WLAN	8.47	±9.6
10556	AAD	IEEE 802.11ac WiFi (160 MHz, MCS2, 99pc duty cycle)	WLAN	8.50	±9.6
10557	AAD	IEEE 802.11ac WiFi (160 MHz, MCS3, 99pc duty cycle)	WLAN	8.52	±9.6
10558	AAD	IEEE 802.11ac WiFi (160 MHz, MCS4, 99pc duty cycle)	WLAN	8.61	±9.6
10560	AAD	IEEE 802.11ac WiFi (160 MHz, MCS6, 99pc duty cycle)	WLAN	8.73	±9.6
10561	AAD	IEEE 802.11ac WiFi (160 MHz, MCS7, 99pc duty cycle)	WLAN	8.56	±9.6
0562	AAD	IEEE 802.11ac WiFi (160 MHz, MCS8, 99pc duty cycle)	WLAN	8.69	±9.6
10563	AAD	IEEE 802.11ac WiFi (160 MHz, MCS9, 99pc duty cycle)	WLAN WLAN	8.77	±9.6 ±9.6
10564	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.25	±9.6
10565	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.45	±9.6
10566	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.00	±9.6
10567	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty cycle)	WLAN	8.37	±9.6
10568	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.10	±9.6
10569	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mops, 99pc duty cycle)	WLAN	8.30	±9.6
10570	AAA	IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 54 Mops, 99pc duty cycle)	WLAN	1.99	±9.6
10571 10572	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1Mbps, 90pc duty cycle)	WLAN	1.99	±9.6
10572	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	WLAN	1.98	±9.6
10573	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	WLAN	1.98	±9.6
10574	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	WLAN	8.59	±9.6
10576	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OF DM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	±9.6
10576	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 3 Mbps, 90pc duty cycle)	WLAN	8.70	±9.6
10578	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.49	±9.6
10579	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle)	WLAN	8.36	±9.6
10580	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.76	±9.6
10581	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	±9.6
10582	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	±9.6
10583	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	WLAN	8.59	±9.6
10584	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	±9.6
10585	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8.70	±9.6
10586	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.49	±9.6
10587	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	WLAN	8.36	±9.6
10588	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.76	±9.6
10589	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	±9.6
10590	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	±9.6
10591	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle)	WLAN	8.63	±9.6
10592	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle)	WLAN	8.79	±9.6
10593		IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle)	WLAN	8.64	±9.6
10594		IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle)	WLAN	8.74	±9.6
10595		IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle)	WLAN	8.74	±9.6
10596		IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle)	WLAN	8.71	±9.6
10597		IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle)	WLAN	8.72	±9.6
10598		IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle)	WLAN	8.50	±9.6
10599	-	IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle)	WLAN	8.79	±9.6
10600		IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle)	WLAN	8.88	±9.6
10601		IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle)	WLAN	8.82	±9.6
10602	-	IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle)	WLAN	8.94	±9.6
10603	_	IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc duty cycle)	WLAN	9.03	±9.6
10604	-	IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc duty cycle)	WLAN	8.76	±9.6
10605	_	IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc duty cycle)	WLAN	8.97	±9.6
10606	_	IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc duty cycle)	WLAN	8.82	±9.6
10607	_	IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc duty cycle)	WLAN	8.64	±9.6
10608	_	IEEE 802.11ac WiFi (20 MHz, MCS1, 90pc duty cycle)	WLAN	8.77	±9.6

Certificate No: EX-3866_May23

Page 15 of 21

May 04, 2023

EX3DV4 - SN:3866

🛈 Dt&C

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10609	AAC	IEEE 802.11ac WiFi (20 MHz, MCS2, 90pc duty cycle)	WLAN	8.57	±9.6
10610	AAC	IEEE 802.11ac WiFi (20 MHz, MCS3, 90pc duty cycle)	WLAN	8.78	±9.6
10611	AAC	IEEE 802.11ac WiFi (20 MHz, MCS4, 90pc duty cycle)	WLAN	8.70	±9.6
10612	AAC	IEEE 802.11ac WiFi (20 MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.6
10613	AAC	IEEE 802.11ac WiFi (20 MHz, MCS6, 90pc duty cycle)	WLAN	8.94	±9.6
10614	AAC	IEEE 802.11ac WiFi (20 MHz, MCS7, 90pc duty cycle)	WLAN	8.59	±9.6
10615	AAC	IEEE 802.11ac WiFi (20 MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.6
10616	AAC	IEEE 802.11ac WiFi (40 MHz, MCS0, 90pc duty cycle)	WLAN	8.82	±9.6
10617	AAC	IEEE 802.11ac WiFi (40 MHz, MCS1, 90pc duty cycle)	WLAN	8.81	±9.6
10618	AAC	IEEE 802.11ac WiFi (40 MHz, MCS2, 90pc duty cycle)	WLAN	8.58	±9.6
10619	AAC	IEEE 802.11ac WiFi (40 MHz, MCS3, 90pc duty cycle)	WLAN	8.86	±9.6
10620	AAC	IEEE 802.11ac WiFi (40 MHz, MCS4, 90pc duty cycle)	WLAN	8.87	±9.6
10621	AAC	IEEE 802.11ac WiFi (40 MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.6
10622	AAC	IEEE 802.11ac WiFi (40 MHz, MCS6, 90pc duty cycle)	WLAN	8.68	±9.6
10623	AAC	IEEE 802.11ac WiFi (40 MHz, MCS7, 90pc duty cycle)	WLAN	8.82	±9.6
10624	AAC	IEEE 802.11ac WiFi (40 MHz, MCS8, 90pc duty cycle)	WLAN	8.96	±9.6
10625	AAC	IEEE 802.11ac WiFi (40 MHz, MCS9, 90pc duty cycle)	WLAN	8.96	±9.6
10626	AAC	IEEE 802.11ac WiFi (80 MHz, MCS0, 90pc duty cycle)	WLAN	8.83	±9.6
10627	AAC	IEEE 802.11ac WiFi (80 MHz, MCS0, 90pc duty cycle)	WLAN	8.88	±9.6
10627	AAC	IEEE 802.11ac WiFI (80 MHz, MCS1, 90pc duty cycle)	WLAN	8.88	±9.6
10629	AAC AAC	IEEE 802.11ac WiFi (80 MHz, MCS3, 90pc duty cycle) IEEE 802.11ac WiFi (80 MHz, MCS4, 90pc duty cycle)	WLAN	8.85	±9.6
10630			WLAN	8.72	±9.6
10631	AAC	IEEE 802.11ac WiFi (80 MHz, MCS5, 90pc duty cycle)	WLAN	8.81	±9.6
10632	AAC	IEEE 802.11ac WiFi (80 MHz, MCS6, 90pc duty cycle)	WLAN	8.74	±9.6
10633	AAC	IEEE 802.11ac WiFi (80 MHz, MCS7, 90pc duty cycle)	WLAN	8.83	±9.6
10634	AAC	IEEE 802.11ac WiFi (80 MHz, MCS8, 90pc duty cycle)	WLAN	8.80	±9.6
10635	AAC	IEEE 802.11ac WiFi (80 MHz, MCS9, 90pc duty cycle)	WLAN	8.81	±9.6
10636	AAD	IEEE 802.11ac WiFi (160 MHz, MCS0, 90pc duty cycle)	WLAN	8.83	±9.6
10637	AAD	IEEE 802.11ac WiFi (160 MHz, MCS1, 90pc duty cycle)	WLAN	8.79	±9.6
10638	AAD	IEEE 802.11ac WiFi (160 MHz, MCS2, 90pc duty cycle)	WLAN	8.86	±9.6
10639	AAD	IEEE 802.11ac WiFi (160 MHz, MCS3, 90pc duty cycle)	WLAN	8.85	±9.6
10640	AAD	IEEE 802.11ac WiFi (160 MHz, MCS4, 90pc duty cycle)	WLAN	8.98	±9.6
10641	AAD	IEEE 802.11ac WiFi (160 MHz, MCS5, 90pc duty cycle)	WLAN	9.06	±9.6
10642	AAD	IEEE 802.11ac WiFi (160 MHz, MCS6, 90pc duty cycle)	WLAN	9.06	±9.6
10643	AAD	IEEE 802.11ac WiFi (160 MHz, MCS7, 90pc duty cycle)	WLAN	8.89	±9.6
10644	AAD	IEEE 802.11ac WiFi (160 MHz, MCS8, 90pc duty cycle)	WLAN	9.05	±9.6
10645	AAD	IEEE 802.11ac WiFi (160 MHz, MCS9, 90pc duty cycle)	WLAN	9.11	±9.6
10646	AAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	LTE-TDD	11.96	±9.6
10647	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	LTE-TDD	11.96	±9.6
10648	AAA	CDMA2000 (1x Advanced)	CDMA2000	3.45	±9.6
10652	AAF	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	±9.6
10653	AAF	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42	±9.6
10654	AAE	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	±9.6
10655	AAF	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	±9.6
10658	AAB	Pulse Waveform (200Hz, 10%)	Test	10.00	±9.6
10659	AAB	Pulse Waveform (200Hz, 20%)	Test	6.99	±9.6
10660	AAB	Pulse Waveform (200Hz, 20%)	Test	3.98	±9.6
10661	AAB	Pulse Waveform (200Hz, 60%)	Test	2.22	±9.6
10662	AAB	Pulse Waveform (200Hz, 80%) Pulse Waveform (200Hz, 80%)	Test	0.97	±9.6
10670	AAA	Bluetooth Low Energy	Bluetooth	2.19	±9.6
10670		IEEE 802.11ax (20 MHz, MCS0, 90pc duty cycle)	WLAN	9.09	
		IEEE 802.11ax (20 MHz, MCS0, 90pc duty cycle)	WLAN	8.57	±9.6
10672		IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle)	WLAN	8.57	±9.6
10673	AAC				±9.6
10674	AAC	IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle)	WLAN	8.74	±9.6
10675	AAC	IEEE 802.11ax (20 MHz, MCS4, 90pc duty cycle)	WLAN	8.90	±9.6
10676	AAC	IEEE 802.11ax (20 MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.6
10677	AAC	IEEE 802.11ax (20 MHz, MCS6, 90pc duty cycle)	WLAN	8.73	±9.6
10678	AAC	IEEE 802.11ax (20 MHz, MCS7, 90pc duty cycle)	WLAN	8.78	±9.6
10679	AAC	IEEE 802.11ax (20 MHz, MCS8, 90pc duty cycle)	WLAN	8.89	±9.6
10680	AAC	IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle)	WLAN	8.80	±9.6
10681	AAC	IEEE 802.11ax (20 MHz, MCS10, 90pc duty cycle)	WLAN	8.62	±9.6
10682	AAC	IEEE 802.11ax (20 MHz, MCS11, 90pc duty cycle)	WLAN	8.83	±9.6
10683	AAC	IEEE 802.11ax (20 MHz, MCS0, 99pc duty cycle)	WLAN	8.42	±9.6
10684	AAC	IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle)	WLAN	8.26	±9.6
	0.00	IEEE 802.11ax (20 MHz, MCS2, 99pc duty cycle)	WLAN	8.33	±9.6
10685	AAC				

Certificate No: EX-3866_May23

Page 16 of 21

TRF-RF-601(03)161101