TEST REPORT

DT&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea

Tel: 031-321-2664, Fax: 031-321-1664

Report No: DRTFCC1602-0031 Pages:(1) / (89) page

1. Customer

• Name: POINTMOBILE CO., LTD.

• Address : B-9F, Kabul Great Valley 32 Digital-ro 9-gil, Geumcheon-gu, Seoul, Korea 153-709

2. Use of Report: FCC & IC Original Grant

3. Product Name (FCCID, IC): Mobile Computer (V2X-PM80W, 10664A-PM80W)

4. Date of Test: 2015-10-12 ~ 2015-11-25

5. Test Method Used: FCC Part 15.407, RSS-247

6. Testing Environment: See appended test report

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This Test Report cannot be reproduced, except in full.

Affirmation

Tested by

Name: JaeJin Lee

Technical Manager

Name: Bongjin Kim

2016.02.03.

DT&C Co., Ltd.

Report No.: DRTFCC1602-0031

Test Report Version

Test Report No.	Date	Description
DRTFCC1602-0031	Feb. 03, 2016	Initial issue

CONTENTS

1. EUT Description	4
2. Information about test items	5
2.1 Test mode / Channel Information	5
2.2 Tested Channel Information	5
2.3 Auxiliary equipment	5
2.4 Tested environment	6
2.5 EMI Suppression Device(s) / Modifications	6
3. Summary of Tests	
4. Test Methodology	8
4.1 EUT configuration	
4.2 EUT exercise	
4.3 General test procedures	8
4.4 Description of test modes	
5. Instrument Calibration	
6. Facilities and Accreditations	9
6.1 Facilities	9
6.2 Equipment	9
7. Antenna Requirements	9
8. TEST RESULT	
8.1 Emission Bandwidth (26 dB Bandwidth)	10
8.2 Minimum Emission Bandwidth (6 dB Bandwidth)	23
8.3 Maximum Conducted Output Power	28
8.4 Maximum Power Spectral Density	32
8.5 Frequency Stability	
8.6 Radiated Spurious Emission Measurements	54
8.7 AC Conducted Emissions	
8.8 Occupied Bandwidth	70
9. List of Test Equipment	
APPENDIX I	88
ADDENDIY II	QΩ

Report No.: DRTFCC1602-0031

1. EUT Description

FCC Equipment Class	Unlicensed National Information Infrastructure (UNII)
Product	Mobile Computer
Model name	PM80-W
Add model name	NA
Hardware version	Rev.5
Software version	80.02
Power Supply	DC 3.8 V
	U-NII 1 (5150 ~ 5250MHz) ■ 802.11a / n(HT20): 5180 ~ 5240 MHz
Eregueney Benge	U-NII 2(5250 ~ 5350MHz) ■ 802.11a/n(HT20): 5260 ~ 5320 MHz
Frequency Range	U-NII 3(5470 ∼ 5725MHz) • 802.11a/n(HT20): 5500 ∼ 5700 MHz
	U-NII 4(5725 ~ 5850MHz) ■ 802.11a/n(HT20): 5745 ~ 5825 MHz
	U-NII 1 • 802.11a: 10.63 dBm • 802.11n(HT20): 10.49 dBm
	U-NII 2 • 802.11a: 10.77 dBm • 802.11n(HT20): 10.66 dBm
Max. RF Output Power	U-NII 3 • 802.11a: 10.88 dBm • 802.11n(HT20): 10.88 dBm
	U-NII 4 • 802.11a: 10.38 dBm • 802.11n(HT20): 10.34 dBm
Modulation type	64-QAM, 16QAM, QPSK BPSK for OFDM
	Antenna type : Internal Antenna
Antenna Specification	Antenna gain U-NII 1: 0.430 dBi U-NII 2: 0.320 dBi U-NII 3: 0.320 dBi
	■ U-NII 4 : 0.120 dBi

2. Information about test items

2.1 Test mode / Channel Information

5GHz Band	Mode	Data Rate
U-NII 1	802.11a	6Mbps
U-MII I	802.11n(HT20)	MCS 0
U-NII 2	802.11a	6Mbps
U-INII Z	802.11n(HT20)	MCS 0
U-NII 3	802.11a	6Mbps
	802.11n(HT20)	MCS 0
U-NII 4	802.11a	6Mbps
	802.11n(HT20)	MCS 0

Note 1: The worst case data rate is determined as above test mode according to the power measurements.

And all test items were performed at the worst case data rate.

2.2 Tested Channel Information

5GHz Band	802.11a/	/n(HT20)	802.11n(HT40)		
3GHZ Ballu	Channel	Frequency [MHz]	Channel	Frequency [MHz]	
	36	5180	-	-	
U-NII 1	40	5200	-	-	
	48	5240	-	-	
	52	5260	-	-	
U-NII 2	60	5300	-	-	
	64	5320	-	-	
	100	5500	-	-	
U-NII 3	116	5580	-	-	
	140	5700	-	-	
	149	5745	-	-	
U-NII 4	157	5785	-	-	
	165	5825	-	-	

2.3 Auxiliary equipment

Equipment	Model No.	Serial No.	Manufacturer	Note
-	-	-	-	-
-	-	-	-	-

FCC ID: V2X-PM80W

IC: 10664A-PM80W Report No.: DRTFCC1602-0031

2.4 Tested environment

Temperature	:	22 °C ~ 23 °C
Relative humidity content	:	43 % ~ 45 % R.H.
Details of power supply	:	DC 3.8 V

2.5 EMI Suppression Device(s) / Modifications

EMI suppression device(s) added and/or modifications made during testing \rightarrow None

Report No.: DRTFCC1602-0031

3. Summary of Tests

FCC Part Section(s)	RSS Std.	Parameter	Limit	Test Condition	Status Note 1			
I. Transmit	I. Transmitter Mode (TX)							
15.407(a)	-	Emission Bandwidth (26 dB Bandwidth)	N/A		С			
15.407(e)	RSS-247[6.2.4]	Minimum Emission Bandwidth (6 dB Bandwidth)	> 500 kHz in 5725 ~ 5850 MHz		С			
-	RSS GEN[6.6]	Occupied Bandwidth (99%)	N/A		0			
			5150 ~ 5250 MHz : < 30 dBm or < 23.97 dBm (FCC) < 200 mW or 10 + 10log10(B) dBm whichever power is less. (IC)					
15.407(a)	RSS-247[6.2]	Maximum Conducted Output Power	5250 ~ 5350 & 5470 ~ 5725 MHz : <250 mW or < 11 + 10 log10(B) dBm, whichever power is less. (FCC & IC)	Conducted	C Note 3			
			5725 ~ 5850 MHz : < 30 dBm (FCC & IC)					
15.407(a)	RSS-247[6.2]	Peak Power	Note: B is the 99 % BW(IC) or 26dB BW(FCC). 5150 ~ 5250 MHz : 11 dBm/MHz or 17 dBm/MHz(FCC) 5150 ~ 5250 MHz: < 10 dBm/MHz 5250 ~ 5350 & 5470 ~ 5725 MHz: 11 dBm/MHz		С			
13.407 (a)	N33-247[0.2]	Spectral Density	(FCC & IC)		Note 4			
			5725 ~ 5850 MHz: 30 dBm/500kHz(FCC & IC)		_			
15.407(g)	RSS GEN[6.11]	Frequency Stability	N/A		С			
			5150 ~ 5725 MHz: < -27 dBm/MHz EIRP					
15.407(b)	RSS-247[6.2]	Undesirable Emissions	5725 ~ 5850 MHz: < -17 dBm/MHz EIRP		C Note 5			
			or < -27 dBm/MHz EIRP	Radiated				
15.205 15.209 15.407(b)	RSS-247[6.2] RSS-GEN[8.9] RSS-GEN[8.10] General Field Strength Limits(Restricted Bands and Radiated Emission Limits)		Emissions in restricted bands must meet the radiated limits detailed in 15.209		C Note 6			
15.407(h)	RSS-247[6.3]	Dynamic Frequency Selection	FCC 15.407(h)	Conducted	C Note 7			
15.207	RSS-GEN[8.8]	AC Conducted Emissions	FCC 15.207	AC Line Conducted	С			
15.203	-	Antenna Requirements	FCC 15.203	-	С			

- Note 1: C = Comply NC = Not Comply NT = Not Tested NA = Not Applicable
- Note 2: The test items were performed according to the KDB789033 D02 V01 and ANSI C63.10-2013
- Note 3: (i) For access point operating in the band 5.15 5.25 GHz: < 30 dBm
 - (ii) For mobile and portable client devices in the 5.15 5.25 GHz band: < 23.97 dBm
- Note 4: (i) For access point operating in the band 5.15 5.25 GHz: < 17 dBm/MHz
 - (ii) For mobile and portable client devices in the 5.15 5.25 GHz band: < 11 dBm/MHz
- Note 5: For transmitters operating in the 5.725 5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz
- Note 6: These test items were performed in each axis and the worst case data was reported.
- Note 7: Refer to the DFS test report.

Report No.: DRTFCC1602-0031

4. Test Methodology

Generally the tests were performed according to the KDB789033 D02 v01. And ANSI C63.10-2013 was used to reference appropriate EUT setup and maximizing procedures of radiated spurious emission and AC line conducted emission testing

4.1 EUT configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT exercise

The EUT was operated in the test mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.407 under the FCC Rules Part 15 Subpart C.

4.3 General test procedures

Conducted Emissions

The power-line conducted emission test procedure is not described on the KDB789033 D02 v01. So this test was fulfilled with the requirements in Section 6.2 of ANSI C63.10-2013.

The EUT is placed on the wooden table, which is 0.8 m above ground plane and the conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and Average detector.

Radiated Emissions

Basically the radiated tests were performed with KDB789033 D02 v01. But some requirements and procedures like test site requirements, EUT setup and maximizing procedure were fulfilled with the requirements in Section 5 and 6 of the ANSI C63.10-2013 as stated on KDB789033 D02 v01.

The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the highest emission, the relative positions of the EUT were rotated through three orthogonal axis.

4.4 Description of test modes

A test program is used to control the EUT for staying in continuous transmitting mode with maximum fixed duty cycle.

Report No.: DRTFCC1602-0031

5. Instrument Calibration

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards.

6. Facilities and Accreditations

6.1 Facilities

The open area test site(OATS) or semi anechoic chamber and conducted measurement facility used to collect the radiated and conducted test data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 449-935. The site is constructed in conformance with the requirements..

- Semi anechoic chamber registration Number: 165783(FCC) & 5740A-3(IC)

6.2 Equipment

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and peak, quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements. All receiving equipment conforms to CISPR Publication 16 - 1, "Radio Interference Measuring Apparatus and Measurement Methods."

7. Antenna Requirements

According to FCC 47 CFR §15.203

An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The internal antenna is attached on the main PCB using the special spring tension.

Therefore this E.U.T Complies with the requirement of §15.203

Report No.: DRTFCC1602-0031

8. TEST RESULT

8.1 Emission Bandwidth (26 dB Bandwidth)

■ Test Requirements

The bandwidth at 26 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies. The 26 dB bandwidth is used to determine the conducted output power limit.

■ Test Configuration

Refer to the Appendix I.

■ TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer and used following test procedure of KDB789033 D02 V01.

- 1. Set resolution bandwidth (RBW) = approximately 1 % of the EBW.
- 2. Set the video bandwidth (VBW) > RBW.
- 3. Detector = **Peak**.
- 4. Trace mode = **Max hold**.

Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW / EBW ratio is approximately 1 %.

■ TEST RESULTS: Comply

Mode	Band	Channel	Frequency [MHz]	Test Result [MHz]
		36	5180	21.64
	U-NII 1	40	5200	21.60
		48	5240	21.84
		52	5260	21.80
802.11a	U-NII 2	60	5300	22.00
		64	5320	21.84
	U-NII 3	100	5500	22.03
		116	5580	21.68
		140	5700	21.10
	U-NII 1	36	5180	22.09
		40	5200	22.43
		48	5240	22.44
		52	5260	21.95
802.11n (HT20)	U-NII 2	60	5300	22.34
		64	5320	22.20
		100	5500	22.18
	U-NII 3	116	5580	22.11
		140	5700	21.81

Report No.: DRTFCC1602-0031

Result Plots

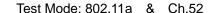
26 dB Bandwidth

26 dB Bandwidth

Test Mode: 802.11a & Ch.40

STATUS

Report No.: DRTFCC1602-0031

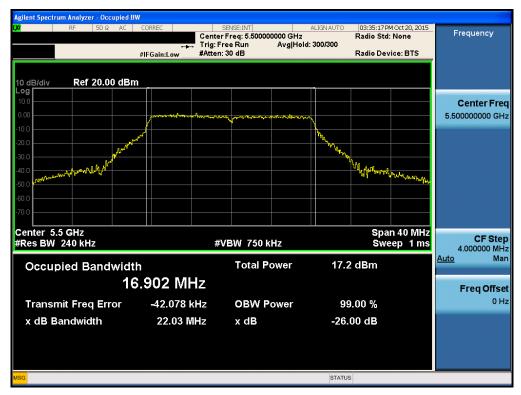


26 dB Bandwidth

26 dB Bandwidth

Test Mode: 802.11a & Ch.60

Report No.: DRTFCC1602-0031

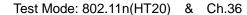


26 dB Bandwidth

26 dB Bandwidth

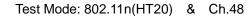
Test Mode: 802.11a & Ch.116

Report No.: DRTFCC1602-0031



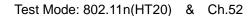
Report No.: DRTFCC1602-0031

26 dB Bandwidth


26 dB Bandwidth

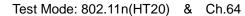
Test Mode: 802.11n(HT20) & Ch.40

Report No.: DRTFCC1602-0031



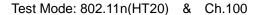
Report No.: DRTFCC1602-0031

26 dB Bandwidth


26 dB Bandwidth

Test Mode: 802.11n(HT20) & Ch.60

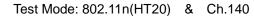
Report No.: DRTFCC1602-0031



Report No.: DRTFCC1602-0031



26 dB Bandwidth





Report No.: DRTFCC1602-0031

Report No.: DRTFCC1602-0031

8.2 Minimum Emission Bandwidth (6 dB Bandwidth)

■ Test Requirements

Within the 5.725 - 5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

TEST CONFIGURATION

Refer to the APPENDIX I.

■ TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer and used following test procedure of KDB789033 D02 V01.

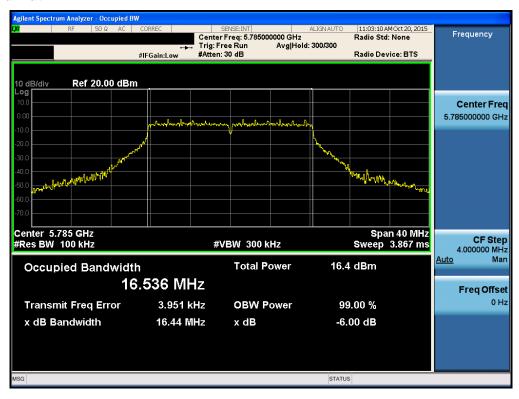
- 1. Set resolution bandwidth (RBW) = 100 kHz
- 2. Set the video bandwidth ≥ 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = **Max hold**.

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

■ TEST RESULTS: Comply

Mode	Band	Channel	Frequency [MHz]	Test Result [MHz]
		149	5745	16.43
802.11a	U-NII 4	157	5785	16.44
		165	5825	16.45
	U-NII 4	149	5745	17.66
802.11n(HT20)		157	5785	17.65
		165	5825	17.64

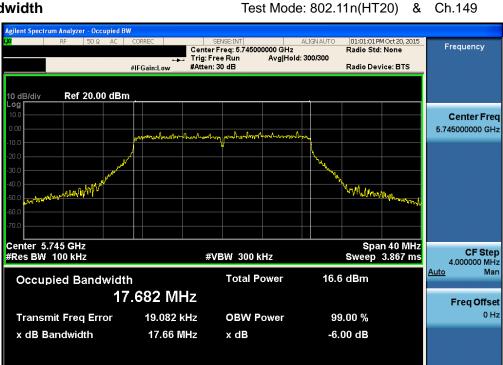
RESULT PLOTS

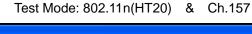

6 dB Bandwidth

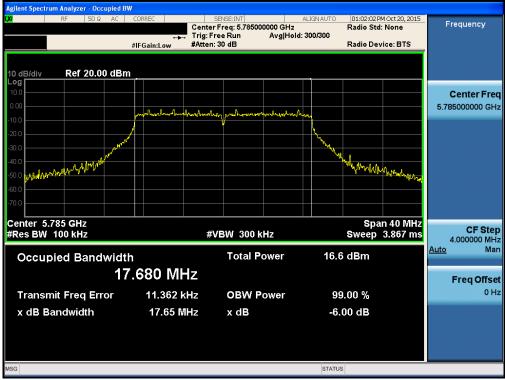
6 dB Bandwidth

STATUS

Report No.: DRTFCC1602-0031




Report No.: DRTFCC1602-0031


6 dB Bandwidth

6 dB Bandwidth

STATUS

Report No.: DRTFCC1602-0031

6 dB Bandwidth

Test Mode: 802.11n(HT20) & Ch.165

Report No.: DRTFCC1602-0031

8.3 Maximum Conducted Output Power

Test Requirements

Part. 15.407(a)

(1) For the band 5.15 - 5.25 GHz.

- (i) For an outdoor access point operating in the band 5.15 5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15 5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15 5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15 5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (2) For the 5.25 5.35 GHz and 5.47 5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (3) For the band 5.725 5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

- Output power Limit Calculation (FCC)

Band	Mode	Power Limit [mW]	Calculated Limit [dBm]	Antenna Gain	Determined Limit [dBm]
U-NII 1	802.11a	250	23.97	0.43	23.97
O-IVII I	802.11n(HT20)	250	23.97	0.43	23.97

Band	Mode	Power Limit [mW] Least 26 dBc BW [MHz]	Calculated Limit [dBm]	Antenna Gain	Determined Limit [dBm]
	802.11a	250	23.97	0.22	23.97
U-NII 2	602.11a	21.80	24.38	0.32	
U-MII Z	902 44¤/UT20\	250	23.97	0.32	22.07
	802.11n(HT20)	21.95	24.41		23.97

Band	Mode	Power Limit [mW] Least 26 dBc BW [MHz]	Calculated Limit [dBm]	Antenna Gain	Determined Limit [dBm]
	802.11a	250	23.97	0.32	23.97
U-NII 3	002.11a	21.10	24.24		
U-INII 3	002 44 ₅ /UT20)	250	23.97	0.33	22.07
	802.11n(HT20)	21.81	24.38	0.32	[dBm]

Band	Mode	Power Limit [mW]	Calculated Limit [dBm]	Antenna Gain	Determined Limit [dBm]
U-NII 4	802.11a	1000	30.00	0.12	30.00
U-NII 4	802.11n(HT20)	1000	30.00	0.12	30.00

RSS-247[6.11]

(1) For band 5150 - 5250 MHz

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99 % emission bandwidth in MHz.

(2) For band 5250 - 5350 MHz

The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10 B, dBm, whichever power is less.

The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10 B, dBm, whichever power is less. B is the 99 % emission bandwidth in MHz.

(3) For band 5470 - 5600 MHz and 5650 - 5725 MHz

The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10 B, dBm, whichever power is less.

The maximum e.i.r.p. shall not exceed 1.0 W or $17 + 10 \log 10$ B, dBm, whichever power is less. B is the 99 % emission bandwidth in MHz.

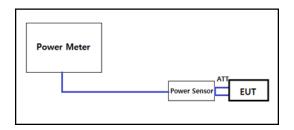
(4) For band 5725 - 5850 MHz

The maximum conducted output power shall not exceed 1 W.

- Output power Limit Calculation (IC)

Band	Mode	Power Limit [mW] Least 99% BW [MHz]	Calculated Limit [dBm]	Antenna Gain	Determined Limit [dBm]
	902.446	200	23.01	0.43	22.22
4	802.11a	16.682	22.22		
l l	902 44¤/UT20\	200	23.01	0.43	22.40
	802.11n(HT20)	17.776	22.49	0.43	22.49

Band	Mode	Power Limit [mW] Least 99% BW [MHz]	Calculated Limit [dBm]	Antenna Gain	Determined Limit [dBm]
	902.446	250	23.97	0.32	23.22
2	802.11a	16.675	23.22		
2	902 11 ₂ /UT20)	250	23.97	0.32	22.50
	802.11n(HT20)	17.782	23.50	0.32	23.50


Band	Mode	Power Limit [mW] Least 99% BW [MHz]	Calculated Limit [dBm]	Antenna Gain	Determined Limit [dBm]
	802.11a	250	23.97	0.32	23.21
3	002.11a	16.629	23.21		
3	902 44p(UT20)	250	23.97	0.22	
	802.11n(HT20)	17.752	23.50	0.32	

Band	Mode	Power Limit [mW]	Calculated Limit [dBm]	Antenna Gain	Determined Limit [dBm]
4	802.11a	1000	30.00	0.12	30.00
4	802.11n(HT20)	1000	30.00	0.12	30.00

Report No.: DRTFCC1602-0031

■ Test Configuration

■ Test Procedure

Maximum Conducted Output Power is measured using Measurement Procedure **Method PM - G of KDB789033 D02 V01**

Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

■ Test Results: Comply

Mode	Bands	Channel	Frequency [MHz]	Test Result [dBm]
		36	5180	10.63
	U-NII 1	40	5200	10.41
		48	5240	10.46
		52	5260	10.66
	U-NII 2	60		10.77
802.11a		64	5320	10.63
602.11a		100	5500	10.88
	U-NII 3	116	5580	10.85
		140	5700	10.38
	U-NII 4 149 5745 157 5785 165 5825	149	5745	10.38
		5785	10.25	
		165	5825	10.27
	U-NII 1 36 5180 40 5200 48 5240	36	5180	10.49
		5200	10.38	
		48	5240	10.34
		52	5260	10.43
	U-NII 2	60	5300	10.66
802.11n HT20		64	5320	10.53
		100	5500	10.88
	U-NII 3	116	5580	10.79
		140	5700	10.29
		149	5745	10.34
	U-NII 4	157	5785	10.22
		165	5825	10.25

Report No.: DRTFCC1602-0031

8.4 Maximum Power Spectral Density

■ Test requirements

Part. 15.407(a)

(1) For the band 5.15 - 5.25 GHz.

- (i) For an outdoor access point operating in the band 5.15 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band. note1
- (ii) For an indoor access point operating in the band 5.15 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band. note1
- (iii) For fixed point-to-point access points operating in the band 5.15 5.25 GHz, transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.
- (iv) For mobile and portable client devices in the 5.15 5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 MHz band. note1
- (2) For the 5.25 5.35 GHz and 5.47 5.725 GHz bands, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. note1
- (3) For the band 5.725 5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500 kHz band.^{note1,note2}

Note1: If transmitting antennas of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Note2: Fixed point - to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information.

- Peak Power Spectral Density Limit Calculation(FCC)

Band	Limit [dBm]	ANT Gain [dBi]	Determined Limit [dBm]
U-NII 1	11	0.430	11
U-NII 2	11	0.320	11
U-NII 3	11	0.320	11
U-NII 4	30	0.120	30

Report No.: DRTFCC1602-0031

RSS-247[6.11]

(1) For band 5150 - 5250 MHz
The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

- (2) For band 5250 5350 MHz
 The power spectral density shall not exceed 11 dBm in any 1.0 MHz band.
- (3) For band 5470 5600 MHz and 5650 5725 MHz
 The power spectral density shall not exceed 11 dBm in any 1.0 MHz band.
- (4) For band 5725 5850 MHz
 The power spectral density shall not exceed 30 dBm in any 500 kHz band.

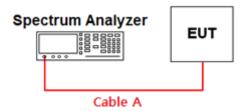
- Peak Power Spectral Density Limit Calculation(IC)

Band	Limit [dBm]		
1	10	0.430	10
2	11	0.320	11
3	11	0.320	11
4	30	0.120	30

Report No.: DRTFCC1602-0031

■ Test procedure

Maximum Power Spectral Density is measured using Measurement Procedure of KDB789033 D02 V01


- 1) Create an average power spectrum for the EUT operating mode being tested by following the instructions in section II.E.2. for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA 1, SA 2, SA 3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power...". (This procedure is required even if the maximum conducted output power measurement was performed using a power meter, method PM.)
- 2) Use the peak search function on the instrument to find the peak of the spectrum and record its value.
- 3) Make the following adjustments to the peak value of the spectrum, if applicable:

a) If Method SA - 2 or SA - 2 Alternative was used, add 10 log(1 / x), where x is the duty cycle, to the peak of the spectrum.

- b) If Method SA 3 Alternative was used and the linear mode was used in step II.E.2.g (viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.
- 4) The result is the Maximum PSD over 1 MHz reference bandwidth.
- 5) For devices operating in the bands 5.15 5.25 GHz, 5.25 5.35 GHz, and 5.47 5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in §15.407(a)(5). For devices operating in the band 5.725 5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 kHz bandwidth, the following adjustments to the procedures apply:
 - a) Set RBW ≥ 1 / T, where T is defined in section II.B.1.a). (Refer to Appendix II)
 - b) Set VBW ≥ 3 RBW.
 - c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10 log(500 kHz / RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
 - d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10 log(1 MHz / RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
 - e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 kHz for the sections 5.c) and 5.d) above, since RBW = 100 kHz is available on nearly all spectrum analyzers.

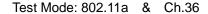
■ Test configuration

Report No.: DRTFCC1602-0031

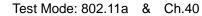
■ Test result: Comply

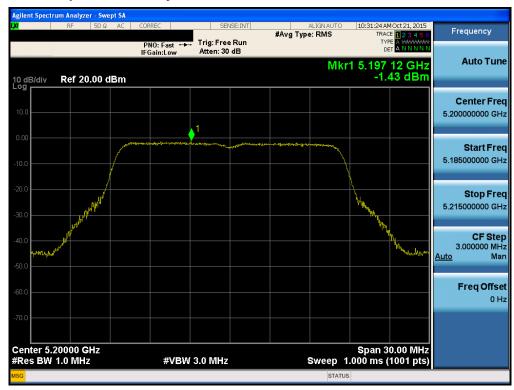
Mode	Channel	Frequency [MHz]	Reading [dBm]	T.F [dB] Note 1	Test Result [dBm]
	36	5180	-1.020		-0.410
	40	5200	-1.430		-0.820
	48	5240	-1.680		-1.070
	52	5260	-1.350		-0.740
	60	5300	-1.570	0.61	-0.960
802.11a	64	5320	-1.350		-0.740
002.11d	100	5500	-0.590		0.020
	116	5580	-0.340		0.270
	140	5700	-1.260		-0.650
	149	5745	-10.060		-2.460
	157	5785	-10.880	7.60	-3.280
	165	5825	-10.610		-3.010
	36	5180	-1.590		-0.930
	40	5200	-1.790		-1.130
	48	5240	-2.380		-1.720
	52	5260	-1.560		-0.900
	60	5300	-1.420	0.66	-0.760
802.11n HT20	64	5320	-1.870		-1.210
002.1111 H 1 2 0	100	5500	-0.370		0.290
	116	5580	-0.720		-0.060
	140	5700	-1.180		-0.520
	149	5745	-11.060		-3.410
	157	5785	-10.670	7.65	-3.020
	165	5825	-11.000		-3.350

Note 1: T.F of Band UNII 1~3 = 10log(1 MHz / 1 MHz) + D.C.F T.F of Band UNII 4 = 10log(500 kHz / 100 kHz) + D.C.F


For D.C.F., please refer to appendix II.

Note 2: Test Result = Measurement Data + T.F


RESULT PLOTS


Maximum Power Spectral Density

Maximum Power Spectral Density



Report No.: DRTFCC1602-0031

Test Mode: 802.11a & Ch.52

Maximum Power Spectral Density



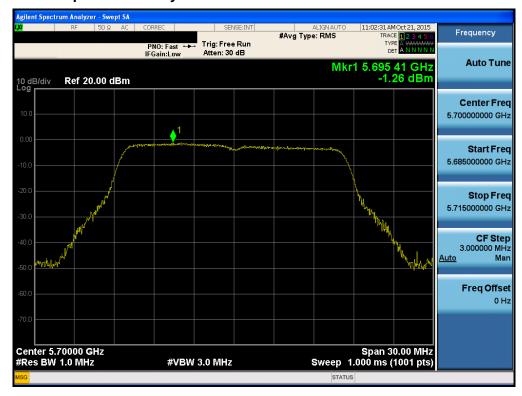
Report No.: DRTFCC1602-0031



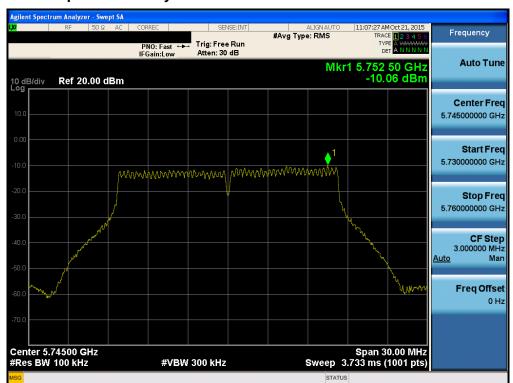
Test Mode: 802.11a & Ch.100

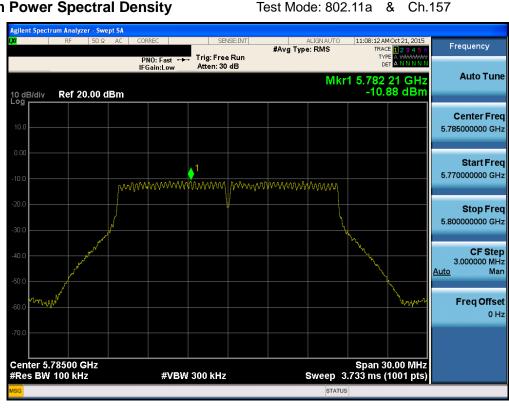
Test Mode: 802.11a & Ch.116

Maximum Power Spectral Density



Report No.: DRTFCC1602-0031

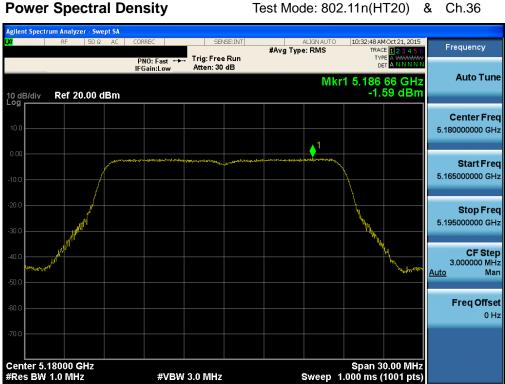


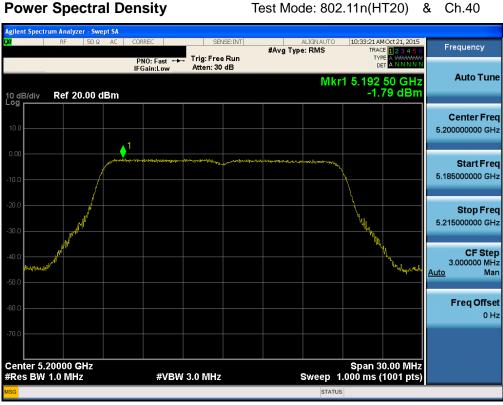


Test Mode: 802.11a & Ch.149

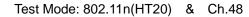
Maximum Power Spectral Density

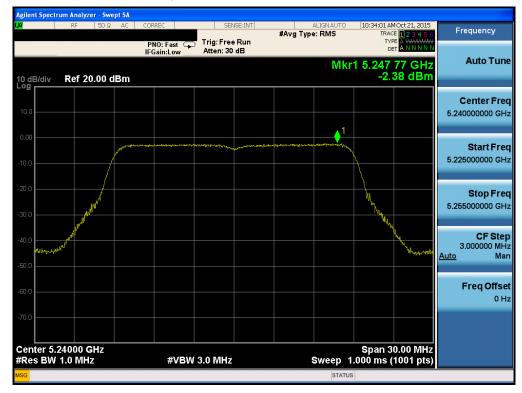
Report No.: DRTFCC1602-0031





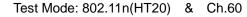
Maximum Power Spectral Density


Maximum Power Spectral Density

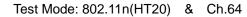


TRF-RF-234(01)151127

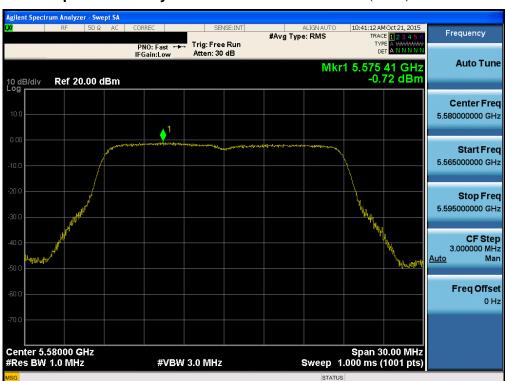
Report No.: DRTFCC1602-0031



Maximum Power Spectral Density

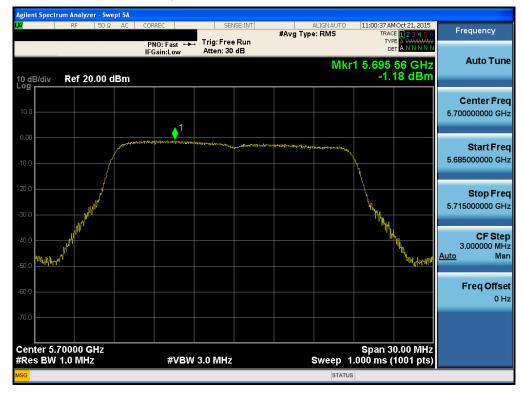


Report No.: DRTFCC1602-0031



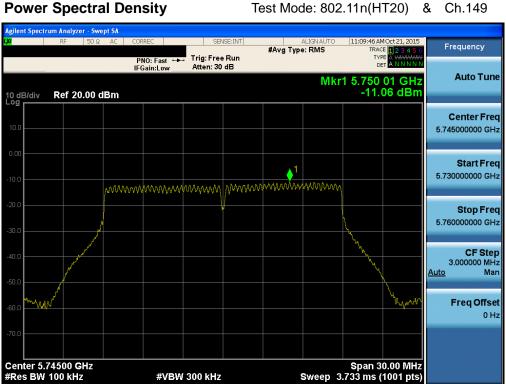
Maximum Power Spectral Density

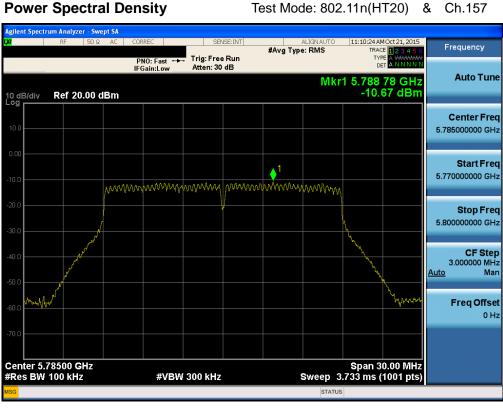
Maximum Power Spectral Density

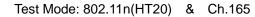


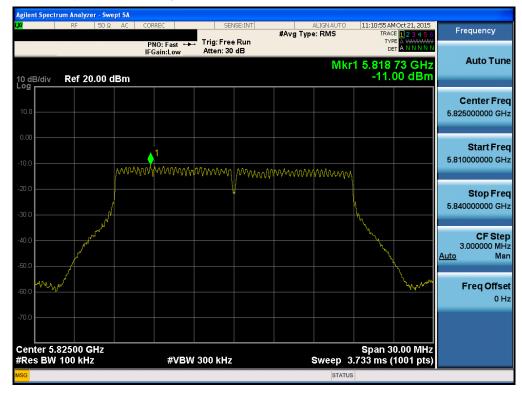
Test Mode: 802.11n(HT20) & Ch.116

Report No.: DRTFCC1602-0031






Maximum Power Spectral Density



Report No.: DRTFCC1602-0031

Report No.: DRTFCC1602-0031

8.5 Frequency Stability

■ Test requirements

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

■ Test Procedure

The EUT was placed inside of an environmental chamber as the temperature in the chamber was varied between -20 $^{\circ}$ C and +50 $^{\circ}$ C. The temperature was incremented by 10 $^{\circ}$ C intervals and the unit was allowed to stabilize at each measurement.

This device not supported test mode of unmodulated carrier.

Thus, test of frequency stability was performed in modulated carrier.

The edge point of EBW(26dB or 6dB bandwidth) for transmitting channel was evaluated at each temperature and was recorded.

■ Test Result : Comply

U-NII-1 & U-NII-2A: (5150 MHz ~ 5350 MHz)

Committee		Operating F	requency
Supply Voltage	TEMP (℃)	5180 MHz	5320 MHz
(V DC)	(C)	26dBc low edge (Hz)	26dBc High edge(Hz)
	+25(Ref)	5,169,207,250	5,330,950,000
	+50	5,169,031,250	5,331,022,500
	+40	5,169,033,250	5,331,027,000
	+30	5,169,038,250	5,331,027,600
3.800	+20	5,169,040,250	5,331,040,400
	+10	5,169,042,250	5,331,067,300
	0	5,169,042,250	5,331,094,900
	-10	5,169,042,550	5,331,114,500
	-20	5,169,043,750	5,331,127,500
3.500	+25	5,169,213,250	5,330,950,900
4.320	+25	5,169,195,250	5,330,951,700

Report No.: DRTFCC1602-0031

U-NII-3 : (5470 MHz ~ 5725 MHz)

Cumply		Operating F	requency
Supply Voltage	TEMP (℃)	5500 MHz	5700 MHz
(V DC)	()	26dBc low edge (Hz)	26dBc High edge(Hz)
	+25(Ref)	5,488,948,000	5,710,546,000
	+50	5,489,148,500	5,710,629,500
	+40	5,489,140,800	5,710,634,500
	+30	5,489,141,000	5,710,532,200
3.800	+20	5,489,115,000	5,710,671,000
	+10	5,489,102,000	5,710,684,300
	0	5,489,099,000	5,710,701,000
	-10	5,489,073,400	5,710,714,000
	-20	5,489,063,500	5,710,702,000
3.500	+25	5,489,033,000	5,710,529,000
4.320	+25	5,488,679,000	5,710,495,000

U-NII-4: (5725 MHz ~ 5850 MHz)

Cumply		Operating F	requency
Supply Voltage	TEMP (℃)	5745 MHz	5825 MHz
(V DC)	()	6dBc low edge (Hz)	6dBc High edge(Hz)
	+25(Ref)	5,736,205,000	5,833,779,000
	+50	5,736,182,500	5,833,793,600
	+40	5,736,198,500	5,833,795,700
	+30	5,736,205,500	5,833,799,300
3.800	+20	5,736,209,500	5,833,800,200
	+10	5,736,205,500	5,833,800,700
	0	5,736,210,900	5,833,818,500
	-10	5,736,217,700	5,833,829,500
	-20	5,736,220,000	5,833,832,000
3.500	+25	5,736,219,000	5,833,784,000
4.320	+25	5,736,200,500	5,833,777,100

8.6 Radiated Spurious Emission Measurements

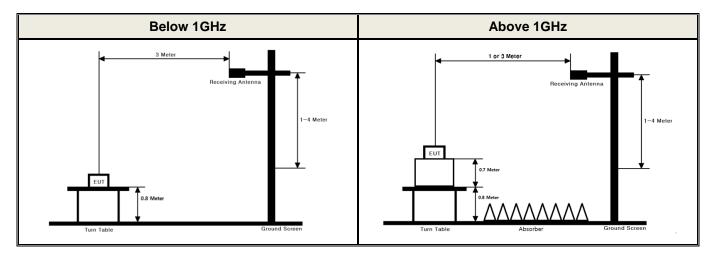
■ Test Procedure

FCC Part 15.209(a) and (b)

Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)
0.009 - 0.490	2400/F(KHz)	300
0.490 – 1.705	24000/F(KHz)	30
1.705 – 30.0	30	30
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	500	3

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 - 72 MHz, 76 - 88 MHz, 174 - 216 MHz or 470 - 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

• FCC Part 15.205 (a): Only spurious emissions are permitted in any of the frequency bands listed below:


MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.1735 ~ 2.1905	12.51975 ~ 12.52025	149.9 ~ 150.05	1645.5 ~ 1646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.57675 ~ 12.57725	160.52475 ~ 160.52525	1660 ~ 1710	8.025 ~ 8.5	22.01 ~ 23.12
4.17725 ~ 4.17775	13.36 ~ 13.41	160.7 ~ 160.9	1718.8 ~ 1722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.20725 ~ 4.20775	16.42 ~ 16.423	162.0125 ~ 167.17	2200 ~ 2300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.69475 ~ 16.69525	167.72 ~ 173.2	2310 ~ 2390	10.6 ~ 12.7	36.43 ~ 36.5
6.26775 ~ 6.26825	16.80425 ~ 16.80475	240 ~ 285	2483.5 ~ 2500	13.25 ~ 13.4	Above 38.6
6.31175 ~ 6.31225	25.5 ~ 25.67	322 ~ 335.4	2655 ~ 2900		
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3260 ~ 3267		
8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3332 ~ 3339		
8.37625 ~ 8.38675	74.8 ~ 75.2	960 ~ 1240	3345.8 ~ 3358		
			3600 ~ 4000		

- FCC Part 15.205(b): The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.
- FCC Part 15.407 (b): Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:
 - (1) For transmitters operating in the **5.15 5.25 GHz band**: all emissions outside of the **5.15 5.35 GHz band** shall not exceed an **EIRP of -27 dBm / MHz**.
 - (2) For transmitters operating in the **5.25 5.35 GHz band**: all emissions outside of the **5.15 5.35 GHz band** shall not exceed an **EIRP of -27 dBm / MHz**.
 - (3) For transmitters operating in the **5.47 5.725 GHz band**: all emissions outside of the **5.47 5.725 GHz band** shall not exceed an **EIRP of -27 dBm / MHz**.
 - (4) For transmitters operating in the **5.725 5.85 GHz band**: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of −17 dBm / MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of −27 dBm / MHz.
 - (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
 - (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in Section 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in Section 15.207.
 - (7) The provisions of §15.205 apply to intentional radiators operating under this section
 - (8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

Report No.: DRTFCC1602-0031

■ Test Procedure

■ Test Procedure

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m.
- 2. The turn table shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4 m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Radiated spurious emission measured using following Measurement Procedure of KDB789033 D02 V01

► General Requirements for Unwanted Emissions Measurements

The following requirements apply to all unwanted emissions measurements, both in and outside of the restricted bands:

- EUT Duty Cycle
 - (1) The EUT shall be configured or modified to transmit continuously except as stated in (ii), below. The intent is to test at 100 percent duty cycle; however a small reduction in duty cycle (to no lower than 98 percent) is permitted if required by the EUT for amplitude control purposes. Manufacturers are expected to provide software to the test lab to permit such continuous operation.
 - (2) If **continuous transmission (or at least 98 percent duty cycle) cannot be achieved** due to hardware limitations of the EUT (e.g., overheating), the following additions to the measurement and reporting procedures are required:
 - The EUT shall be configured to operate at the maximum achievable duty cycle.
 - Measure the duty cycle, x, of the transmitter output signal.
 - Adjustments to measurement procedures (e.g., increasing test time and number of traces averaged) shall be performed as described in the procedures below.
 - The test report shall include the following additional information:
 - The reason for the duty cycle limitation.
 - The duty cycle achieved for testing and the associated transmit duration and interval between transmissions.
 - The sweep time and the amount of time used for trace stabilization during max-hold measurements for peak emission measurements.
 - (3) Reduction of the measured emission amplitude levels to account for operational duty factor is not permitted. Compliance is based on emission levels occurring during transmission not on an average across on and off times of the transmitter.

► Measurements below 1000 MHz

- a) Follow the requirements in section II.G.3, "General Requirements for Unwanted Emissions Measurements".
- b) Compliance shall be demonstrated using CISPR quasi-peak detection; however, peak detection is permitted as an alternative to quasi-peak detection.

Report No.: DRTFCC1602-0031

► Measurements Above 1000 MHz (Peak)

- a) Follow the requirements in section II.G.3, "General Requirements for Unwanted Emissions Measurements".
- b) Peak emission levels are measured by setting the analyzer as follows:
 - (i) RBW = 1 MHz.
 - (ii) VBW ≥ 3 MHz.
 - (iii) Detector = Peak.
 - (iv) Sweep time = Auto.
 - (v) Trace mode = Max hold.
 - (vi) Allow sweeps to continue until the trace stabilizes. Note that if the transmission is not continuous, the time required for the trace to stabilize will increase by a factor of approximately 1/x, where x is the duty cycle. For example, at 50 percent duty cycle, the measurement time will increase by a factor of two relative to measurement time for continuous transmission.

► Measurements Above 1000 MHz (Method AD)

- (i) RBW = 1 MHz.
- (ii) VBW ≥ 3 MHz.
- (iii) Detector = RMS, if span / (# of points in sweep) ≤ RBW / 2. Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, the detector mode shall be set to peak.
- (iv) Averaging type = power (i.e., RMS)
 - As an alternative, the detector and averaging type may be set for linear voltage averaging.
 Some analyzers require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.
- (v) Sweep time = Auto.
- (vi) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, the number of traces shall be increased by a factor of 1/x, where x is the duty cycle. For example, with 50 percent duty cycle, at least 200 traces shall be averaged.
- (vii) If tests are performed with the EUT transmitting at a duty cycle less than 98 percent, a correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
- If power averaging (RMS) mode was used in step (iv) above, the correction factor is 10 log(1/x), where x is the duty cycle.

For example, if the transmit duty cycle was 50 percent, then 3 dB must be added to the measured emission levels.

- If linear voltage averaging mode was used in step (iv) above, the correction factor is 20 log (1/x), where x is the duty cycle. For example, if the transmit duty cycle was 50 percent, then 6 dB must be added to the measured emission levels.
- If a specific emission is demonstrated to be continuous (100 percent duty cycle) rather than turning on and off with the transmit cycle, no duty cycle correction is required for that emission.

Please refer to Appendix II for the duty correction factor

Report No.: DRTFCC1602-0031

■ Measurement Data:

Radiated Spurious Emissions data(9kHz ~ 40GHz) : 802.11a & U-NII-1

Tested Channel	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	5107.700	Н	Х	PK	44.04	3.77	N/A	N/A	47.81	74.00	26.19
20	5104.067	Н	Х	AV	33.72	3.77	0.61	N/A	38.10	54.00	15.90
36 (5180 MHz)	10360.047	Н	Х	PK	48.53	9.36	N/A	-9.54	48.35	68.20	19.85
(5180 MHZ)	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-
	10399.930	Н	Х	PK	47.76	9.49	N/A	-9.54	47.71	68.20	20.49
40	-	-	-	=	-	-	-	-	-	-	-
40 (5000 MHz)	-	-	-	=	-	-	-	-	-	-	-
(5200 MHz)	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	=	-	-	-	-	-	-	-
	10479.945	Н	Х	PK	48.13	9.51	N/A	-9.54	48.10	68.20	20.10
40	-	-	-	=	-	-	-	-	-	-	-
48 (5240 MHz)	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	=	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-

Radiated Spurious Emissions data(9kHz ~ 40GHz): 802.11a & U-NII-2

Tested Channel	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	10519.833	Н	X	PK	48.17	9.61	N/A	-9.54	48.24	68.20	19.96
F 0	-	-	-	-	=	-	-	-	-	-	-
52 (5360 MHz)	-	-	-	-	-	-	-	-	-	-	-
(5260 MHz)	-	-	-	-	=	-	-	-	-	-	-
	-	-	-	ı	ı	1	-	1	-	-	ı
	10599.987	Н	Х	PK	47.96	9.02	N/A	-9.54	47.44	74.00	26.56
	-	-	-	-	-	-	-	-	-	-	-
60	-	-	1	ı	ı	1	-	1	-	-	ı
(5300 MHz)	-	-	-	-	ı	-	-	-	-	-	-
	-	-	1	ı	ı	1	-	1	-	-	ı
	-	-	-	-	=	-	-	-	-	-	-
	5386.133	Н	X	PK	44.64	3.97	N/A	N/A	48.61	74.00	25.39
	5386.920	Н	Х	AV	32.86	3.97	0.61	N/A	37.44	54.00	16.56
64	10639.878	Н	X	PK	48.20	9.45	N/A	-9.54	48.11	74.00	25.89
(5320 MHz)	10639.977	Н	Х	AV	41.34	9.45	0.61	-9.54	41.86	54.00	12.14
,	-	-	-	-	=	-	-	1	-	-	-
	-	-	-	=	=	-	-	-	-	-	-

Note.

- 1. No other spurious and harmonic emissions were found greater than listed emissions on above table.
- 2. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F + DCCF + DCF / T.F = AF + CL - AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain,

DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

3. Measurement Distance = 3 m for below 10 GHz, Measurement Distance = 1 m for above 10 GHz.

Therefore Distance Correction Factor (DCF): -9.54 dB = 20*log (1m / 3m)

4. The limit is converted to field strength.

E [dBuV/m] = EIRP [dBm] + 95.2 dB = -27 dBm + 95.2 = 68.2 dBuV/m

= -17 dBm + 95.2 = 78.2 dBuV/m

Report No.: DRTFCC1602-0031

Radiated Spurious Emissions data(9kHz ~ 40GHz) : 802.11a & U-NII-3

Tested Channel	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	5428.360	Н	Х	PK	44.62	3.96	N/A	N/A	48.58	74.00	25.42
100	5428.360	Н	X	AV	33.52	3.96	0.61	N/A	38.09	54.00	15.91
100 (5500 MHz)	5465.040	Н	Х	PK	43.04	3.97	N/A	N/A	47.01	68.20	21.19
(5500 MHZ)	10999.983	Н	X	PK	47.18	9.99	N/A	-9.54	47.63	74.00	26.37
	10999.970	Н	Х	AV	39.56	9.99	0.61	-9.54	40.62	54.00	13.38
	11159.670	Н	Х	PK	47.65	10.46	N/A	-9.54	48.57	74.00	25.43
116	11159.910	Н	X	AV	40.20	10.46	0.61	-9.54	41.73	54.00	12.27
(5580 MHz)	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-
	5730.350	Н	Х	PK	43.74	4.37	N/A	N/A	48.11	68.20	20.09
140	11400.000	Н	X	PK	49.38	10.70	N/A	-9.54	50.54	74.00	23.46
140 (5700 MHz)	11399.923	Н	Х	AV	43.44	10.70	0.61	-9.54	45.21	54.00	8.79
	=	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-

Radiated Spurious Emissions data(9kHz ~ 40GHz) : 802.11a & U-NII-4

Tested Channel	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	5711.225	Н	Х	PK	42.25	4.37	N/A	N/A	46.62	68.20	21.58
149	5724.058	Н	X	PK	47.22	4.37	N/A	N/A	51.59	78.20	26.61
(5745 MHz)	11489.923	Н	X	PK	49.18	10.74	N/A	-9.54	50.38	74.00	23.62
,	11489.955	Н	X	AV	43.19	10.74	0.61	-9.54	45.00	54.00	9.00
157	11569.963	Н	X	PK	47.84	11.49	N/A	-9.54	49.79	74.00	24.21
(5785 MHz)	11570.027	Н	Χ	AV	42.31	11.49	0.61	-9.54	44.87	54.00	9.13
	5851.030	Н	Х	PK	44.55	4.76	N/A	N/A	49.31	78.20	28.89
165	5878.040	Н	Χ	PK	44.57	4.76	N/A	N/A	49.33	68.20	18.87
(5825 MHz)	11650.092	Н	Χ	PK	47.55	11.61	N/A	-9.54	49.62	74.00	24.38
	11650.000	Н	Χ	AV	41.26	11.61	0.61	-9.54	43.94	54.00	10.06

Note.

- 1. No other spurious and harmonic emissions were found greater than listed emissions on above table.
- 2. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F + DCCF + DCF / T.F = AF + CL - AG
Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain,
DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

3. Measurement Distance = 3 m for below 10 GHz, Measurement Distance = 1 m for above 10 GHz.

Therefore Distance Correction Factor (DCF): -9.54 dB = 20*log (1m / 3m)

4. The limit is converted to field strength.

E [dBuV/m] = EIRP [dBm] + 95.2 dB = -27 dBm + 95.2 = 68.2 dBuV/m

= -17 dBm + 95.2 = 78.2 dBuV/m

Report No.: DRTFCC1602-0031

■ Measurement Data:

Radiated Spurious Emissions data(9kHz ~ 40GHz) : 802.11n(HT20) & U-NII-1

Tested Channel	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	5103.667	Н	Х	PK	44.65	3.77	N/A	N/A	48.42	74.00	25.58
20	5103.150	Н	Х	AV	33.53	3.77	0.66	N/A	37.96	54.00	16.04
36	10360.030	Н	Х	PK	48.20	9.36	N/A	-9.54	48.02	68.20	20.18
(5180 MHz)	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-
	10400.000	Н	Х	PK	47.84	9.49	N/A	-9.54	47.79	68.20	20.41
40	-	-	-	-	-	-	-	-	-	-	-
40 (5200 MH=)	-	-	-	-	=	ı	-	-	-	-	-
(5200 MHz)	-	-	-	-	ı	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-
	10480.107	Н	Х	PK	47.36	9.51	N/A	-9.54	47.33	68.20	20.87
40	-	-	-	-	=	-	-	-	-	-	-
48 (5240 MHz)	-	-	-	-	-	-	-	-	-	-	=
	-	-	-	-	=	-	-	-	-	-	-
	-	-	-	-	=	-	-	-	-	-	-

Radiated Spurious Emissions data(9kHz ~ 40GHz): 802.11 n(HT20) & U-NII-2

Tested Channel	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	10520.026	Н	Х	PK	47.61	9.61	N/A	-9.54	47.68	68.20	20.52
F 0	-	-	-	-	-	-	-	-	-	-	-
52 (5260 MHz)	-	-	-	-	-	-	-	-	-	-	-
(3200 IVITZ)	-	-	-	-	-	-	-	-	-	-	ı
	-	-	-	-	-	-	-	-	-	-	-
	10600.076	Н	Х	PK	47.58	9.02	N/A	-9.54	47.06	74.00	26.94
	10599.957	Н	Х	AV	41.21	9.02	0.66	-9.54	41.35	54.00	12.65
60	-	-	-	-	-	-	-	-	-	-	-
(5300 MHz)	-	-	-	-	-	-	-	-	-	-	ı
	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-
	5372.883	Н	Х	PK	45.00	3.97	N/A	N/A	48.97	74.00	25.03
0.4	5371.900	Н	Х	AV	34.83	3.97	0.66	N/A	39.46	54.00	14.54
64 (5320 MHz)	10639.848	Н	Х	PK	48.50	9.45	N/A	-9.54	48.41	74.00	25.59
	10639.977	Н	Х	AV	41.62	9.45	0.66	-9.54	42.19	54.00	11.81
	-	-	-	-	-	-	-	-	-	-	-

Note.

- 1. No other spurious and harmonic emissions were found greater than listed emissions on above table.
- 2. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F + DCCF + DCF / T.F = AF + CL - AGWhere, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain,

DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

- 3. Measurement Distance = 3 m for below 10 GHz, Measurement Distance = 1 m for above 10 GHz. Therefore Distance Correction Factor (DCF): 9.54 dB = 20*log (1m / 3m)
- 4. The limit is converted to field strength.

E [dBuV/m] = EIRP [dBm] + 95.2 dB = -27 dBm + 95.2 = 68.2 dBuV/m

= -17 dBm + 95.2 = 78.2 dBuV/m

Report No.: DRTFCC1602-0031

Radiated Spurious Emissions data(9kHz ~ 40GHz) : 802.11n(HT20) & U-NII-3

Tested Channel	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	5449.760	Н	Х	PK	43.97	3.96	N/A	N/A	47.93	74.00	26.07
100	5449.760	Н	X	AV	33.40	3.96	0.66	N/A	38.02	54.00	15.98
100 (5500 MHz)	5467.640	Н	Х	PK	44.57	3.97	N/A	N/A	48.54	68.20	19.66
(5500 MHZ)	10999.728	Н	Х	PK	47.33	9.99	N/A	-9.54	47.78	74.00	26.22
	11000.071	Н	Х	AV	39.53	9.99	0.66	-9.54	40.64	54.00	13.36
	11160.173	Н	X	PK	47.66	10.46	N/A	-9.54	48.58	74.00	25.42
116	11159.917	Н	Х	AV	40.15	10.46	0.66	-9.54	41.73	54.00	12.27
(5580 MHz)	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-
	5735.008	Н	Х	PK	44.38	4.37	N/A	N/A	48.75	68.20	19.45
140	11399.915	Н	Х	PK	48.94	10.70	N/A	-9.54	50.10	74.00	23.90
140 (5700 MHz)	11400.050	Н	Х	AV	43.58	10.70	0.66	-9.54	45.40	54.00	8.60
	=	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-

Radiated Spurious Emissions data(9kHz ~ 40GHz) : 802.11n(HT20) & U-NII-4

Tested Channel	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
149	5711.617	Н	X	PK	43.89	4.37	N/A	N/A	48.26	68.20	19.94
	5724.808	Н	X	PK	45.32	4.37	N/A	N/A	49.69	78.20	28.51
(5745 MHz)	11489.758	Н	Х	PK	49.04	10.74	N/A	-9.54	50.24	74.00	23.76
	11489.888	Н	X	AV	42.79	10.74	0.66	-9.54	44.65	54.00	9.35
157	11569.870	Н	X	PK	48.46	11.49	N/A	-9.54	50.41	74.00	23.59
(5785 MHz)	11569.993	Н	Χ	AV	42.58	11.49	0.66	-9.54	45.19	54.00	8.81
	5850.350	Н	Х	PK	43.77	4.76	N/A	N/A	48.53	78.20	29.67
165	5876.420	Н	X	PK	44.70	4.76	N/A	N/A	49.46	68.20	18.74
(5825 MHz)	11650.200	Н	X	PK	48.57	11.61	N/A	-9.54	50.64	74.00	23.36
,	11650.013	Н	X	AV	41.53	11.61	0.66	-9.54	44.26	54.00	9.74

Note.

- 1. No other spurious and harmonic emissions were found greater than listed emissions on above table.
- 2. Sample Calculation.

 $\begin{aligned} & \text{Margin} = \text{Limit} - \text{Result} \ / \ \text{Result} = \text{Reading} + \text{T.F} + \text{DCCF} + \text{DCF} \ / \ \text{T.F} = \text{AF} + \text{CL} - \text{AG} \\ & \text{Where, T.F} = \text{Total Factor,} \ \text{AF} = \text{Antenna Factor,} \ \text{CL} = \text{Cable Loss,} \ \text{AG} = \text{Amplifier Gain,} \\ & \text{DCCF} = \text{Duty Cycle Correction Factor,} \ \text{DCF} = \text{Distance Correction Factor} \end{aligned}$

3. Measurement Distance = 3 m for below 10 GHz, Measurement Distance = 1 m for above 10 GHz.

Therefore Distance Correction Factor (DCF): -9.54 dB = 20*log (1m / 3m)

4. The limit is converted to field strength.

E [dBuV/m] = EIRP [dBm] + 95.2 dB = -27 dBm + 95.2 = 68.2 dBuV/m= -17 dBm + 95.2 = 78.2 dBuV/m

Report No.: DRTFCC1602-0031

8.7 AC Conducted Emissions

■ TEST PROCEDURE:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. Emissions closest to the limit are measured in the quasi-peak mode (QP) and average mode (AV) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

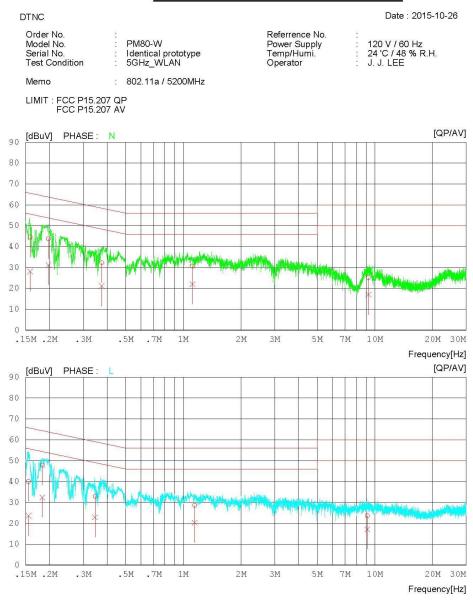
■ Measurement Data: Comply

Note 1: See next pages for actual measured spectrum plots and data.

■ Minimum Standard: FCC Part 15.207(a)

Frequency Range	Conducted Limit (dBuV)						
(MHz)	Quasi-Peak	Average					
0.15 ~ 0.5	66 to 56 *	56 to 46 *					
0.5 ~ 5	56	46					
5 ~ 30	60	50					

^{*} Decreases with the logarithm of the frequency


Report No.: DRTFCC1602-0031

AC Line Conducted Emissions (Graph)

Test Mode: U-NII 1 & 802.11a & 5200MHz

Results of Conducted Emission

IC: 10664A-PM80W Report No.: DRTFCC1602-0031

AC Line Conducted Emissions (Data List)

Test Mode: U-NII 1 & 802.11a & 5200MHz

Results of Conducted Emission

DTNC Date: 2015-10-26

Order No. Model No. Serial No. Test Condition

: : PM80-W : Identical prototype : 5GHz_WLAN

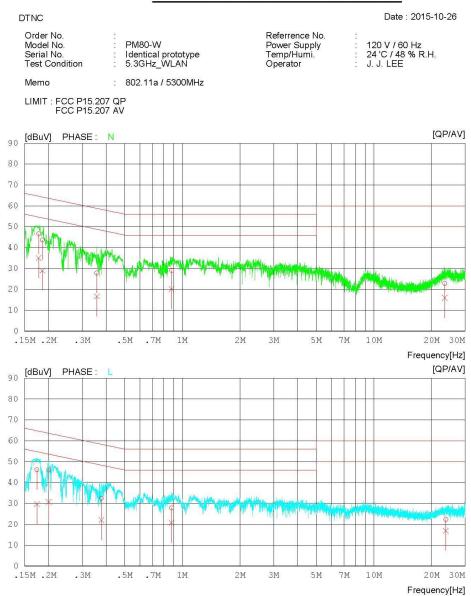
Referrence No. :
Power Supply :
Temp/Humi. :
Operator :

: : 120 V / 60 Hz : 24 'C / 48 % R.H. : J. J. LEE

Memo : 802.11a / 5200MHz

LIMIT : FCC P15.207 QP FCC P15.207 AV

NO	FREQ [MHz]	READ QP [dBuV]	ING AV [dBuV]	C.FACTOR	QP	ULT AV [dBuV]	LIN QP [dBuV]	MIT AV [dBuV]	QP	RGIN AV][dBuV]	PHASE
1	0.15845	34.5	18.0	10.1	44.6	28.1	65.5	55.5	20.9	27.4	N
2	0.19739	33.7	21.0	10.1	43.8	31.1	63.7	53.7	19.9	22.6	N
3	0.37487	22.2	10.9	10.1	32.3	21.0	58.4	48.4	26.1	27.4	N
4	1.11440	20.4	11.8	10.2	30.6	22.0	56.0	46.0	25.4	24.0	N
5	9.26780	14.5	6.4	10.6	25.1	17.0	60.0	50.0	34.9	33.0	N
6	0.15528	29.9	13.4	10.1	40.0	23.5	65.7	55.7	25.7	32.2	L
7	0.18323	37.7	22.2	10.1	47.8	32.3	64.3	54.3	16.5	22.0	L
8	0.34615	22.9	12.8	10.1	33.0	22.9	59.1	49.1	26.1	26.2	L
9	1.14500	18.4	10.0	10.2	28.6	20.2	56.0	46.0	27.4	25.8	L
10	9.12860	13.0	6.5	10.6	23.6	17.1	60.0	50.0	36.4	32.9	L


Report No.: DRTFCC1602-0031

AC Line Conducted Emissions (Graph)

Test Mode: U-NII 2 & 802.11a & 5300MHz

Results of Conducted Emission

Report No.: DRTFCC1602-0031

AC Line Conducted Emissions (Data List)

Test Mode: U-NII 2 & 802.11a & 5300MHz

Results of Conducted Emission

DTNC Date: 2015-10-26

 Order No.
 :
 R

 Model No.
 :
 PM80-W
 F

 Serial No.
 :
 Identical prototype
 T

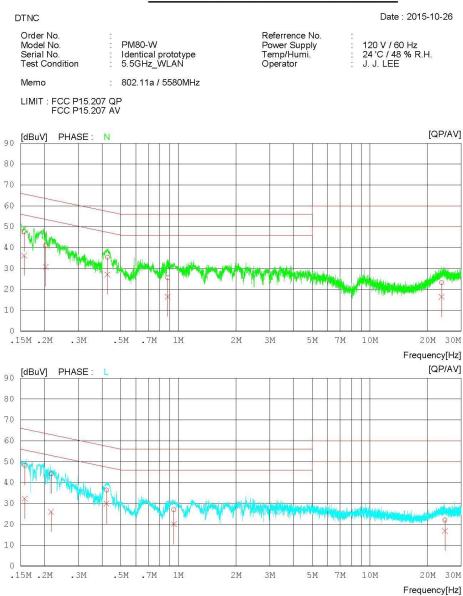
 Test Condition
 :
 5.3GHz_WLAN
 C

Referrence No. :
Power Supply : 120 V / 60 Hz
Temp/Humi. : 24 'C / 48 % R.H.
Operator : J. J. LEE

Memo : 802.11a / 5300MHz

LIMIT : FCC P15.207 QP FCC P15.207 AV

NC	FREQ	READING QP AV [dBuV][dBuV	C.FACTOR	QP	ULT AV [dBuV]	QP	MIT AV][dBuV]	QP	RGIN AV '][dBuV	PHASE
1	0.17782	36.5 25.0	10.1	46.6	35.1	64.6	54.6	18.0	19.5	N
2	0.18562	33.5 19.0	10.1	43.6	29.1	64.2	54.2	20.6	25.1	N
3	0.35787	17.8 6.5	10.1	27.9	16.6	58.8	48.8	30.9	32.2	N
4	0.87850	19.0 10.1	10.1	29.1	20.2	56.0	46.0	26.9	25.8	N
5	23.46620	11.9 5.1	10.9	22.8	16.0	60.0	50.0	37.2	34.0	N
6	0.17421	36.0 19.6	10.1	46.1	29.7	64.8	54.8	18.7	25.1	L
7	0.20069	35.9 20.6	10.1	46.0	30.7	63.6	53.6	17.6	22.9	L
8	0.37760	22.2 11.9	10.1	32.3	22.0	58.3	48.3	26.0	26.3	L
9	0.87750	17.7 10.6	10.1	27.8	20.7	56.0	46.0	28.2	25.3	L
10	23.76820	11.1 5.7	11.1	22.2	16.8	60.0	50.0	37.8	33.2	L


Report No.: DRTFCC1602-0031

AC Line Conducted Emissions (Graph)

Test Mode: U-NII 3 & 802.11a & 5580MHz

Results of Conducted Emission

Report No.: DRTFCC1602-0031

AC Line Conducted Emissions (Data List)

Test Mode: U-NII 3 & 802.11a & 5580MHz

Results of Conducted Emission

DTNC Date: 2015-10-26

Order No. Model No. Serial No. Test Condition

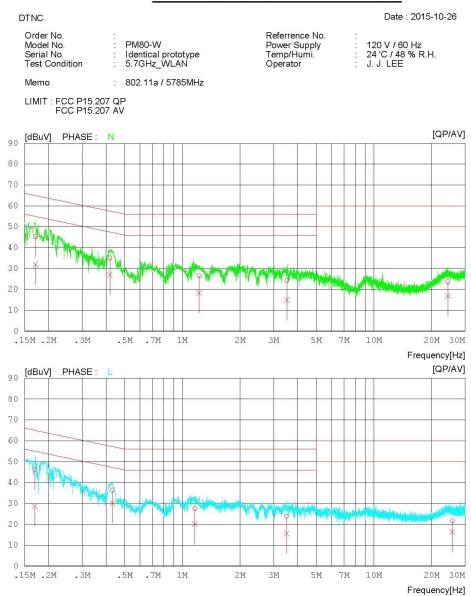
: : PM80-W : Identical prototype : 5.5GHz_WLAN Referrence No.
Power Supply
Temp/Humi.
Operator

: 120 V / 60 Hz 24 'C / 48 % R.H. J. J. LEE

Memo : 802.11a / 5580MHz

LIMIT : FCC P15.207 QP FCC P15.207 AV

	МО	FREQ	READ QP [dBuV]	ING AV [dBuV]	C.FACTOR	QP	ULT AV [dBuV]	QP	MIT AV][dBuV]	MA QP [dBuV	RGIN AV '][dBuV	PHASE]
	1	0.15626	37.4	26.1	10.1	47.5	36.2	65.7	55.7	18.2	19.5	N
	2	0.20256	30.7	20.7	10.1	40.8	30.8	63.5	53.5	22.7	22.7	N
	3	0.42630	25.2	17.0	10.1	35.3	27.1	57.3	47.3	22.0	20.2	N
	4	0.87980	15.4	6.4	10.1	25.5	16.5	56.0	46.0	30.5	29.5	N
	5	23.72180	12.3	5.5	10.9	23.2	16.4	60.0	50.0	36.8	33.6	N
	6	0.15768	38.1	22.2	10.1	48.2	32.3	65.6	55.6	17.4	23.3	L
	7	0.21621	34.0	15.8	10.1	44.1	25.9	63.0	53.0	18.9	27.1	L
	8	0.42149	26.2	19.8	10.1	36.3	29.9	57.4	47.4	21.1	17.5	L
	9	0.94765	16.7	9.9	10.1	26.8	20.0	56.0	46.0	29.2	26.0	L
1	0	24.69000	10.9	5.7	11.1	22.0	16.8	60.0	50.0	38.0	33.2	L


Report No.: DRTFCC1602-0031

AC Line Conducted Emissions (Graph)

Test Mode: U-NII 4 & 802.11a & 5785MHz

Results of Conducted Emission

Report No.: DRTFCC1602-0031

AC Line Conducted Emissions (Data List)

Test Mode: U-NII 4 & 802.11a & 5785MHz

Results of Conducted Emission

Date: 2015-10-26 DTNC

Referrence No. Power Supply Temp/Humi. Operator Order No. Model No. Serial No. Test Condition : PM80-W : Identical prototype : 5.7GHz_WLAN

120 V / 60 Hz 24 'C / 48 % R.H. J. J. LEE

: 802.11a / 5785MHz

LIMIT : FCC P15.207 QP FCC P15.207 AV

NO	FREQ	READ OP	ING AV	C.FACTOR	RES QP	ULT AV	LII QP	MIT AV	MA OP	RGIN AV	PHASE
	[MHz]	-	[dBuV]	[dB]		[dBuV]][dBuV]	~][dBuV]	
1	0.17058	35.2	21.9	10.1	45.3	32.0	64.9	54.9	19.6	22.9	N
2	0.41810	24.9	16.9	10.1	35.0	27.0	57.5	47.5	22.5	20.5	N
3	1.22240	16.3	8.1	10.2	26.5	18.3	56.0	46.0	29.5	27.7	N
4	3.51880	14.0	4.7	10.2	24.2	14.9	56.0	46.0	31.8	31.1	N
5	24.36860	12.8	6.0	10.9	23.7	16.9	60.0	50.0	36.3	33.1	N
6	0.16937	36.2	18.5	10.1	46.3	28.6	65.0	55.0	18.7	26.4	L
7	0.43088	26.3	20.0	10.1	36.4	30.1	57.2	47.2	20.8	17.1	L
8	1.16220	17.2	9.8	10.2	27.4	20.0	56.0	46.0	28.6	26.0	L
9	3.50280	13.6	5.4	10.2	23.8	15.6	56.0	46.0	32.2	30.4	L
10	25.70940	10.5	5.1	11.2	21.7	16.3	60.0	50.0	38.3	33.7	L

Report No.: DRTFCC1602-0031



8.8 Occupied Bandwidth

■ Test Requirements

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured

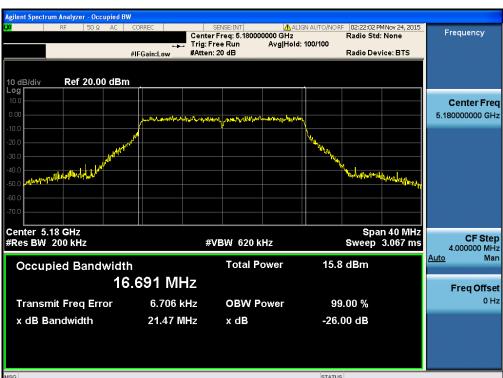
■ Test Configuration

■ Test Procedure :

- Procedure: RSS-Gen[6.6]

- The transmitter shall be operated at its maximum carrier power measured under normal test conditions.
- The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.
- The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3x RBW.

■ Test Result : Comply

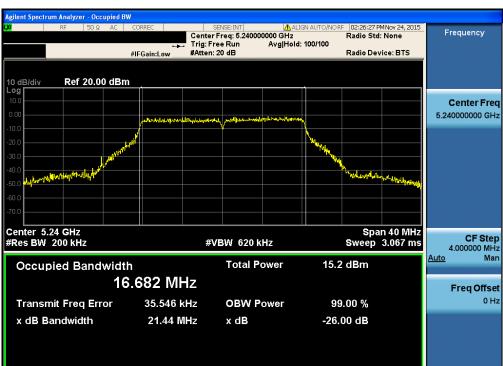

Mode	Bands	Channel	Frequency [MHz]	Test Result [MHz]		
		36	5180	16.691		
	U-NII 1	40	5200	16.717		
		48	5240	16.682		
		52	5260	16.693		
	U-NII 2	60	5300	16.675		
802.11a		64	5320	16.697		
002.11a		100	5500	16.727		
	U-NII 3	116	5580	16.634		
		140	5700	16.629		
		149	5745	16.685		
	U-NII 4	157	5785	16.643		
		165	5825	16.655		
		36	5180	17.776		
	U-NII 1	40	5200	17.845		
		48	5240	17.806		
		52	5260	17.809		
	U-NII 2	60	5300	17.782		
802.11n HT20		64	5320	17.820		
602.1111 H120		100	5500	17.815		
	U-NII 3	116	5580	17.774		
		140	5700	17.752		
		149	5745	17.776		
	U-NII 4	157	5785	17.761		
		165	5825	17.817		

Test Mode: 802.11a & Ch.36

RESULT PLOTS

Occupied Bandwidth 99%

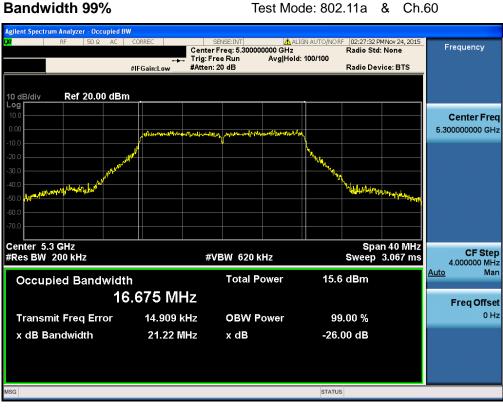
Occupied Bandwidth 99%


Report No.: DRTFCC1602-0031

Test Mode: 802.11a & Ch.48

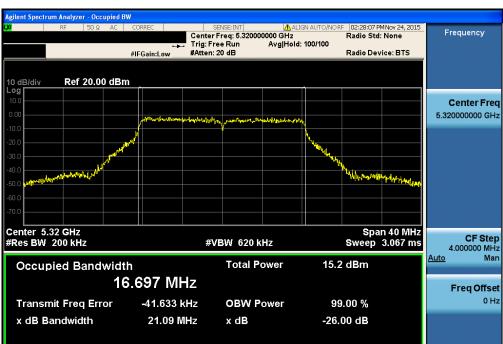
STATUS

Occupied Bandwidth 99%


Report No.: DRTFCC1602-0031

Test Mode: 802.11a & Ch.52

Occupied Bandwidth 99%



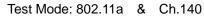
Report No.: DRTFCC1602-0031

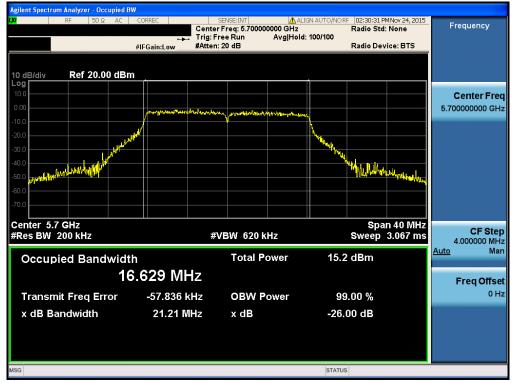
Test Mode: 802.11a & Ch.64

STATUS

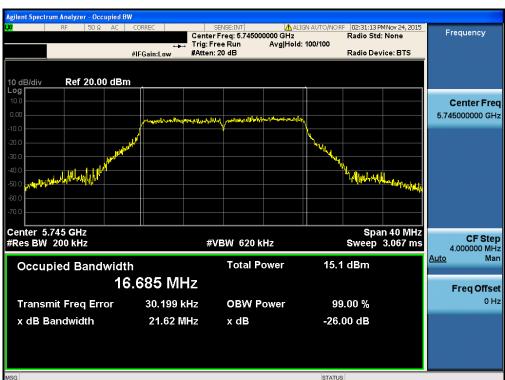
Report No.: DRTFCC1602-0031

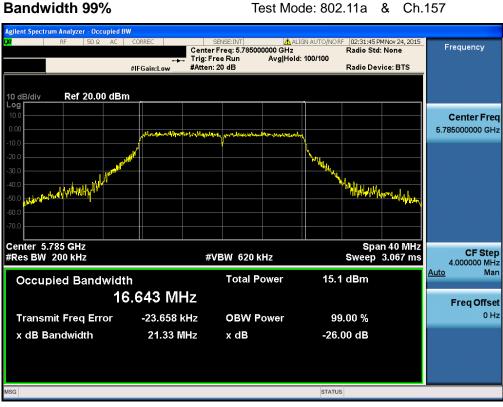
Test Mode: 802.11a & Ch.100


Occupied Bandwidth 99%



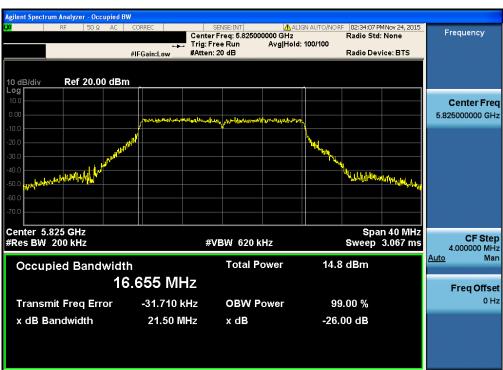
Report No.: DRTFCC1602-0031





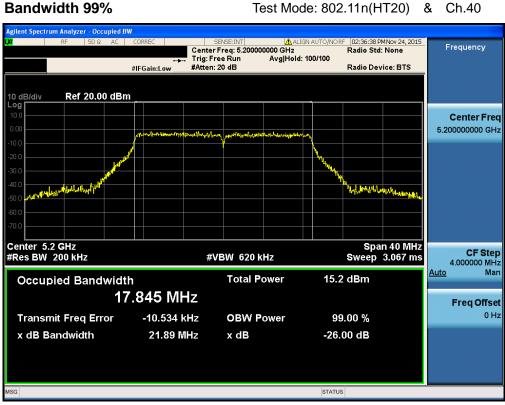
Test Mode: 802.11a & Ch.149

Occupied Bandwidth 99%


TRF-RF-234(01)151127

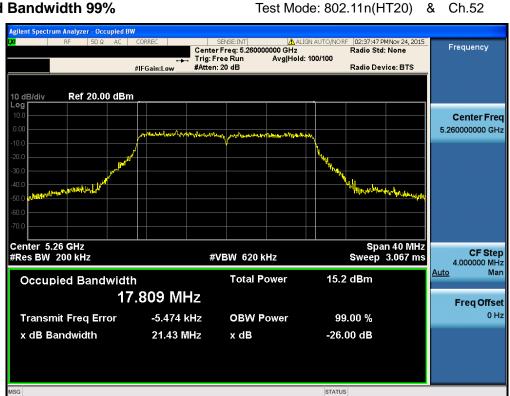
Report No.: DRTFCC1602-0031


Test Mode: 802.11a & Ch.165


STATUS



TRF-RF-234(01)151127


Report No.: DRTFCC1602-0031

Occupied Bandwidth 99%

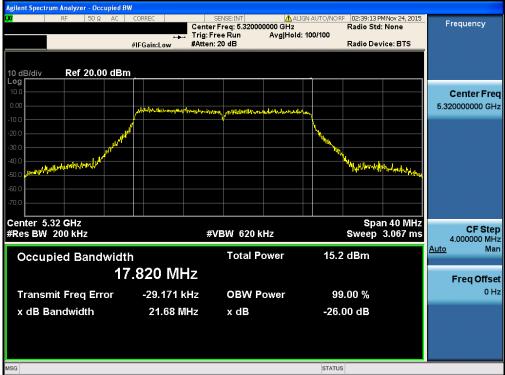
x dB

21.70 MHz

Test Mode: 802.11n(HT20) & Ch.60

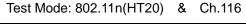
-26.00 dB

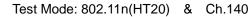
STATUS

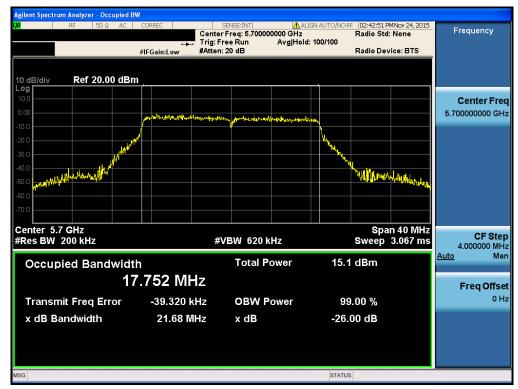

ilent Spectrum Analyzer - Occupied BW

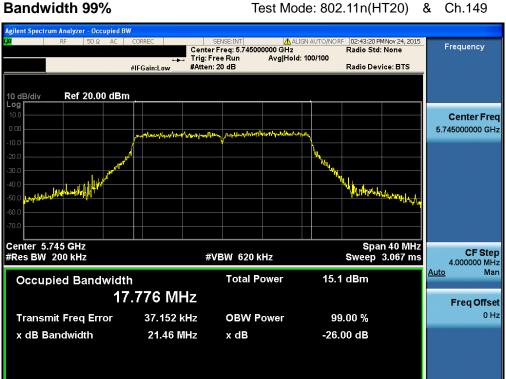
x dB Bandwidth

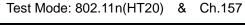
Report No.: DRTFCC1602-0031

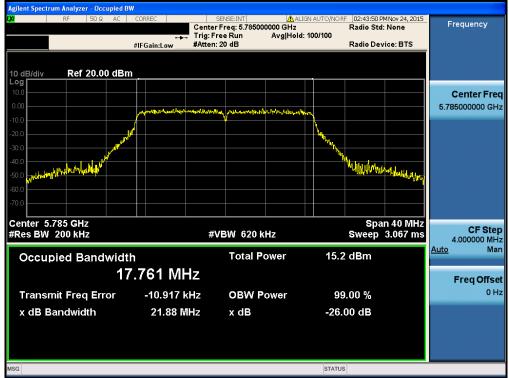







Report No.: DRTFCC1602-0031





Occupied Bandwidth 99%

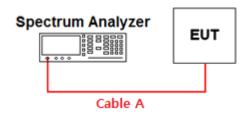
STATUS

Report No.: DRTFCC1602-0031

Report No.: DRTFCC1602-0031

9. List of Test Equipment

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N	
MXA Signal Analyzer	Agilent Technologies	N9020A	15/09/09	16/09/09	MY46471248	
PXA Signal Analyzer	Agilent Technologies	N9030A	15/10/19	16/10/19	MY53310140	
Multimeter	FLUKE	17B	15/04/27	16/04/27	26030065WS	
DC Power Supply	HP	66332A	15/01/22	16/01/22	US37471368	
Power Meter Power Sensor	Anritsu	ML2496A / MA2411B	15/06/25	16/06/25	1338004 1306053	
Vector Signal Generator	Rohde Schwarz	SMBV100A	15/01/06	16/01/06	255571	
Signal Generator	Rohde Schwarz	SMF100A	15/06/29	16/06/29	102341	
Thermohygrometer	BODYCOM	BJ5478	15/02/26	16/02/26	1209	
Temp & Humi Test Chamber	SJ Science	SJ-TH-S50	15/10/19	16/10/19	SJ-TH-S50-130930	
LOOP Antenna	Schwarzbeck	FMZB1513	14/04/29	16/04/29	1513-128	
TRILOG Broadband Test- Antenna	Schwarzbeck	VULB 9160	14/04/30	16/04/30	3358	
Double-Ridged Guide Antenna	ETS	3117	14/05/12	16/05/12	140394	
Horn Antenna	A.H.Systems	SAS-574	15/04/30	17/04/30	154	
Low Noise Pre Amplifier	tsj	MLA-010K01-B01-27	15/04/09	16/04/09	1844538	
PreAmplifier	Agilent	8449B	15/02/26	16/02/26	3008A00370	
PreAmplifier	A.H. SYSTEMS	PAM-1840VH	14/12/12	15/12/12	163	
High-pass filter	Wainwright Instruments	WHKX3.0	15/01/06	16/01/06	12	
High-pass filter	Wainwright	WHNX8.5	15/09/23	16/09/23	1	
EMI TEST RECEIVER	R&S	ESR7	15/10/19	16/10/19	101109	
EMI TEST RECEIVER	R&S	ESCI	15/02/25	16/02/25	100364	
SINGLE-PHASE MASTER	NF	4420	15/09/09	16/09/09	3049354420023	
ARTIFICIAL MAINS NETWORK	Narda S.T.S. / PMM	PMM L2-16B	15/06/26	16/06/26	000WX20305	


Report No.: DRTFCC1602-0031

APPENDIX I

Conducted Test set up Diagram

Conducted Measurement

APPENDIX II

Duty Cycle Information

■ Test Procedure

Duty Cycle [X = On Time / (On + Off time)] is measured using Measurement Procedure of KDB789033 D02 V01

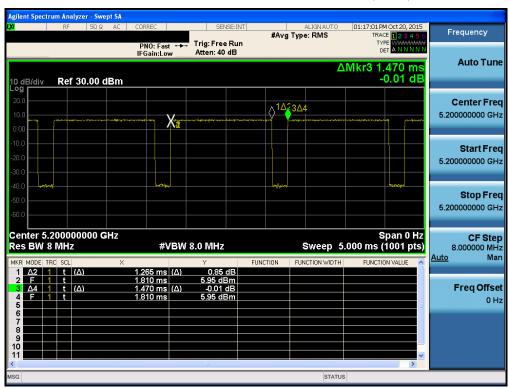
- 1. Set the center frequency of the spectrum analyzer to the center frequency of the transmission.
- 2. Set RBW ≥ EBW if possible; otherwise, set RBW to the largest available value.
- 3. Set VBW ≥ RBW. Set detector = peak.
- 4. Note: The zero-span measurement method shall not be used unless both RBW and VBW are > 50 / T, where T is defined in section II.B.1.a), and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T≤ 16.7 microseconds.)
 - T: The minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
 - (**T = On time** of the above table since the EUT operates with above fixed Duty Cycle and it is the minimum On time)

TEST DATA

Mode	Channel	Tested Frequency [MHz]	Maximum Achievable Duty Cycle (x) = On / (On+Off)			Duty Cycle Correction	1/ <i>T</i>
			On Time [ms]	On+OffTime [ms]	x	Factor [dB]	[Hz]
802.11a	40	5200	1.355	1.555	0.87	0.61	738.01
802.11n (HT20)	40	5200	1.265	1.470	0.86	0.66	790.52

Test Mode: 802.11a & Ch.40

STATUS


Test Mode: 802.11n(HT20) & Ch.40

Duty Cycle

Duty Cycle

