

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	57.5 Ω + 1.5 ϳΩ				
Return Loss	- 22.9 dB				

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	52.5 Ω + 1.5 jΩ				
Return Loss	- 30.9 dB				

General Antenna Parameters and Design

Electrical Delay (one direction)	1.209 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG				
Manufactured on	September 24, 2010				

Certificate No: D5GHzV2-1103_Mar17

DASY5 Validation Report for Head TSL

Date: 17.03.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1103

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f=5200 MHz; $\sigma=4.52$ S/m; $\epsilon_r=35$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5300 MHz; $\sigma=4.62$ S/m; $\epsilon_r=34.8$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5500 MHz; $\sigma=4.81$ S/m; $\epsilon_r=34.5$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5600 MHz; $\sigma=4.92$ S/m; $\epsilon_r=34.4$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5600 MHz; $\sigma=4.92$ S/m; $\epsilon_r=34.4$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5800 MHz; $\sigma=5.13$ S/m; $\epsilon_r=34.1$; $\rho=1000$ kg/m 3 Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.76, 5.76, 5.76); Calibrated: 31.12.2016, ConvF(5.35, 5.35, 5.35);
 Calibrated: 31.12.2016, ConvF(5.2, 5.2, 5.2); Calibrated: 31.12.2016, ConvF(5.09, 5.09, 5.09);
 Calibrated: 31.12.2016, ConvF(5.01, 5.01, 5.01); Calibrated: 31.12.2016;
- · Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.01.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.95 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 29.3 W/kg

SAR(1 g) = 8 W/kg; SAR(10 g) = 2.29 W/kg

Maximum value of SAR (measured) = 17.9 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.36 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 30.5 W/kg

SAR(1 g) = 8.47 W/kg; SAR(10 g) = 2.42 W/kg

Maximum value of SAR (measured) = 19.0 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.89 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 32.7 W/kg

SAR(1 g) = 8.38 W/kg; SAR(10 g) = 2.38 W/kg

Maximum value of SAR (measured) = 19.4 W/kg

Certificate No: D5GHzV2-1103_Mar17

Page 11 of 16

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 71.46 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 33.2 W/kg

SAR(1 g) = 8.52 W/kg; SAR(10 g) = 2.43 W/kg

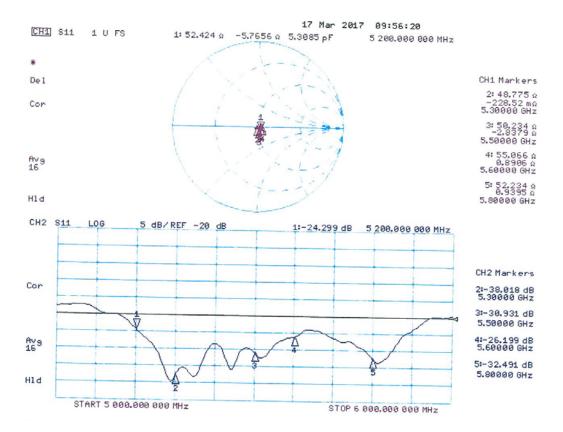
Maximum value of SAR (measured) = 19.6 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 69.17 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 33.1 W/kg

SAR(1 g) = 8.18 W/kg; SAR(10 g) = 2.33 W/kg


Maximum value of SAR (measured) = 19.2 W/kg

0 dB = 17.9 W/kg = 12.53 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 16.03.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1103

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.45$ S/m; $\epsilon_r = 48.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 5.58$ S/m; $\epsilon_r = 48$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 5.85$ S/m; $\epsilon_r = 47.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.99$ S/m; $\epsilon_r = 47.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.28$ S/m; $\epsilon_r = 47.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.29, 5.29, 5.29); Calibrated: 31.12.2016, ConvF(5.04, 5.04, 5.04);
 Calibrated: 31.12.2016, ConvF(4.62, 4.62, 4.62); Calibrated: 31.12.2016, ConvF(4.57, 4.57, 4.57);
 Calibrated: 31.12.2016, ConvF(4.48, 4.48, 4.48); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.01.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.58 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 28.4 W/kg

SAR(1 g) = 7.43 W/kg; SAR(10 g) = 2.09 W/kg

Maximum value of SAR (measured) = 17.8 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.42 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 30.0 W/kg

SAR(1 g) = 7.69 W/kg; SAR(10 g) = 2.17 W/kg

Maximum value of SAR (measured) = 18.6 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.66 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 33.6 W/kg

SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.25 W/kg

Maximum value of SAR (measured) = 20.0 W/kg

Certificate No: D5GHzV2-1103_Mar17 Page 14 of 16

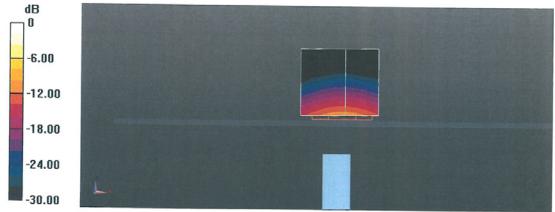
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.60 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 33.9 W/kg

SAR(1 g) = 8.03 W/kg; SAR(10 g) = 2.25 W/kg

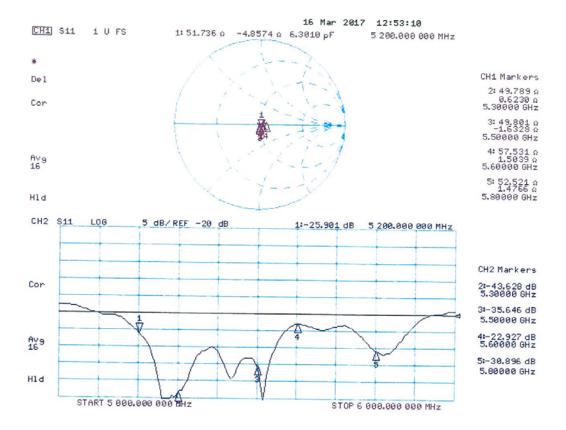
Maximum value of SAR (measured) = 19.6 W/kg


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.69 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 34.6 W/kg

SAR(1 g) = 7.77 W/kg; SAR(10 g) = 2.16 W/kg


Maximum value of SAR (measured) = 19.8 W/kg

0 dB = 17.8 W/kg = 12.50 dBW/kg

Impedance Measurement Plot for Body TSL

Attachment 3. - SAR SYSTEM VALIDATION

SAR System Validation

Per FCC KDB 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

Table Attachment 3.1 SAR System Validation Summary

SAR	Freq.		Probe	Probe	Probe CAL. Point		PERM.	COND.	CW Validation			MOD. Validation		
System	[MHz]	Date	SN	Туре			(ɛr)	(σ)	Sensi- tivity	Probe Linearity	Probe Isortopy	MOD. Type	Duty Factor	PAR
D	750	2017-04-10	3328	ES3DV3	750	Head	40.950	0.885	PASS	PASS	PASS	N/A	N/A	N/A
D	835	2017-04-11	3328	ES3DV3	835	Head	41.220	0.895	PASS	PASS	PASS	N/A	N/A	N/A
D	1800	2017-04-12	3328	ES3DV3	1800	Head	39.550	1.365	PASS	PASS	PASS	N/A	N/A	N/A
D	1900	2017-04-13	3328	ES3DV3	1900	Head	39.850	1.415	PASS	PASS	PASS	N/A	N/A	N/A
D	2450	2017-04-14	3328	ES3DV3	2450	Head	38.550	1.757	PASS	PASS	PASS	OFDM	N/A	PASS
D	5200	2017-04-22	3930	EX3DV4	5300	Head	34.750	4.715	PASS	PASS	PASS	OFDM	N/A	PASS
D	5300	2017-04-22	3930	EX3DV4	5300	Head	34.660	4.845	PASS	PASS	PASS	OFDM	N/A	PASS
D	5600	2017-04-23	3930	EX3DV4	5600	Head	34.430	5.225	PASS	PASS	PASS	OFDM	N/A	PASS
D	5800	2017-04-23	3930	EX3DV4	5600	Head	34.320	5.454	PASS	PASS	PASS	OFDM	N/A	PASS
D	750	2017-04-10	3328	ES3DV3	750	Body	54.840	0.955	PASS	PASS	PASS	N/A	N/A	N/A
D	835	2017-04-11	3328	ES3DV3	835	Body	53.840	.0.945	PASS	PASS	PASS	N/A	N/A	N/A
D	1800	2017-04-12	3328	ES3DV3	1800	Body	54.440	1.475	PASS	PASS	PASS	N/A	N/A	N/A
D	1900	2017-04-13	3328	ES3DV3	1900	Body	52.850	1.514	PASS	PASS	PASS	N/A	N/A	N/A
D	2450	2017-04-14	3328	ES3DV3	2450	Body	51.550	1.915	PASS	PASS	PASS	OFDM	N/A	PASS
D	5200	2017-04-22	3930	EX3DV4	5300	Body	48.550	5.414	PASS	PASS	PASS	OFDM	N/A	PASS
D	5300	2017-04-22	3930	EX3DV4	5300	Body	48.150	5.525	PASS	PASS	PASS	OFDM	N/A	PASS
D	5600	2017-04-23	3930	EX3DV4	5600	Body	47.650	5.945	PASS	PASS	PASS	OFDM	N/A	PASS
D	5800	2017-04-23	3930	EX3DV4	5600	Body	47.440	6.223	PASS	PASS	PASS	OFDM	N/A	PASS

NOTE: While the probes have been calibrated for both a CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to KDB 865664.