

7. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission

7.1 Test Setup

Refer to the APPENDIX I.

7.2 Limit

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section §15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section §15.205(a), must also comply the radiated emission limits specified in section §15.209(c))

According to § 15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1705	24000/F (kHz)	30
1705 ~ 30.0	30	30
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	500	3

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 - 72 MHz, 76 - 88 MHz, 174 - 216 MHz or 470 - 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

According to § 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below :

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.1735 ~ 2.1905	12.51975 ~ 12.52025	149.9 ~ 150.05	1645.5 ~ 1646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.57675 ~ 12.57725	156.52475 ~ 156.52525	1660 ~ 1710	8.025 ~ 8.5	22.01 ~ 23.12
4.17725 ~ 4.17775	13.36 ~ 13.41	156.7 ~ 156.9	1718.8 ~ 1722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.20725 ~ 4.20775	16.42 ~ 16.423	162.0125 ~ 167.17	2200 ~ 2300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.69475 ~ 16.69525	167.72 ~ 173.2	2310 ~ 2390	10.6 ~ 12.7	36.43 ~ 36.5
6.26775 ~ 6.26825	16.80425 ~ 16.80475	240 ~ 285	2483.5 ~ 2500	13.25 ~ 13.4	Above 38.6
6.31175 ~ 6.31225	25.5 ~ 25.67	322 ~ 335.4	2655 ~ 2900		
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3260 ~ 3267		
8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3332 ~ 3339		
8.37625 ~ 8.38675	74.8 ~ 75.2	960 ~ 1240	3345.8 ~ 3358		
			3600 ~ 4400		

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

7.3. Test Procedures

7.3.1. Test Procedures for Radiated Spurious Emissions

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 1 or 3 meter away from the interference-receiving antenna.
- For measurements above 1GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.
- 4. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 6. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 7. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Note: The radiated spurious emission was tested with below settings.

- Frequencies less than or equal to 1000 MHz

 The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- Frequencies above 1000 MHz
 The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1 GHz.

The result of Average measurement is calculated using PK result and duty correction factor.

IC: 10664A-PM66W

7.3.2. Test Procedures for Conducted Spurious Emissions

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. The **reference level** of the fundamental frequency was measured with the spectrum analyzer using RBW = 100 kHz, VBW = 300 kHz.
- 3. The conducted spurious emission was tested each ranges were set as below.

Frequency range: 9 kHz ~ 30 MHz

RBW = 100 kHz, VBW = 300 kHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40001

Frequency range: 30 MHz ~ 10 GHz, 10 GHz ~ 25 GHz

RBW = 1 MHz, VBW = 3 MHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40001

LIMIT LINE = 20 dB below of the reference level of above measurement procedure Step 2. (RBW = 100 kHz, VBW = 300 kHz)

If the emission level with above setting was close to the limit (ie, less than 3 dB margin) then zoom scan is required using RBW = 100 kHz, VBW = 300 kHz, SPAN = 100 MHz and BINS = 2001 to get accurate emission level within 100 kHz BW.

Also the path loss for conducted measurement setup was used as described on the Appendix I of this test report.

7.4. Test Results

7.4.1. Radiated Emissions

9 kHz ~ 25 GHz Data (Modulation : GFSK)

Lowest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
*2401.99	Н	Υ	PK	103.50	0.73	N/A	N/A	104.23	-	-
2389.65	Н	Υ	PK	48.07	0.70	N/A	N/A	48.77	74.00	25.23
2389.65	Н	Y	AV	48.07	0.70	-24.79	N/A	23.98	54.00	30.02
4804.37	V	Z	PK	48.28	4.77	N/A	N/A	53.05	74.00	20.95
4804.37	V	Z	AV	48.28	4.77	-24.79	N/A	28.26	54.00	25.74
**9608.19	V	Z	PK	52.64	9.35	N/A	N/A	61.99	84.23	22.24

Middle Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
*2440.82	Н	Υ	PK	100.64	0.83	N/A	N/A	101.47	•	-
4881.86	V	Z	PK	48.52	5.11	N/A	N/A	53.63	74.00	20.37
4881.86	V	Z	AV	48.52	5.11	-24.79	N/A	28.84	54.00	25.16
**9764.51	V	Z	PK	53.38	9.31	N/A	N/A	62.69	81.47	18.78

Highest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
*2480.15	Н	Υ	PK	99.73	0.93	N/A	N/A	100.66	•	1
2483.63	Н	Υ	PK	51.06	1.07	N/A	N/A	52.13	74.00	21.87
2483.63	Н	Υ	AV	51.06	1.07	-24.79	N/A	27.34	54.00	26.66
4960.14	V	Z	PK	46.76	5.34	N/A	N/A	52.10	74.00	21.90
4960.14	V	Z	AV	46.76	5.34	-24.79	N/A	27.31	54.00	26.69
**9919.66	V	Z	PK	51.47	9.56	N/A	N/A	61.03	80.66	19.63

Note.

- 1. No other spurious and harmonic emissions were found greater than listed emissions on above table.
- 2. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = $20 \log(\text{ applied distance})$ required distance) = $20 \log(1 \text{ m / 3 m}) = -9.54 \text{ dB}$ When distance factor is "N/A", the distance is 3 m and distance factor is not applied.
- 3. D.C.F Calculation. (D.C.F = Duty Cycle Correction Factor)
 - Time to cycle through all channels = Δt = T [ms] X 20 minimum hopping channels , where T = pulse width = **2.88 ms**
 - 100 ms / Δt [ms] = H -> Round up to next highest integer, to account for worst case, H' = 100 / (2.88 X 20) = 1.74 $\,=\,$ 2
 - The Worst Case Dwell Time = T [ms] x H' = 2.88 ms X 2 = 5.76 ms
 - D.C.F = 20 Log(The Worst Case Dwell Time / 100 ms) dB = 20 log(5.76 / 100) = -24.79 dB
- 4. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F + D.C.F / T.F = AF + CL - AG

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain.

- 5. The mark (*) is about the fundamental frequency.
- 6. The mark (**) is about the non-restricted band. Limit = The level of fundamental frequency 20 dB.

9 kHz ~ 25 GHz Data (Modulation: π/4DQPSK)

Lowest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
*2401.83	Н	Υ	PK	103.45	0.73	N/A	N/A	104.18	-	-
2386.75	Н	Υ	PK	49.22	0.70	N/A	N/A	49.92	74.00	24.08
2386.75	Н	Υ	AV	49.22	0.70	-24.79	N/A	25.13	54.00	28.87
4803.81	V	Z	PK	48.28	4.77	N/A	N/A	53.05	74.00	20.95
4803.81	V	Z	AV	48.28	4.77	-24.79	N/A	28.26	54.00	25.74
**9608.11	V	Z	PK	51.49	9.35	N/A	N/A	60.84	84.18	23.34

Middle Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
*2441.05	Н	Υ	PK	100.56	0.83	N/A	N/A	101.39	-	-
4882.45	V	Z	PK	47.76	5.11	N/A	N/A	52.87	74.00	21.13
4882.45	V	Z	AV	47.76	5.11	-24.79	N/A	28.08	54.00	25.92
**9764.25	V	Z	PK	52.93	9.31	N/A	N/A	62.24	81.39	19.15

Highest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
*2480.00	Н	Υ	PK	99.45	0.93	N/A	N/A	100.38	-	-
2483.63	Н	Y	PK	49.96	1.07	N/A	N/A	51.03	74.00	22.97
2483.63	Н	Y	AV	49.96	1.07	-24.79	N/A	26.24	54.00	27.76
4960.41	V	Z	PK	45.96	5.34	N/A	N/A	51.30	74.00	22.70
4960.41	V	Z	AV	45.96	5.34	-24.79	N/A	26.51	54.00	27.49
**9920.18	V	Z	PK	50.86	9.56	N/A	N/A	60.42	80.38	19.96

■ Note.

- 1. No other spurious and harmonic emissions were found greater than listed emissions on above table.
- 2. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor (-9.54dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB When distance factor is "N/A", the distance is 3 m and distance factor is not applied.
- 3. D.C.F Calculation. (D.C.F = Duty Cycle Correction Factor)
 - Time to cycle through all channels = Δt = T [ms] X 20 minimum hopping channels , where T = pulse width = **2.88 ms**
 - 100 ms / Δt [ms] = H -> Round up to next highest integer, to account for worst case, H' = 100 / (2.88 X 20) = 1.74 😑 2
 - The Worst Case Dwell Time = T [ms] x H' = 2.88 ms X 2 = 5.76 ms
 - D.C.F = 20 Log(The Worst Case Dwell Time / 100 ms) dB = 20 log(5.76 / 100) = -24.79 dB
- 4. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F + D.C.F / T.F = AF + CL - AG

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain.

- 5. The mark (*) is about the fundamental frequency.
 6. The mark (**) is about the non-restricted band. Limit = The level of fundamental frequency 20 dB.

9 kHz ~ 25 GHz Data (Modulation : 8DPSK)

Lowest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
*2401.99	Н	Υ	PK	103.61	0.73	N/A	N/A	104.34	-	-
2388.81	Н	Υ	PK	49.09	0.70	N/A	N/A	49.79	74.00	24.21
2388.81	Н	Υ	AV	49.09	0.70	-24.79	N/A	25.00	54.00	29.00
4803.72	V	Z	PK	48.35	4.77	N/A	N/A	53.12	74.00	20.88
4803.72	V	Z	AV	48.35	4.77	-24.79	N/A	28.33	54.00	25.67
**9607.81	V	Z	PK	51.79	9.35	N/A	N/A	61.14	84.34	23.20

Middle Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
*2441.02	Н	Y	PK	100.71	0.83	N/A	N/A	101.54	-	-
4882.06	V	Z	PK	47.61	5.11	N/A	N/A	52.72	74.00	21.28
4882.06	V	Z	AV	47.61	5.11	-24.79	N/A	27.93	54.00	26.07
**9763.83	V	Z	PK	52.55	9.31	N/A	N/A	61.86	81.54	19.68

Highest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
*2479.95	Н	Υ	PK	99.51	0.93	N/A	N/A	100.44	-	-
2483.53	Н	Υ	PK	51.17	1.07	N/A	N/A	52.24	74.00	21.76
2483.53	Η	Υ	AV	51.17	1.07	-24.79	N/A	27.45	54.00	26.55
4960.53	V	Z	PK	45.99	5.34	N/A	N/A	51.33	74.00	22.67
4960.53	V	Z	AV	45.99	5.34	-24.79	N/A	26.54	54.00	27.46
**9920.04	V	Z	PK	51.38	9.56	N/A	N/A	60.94	80.44	19.50

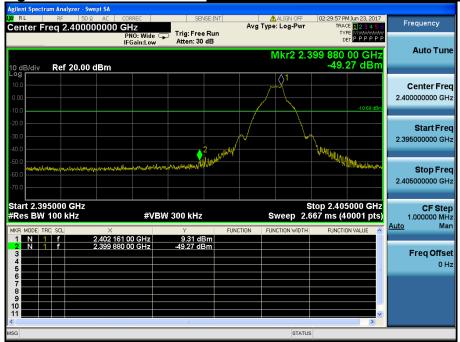
■ Note.

- 1. No other spurious and harmonic emissions were found greater than listed emissions on above table.
- 2. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor (-9.54dB) is applied to the result.

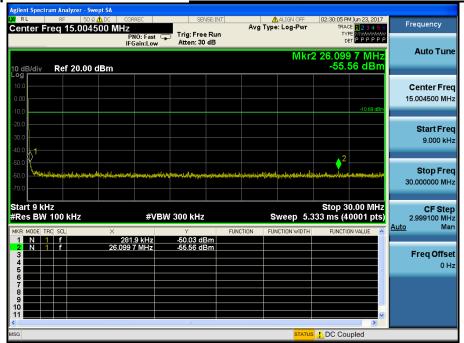
- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB When distance factor is "N/A", the distance is 3 m and distance factor is not applied.
- 3. D.C.F Calculation. (D.C.F = Duty Cycle Correction Factor)
 - Time to cycle through all channels = Δt = T [ms] X 20 minimum hopping channels , where T = pulse width = **2.88 ms**
 - 100 ms / Δt [ms] = H -> Round up to next highest integer, to account for worst case, H' = 100 / (2.88 X 20) = 1.74 😑 2
 - The Worst Case Dwell Time = T [ms] x H' = 2.88 ms X 2 = 5.76 ms
 - D.C.F = 20 Log(The Worst Case Dwell Time / 100 ms) dB = 20 log(5.76 / 100) = -24.79 dB
- 4. Sample Calculation.

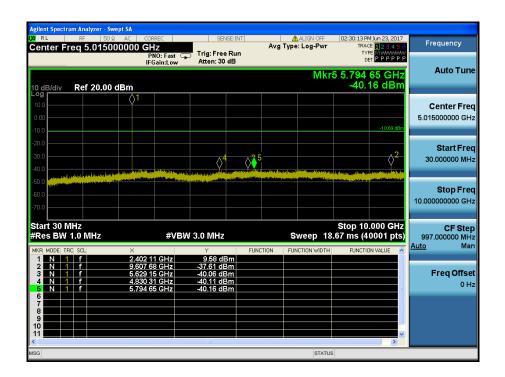
Margin = Limit - Result / Result = Reading + T.F + D.C.F / T.F = AF + CL - AG


Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain.

- 5. The mark (*) is about the fundamental frequency.
 6. The mark (**) is about the non-restricted band. Limit = The level of fundamental frequency 20 dB.

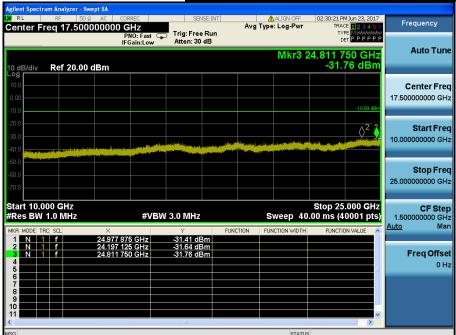
7.4.3. Conducted Spurious Emissions

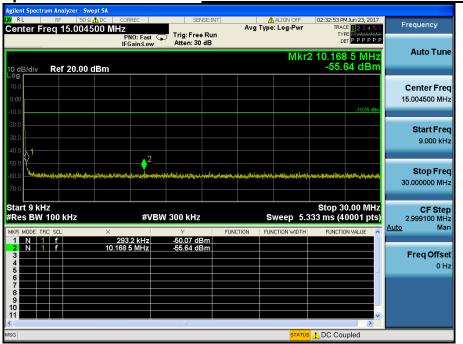

Low Band-edge <u>Lowest Channel & Modulation : GFSK</u>



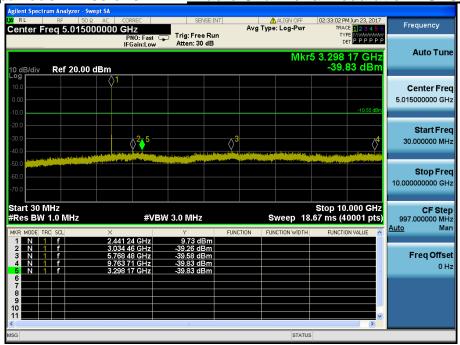
Low Band-edge <u>Hopping mode & Modulation : GFSK</u>

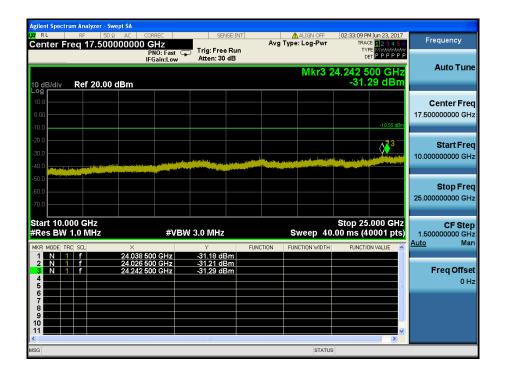
Conducted Spurious Emissions <u>Lowest Channel & Modulation : GFSK</u>





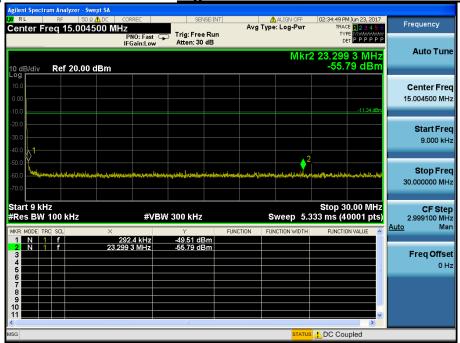
Reference for limit

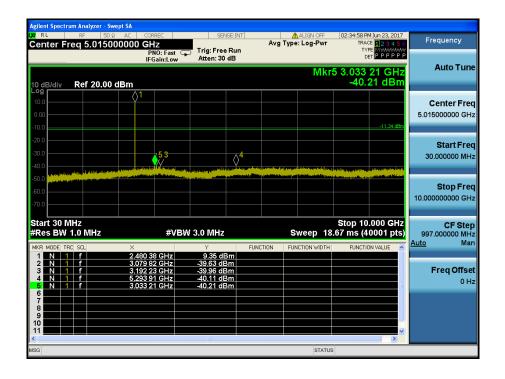

Middle Channel & Modulation : GFSK



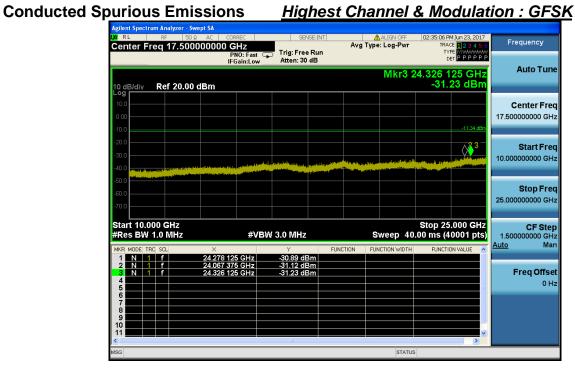
Conducted Spurious Emissions <u>Middle Channel & Modulation : GFSK</u>

Conducted Spurious Emissions <u>Middle Channel & Modulation : GFSK</u>

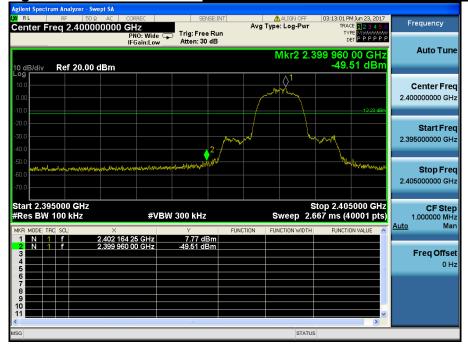



High Band-edge

Hopping mode & Modulation : GFSK

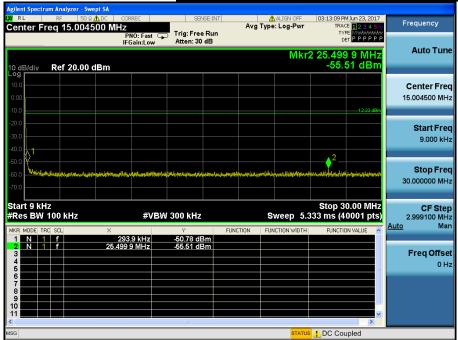


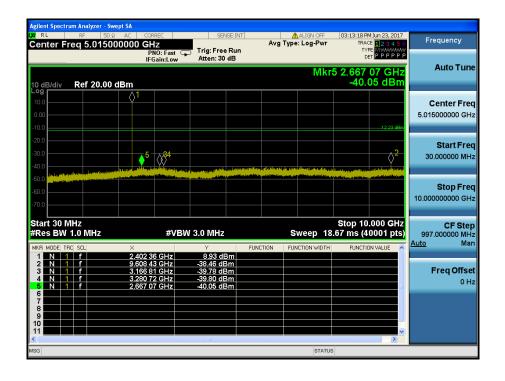
Conducted Spurious Emissions <u>Highest Channel & Modulation : GFSK</u>



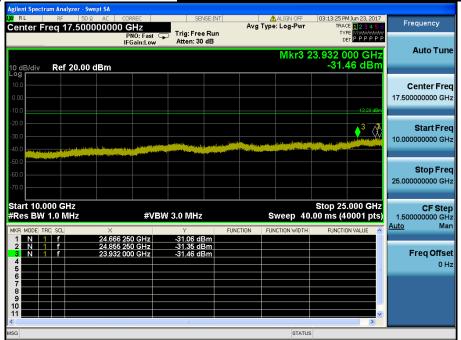
Low Band-edge

Lowest Channel & Modulation : π/4DQPSK

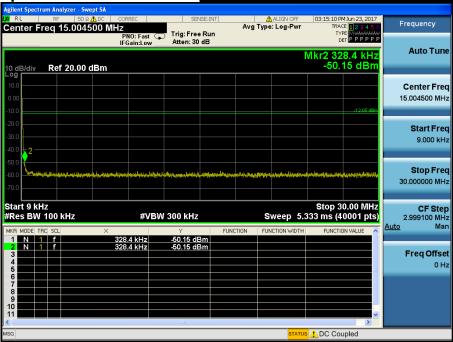

Low Band-edge


Hopping mode & Modulation : π/4DQPSK

Conducted Spurious Emissions <u>Lowest Channel & Modulation : π/4DQPSK</u>

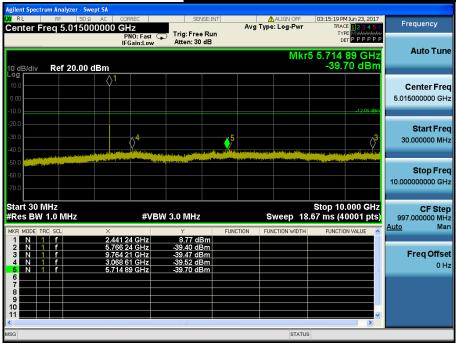


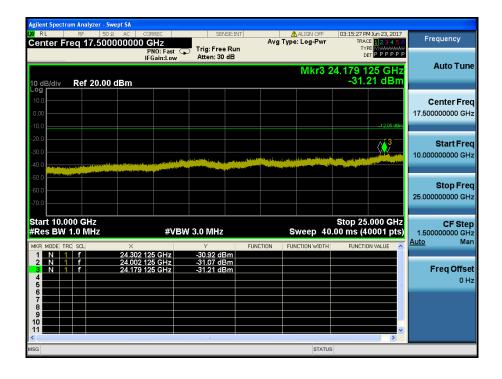
Conducted Spurious Emissions <u>Lowest Channel & Modulation : π/4DQPSK</u>



Reference for limit

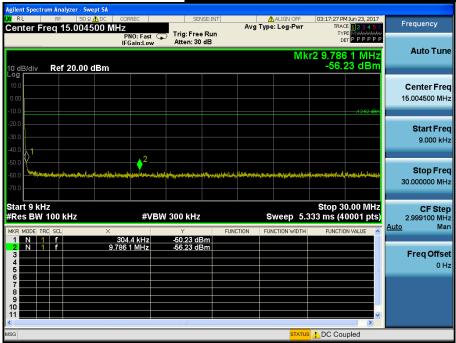
Middle Channel & Modulation : π/4DQPSK

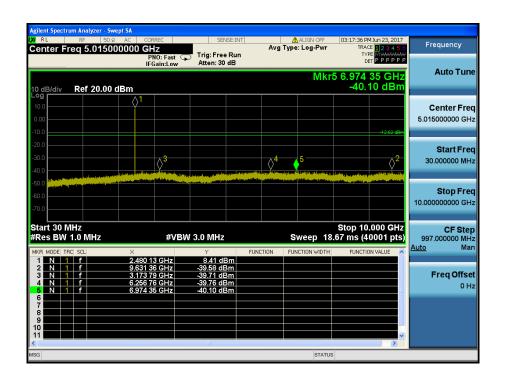



Conducted Spurious Emissions <u>Middle Channel & Modulation : π/4DQPSK</u>

Conducted Spurious Emissions Middle Channel & Modulation : π/4DQPSK

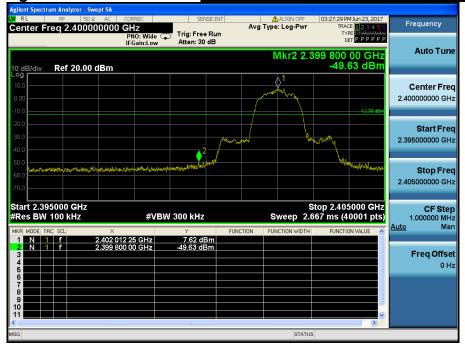
High Band-edge <u>Highest Channel & Modulation : π/4DQPSK</u>


High Band-edge


Hopping mode & Modulation : π/4DQPSK

Conducted Spurious Emissions Highest Channel & Modulation : π/4DQPSK

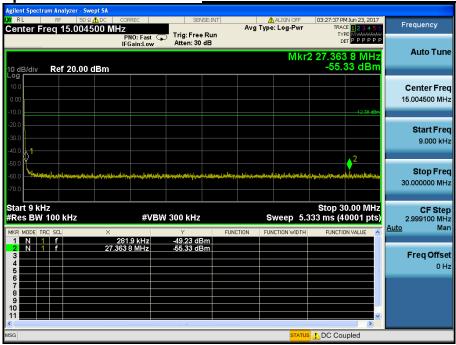


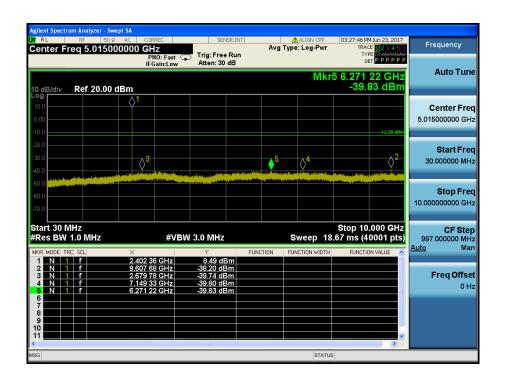


Conducted Spurious Emissions <u>Highest Channel & Modulation : π/4DQPSK</u>

Low Band-edge

Lowest Channel & Modulation: 8DPSK

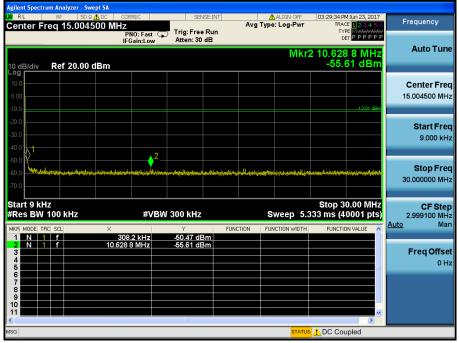



Low Band-edge

Hopping mode & Modulation: 8DPSK

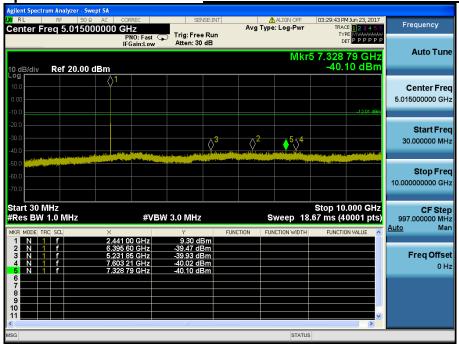
Conducted Spurious Emissions <u>Lowest Channel & Modulation : 8DPSK</u>

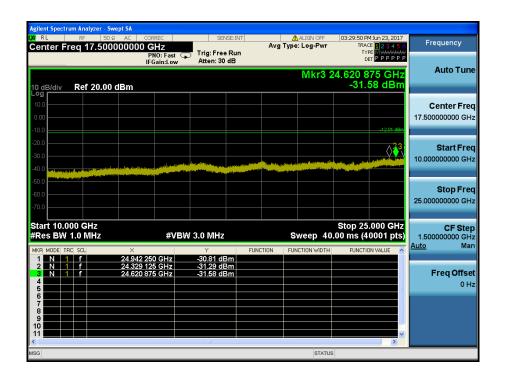
Conducted Spurious Emissions <u>Lowest Channel & Modulation : 8DPSK</u>



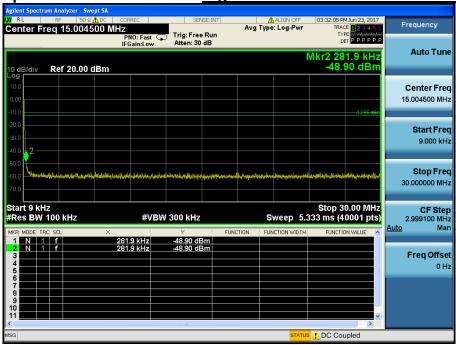
Reference for limit

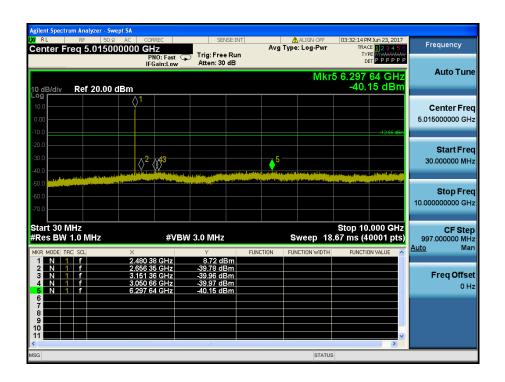
Middle Channel & Modulation: 8DPSK




Conducted Spurious Emissions <u>Middle Channel & Modulation : 8DPSK</u>


Conducted Spurious Emissions <u>Middle Channel & Modulation : 8DPSK</u>


High Band-edge <u>Highest Channel & Modulation : 8DPSK</u>



High Band-edge <u>Hopping mode & Modulation : 8DPSK</u>

Conducted Spurious Emissions <u>Highest Channel & Modulation : 8DPSK</u>

Conducted Spurious Emissions <u>Highest Channel & Modulation : 8DPSK</u>

8. Transmitter AC Power Line Conducted Emission

8.1 Test Setup

See test photographs for the actual connections between EUT and support equipment.

8.2 Limit

According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

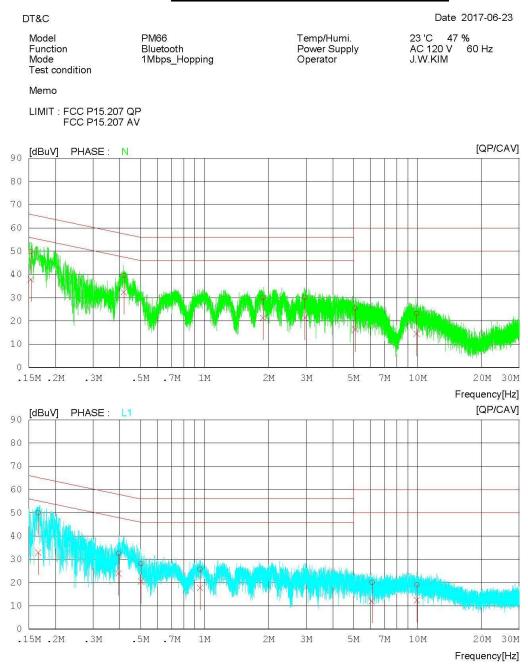
Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Francisco Panga (MHz)	Conducted Limit (dBuV)						
Frequency Range (MHz)	Quasi-Peak	Average					
0.15 ~ 0.5	66 to 56 *	56 to 46 *					
0.5 ~ 5	56	46					
5 ~ 30	60	50					

^{*} Decreases with the logarithm of the frequency

8.3 Test Procedures

Conducted emissions from the EUT were measured according to the ANSI C63.10.


- 1. The test procedure is performed in a 6.5 m \times 3.5 m \times 3.5 m (L \times W \times H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) \times 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

8.4 Test Results

AC Line Conducted Emissions (Graph) = Modulation : <u>8DPSK</u>

Results of Conducted Emission

AC Line Conducted Emissions (List) = Modulation : <u>8DPSK</u>

Results of Conducted Emission

DT&C							Date	2017-06-23	
Model Functi Mode Test c	ion	PM66 Bluetoot 1Mbps_l		F	emp/Hum Power Sup Operator		23 'C 47 AC 120 V J.W.KIM	% 60 Hz	
Memo)								
LIMIT	: FCC P15. FCC P15.								
NO	FREQ	READING OP CAV	C.FACTOR	RESULT OP CAV	LI: OP	MIT CAV	MARGIN OP CAV	PHASE	
	[MHz]	[dBuV] [dBuV]	[dB]	[dBuV][dBuV] [dBuV		7]	
1	0 15330	POTEST SERVED SIZES SERVE	0.00		10 00 00 00 00 00 00 00 00 00 00 00 00 0	and the same of th			٠
	0.10000	49.5837.64	0.22	49.8037.86	65.82	55.82	16.0217.96	N	
2		49.58 37.64 39.32 32.18	0.22	49.80 37.86 39.53 32.39		55.82 47.48	16.02 17.96 17.95 15.09	N N	
3	0.41834				57.48				
3 4	0.41834 1.88540	39.3232.18	0.21	39.5332.39	57.48 56.00	47.48	17.95 15.09	N	
3 4 5	0.41834 1.88540 2.95900	39.3232.18 29.7721.07	0.21 0.30	39.53 32.39 30.07 21.37	57.48 56.00 56.00	47.48 46.00	17.95 15.09 25.93 24.63 25.83 24.55 34.58 33.73	N N N	
3 4 5	0.41834 1.88540 2.95900 5.09320 9.89240	39.3232.18 29.7721.07 29.8221.10 24.9815.83 22.4813.81	0.21 0.30 0.35 0.44 0.71	39.53 32.39 30.07 21.37 30.17 21.45 25.42 16.27 23.19 14.52	57.48 56.00 56.00 60.00	47.48 46.00 46.00 50.00	17.95 15.09 25.93 24.63 25.83 24.55 34.58 33.73 36.81 35.48	N N N N	
3 4 5 6 7	0.41834 1.88540 2.95900 5.09320 9.89240 0.16596	39.32.32.18 29.77.21.07 29.82.21.10 24.98.15.83 22.48.13.81 49.85.32.64	0.21 0.30 0.35 0.44 0.71 0.18	39.53 32.39 30.07 21.37 30.17 21.45 25.42 16.27 23.19 14.52 50.03 32.82	57.48 56.00 56.00 60.00 60.00 65.16	47.48 46.00 46.00 50.00 50.00 55.16	17.95 15.09 25.93 24.63 25.83 24.55 34.58 33.73 36.81 35.48 15.13 22.34	N N N N N L1	
3 4 5 6 7 8	0.41834 1.88540 2.95900 5.09320 9.89240 0.16596 0.39499	39.32.18 29.77.21.07 29.82.21.10 24.98.15.83 22.48.13.81 49.85.32.64 32.41.23.73	0.21 0.30 0.35 0.44 0.71 0.18 0.20	39.53 32.39 30.07 21.37 30.17 21.45 25.42 16.27 23.19 14.52 50.03 32.82 32.61 23.93	57.48 56.00 56.00 60.00 60.00 65.16 57.96	47.48 46.00 46.00 50.00 50.00 55.16 47.96	17.95 15.09 25.93 24.63 25.83 24.55 34.58 33.73 36.81 35.48 15.13 22.34 25.35 24.03	N N N N L1 L1	
3 4 5 6 7 8 9	0.41834 1.88540 2.95900 5.09320 9.89240 0.16596 0.39499 0.50402	39.32.18 29.77.21.07 29.82.21.10 24.98.15.83 22.48.13.61 49.85.32.64 32.41.23.73 27.95.20.25	0.21 0.30 0.35 0.44 0.71 0.18 0.20 0.20	39.53 32.39 30.07 21.37 30.17 21.45 25.42 16.27 23.19 14.52 50.03 32.82 32.61 23.93 28.15 20.45	57.48 56.00 56.00 60.00 60.00 65.16 57.96 56.00	47.48 46.00 46.00 50.00 50.00 55.16 47.96 46.00	17.95 15.09 25.93 24.63 25.83 24.55 34.58 33.73 36.81 35.48 15.13 22.34 25.35 24.03 27.85 25.55	N N N N N L1 L1 L1	
3 4 5 6 7 8 9 10	0.41834 1.88540 2.95900 5.09320 9.89240 0.16596 0.39499 0.50402 0.95304	39.32.18 29.77.21.07 29.82.21.10 24.98.15.83 22.48.13.81 49.85.32.64 32.41.23.73 27.95.20.25 25.44.17.44	0.21 0.30 0.35 0.44 0.71 0.18 0.20 0.20 0.25	39.53 32.39 30.07 21.37 30.17 21.45 25.42 16.27 23.19 14.52 50.03 32.82 32.61 23.93 28.15 20.45 25.69 17.69	57.48 56.00 56.00 60.00 65.16 57.96 56.00 56.00	47.48 46.00 46.00 50.00 50.00 55.16 47.96 46.00 46.00	17.95 15.09 25.93 24.63 25.83 24.55 34.58 33.73 36.81 35.48 15.13 22.34 25.35 24.03 27.85 25.55 30.31 28.31	N N N N L1 L1 L1	
3 4 5 6 7 8 9	0.41834 1.88540 2.95900 5.09320 9.89240 0.16596 0.39499 0.50402 0.95304 6.10800	39.32.18 29.77.21.07 29.82.21.10 24.98.15.83 22.48.13.61 49.85.32.64 32.41.23.73 27.95.20.25	0.21 0.30 0.35 0.44 0.71 0.18 0.20 0.20	39.53 32.39 30.07 21.37 30.17 21.45 25.42 16.27 23.19 14.52 50.03 32.82 32.61 23.93 28.15 20.45	57.48 56.00 56.00 60.00 65.16 57.96 56.00 56.00 60.00	47.48 46.00 46.00 50.00 50.00 55.16 47.96 46.00	17.95 15.09 25.93 24.63 25.83 24.55 34.58 33.73 36.81 35.48 15.13 22.34 25.35 24.03 27.85 25.55	N N N N N L1 L1 L1	

FCC ID: V2X-PM66W

IC: 10664A-PM66W

9. Antenna Requirement

Describe how the EUT complies with the requirement that either its antenna is permanently attached, or that it employs a unique antenna connector, for every antenna proposed for use with the EUT.

Conclusion: Comply

The internal antenna is attached on the main PCB using the special spring tension. (Refer to Internal Photo file.)

- Minimum Standard:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions.

10. Occupied Bandwidth (99 %)

10.1 Test Setup

Refer to the APPENDIX I.

10.2 Limit

Limit: Not Applicable

10.3 Test Procedure

The 99 % power bandwidth was measured with a calibrated spectrum analyzer.

The resolution bandwidth (RBW) shall be in the range of 1 % to 5 % of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately $3 \times RBW$.


Spectrum analyzer plots are included on the following pages.

10.4 Test Results

Modulation	Tested Channel	Test Results (MHz)
	Lowest	0.868
<u>GFSK</u>	Middle	0.880
	Highest	0.883
	Lowest	1.173
<u>π/4DQPSK</u>	Middle	1.180
	Highest	1.177
	Lowest	1.182
<u>8DPSK</u>	Middle	1.183
	Highest	1.178

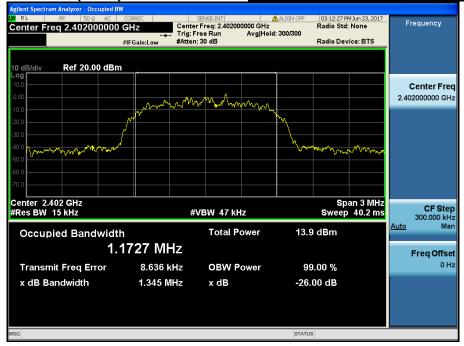
Occupied Bandwidth (99 %)

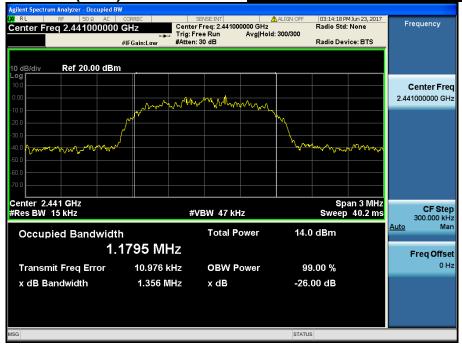
Lowest Channel & GFSK

Occupied Bandwidth (99 %)

Middle Channel & GFSK

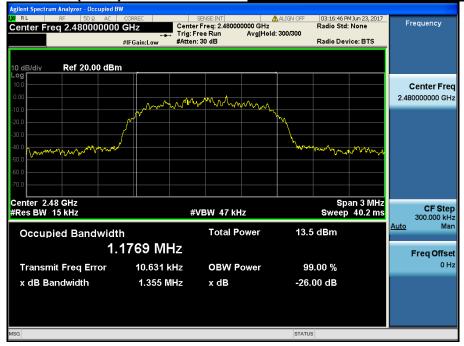
Occupied Bandwidth (99 %)


Highest Channel & GFSK


Occupied Bandwidth (99 %)

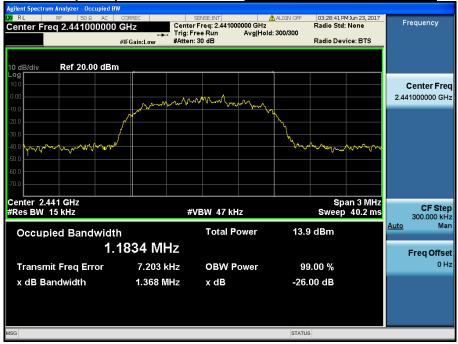
Lowest Channel & π/4 DQPSK

Occupied Bandwidth (99 %)


Middle Channel & π/4 DQPSK

Occupied Bandwidth (99 %)

Highest Channel & π/4 DQPSK


Occupied Bandwidth (99 %)

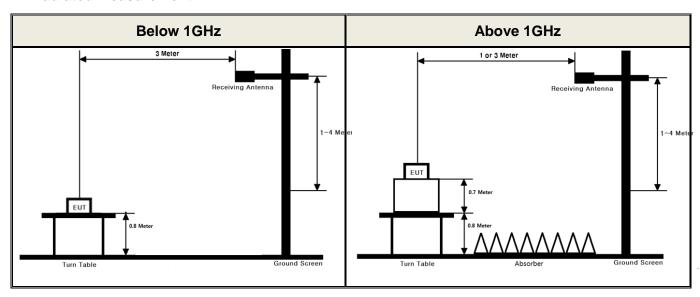
Lowest Channel & 8DPSK

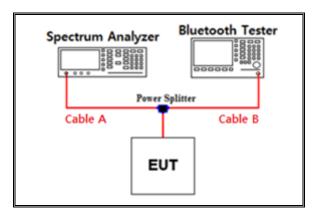
Occupied Bandwidth (99 %)

Middle Channel & 8DPSK



Occupied Bandwidth (99 %)


Highest Channel & 8DPSK


APPENDIX I

Test set up diagrams

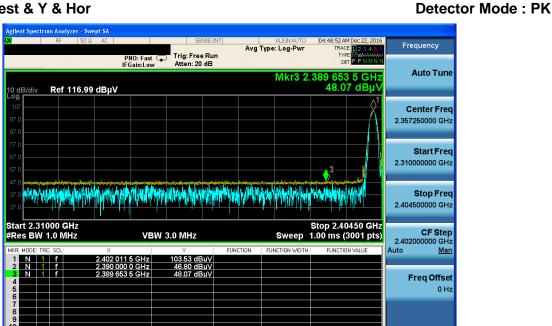
Radiated Measurement

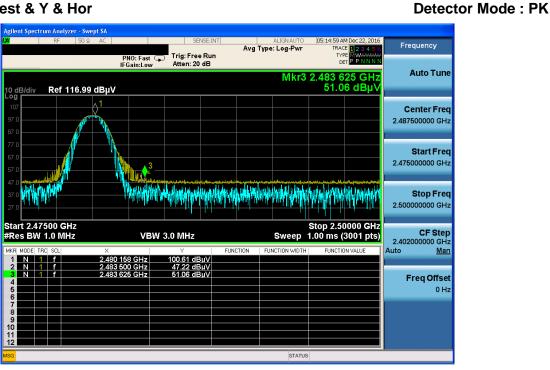
Conducted Measurement

Path loss information

Frequency (GHz)	Path Loss (dB)	Frequency (GHz)	Path Loss (dB)
0.03	6.69	15	10.40
1	6.97	20	11.17
2.402 & 2.440 & 2.480	7.60	25	13.39
5	8.33	-	-
10	9.49	-	-

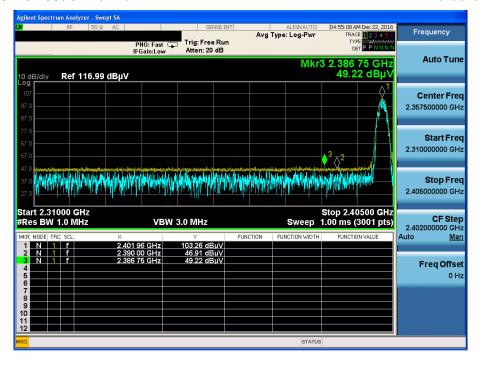
Note 1 : The path loss from EUT to Spectrum analyzer were measured and used for test.

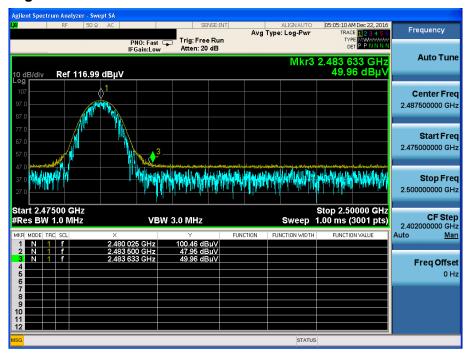

Path loss (S/A's Correction factor) = Cable A + Power splitter


APPENDIX II

Unwanted Emissions (Radiated) Test Plot

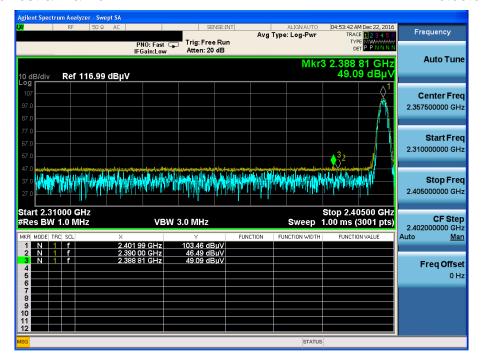
GFSK & Lowest & Y & Hor

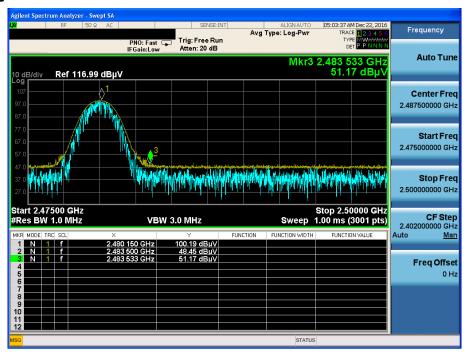

GFSK & Highest & Y & Hor



π/4DQPSK & Lowest & Y & Hor

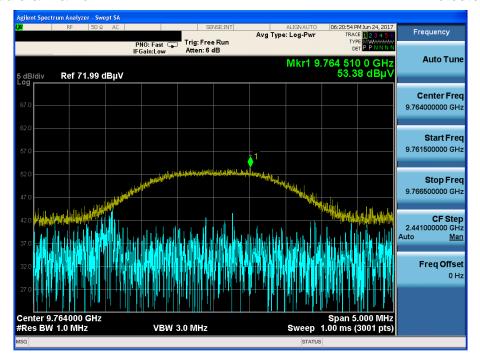
Detector Mode: PK

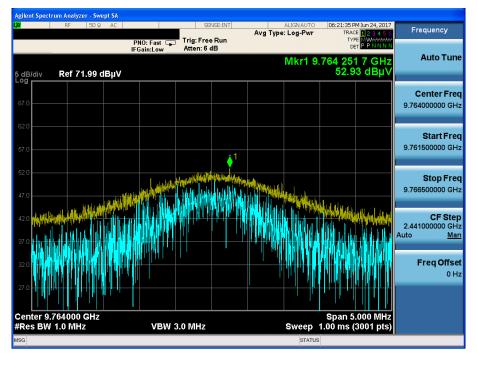

π/4DQPSK & Highest & Y & Hor



8DPSK & Lowest & Y & Hor

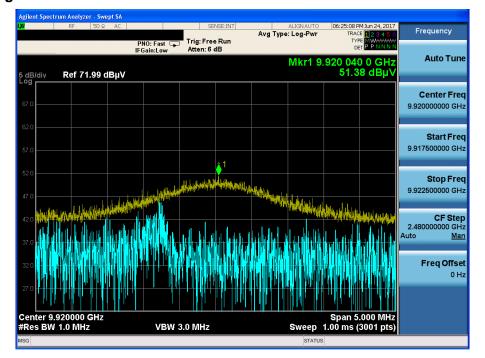
Detector Mode: PK


8DPSK & Highest & Y & Hor


TDt&C

GFSK & Middle & Z & Ver

Detector Mode: PK



π/4DQPSK & Middle & Z & Ver

8DPSK & Highest & Z & Ver

