TEST REPORT DT&C Co., Ltd. 42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel: 031-321-2664, Fax: 031-321-1664 1. Report No: DRRFCC1709-0100 2. Customer Name: POINT MOBILE CO.,LTD Address: B-9F, Kabul Great Valley 32 Digital-ro 9-gil, Geumcheon-gu Seoul South Korea 153-709 3. Use of Report: FCC Original Grant 4. Product Name / Model Name : Mobile Computer / PM66 FCC ID: V2X-PM66W 5. Test Method Used: IEEE 1528-2013, FCC SAR KDB Publications (Details in test report) Test Specification: CFR §2.1093 6. Date of Test: 2017-07-17 ~ 2017-07-20 7. Testing Environment: Refer to attached test report 8. Test Result: Refer to attached test report. Affirmation Tested by Name: BumJun Park Technical Manager Name: HakMin Kim The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full, without the written approval of DT&C Co., Ltd. Pages: 1/155 2017.09.07. MMUL -e) DT&C Co., Ltd. If this report is required to confirmation of authenticity, please contact to report@dtnc.net # **Test Report Version** | Test Report No. | Date | Description | |-----------------|---------------|---------------| | DRRFCC1709-0100 | Sep. 07, 2017 | Initial issue | # Report No.: DRRFCC1709-0100 Table of Contents | 1.1 Guidance Applied | | |--|----------------------| | 1.2 Device Overview | | | 1.3 Nominal and Maximum Output Power Specifications | | | 1.5 Near Field Communications (NFC) Antenna | | | 1.6 SAR Test Exclusions Applied | 8 | | 1.7 Power Reduction for SAR | 8 | | 1.8 Device Serial Numbers | | | | | | 3. DESCRIPTION OF TEST EQUIPMENT | | | 3.1 SAR MEASUREMENT SETUP | | | 3.2 EX3DV4Probe Specification | | | 3.3.1 E-Probe Calibration | | | 3.4 Data Extrapolation | | | 3.5 SAM Twin PHANTOM | 14 | | 3.6 Device Holder for Transmitters | 14 | | 3.7 Brain & Muscle Simulation Mixture Characterization | | | 3.8 SAR TEST EQUIPMENT | | | 5. SAR MEASUREMENT PROCEDURE | | | | | | 5.1 Measurement Procedure | | | 6.1 Ear Reference Point | | | 6.1 Ear Reference Point | | | 7. TEST CONFIGURATION POSITIONS FOR HANDSETS | | | 7.1 Device Holder | | | 7.2 Positioning for Cheek/Touch | 2 | | 7.0 D | _ | | 7.3 Positioning for Ear / 15 ° Tilt | | | 7.4 Body-Worn Accessory Configurations | 2 | | 7.4 Body-Worn Accessory Configurations | 22 | | 7.4 Body-Worn Accessory Configurations 7.5 Extremity Exposure Configurations. 8. RF EXPOSURE LIMITS | 22 | | 7.4 Body-Worn Accessory Configurations 7.5 Extremity Exposure Configurations. 8. RF EXPOSURE LIMITS | 22 | | 7.4 Body-Worn Accessory Configurations 7.5 Extremity Exposure Configurations 8. RF EXPOSURE LIMITS 9. FCC MEASUREMENT PROCEDURES 9.1 Measured and Reported SAR | 22
23
24 | | 7.4 Body-Worn Accessory Configurations 7.5 Extremity Exposure Configurations. 8. RF EXPOSURE LIMITS 9. FCC MEASUREMENT PROCEDURES 9.1 Measured and Reported SAR 9.2 Procedures Used to Establish RF Signal for SAR | 22
23
24
24 | | 7.4 Body-Worn Accessory Configurations 7.5 Extremity Exposure Configurations 8. RF EXPOSURE LIMITS 9. FCC MEASUREMENT PROCEDURES 9.1 Measured and Reported SAR | | | 7.4 Body-Worn Accessory Configurations 7.5 Extremity Exposure Configurations | | | 7.4 Body-Worn Accessory Configurations 7.5 Extremity Exposure Configurations 8. RF EXPOSURE LIMITS 9. FCC MEASUREMENT PROCEDURES 9.1 Measured and Reported SAR 9.2 Procedures Used to Establish RF Signal for SAR 9.3 SAR Testing with 802.11 Transmitters 9.3.1 General Device Setup. | | | 7.4 Body-Worn Accessory Configurations 7.5 Extremity Exposure Configurations 8. RF EXPOSURE LIMITS 9. FCC MEASUREMENT PROCEDURES 9.1 Measured and Reported SAR 9.2 Procedures Used to Establish RF Signal for SAR 9.3 SAR Testing with 802.11 Transmitters 9.3.1 General Device Setup 9.3.2 U-NII and U-NII-2A | | | 7.4 Body-Worn Accessory Configurations 7.5 Extremity Exposure Configurations. 8. RF EXPOSURE LIMITS 9. FCC MEASUREMENT PROCEDURES 9.1 Measured and Reported SAR 9.2 Procedures Used to Establish RF Signal for SAR 9.3 SAR Testing with 802.11 Transmitters 9.3.1 General Device Setup. 9.3.2 U-NII and U-NII-2A 9.3.3 U-NII-2C and U-NII-3 | | | 7.4 Body-Worn Accessory Configurations 7.5 Extremity Exposure Configurations 8. RF EXPOSURE LIMITS | | | 7.4 Body-Worn Accessory Configurations 7.5 Extremity Exposure Configurations. 8. RF EXPOSURE LIMITS 9. FCC MEASUREMENT PROCEDURES. 9.1 Measured and Reported SAR. 9.2 Procedures Used to Establish RF Signal for SAR. 9.3 SAR Testing with 802.11 Transmitters. 9.3.1 General Device Setup. 9.3.2 U-NII and U-NII-2A. 9.3.3 U-NII-2C and U-NII-3. 9.3.4 Initial Test Position Procedure. 9.3.5 2.4 GHz SAR Test Requirements | | | 7.4 Body-Worn Accessory Configurations 7.5 Extremity Exposure Configurations. 8. RF EXPOSURE LIMITS | | | 7.4 Body-Worn Accessory Configurations 7.5 Extremity Exposure Configurations 8. RF EXPOSURE LIMITS 9. FCC MEASUREMENT PROCEDURES 9.1 Measured and Reported SAR. 9.2 Procedures Used to Establish RF Signal for SAR 9.3 SAR Testing with 802.11 Transmitters 9.3.1 General Device Setup. 9.3.2 U-NII and U-NII-2A. 9.3.3 U-NII-2C and U-NII-3. 9.3.4 Initial Test Position Procedure. 9.3.5 2.4 GHz SAR Test Requirements 9.3.6 OFDM Transmission Mode and SAR Test Channel Selection 9.3.7 Initial Test Configuration Procedure. 9.3.8 Subsequent Test Configuration Procedures | | | 7.4 Body-Worn Accessory Configurations 7.5 Extremity Exposure Configurations. 8. RF EXPOSURE LIMITS 9. FCC MEASUREMENT PROCEDURES 9.1 Measured and Reported SAR. 9.2 Procedures Used to Establish RF Signal for SAR 9.3 SAR Testing with 802.11 Transmitters 9.3.1 General Device Setup. 9.3.2 U-NII and U-NII-2A 9.3.3 U-NII-2C and U-NII-3. 9.3.4 Initial Test Position Procedure. 9.3.5 2.4 GHz SAR Test Requirements 9.3.6 OFDM Transmission Mode and SAR Test Channel Selection 9.3.7 Initial Test Configuration Procedure. 9.3.8 Subsequent Test Configuration Procedures 10. RF CONDUCTED POWERS | | | 7.4 Body-Worn Accessory Configurations 7.5 Extremity Exposure Configurations 8. RF EXPOSURE LIMITS 9. FCC MEASUREMENT PROCEDURES 9.1 Measured and Reported SAR. 9.2 Procedures Used to Establish RF Signal for SAR 9.3 SAR Testing with 802.11 Transmitters 9.3.1 General Device Setup. 9.3.2 U-NII and U-NII-2A. 9.3.3 U-NII-2C and U-NII-3. 9.3.4 Initial Test Position Procedure. 9.3.5 2.4 GHz SAR Test Requirements 9.3.6 OFDM Transmission Mode and SAR Test Channel Selection 9.3.7 Initial Test Configuration Procedure. 9.3.8 Subsequent Test Configuration Procedures | | | 7.4 Body-Worn Accessory Configurations 7.5 Extremity Exposure Configurations. 8. RF EXPOSURE LIMITS | | | 7.4 Body-Worn Accessory Configurations 7.5 Extremity Exposure Configurations. 8. RF EXPOSURE LIMITS | | | 12. SAR TEST RESULTS | 33 | |--|-----| | 12.1 Head SAR Results | 33 | | 12.2 Standalone Body-Worn SAR Worn SAR Results | 35 | | 12.3 Standalone Hand SAR Results | 37 | | 12.4 SAR Test Notes | 40 | | 13. MEASUREMENT UNCERTAINTIES | 41 | | 14. CONCLUSION | 49 | | 15. REFERENCES | 50 | | Attachment 1. – Probe Calibration Data | 52 | | Attachment 2. – Dipole Calibration Data | 129 | | Attachment 3. – SAR SYSTEM VALIDATION | 154 | ### 1. DESCRIPTION OF DEVICE Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC). Report No.: DRRFCC1709-0100 #### **General Information** | EUT type | Mobile Computer | | | | | |--------------------------|--|---|-----------------------------|-----------------|--| | FCC ID | V2X-PM66W | | | | | | Equipment model name | PM66 | | | | | | Equipment add model name | N/A | | | | | | Equipment serial no. | Identical prototype | | | | | | Mode(s) of Operation | 2.4 G W-LAN (802.11b/ | g/n HT20), 5 G W-LAN (802. | 11a/n HT20/n HT40), Bluetoo | th | | | | Band | Mode | Bandwidth | Frequency | | | | 2.4 GHz W-LAN | 802.11b/g/n | HT20 | 2412 ~ 2462 MHz | | | | 5 2 CH= W L AN | 802.11a/n | HT20 | 5180 ~ 5240 MHz | | | | 5.2 GHz W-LAN | 802.11n | HT40 | 5190 ~ 5230 MHz | | | | 5.3 GHz W-LAN | 802.11a/n | HT20 | 5260 ~ 5320 MHz | | | TX Frequency Range | 5.5 GHZ W-LAIN | 802.11n | HT40 | 5270 ~ 5310 MHz | | | | 5.6 GHz W-LAN | 802.11a/n | HT20 | 5500 ~ 5700 MHz | | | | 3.0 GHZ W-LAIN | 802.11n | HT40 | 5510 ~ 5670 MHz | | | | 5.8 GHz W-LAN | 802.11a/n | HT20 | 5745 ~ 5825 MHz | | | | 5.6 GHZ W-LAIN | 802.11n | HT40 | 5755 ~ 5795 MHz | | | | Bluetooth | - | - | 2402 ~ 2480 MHz | | | | 2.4 GHz W-LAN | 802.11b/g/n | HT20 | 2412 ~ 2462 MHz | | | | 5.0.011.14/1.441 | 802.11a/n | HT20 | 5180 ~ 5240 MHz | | | 5.2 G | 5.2 GHz W-LAN | 802.11n | HT40 | 5190 ~ 5230 MHz | | | | 5.0.011-14/1.411 | 802.11a/n | HT20 | 5260 ~ 5320 MHz | | | DV Faceurani Danas | 5.3 GHz W-LAN | 802.11n | HT40 | 5270 ~ 5310 MHz | | | RX Frequency Range | 5.6 GHz W-LAN | 802.11a/n | HT20 | 5500 ~ 5700 MHz | | | | 5.6 GHZ W-LAIN | 802.11n | HT40 | 5510
~ 5670 MHz | | | | 5.8 GHz W-LAN | 802.11a/n | HT20 | 5745 ~ 5825 MHz | | | | 5.6 GHZ W-LAIN | 802.11n | HT40 | 5755 ~ 5795 MHz | | | | Bluetooth | = | - | 2402 ~ 2480 MHz | | | | | | Reported SAR | | | | Equipment
Class | Band | 1g SAR (V | V/kg) | 10g SAR (W/kg) | | | | | Head | Body-Worn | Hand | | | DTS | 2.4 GHz W-LAN | 0.09 | 0.09 | 0.20 | | | U-NII-2A | 5.3 GHz W-LAN | 0.12 | 0.17 | 0.13 | | | U-NII-2C | 5.6 GHz W-LAN | 0.05 | 0.06 | 0.06 | | | U-NII-3 | 5.8 GHz W-LAN | 0.14 | 0.20 | 0.16 | | | FCC Equipment Class | Part 15 Spread Spectru
Digital Transmission Sy
Unlicensed National Inf | |) | | | | Date(s) of Tests | 2017-07-17 ~ 2017-07- | 2017-07-17 ~ 2017-07-20 | | | | | Antenna Type | Internal Type Antenna | | | | | | Functions | W-LAN(5GHz 802 * No simultaneous • Not support Wirele | AN(2.4GHz 802.11b/g/n(HT2
.11a/n(HT20/HT40)) support
transmission between BT & \
ess Charging (WPC). | ed | | | | | VoIP is supported. | | | | | • IEEE 1528-2013 1.1 Guidance Applied - FCC KDB Publication 248227 D01v02r02 (802.11 Wi-Fi SAR) - FCC KDB Publication 447498 D01v06 (General RF Exposure Guidance) - FCC KDB Publication 648474 D04 Handset SAR v01r03 - FCC KDB Publication 690783 D01 SAR Listings on Grants v01r03 - FCC KDB Publication 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 - FCC KDB Publication 865664 D02 RF Exposure Reporting v01r02 #### 1.2 Device Overview | Equipment
Class | Mode | Operating Modes | Tx Frequency | |--------------------|--------------|-----------------|-----------------| | DTS | 2.4 GHz WLAN | Data | 2412 ~ 2462 MHz | | U-NII-1 | 5.2 GHz WLAN | Data | 5180 ~ 5240 MHz | | U-NII-2A | 5.3 GHz WLAN | Data | 5260 ~ 5320 MHz | | U-NII-2C | 5.6 GHz WLAN | Data | 5500 ~ 5700 MHz | | U-NII-3 | 5.8 GHz WLAN | Data | 5745 ~ 5825 MHz | | DSS/DTS | Bluetooth | Data | 2402 ~ 2480 MHz | Report No.: DRRFCC1709-0100 #### 1.3 Nominal and Maximum Output Power Specifications This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06 #### (A) 2.4G WLAN | Band (| Modulated Average[dBm] | | |-----------------------------|------------------------|------| | .=== | Maximum | 16.5 | | IEEE 802.11b
(2.4 GHz) | Nominal | 15.5 | | (2.1 3112) | Minimum | 13.5 | | | Maximum | 15.0 | | IEEE 802.11g
(2.4 GHz) | Nominal | 14.0 | | (2.1 3112) | Minimum | 12.0 | | | Maximum | 14.0 | | IEEE 802.11n HT20 (2.4 GHz) | Nominal | 13.0 | | | Minimum | 12.0 | #### (B) 5G WLAN | Band & | Modulated Average[dBm] | | |---------------------------|------------------------|------| | 1555 000 44 | Maximum | 13.0 | | IEEE 802.11a
(5 GHz) | Nominal | 12.0 | | (3 3112) | Minimum | 10.0 | | | Maximum | 13.0 | | IEEE 802.11n HT20 (5 GHz) | Nominal | 12.0 | | | Minimum | 10.0 | | | Maximum | 12.5 | | IEEE 802.11n HT40 (5 GHz) | Nominal | 11.5 | | | Minimum | 9.5 | (C) BT | Band 8 | Modulated Average[dBm] | | |---------------------|------------------------|------| | | Maximum | 9.5 | | Bluetooth
1 Mbps | Nominal | 8.5 | | T Midp3 | Minimum | 6.5 | | | Maximum | 6.5 | | Bluetooth
2 Mbps | Nominal | 5.5 | | 2 1/10/23 | Minimum | 3.5 | | | Maximum | 6.5 | | Bluetooth
3 Mbps | Nominal | 5.5 | | o Mopo | Minimum | 3.5 | | _, , , | Maximum | 0.0 | | Bluetooth
LE | Nominal | -1.0 | | | Minimum | -3.0 | Report No.: DRRFCC1709-0100 #### 1.4 DUT Antenna Locations The overall dimensions of this device are $> 9 \times 5$ cm. A diagram showing the location of the device of the device antenna can be found in (PM66)_Antenna Location OpDesc.pdf. Since the diagonal dimension of this device is > 160 mm and < 200 mm. it is considered a "phablet". | Mode | Device Sides for SAR Testing | | | | | | |------------|------------------------------|--------|-------|------|-------|------| | Mode | Тор | Bottom | Front | Rear | Right | Left | | 2.4G W-LAN | 0 | Х | 0 | 0 | 0 | Х | | 5G W-LAN | 0 | X | 0 | 0 | 0 | Х | Note: Particular DUT edges were not required to be evaluated for Phablet SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 648474 D04v01r03. The antenna document shows the distances between the transmit antennas and the edges of the device. #### 1.5 Near Field Communications (NFC) Antenna This DUT has NFC operations. The NFC antenna is integrated into the back cover. The SAR tests were performed with the back cover with NFC antenna already incorporated. A diagram showing the location of the device of the device antenna can be found in (PM66)_Antenna Location OpDesc.pdf. #### 1.6 SAR Test Exclusions Applied #### (A) BT Per FCC KDB 447498 D01v06, the SAR exclusion threshold for distances < 50 mm is defined by the following equation: $$\frac{Max\ Power\ of\ Channel\ (mW)}{Test\ Separation\ Dist\ (mm)}*\sqrt{Frequency(GHz)} \leq 3.0$$ Table 1.1 SAR exclusion threshold for distances < 50 mm (1g) | Mode | Equation | Result | SAR
exclusion
threshold | Required
SAR | |--------------|------------------|--------|-------------------------------|-----------------| | Bluetooth | [(9/15)* √2.480] | 0.9 | 3.0 | X | | Bluetooth LE | [(1/15)* √2.480] | 0.1 | 3.0 | X | $$\frac{Max\ Power\ of\ Channel\ (mW)}{Test\ Separation\ Dist\ (mm)}*\sqrt{Frequency(GHz)} \leq 7.5$$ Table 1.2 SAR exclusion threshold for distances < 50 mm (10g) | Mode | Equation | Result | SAR
exclusion
threshold | Required
SAR | |--------------|-----------------|--------|-------------------------------|-----------------| | Bluetooth | [(9/5)* √2.480] | 2.8 | 7.5 | X | | Bluetooth LE | [(1/5)* √2.480] | 0.3 | 7.5 | X | Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation. #### 1.7 Power Reduction for SAR There is no power reduction used for any band/mode implemented in this device for SAR purposes. #### 1.8 Device Serial Numbers | Band & Mode | Head Serial Number | Body Serial Number | |--------------|--------------------|--------------------| | 2.4 GHz WLAN | FCC #1 | FCC #1 | | 5 GHz WLAN | FCC #1 | FCC #1 | #### 2. INTROCUCTION The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. #### **SAR Definition** Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ) It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 2.1) $$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$ Fig. 2.1 SAR Mathematical Equation SAR is expressed in units of Watts per Kilogram (W/kg). $$SAR = \frac{\sigma \cdot E^2}{\rho}$$ where: σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³) E = Total RMS electric field strength (V/m) NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane. #### 3. DESCRIPTION OF TEST EQUIPMENT #### 3.1 SAR MEASUREMENT SETUP Measurements are performed using the DASY5 automated dosimetric assessment system. The DASY5 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 3.1). A cell controller system contains the power supply, robot controller each pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the Intel Core i7-3770 3.40 GHz desktop computer with Windows 7 system and SAR Measurement Software DASY5,A/D interface card, monitor, mouse, and keyboard. The Staubli Robotis connected to the cell controller to allow software manipulation of the robot. A data
acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. Figure 3.1 SAR Measurement System Setup The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail. #### 3.2 EX3DV4Probe Specification Calibration In air from 10 MHz to 6 GHz In brain and muscle simulating tissue at Frequencies of 750 MHz, 835 MHz, 900 MHz, 1750 MHz, 1900 MHz, 2300 MHz, 2450 MHz, 2600 MHz, 3500 MHz, 5200 MHz, 5300 MHz, 5500 MHz, 5600 MHz, 5800 MHz In air from 10 MHz to 6 GHz In brain and muscle simulating tissue at Frequencies of 2450 MHz, 2600 MHz, 5200 MHz, 5300 MHz, 5500 MHz, 5600 MHz, 5800 MHz Frequency 10 MHz to 6 GHz **Linearity** ± 0.2 dB(30 MHz to 6 GHz) **Dynamic** $10 \mu W/g \text{ to } > 100 \text{ mW/g}$ Range Linearity: ±0.2dB **Dimensions** Overall length: 337 mm Tip length 20 mm Body diameter 12 mm Tip diameter 2.5 mm Distance from probe tip to sensor center 1.0 mm **Application** SAR Dosimetry Testing Compliance tests of mobile phones **Figure 3.2 Triangular Probe Configurations** Figure 3.3 Probe Thick-Film Technique **DAE System** The SAR measurements were conducted with the dosimetric probe EX3DV4, designed in the classical triangular configuration(see Fig. 3.2) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multitier line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum. #### 3.3 Probe Calibration Process #### 3.3.1 E-Probe Calibration #### **Dosimetric Assessment Procedure** Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated with the procedure and found to be better than \pm 2. The sensitivity parameters (Norm X, Norm Y, Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe is tested. Report No.: DRRFCC1709-0100 #### **Free Space Assessment** The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees. #### **Temperature Assessment *** E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent the remits or based temperature probe is used in conjunction with the E-field probe. $$SAR = C \frac{\Delta T}{\Delta t}$$ $SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$ where: where: Δt = exposure time (30 seconds), C = heat capacity of tissue (brain or muscle), ΔT = temperature increase due to RF exposure. σ = simulated tissue conductivity, ρ = Tissue density (1.25 g/cm³ for brain tissue) SAR is proportional to $\Delta T \, / \, \Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field; Figure 3.4 E-Field and Temperature Measurements at 900MHz Figure 3.5 E-Field and Temperature Measurements at 1800MHz #### 3.4 Data Extrapolation The DASY5 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below; with $$V_i$$ = compensated signal of channel i (i=x,y,z) $$U_i = \text{input signal of channel i} \qquad \text{(i=x,y,z)}$$ $$U_i = \text{input signal of channel i} \qquad \text{(i=x,y,z)}$$ $$cf = \text{crest factor of exciting field} \qquad \text{(DASY parameter)}$$ $$dcp_i = \text{diode compression point} \qquad \text{(DASY parameter)}$$ From the compensated input signals the primary field data for each channel can be evaluated: E-field probes: with V_i = compensated signal of channel i (i = x,y,z) Norm_i = sensor sensitivity of channel i (i = x,y,z) $\mu V/(V/m)^2$ for E-field probes ConvF = sensitivity of enhancement in solution E_i = electric field strength of channel i in V/m The RSS value of the field components gives the total field strength (Hermetian magnitude): $$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$ The primary field data are used to calculate the derived field units. $SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$ with SAR = local specific absorption rate in W/g = total field strength in V/m = conductivity in [mho/m] or [Siemens/m] p = equivalent tissue density in g/cm³ The power flow density is calculated assuming the excitation field to be a free space field. $P_{pue} = \frac{E_{tot}^2}{3770}$ with $P_{pwe} = \text{equivalent power density of a plane wave in W/cm}^2$ = total electric field strength in V/m #### 3.5 SAM Twin PHANTOM The SAM Twin Phantom V5.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 3.6) Figure 3.6 SAM Twin Phantom #### **SAM Twin Phantom Specification:** Construction The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot. Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure. Shell Thickness $2 \pm 0.2 \text{ mm}$ Filling Volume Dimensions Approx. 25 liters Length: 1000 mm Width: 500 mm Height: adjustable feet #### **Specific Anthropomorphic Mannequin (SAM) Specifications:** The phantom for handset SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM Twin Phantom shell is bisected along the mid-sagittal plane into right and left halves (see Fig. 3.7). The perimeter sidewalls of each phantom halves are extended to allow filling with liquid to a depth that is sufficient to minimized reflections from the upper surface. The liquid depth is maintained at a minimum depth of 15cm to minimize reflections from the upper surface. HA PH Figure 3.7 Sam Twin Phantom shell #### 3.6 Device Holder for Transmitters In combination with the Twin SAM Phantom V4.0/V4.0c, V5.0 or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worst-case condition (the hand absorbs
antenna output power), the hand is omitted during the tests. Figure 3.8 Mounting Device The brain and muscle mixtures consist of a viscous gel using hydrox-ethylcellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bactericide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Harts grove. 3.7 Brain & Muscle Simulation Mixture Characterization Figure 3.9 Simulated Tissue **Table 3.1 Composition of the Tissue Equivalent Matter** | Ingredients | | Frequen | cy (MHz) | | | |--------------------------------|-------|---------|-------------|-------|--| | (% by weight) | 24 | 50 | 5200 ~ 5800 | | | | Tissue Type | Head | Body | Head | Body | | | Water | 71.88 | 73.40 | 65.52 | 80.00 | | | Salt (NaCl) | 0.160 | 0.060 | - | - | | | Sugar | - | - | - | - | | | HEC | - | - | - | - | | | Bactericide | - | - | - | - | | | Triton X-100 | 19.97 | - | 17.24 | - | | | DGBE | 7.990 | 26.54 | - | - | | | Diethylene glycol hexyl ether | - | - | 17.24 | - | | | Polysorbate (Tween) 80 | - | - | - | 20.00 | | | Target for Dielectric Constant | 39.2 | 52.7 | - | - | | | Target for Conductivity (S/m) | 1.80 | 1.95 | - | - | | Salt: 99 % Pure Sodium Chloride Sugar: 98 % Pure Sucrose Water: De-ionized, 16M resistivity HEC: Hydroxyethyl Cellulose DGBE: 99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol] Triton X-100(ultra pure): Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl] ether #### 3.8 SAR TEST EQUIPMENT **Table 3.3 Test Equipment Calibration** | | Туре | Manufacturer | Model | Cal.Date | Next.Cal.Date | S/N | |-------------|---|--------------|------------|------------|---------------|-----------------| | \boxtimes | SEMITEC Engineering | SEMITEC | N/A | N/A | N/A | Shield Room | | | Robot | SCHMID | TX90XL | N/A | N/A | F13/5P9GA1/A/01 | | \boxtimes | Robot Controller | SCHMID | CS8C | N/A | N/A | F13/5P9GA1/C/01 | | \boxtimes | Joystick | SCHMID | N/A | N/A | N/A | S-12450905 | | \boxtimes | IntelCorei7-3770 3.40 GHz
Windows 7 Professional | N/A | N/A | N/A | N/A | N/A | | | Probe Alignment Unit LB | N/A | N/A | N/A | N/A | SE UKS 030 AA | | | Device Holder | SCHMID | Holder | N/A | N/A | SD000H01HA | | \boxtimes | Twin SAM Phantom | SCHMID | QD000P40CD | N/A | N/A | 1783 | | \boxtimes | Twin SAM Phantom | SCHMID | QD000P40CD | N/A | N/A | 1782 | | \boxtimes | Data Acquisition Electronics | SCHMID | DAE4V1 | 2016-09-19 | 2017-09-19 | 1453 | | \boxtimes | Dosimetric E-Field Probe | SCHMID | EX3DV4 | 2017-05-31 | 2018-05-31 | 3866 | | \boxtimes | Dosimetric E-Field Probe | SCHMID | EX3DV4 | 2017-04-28 | 2018-04-28 | 3916 | | \boxtimes | 2450MHz SAR Dipole | SCHMID | D2450V2 | 2016-09-23 | 2018-09-23 | 920 | | \boxtimes | 5GHz SAR Dipole | SCHMID | D5GHzV2 | 2017-03-17 | 2019-03-17 | 1103 | | \boxtimes | Network Analyzer | Agilent | E5071C | 2016-12-02 | 2017-12-02 | MY46111534 | | \boxtimes | Signal Generator | Agilent | E4438C | 2016-09-09 | 2017-09-09 | US41461520 | | \boxtimes | Amplifier | EMPOWER | BBS3Q7ELU | 2016-09-08 | 2017-09-08 | 1020 | | \boxtimes | High Power RF Amplifier | EMPOWER | BBS3Q8CCJ | 2016-10-18 | 2017-10-18 | 1005 | | | Power Meter | HP | EPM-442A | 2017-01-04 | 2018-01-04 | GB37170267 | | \boxtimes | Power Meter | HP | EPM-442A | 2017-04-11 | 2018-04-11 | GB37170413 | | \boxtimes | Power Sensor | HP | 8481A | 2017-01-04 | 2018-01-04 | 3318A96566 | | \boxtimes | Power Sensor | HP | 8481A | 2017-01-04 | 2018-01-04 | 2702A65976 | | \boxtimes | Power Sensor | HP | 8481A | 2017-04-11 | 2018-04-11 | 3318A96332 | | \boxtimes | Directional Coupler | HP | 772D | 2017-07-13 | 2018-07-13 | 2889A01064 | | \boxtimes | Low Pass Filter 3.0GHz | Micro LAB | LA-30N | 2016-09-08 | 2017-09-08 | N/A | | \boxtimes | Low Pass Filter 6.0GHz | Micro LAB | LA-60N | 2017-01-04 | 2018-01-04 | 03942 | | \boxtimes | Attenuators(3 dB) | Agilent | 8491B | 2017-04-11 | 2018-04-11 | MY39260700 | | \boxtimes | Attenuators(10 dB) | WEINSCHEL | 23-10-34 | 2017-01-04 | 2018-01-04 | BP4387 | | \boxtimes | Dielectric Probe kit | SCHMID | DAK-3.5 | 2016-11-17 | 2017-11-17 | 1092 | | \boxtimes | Dielectric Probe kit | SCHMID | DAK-3.5 | 2016-07-26 | 2017-07-26 | 1046 | | | DIGIGOLIIC FTODE KIL | 301 IIVIID | | 2017-07-18 | 2018-07-18 | 1040 | | | Power Splitter | Anritsu | K241B | 2017-01-11 | 2018-01-11 | 1301183 | | \boxtimes | Bluetooth Tester | TESCOM | TC-3000B | 2017-01-04 | 2018-01-04 | 3000B770243 | **NOTE:** The E-field probe was calibrated by SPEAG, by temperature measurement procedure. Dipole Verification measurement is performed by DT&C using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain-equivalent material. Each equipment item was used solely within its respective calibration period. #### 4. TEST SYSTEM SPECIFICATIONS #### **Automated TEST SYSTEM SPECIFICATIONS:** #### **Positioner** Robot Stäubli Unimation Corp. Robot Model: TX90XL Repeatability 0.02 mm No. of axis 6 #### **Data Acquisition Electronic (DAE) System** **Cell Controller** **Processor** Intel Core i7-3770 Clock Speed 3.40 GHz Operating System Windows 7 Professional DASY5 PC-Board **Data Converter** Features Signal, multiplexer, A/D converter. & control logic Software DASY5 **Connecting Lines** Optical downlink for data and status info Optical uplink for commands and clock PC Interface Card **Function** 24 bit (64 MHz) DSP for real time processing Link to DAE 4 16 bit A/D converter for surface detection system serial link to robot direct emergency stop output for robot E-Field Probes **Model** EX3DV4 S/N: 3866, 3916 **Construction** Triangular core fiber optic detection system Frequency 10 MHz to 6 GHz **Linearity** \pm 0.2 dB (30 MHz to 6 GHz) **Phantom** **Phantom** SAM Twin Phantom (V5.0) Shell MaterialCompositeThickness $2.0 \pm 0.2 \text{ mm}$ Figure 4.1 DASY5 Test System #### 5. SAR MEASUREMENT PROCEDURE #### **5.1 Measurement Procedure** The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013: - 1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 5.1) and IEEE1528-2013. - The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value. Figure 5.1 Sample SAR Area Scan - 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 5.1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details): - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 5.1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell). - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR. - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found. - 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated. | | | | ≤ 3 GHz | >3 GHz | |--|-------------|---|---|--| | Maximum distance fro
(geometric center of p | | measurement point
ers) to phantom surface | 5 mm ± 1 mm | ½·δ·ln(2) mm ± 0.5 mm | | Maximum probe angle
surface normal at the | | | 30°±1° | 20°±1° | | T | | | ≤ 2 GHz: ≤ 15 mm
2 − 3 GHz: ≤ 12 mm | 3 – 4 GHz: ≤ 12 mm
4 – 6 GHz: ≤ 10 mm | | Maximum area scan s | patial reso | lution: Δx_{Area} , Δy_{Area} | When the x or y dimension
measurement plane orienta
above, the measurement re
corresponding x or y dimensial least one measurement p | tion, is smaller than the
solution must be≤the
nsion of the test device with | | Maximum zoom scan | spatial res | olution: Δx _{Zoom} , Δy _{Zoom} | ≤ 2 GHz: ≤ 8 mm
2 – 3 GHz: ≤ 5 mm | 3 – 4 GHz: ≤ 5 mm*
4 – 6 GHz: ≤ 4 mm* | | Maximum zoom
scan
spatial
resolution, normal to
phantom surface | uniform | grid: Δz _{Zoon} (n) | ≤ 5 mm | 3 – 4 GHz: ≤ 4 mm
4 – 5 GHz: ≤ 3 mm
5 – 6 GHz: ≤ 2 mm | | | graded | Δz _{Zoom} (1): between
1 st two points closest
to phantom surface | ≤ 4 mm | 3 – 4 GHz: ≤3 mm
4 – 5 GHz: ≤2.5 mm
5 – 6 GHz: ≤2 mm | | | grid | Δz _{Zoom} (n>1):
between subsequent
points | ≤1.5·∆z _Z | nom(n-1) mm | | Minimum zoom
scan volume x, y, z | | | ≥ 30 mm | 3 – 4 GHz: ≥ 28 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details. Table 5.1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04 ^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. #### 6. DEFINITION OF REFERENCE POINTS #### 6.1 Ear Reference Point Figure 6.1 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15mm posterior to the entrance to the Ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 6.1. The plane Passing, through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck- Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 6.1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning. Figure 6.1 Close-up side view of ERP #### 6.2 Handset Reference Points Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Fig. 6.3). The "test device reference point" was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at it's top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point. Figure 6.2 Front, back and side view SAM Twin Phantom Figure 6.3 Handset Vertical Center & Horizontal Line Reference Points ## 7. TEST CONFIGURATION POSITIONS FOR HANDSETS #### 7.1 Device Holder The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02. #### 7.2 Positioning for Cheek/Touch 1. The test device was positioned with the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 7.1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom. Figure 7.1 Front, Side and Top View of Cheek/Touch Position - 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear. - 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane). - 4. The phone was hen rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF. - 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, the handset was rotated about the line NF until any point on the handset made contact with a phantom point below the ear (cheek). (See Figure 7.2) #### 7.3 Positioning for Ear / 15 ° Tilt With the test device aligned in the "Cheek/Touch Position": - 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degree. - 2. The phone was then rotated around the horizontal line by 15 degree. - 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the phone touches the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 7.3). Figure 7.3 Front, Side and Top View of Ear/15°Position #### 7.4 Body-Worn Accessory Configurations Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 7.4). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for Figure 7.4 Sample Body-Worn Diagram hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset. Report No.: DRRFCC1709-0100 Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested. Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration. #### 7.5 Extremity Exposure Configurations Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Exclusion Thresholds found in KDB Publication 447498D01v06 should be applied to determine SAR test requirements. #### 8. RF EXPOSURE LIMITS #### **Uncontrolled Environment:** UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. #### **Controlled Environment:** CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. | Table 8.1.SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 | Table 8.1.SAR Hu | ıman Exposure S | Specified in A | NSI/IEEE C | 95.1-1992 |
--|------------------|-----------------|----------------|------------|-----------| |--|------------------|-----------------|----------------|------------|-----------| | | HUMAN EXPO | SURE LIMITS | |---|---|---| | | General Public Exposure
(W/kg) or (mW/g) | Occupational Exposure
(W/kg) or (mW/g) | | SPATIAL PEAK SAR * (Brain) | 1.60 | 8.00 | | SPATIAL AVERAGE SAR **
(Whole Body) | 0.08 | 0.40 | | SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist) | 4.00 | 20.0 | - 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. - 2. The Spatial Average value of the SAR averaged over the whole body. - 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e.as a result of employment or occupation). #### 9. FCC MEASUREMENT PROCEDURES #### 9.1 Measured and Reported SAR Per FCC KDB Publication 447498 D01v06, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported SAR. The highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03. #### 9.2 Procedures Used to Establish RF Signal for SAR The following procedures are according to FCC KDB Publication 941225 D01v03r01. Devices under test were evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device was tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviated by more than 5%, the SAR test and drift measurements were repeated. #### 9.3 SAR Testing with 802.11 Transmitters Normal network operating configurations are not suitable for measuring the SAR of 802.11 b/g/n transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227D01v02r02 for more details. #### 9.3.1 General Device Setup Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements. #### 9.3.2 U-NII and U-NII-2A For devices that operate in only one of the U-NII-1 and U-NII-2A bands, the normally required SAR procedures for OFDM configurations are applied. For devices that operate in both U-NII bands using the same transmitter and antenna(s), SAR test reduction is determined according to the following, with respect to the highest reported SAR and maximum output power specified for production units. The procedures are applied independently to each exposure configuration; for example, head, body, hotspot mode etc. Report No.: DRRFCC1709-0100 - 1) When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR. - 2) When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, each band is tested independently for SAR. #### 9.3.3 U-NII-2C and U-NII-3 The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Rader (TDWR) restriction applies, the channels at 5.60 – 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification. Unless band gap channels are permanently disabled, SAR must be considered for these channels. When band gap channels are disabled, each band is tested independently according to the normally required OFDM SAR measurements and probe calibration frequency points requirements. #### 9.3.4 Initial Test Position Procedure For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all position in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR position until the reported SAR result is ≤ 0.8 W/kg or all test position are measured. #### 9.3.5 2.4 GHz SAR Test Requirements SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following: - 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration. - 2) When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing. 2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. #### 9.3.6 OFDM Transmission Mode and SAR Test Channel Selection For the 2.4 GHz and 5 GHz bands, when the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a and 802.11n or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n or 802.11g then 802.11n is used for SAR measurement. When the maximum output power ware the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel. #### 9.3.7 Initial Test Configuration Procedure For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, and lowest data rate. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration. When the reported SAR \leq 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is \leq 1.2 W/kg or all channels are measured. #### 9.3.8 Subsequent Test Configuration Procedures For OFDM configurations, in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position
or the initial test position procedure, when applicable. When the highest reported SAR for the initial test configuration, adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power is ≤ 1.2 W/kg, no additional SAR testing for the subsequent test configurations is required. # 10. RF CONDUCTED POWERS #### **10.1 WLAN Conducted Powers** | | _ | | | onducted Power (dBn | 1) | | | | | | |---------|-------|---------|------------------|---------------------|-------|-------|--|--|--|--| | Mode | Freq. | Channel | Data Rate (Mbps) | | | | | | | | | (MHz | | 1 | 1 | 2 | 5.5 | 11 | | | | | | | 2412 | 1 | 15.31 | 15.22 | 15.25 | 15.26 | | | | | | 802.11b | 2437 | 6 | 14.95 | 14.88 | 14.81 | 14.91 | | | | | | | 2462 | 11 | <u>16.14</u> | 16.11 | 16.05 | 16.09 | | | | | Table 10.1.1 IEEE 802.11b Average RF Power | | | | 802.11g (2.4 GHz) Conducted Power (dBm) | | | | | | | | | |---------|-------|---------|---|-------|-------|-------|-------|-------|-------|-------|--| | Mode | Freq. | Channel | Data Rate (Mbps) | | | | | | | | | | | (MHz) | | 6 | 9 | 12 | 18 | 24 | 36 | 48 | 54 | | | | 2412 | 1 | 14.77 | 14.71 | 14.75 | 14.66 | 14.70 | 14.69 | 14.62 | 14.65 | | | 802.11g | 2437 | 6 | 14.23 | 14.21 | 14.15 | 14.11 | 14.16 | 14.19 | 14.20 | 14.15 | | | | 2462 | 11 | 13.38 | 13.33 | 13.29 | 13.19 | 13.22 | 13.31 | 13.35 | 13.30 | | Table 10.1.2 IEEE 802.11g Average RF Power | | Freq. | Channel | 802.11n HT20 (2.4 GHz) Conducted Power (dBm) | | | | | | | | | |---------|-------|---------|--|-------|-------|-------|-------|-------|-------|-------|--| | Mode | | | Data Rate (Mbps) | | | | | | | | | | | (MHz) | | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | 000.44 | 2412 | 1 | 13.87 | 13.81 | 13.77 | 13.80 | 13.69 | 13.71 | 13.77 | 13.78 | | | 802.11n | 2437 | 6 | 13.31 | 13.22 | 13.25 | 13.19 | 13.21 | 13.26 | 13.25 | 13.22 | | | (HT-20) | 2462 | 11 | 12.48 | 12.44 | 12.41 | 12.38 | 12.33 | 12.36 | 12.41 | 12.45 | | Table 10.1.3 IEEE 802.11n HT20 Average RF Power | | _ | | | | 802.11a (5 | GHz) Con | ducted Pov | wer (dBm) | | | |---------|-------|---------|--------------|-------|------------|----------|------------|-----------|-------|-------| | Mode | Freq. | Channel | | | | Data Rat | e (Mbps) | | | | | | (MHz) | | 6 | 9 | 12 | 18 | 24 | 36 | 48 | 54 | | | 5180 | 36 | 12.71 | 12.59 | 12.62 | 12.48 | 12.66 | 12.62 | 12.62 | 12.65 | | | 5200 | 40 | 12.93 | 12.84 | 12.80 | 12.69 | 12.84 | 12.82 | 12.87 | 12.86 | | | 5220 | 44 | 12.88 | 12.76 | 12.70 | 12.66 | 12.66 | 12.86 | 12.68 | 12.64 | | | 5240 | 48 | 12.87 | 12.69 | 12.69 | 12.82 | 12.85 | 12.69 | 12.75 | 12.79 | | | 5260 | 52 | 12.88 | 12.73 | 12.80 | 12.84 | 12.69 | 12.87 | 12.73 | 12.66 | | | 5280 | 56 | 12.89 | 12.76 | 12.72 | 12.65 | 12.76 | 12.84 | 12.78 | 12.74 | | | 5300 | 60 | 12.94 | 12.79 | 12.90 | 12.90 | 12.76 | 12.86 | 12.76 | 12.72 | | 802.11a | 5320 | 64 | 12.56 | 12.51 | 12.46 | 12.51 | 12.37 | 12.32 | 12.40 | 12.34 | | | 5500 | 100 | 12.59 | 12.51 | 12.54 | 12.42 | 12.55 | 12.46 | 12.57 | 12.41 | | | 5560 | 112 | 12.44 | 12.31 | 12.26 | 12.37 | 12.21 | 12.20 | 12.38 | 12.34 | | | 5580 | 116 | 12.45 | 12.33 | 12.24 | 12.43 | 12.40 | 12.26 | 12.22 | 12.32 | | | 5700 | 140 | <u>12.95</u> | 12.74 | 12.75 | 12.72 | 12.92 | 12.94 | 12.92 | 12.76 | | | 5745 | 149 | 12.51 | 12.28 | 12.31 | 12.31 | 12.45 | 12.49 | 12.42 | 12.38 | | | 5785 | 157 | 12.61 | 12.42 | 12.43 | 12.52 | 12.44 | 12.54 | 12.40 | 12.52 | | | 5825 | 165 | <u>12.93</u> | 12.73 | 12.78 | 12.78 | 12.86 | 12.87 | 12.83 | 12.73 | Table 10.1.4 IEEE 802.11a Average RF Power | | _ | | | 80 |)2.11n HT2 | 0 (5 GHz) C | onducted | Power (dBı | n) | | |---------|-------|---------|-------|-------|------------|-------------|----------|------------|-------|-------| | Mode | Freq. | Channel | | | | Data Rat | e (Mbps) | | | | | | (MHz) | | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | 5180 | 36 | 12.21 | 11.98 | 11.98 | 11.98 | 12.17 | 12.04 | 12.05 | 12.18 | | | 5200 | 40 | 11.84 | 11.81 | 11.77 | 11.72 | 11.81 | 11.61 | 11.61 | 11.65 | | | 5220 | 44 | 11.75 | 11.51 | 11.73 | 11.63 | 11.63 | 11.55 | 11.52 | 11.73 | | | 5240 | 48 | 11.91 | 11.73 | 11.72 | 11.83 | 11.76 | 11.78 | 11.87 | 11.74 | | | 5260 | 52 | 11.84 | 11.68 | 11.72 | 11.63 | 11.75 | 11.68 | 11.76 | 11.73 | | | 5280 | 56 | 12.55 | 12.45 | 12.40 | 12.52 | 12.36 | 12.35 | 12.54 | 12.33 | | | 5300 | 60 | 12.71 | 12.49 | 12.68 | 12.62 | 12.70 | 12.68 | 12.55 | 12.66 | | 802.11n | 5320 | 64 | 12.58 | 12.54 | 12.46 | 12.52 | 12.40 | 12.44 | 12.54 | 12.44 | | (HT-20) | 5500 | 100 | 12.94 | 12.90 | 12.91 | 12.93 | 12.93 | 12.76 | 12.75 | 12.81 | | | 5560 | 112 | 12.33 | 12.10 | 12.11 | 12.23 | 12.23 | 12.10 | 12.29 | 12.13 | | | 5580 | 116 | 12.41 | 12.38 | 12.20 | 12.37 | 12.22 | 12.23 | 12.30 | 12.24 | | | 5700 | 140 | 12.41 | 12.33 | 12.34 | 12.22 | 12.33 | 12.36 | 12.23 | 12.21 | | | 5745 | 149 | 12.41 | 12.19 | 12.36 | 12.36 | 12.19 | 12.32 | 12.20 | 12.23 | | | 5785 | 157 | 12.67 | 12.63 | 12.60 | 12.59 | 12.59 | 12.57 | 12.60 | 12.52 | | | 5825 | 165 | 12.81 | 12.64 | 12.76 | 12.68 | 12.62 | 12.73 | 12.66 | 12.80 | Table 10.1.5 IEEE 802.11n HT20 Average RF Power | | - | | 802.11n HT40 (5 GHz) Conducted Power (dBm) | | | | | | | | | | | |---------|-------|---------|--|------------------|-------|-------|-------|-------|-------|-------|--|--|--| | Mode | Freq. | Channel | | Data Rate (Mbps) | | | | | | | | | | | | (MHz) | | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | | | | 5190 | 38 | 12.46 | 12.44 | 12.33 | 12.38 | 12.44 | 12.37 | 12.41 | 12.30 | | | | | | 5230 | 46 | 12.29 | 12.10 | 12.21 | 12.15 | 12.14 | 12.20 | 12.26 | 12.14 | | | | | | 5270 | 54 | 12.38 | 12.17 | 12.20 | 12.24 | 12.30 | 12.25 | 12.36 | 12.22 | | | | | 000.44 | 5310 | 62 | 12.10 | 12.05 | 12.08 | 12.00 | 12.04 | 11.99 | 12.09 | 12.00 | | | | | 802.11n | 5510 | 102 | 12.01 | 11.85 | 11.90 | 11.86 | 11.90 | 11.78 | 11.95 | 11.94 | | | | | (HT-40) | 5550 | 110 | 12.44 | 12.22 | 12.21 | 12.31 | 12.32 | 12.35 | 12.22 | 12.32 | | | | | | 5670 | 134 | 12.28 | 12.19 | 12.09 | 12.24 | 12.11 | 12.21 | 12.16 | 12.16 | | | | | | 5755 | 151 | 12.37 | 12.14 | 12.24 | 12.36 | 12.23 | 12.29 | 12.25 | 12.23 | | | | | | 5795 | 159 | 12.47 | 12.32 | 12.41 | 12.31 | 12.45 | 12.33 | 12.29 | 12.45 | | | | Table 10.1.6 IEEE 802.11n HT40 Average RF Power Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v02r02 and October 2012 / April 2013 FCC/TCB Meeting Notes: - Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units. - For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate. - For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations. - For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, duo to an even number of channels, both channels were measured. - Output Power and SAR is not required for 802.11 g/n HT20 channels when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjust SAR is ≤ 1.2 W/kg. - The underlined data rate and channel above were tested for SAR. The average output powers of this device were tested by below configuration. Figure 10.3 Power Measurement Setup #### 10.2 Bluetooth Conducted Powers | Channel | Frequency | Pov | G Output
wer
bps) | Pov | G Output
wer
bps) | Frame AVG Output
Power
(3Mbps) | | | |---------|-----------|-------|-------------------------|-------|-------------------------|--------------------------------------|------|--| | | (MHz) | (dBm) | (mW) | (dBm) | (mW) | (dBm) | (mW) | | | Low | 2402 | 8.56 | 7.18 | 5.61 | 3.64 | 5.68 | 3.70 | | | Mid | 2441 | 8.47 | 7.03 | 5.76 | 3.77 | 5.82 | 3.82 | | | High | 2480 | 8.64 | 7.31 | 5.69 | 3.71 | 5.74 | 3.75 | | Report No.: DRRFCC1709-0100 Table 10.2.1 Bluetooth Frame Average RF Power | Channel | Frequency | | Dutput Power
E) | |---------|-----------|-------|--------------------| | | (MHz) | (dBm) | (mW) | | Low | 2402 | -0.15 | 0.97 | | Mid | 2440 | -0.23 | 0.95 | | High | 2480 | -0.37 | 0.92 | Table 10.2.2 Bluetooth LE Frame Average RF Power #### Bluetooth Conducted Powers procedures - 1. Bluetooth (BDR, EDR) - 1) Enter DUT mode in EUT and operate it. When it operating, The EUT is transmitting at maximum power level and duty cycle fixed. - 2) Instruments and EUT were connected like Figure 10.4(A). - 3) The maximum output powers of BDR(1 Mbps), EDR(2, 3 Mbps) and each frequency were set by a Bluetooth Tester. - 4) Power levels were measured by a Power Meter. - 2. Bluetooth (LE) - 1) Enter LE mode in EUT and operate it. When it operating, The EUT is transmitting at maximum power level and duty cycle fixed. - 2) Instruments and EUT were connected like Figure 10.4(B). - 3) The average conducted output powers of LE and each frequency can measurement according to setting program in EUT. - 4) Power levels were measured by a Power Meter. Figure 10.2.1 Average Power Measurement Setup The average conducted output powers of Bluetooth were measured using above test setup and a wideband gated RF power meter when the EUT is transmitting at its maximum power level. ### 11. SYSTEM VERIFICATION #### 11.1 Tissue Verification | | | | | MEASU | IRED TISSUE | PARAMETERS | | | | | |---------------|----------------|----------------------|---------------------
--------------------------------|---|------------------------------------|---|--------------------------------------|------------------------|-----------------------| | Date(s) | Tissue
Type | Ambient
Temp.[°C] | Liquid
Temp.[°C] | Measured
Frequency
[MHz] | Target
Dielectric
Constant,
εr | Target
Conductivity,
σ (S/m) | Measured
Dielectric
Constant,
εr | Measured
Conductivity,
σ (S/m) | Er
Deviation
[%] | σ
Deviation
[%] | | | | | | 2412.0 | 39.270 | 1.766 | 38.338 | 1.808 | -2.37 | 2.38 | | Jul. 17. 2017 | 2450 | 21.7 | 21.4 | 2437.0 | 39.220 | 1.788 | 38.250 | 1.837 | -2.47 | 2.74 | | Jul. 17. 2017 | Head | 21.7 | 21.4 | 2450.0 | 39.200 | 1.800 | 38.209 | 1.853 | -2.53 | 2.94 | | | | | | 2462.0 | 39.180 | 1.813 | 38.176 | 1.866 | -2.56 | 2.92 | | | | | | 2402.0 | 52.760 | 1.904 | 51.997 | 1.869 | -1.45 | -1.84 | | | | | | 2412.0 | 52.750 | 1.914 | 51.968 | 1.880 | -1.48 | -1.78 | | | 2450 | | | 2437.0 | 52.720 | 1.938 | 51.904 | 1.908 | -1.55 | -1.55 | | Jul. 17. 2017 | Body | 21.7 | 21.6 | 2441.0 | 52.710 | 1.941 | 51.894 | 1.912 | -1.55 | -1.49 | | | Doay | | | 2450.0 | 52.700 | 1.950 | 51.871 | 1.922 | -1.57 | -1.44 | | | | | | 2462.0 | 52.680 | 1.967 | 51.845 | 1.934 | -1.59 | -1.68 | | | | | | 2480.0 | 52.660 | 1.993 | 51.792 | 1.953 | -1.65 | -2.01 | | | | | | 5260.0 | 35.940 | 4.720 | 35.840 | 4.861 | -0.28 | 2.99 | | Jul. 18. 2017 | 5300 | 21.4 | 21.3 | 5280.0 | 35.920 | 4.740 | 35.808 | 4.887 | -0.31 | 3.10 | | | Head | | | 5300.0 | 35.900 | 4.760 | 35.778 | 4.905 | -0.34 | 3.05 | | | | | | 5320.0 | 35.880 | 4.780 | 35.731 | 4.931 | -0.42 | 3.16 | | | | | | 5260.0 | 48.930 | 5.369 | 47.250 | 5.249 | -3.43 | -2.24 | | Jul. 18. 2017 | 5300 | 21.4 | 21.1 | 5280.0 | 48.910 | 5.393 | 47.215 | 5.278 | -3.47 | -2.13 | | | Body | | | 5300.0 | 48.880 | 5.416 | 47.183 | 5.302 | -3.47 | -2.10 | | | | | | 5320.0 | 48.850 | 5.439 | 47.143 | 5.330 | -3.49 | -2.00 | | | | | | 5500.0 | 35.650 | 4.965 | 35.325 | 5.078 | -0.91 | 2.28 | | | 5600 | | | 5560.0 | 35.560 | 5.028 | 35.214 | 5.150 | -0.97 | 2.43 | | Jul. 19 2017 | Head | 21.3 | 21.0 | 5580.0 | 35.530 | 5.049 | 35.174 | 5.175 | -1.00 | 2.50 | | | ricau | | | 5600.0 | 35.500 | 5.070 | 35.137 | 5.203 | -1.02 | 2.62 | | | | | | 5700.0 | 35.400 | 5.170 | 34.962 | 5.326 | -1.24 | 3.02 | | | | | | 5500.0 | 48.610 | 5.650 | 46.814 | 5.579 | -3.69 | -1.26 | | | | | | 5560.0 | 48.530 | 5.720 | 46.709 | 5.658 | -3.75 | -1.08 | | Jul. 18. 2017 | 5600 | 21.4 | 21.1 | 5580.0 | 48.500 | 5.743 | 46.667 | 5.686 | -3.78 | -0.99 | | | Body | | | 5600.0 | 48.470 | 5.766 | 46.628 | 5.716 | -3.80 | -0.87 | | | | | | 5700.0 | 48.340 | 5.883 | 46.450 | 5.853 | -3.91 | -0.51 | | | | | | 5745.0 | 35.360 | 5.215 | 34.784 | 5.257 | -1.63 | 0.81 | | | 5800 | | | 5785.0 | 35.320 | 5.255 | 34.719 | 5.302 | -1.70 | 0.89 | | Jul. 20. 2017 | Head | 20.7 | 20.5 | 5800.0 | 35.300 | 5.270 | 34.690 | 5.320 | -1.73 | 0.95 | | | | | | 5825.0 | 35.280 | 5.296 | 34.653 | 5.352 | -1.78 | 1.06 | | | | | | 5745.0 | 48.270 | 5.936 | 47.192 | 5.912 | -2.23 | -0.40 | | | 5800 | | | 5785.0 | 48.220 | 5.982 | 47.126 | 5.964 | -2.27 | -0.30 | | Jul. 20. 2017 | Body | 20.7 | 20.6 | 5800.0 | 48.200 | 6.000 | 47.097 | 5.986 | -2.29 | -0.23 | | | , | | | 5825.0 | 48.170 | 6.029 | 47.056 | 6.023 | -2.31 | -0.23 | | - | <u> </u> | <u> </u> | | | | | | as used to be | | | Report No.: DRRFCC1709-0100 The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB 865664 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software. Extremity SAR was tested using body-equivalent tissue dielectric parameters found in KDB Publication 648474D04v01r03. #### **Measurement Procedure for Tissue verification:** - 1) The network analyzer and probe system was configured and calibrated. - The probe was immersed in the sample which was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle. - 3) The complex admittance with respect to the probe aperture was measured - The complex relative permittivity , for example from the below equation (Pournaropoulos and Misra): Misra): $$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$ where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + {\rho'}^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$. #### 11.2 Test System Verification Prior to assessment, the system is verified to the ± 10 % of the specifications at 750 MHz, 835 MHz, 1900 MHz, 2450 MHz, 2600 MHz and 5GHz by using the SAR Dipole kit(s). (Graphic Plots Attached) Table 11.2.1 System Verification Results (1g) | | | | SYST | EM DIPO | LE VERIFIC | CATION TAR | RGET & M | IEASURE | D | | | | |--------------------|----------------|---------------------|---------------|----------------|--------------------------|-------------------------|--------------|------------------------|--|---|--|---------------| | SAR
System
| Freq.
[MHz] | SAR
Dipole kits | Date(s) | Tissue
Type | Ambient
Temp.
[°C] | Liquid
Temp.
[°C] | Probe
S/N | Input
Power
(mW) | 1 W
Target
SAR _{1g}
(W/kg) | Measured
SAR _{1g}
(W/kg) | 1 W
Normalized
SAR _{1g}
(W/kg) | Deviation [%] | | С | 2450 | D2450V2,
SN: 920 | Jul. 17. 2017 | Head | 21.7 | 21.4 | 3866 | 250 | 52.5 | 13.60 | 54.40 | 3.62 | | С | 2450 | D2450V2,
SN: 920 | Jul. 17. 2017 | Body | 21.7 | 21.4 | 3866 | 250 | 51.0 | 12.70 | 50.80 | -0.39 | | С | 5300 | D5GHzV2,
SN:1103 | Jul. 18. 2017 | Head | 21.4 | 21.3 | 3916 | 100 | 84.1 | 8.59 | 85.90 | 2.14 | | С | 5300 | D5GHzV2,
SN:1103 | Jul. 18. 2017 | Body | 21.4 | 21.1 | 3916 | 100 | 76.7 | 7.96 | 79.60 | 3.78 | | С | 5600 | D5GHzV2,
SN:1103 | Jul. 19. 2017 | Head | 21.3 | 21.0 | 3916 | 100 | 84.5 | 8.06 | 80.60 | -4.62 | | С | 5600 | D5GHzV2,
SN:1103 | Jul. 18. 2017 | Body | 21.4 | 21.1 | 3916 | 100 | 80.1 | 7.76 | 77.60 | -3.12 | | С | 5800 | D5GHzV2,
SN:1103 | Jul. 20. 2017 | Head | 20.7 | 20.5 | 3916 | 100 | 81.1 | 7.72 | 77.20 | -4.81 | | С | 5800 | D5GHzV2,
SN:1103 | Jul. 20. 2017 | Body | 20.7 | 20.6 | 3916 | 100 | 77.5 | 7.73 | 77.30 | -0.26 | Table 11.2.2 System Verification Results (10g) | | | | | | | | | (| | | | | |--------------------|----------------|---------------------|---------------|----------------|--------------------------|-------------------------|--------------|------------------------|---|--|---|------------------| | | | | SYST | EM DIPO | LE VERIFIC | CATION TAP | RGET & N | IEASURE | D | | | | | SAR
System
| Freq.
[MHz] | SAR
Dipole kits | Date(s) | Tissue
Type | Ambient
Temp.
[°C] | Liquid
Temp.
[°C] | Probe
S/N | Input
Power
(mW) | 1 W
Target
SAR _{10g}
(W/kg) | Measured
SAR _{10g}
(W/kg) | 1 W
Normalized
SAR _{10g}
(W/kg) | Deviation
[%] | | С | 2450 | D2450V2,
SN: 920 | Jul. 17. 2017 | Body | 21.7 | 21.4 | 3866 | 250 | 24.1 | 5.85 | 23.40 | -2.90 | | С | 5300 | D5GHzV2,
SN:1103 | Jul. 18. 2017 | Body | 21.4 | 21.1 | 3916 | 100 | 21.6 | 2.30 | 23.00 | 6.48 | | С | 5600 | D5GHzV2,
SN:1103 | Jul. 18. 2017 | Body | 21.4 | 21.1 | 3916 | 100 | 22.4 | 2.25 | 22.50 | 0.45 | | С | 5800 | D5GHzV2,
SN:1103 | Jul. 20. 2017 | Body | 20.7 | 20.6 | 3916 | 100 | 21.5 | 2.24 | 22.40 | 4.19 | Note1 : System Verification was measured with input 250 mW, 100 mW (5200-5800 MHz) and normalized to 1W. Note2 : To confirm the proper SAR liquid depth, the z-axis plots from the system verifications were included since the system verifications were performed using the same liquid, probe and DAE as the SAR tests in the same time period. Note3: Full system validation status and results can be found in Attachment 3. Figure 11.1 Dipole Verification Test Setup Diagram & Photo ### 12. SAR TEST RESULTS #### 12.1 Head SAR Results #### Table 12.1.1 DTS Head SAR Report No.: DRRFCC1709-0100 | | | | | | | MEASURE | MENT RESU | LTS | | | | | | | | |--|------|---------|-----------------------------|--------------------|----------------|---------------------|------------------|--------------------------|--------------|---------------|-----------|-------------------|----------------------------|---------------------|-----------| | FREQU | ENCY | Mode | Maximum
Allowed
Power | Conducted
Power | Drift
Power | Phantom
Position | Device
Serial | Peak SAR of
Area Scan | Data
Rate | Duty
Cycle | 1g
SAR | Scaling
Factor | Scaling
Factor
(Duty | 1g
Scaled
SAR | Plot
s | | MHz | Ch | | [dBm] | [dBm] | [dB] | Position | Number | Area Scan | [Mbps] | Cycle | (W/kg) | Factor | Cycle) | (W/kg) | # | | 2462 | 11 | 802.11b | 16.5 | 16.14 | 0.070 | Left Touch | FCC #1 | 0.049 | 1 | 97.8 | 0.035 | 1.086 | 1.022 | 0.039 | | | 2462 | 11 | 802.11b | 16.5 | 16.14 | FCC #1 | 0.074 | 1 | 97.8 | 0.069 | 1.086 | 1.022 | 0.077 | | | | | 2462 11 802.11b
16.5 16.14 -0.030 Right Touch 2462 11 802.11b 16.5 16.14 0.050 Left Tilt | | | | | | | | 0.045 | 1 | 97.8 | 0.044 | 1.086 | 1.022 | 0.049 | | | 2462 | 11 | 802.11b | FCC #1 | 0.084 | 1 | 97.8 | 0.081 | 1.086 | 1.022 | 0.090 | A1 | | | | | | | | | ANSI / IEEE C | | | | | | ead | | | | | | | | | | | | Spatial Peak | | | | | | | | g (mW/g) | | | | | | | Uncont | rolled Exposu | re/General Popu | ulation Exp | oosure | | | | av | eraged o | over 1 grai | n | | | Note(s): 1. Highest reported SAR is ≤ 0.4 W/kg. Therefore, further SAR measurements within this exposure condition are not required. | | | | | | Adjusted | d SAR results | for OFDM SAR | | | | | | |--------|------|---------------|------------|-----------------------------|---------------------|--------------------|-----------------|---------|------------------------------|------------------|-----------------------|-----------------------| | FREQUE | NCY | Mode/ Antenna | Service | Maximum
Allowed
Power | 1g
Scaled
SAR | FREQUENCY
[MHz] | Mode | Service | Maximum
Allowed
Power | Ratio of OFDM to | 1g
Adjusted
SAR | Determine OFDM
SAR | | MHz | Ch | | | [dBm] | (W/kg) | [minz] | | | [dBm | DSSS | (W/kg) | OAIT | | 2462 | 11 | 802.11b | DSSS | 16.5 | 0.090 | 2437 | 802.11g | OFDM | 15.0 | 0.708 | 0.064 | X | | 2462 | | | | | | | 802.11n
HT20 | OFDM | 14.0 | 0.562 | 0.051 | X | | | Unce | ANSI / IEEE C | Spatial Pe | ak | | | | | He
1.6 W/kg
averaged o | (mW/g) | | | Note: SAR is not required for the following 2.4 GHz OFDM conditions. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. #### Table 10.1.2 UNII Head SAR Report No.: DRRFCC1709-0100 | | | | | | | MEASURE | MENT RESU | LTS | | | | | | | | |-------|---|---------|-----------------------------|--------------------|----------------|---------------------|----------------------------|-----------------------------|------------------------|---------------|---------------------|-------------------|----------------------------|---------------------|-----------| | FREQU | | Mode | Maximum
Allowed
Power | Conducted
Power | Drift
Power | Phantom
Position | Device
Serial
Number | Peak SAR
of
Area Scan | Data
Rate
[Mbps] | Duty
Cycle | 1g
SAR
(W/kg) | Scaling
Factor | Scaling
Factor
(Duty | 1g
Scaled
SAR | Plot
s | | MHz | Ch | | [dBm] | [dBm] | [dB] | | Number | Area Scali | [squivi] | | (W/Kg) | | Cycle) | (W/kg) | # | | 5300 | 60 | 802.11a | 13.0 | 12.94 | 0.000 | Left Touch | FCC #1 | 0.099 | 6 | 86.9 | 0.056 | 1.014 | 1.151 | 0.065 | | | 5300 | 60 802.11a 13.0 12.94 0.110 Right Touch | | | | | | | 0.072 | 6 | 86.9 | 0.027 | 1.014 | 1.151 | 0.032 | | | 5300 | | | | | | | | | 6 | 86.9 | 0.106 | 1.014 | 1.151 | 0.124 | A2 | | 5300 | 60 | 802.11a | 13.0 | FCC #1 | 0.114 | 6 | 86.9 | 0.084 | 1.014 | 1.151 | 0.098 | | | | | | | ANSI / IEEE C95.1-1992- SAFETY LIMIT | | | | | | | | - | - | He | ad | | | | | | | | : | Spatial Peak | | | | | | | 1.6 W/k | g (mW/g) | | | | | | | Uncont | rolled Exposu | re/General Popu | ulation Exp | posure | | | | | averaged o | | n | | | Note(s): ^{1.} Highest reported SAR is ≤ 0.4 W/kg. Therefore, further SAR measurements within this exposure condition are not required. | | | | | Adju | sted SAR re | esults for UN | II-1 and UNII-2 | SAR | | | | | |--------|------|---------------|-------------|-----------------------------|---------------------|--------------------|-----------------|---------|-----------------------------|--------------------------------|-----------------------|-------------------------------------| | FREQUE | ENCY | Mode/ Antenna | Service | Maximum
Allowed
Power | 1g
Scaled
SAR | FREQUENCY
[MHz] | Mode | Service | Maximum
Allowed
Power | Adjusted
Factor | 1g
Adjusted
SAR | SAR for the band with lower maximum | | MHz | Ch | | | [dBm] | (W/kg) | [WITE] | | | [dBm | 1 actor | (W/kg) | output power | | 5300 | 60 | 802.11a | OFDM | 13.0 | 0.124 | 5200 | 802.11a | OFDM | 13.0 | 1.000 | 0.124 | X | | | Un | ANSI / IEEE | Spatial Pea | | | | | | 1.6 W/kg | ead
g (mW/g)
over 1 gram | | | Note(s): #### Table 10.1.3 UNII Head SAR | | | | | | | MEASURE | MENT RESU | LTS | | | | | | | | |-------|-----|---------|-----------------------------|---|------------------------|---------------------|----------------------------|-----------------------------|------------------------|---------------|---------------------|--------------------------------|----------------------------|---------------------|------------| | FREQU | | Mode | Maximum
Allowed
Power | Conducted
Power
[dBm] | Drift
Power
[dB] | Phantom
Position | Device
Serial
Number | Peak SAR
of
Area Scan | Data
Rate
[Mbps] | Duty
Cycle | 1g
SAR
(W/kg) | Scaling
Factor | Scaling
Factor
(Duty | 1g
Scaled
SAR | Plots
| | MHz | Ch | | [dBm] | [ubiii] | [ub] | | Number | Alea Scall | [winh2] | | (W/Kg) | | Cycle) | (W/kg) | | | 5700 | 140 | 802.11a | 13.0 | 12.95 | 0.000 | Left Touch | FCC #1 | 0.057 | 6 | 86.9 | 0.027 | 1.012 | 1.151 | 0.031 | | | 5700 | 140 | 802.11a | 13.0 | 12.95 | 0.010 | Right Touch | FCC #1 | 0.017 | 6 | 86.9 | 0.040 | 1.012 | 1.151 | 0.047 | | | 5700 | 140 | 802.11a | 13.0 | 12.95 | Left Tilt | FCC #1 | 0.050 | 6 | 86.9 | 0.034 | 1.012 | 1.151 | 0.040 | | | | 5700 | 140 | 802.11a | 13.0 | 12.95 | 0.070 | Right Tilt | FCC #1 | 0.077 | 6 | 86.9 | 0.042 | 1.012 | 1.151 | 0.049 | А3 | | 5825 | 165 | 802.11a | 13.0 | 12.93 | Left Touch | FCC #1 | 0.109 | 6 | 86.9 | 0.065 | 1.016 | 1.151 | 0.076 | | | | 5825 | 165 | 802.11a | 13.0 | 12.93 | 0.080 | Right Touch | FCC #1 | 0.080 | 6 | 86.9 | 0.031 | 1.016 | 1.151 | 0.036 | | | 5825 | 165 | 802.11a | 13.0 | 12.93 | 0.000 | Left Tilt | FCC #1 | 0.142 | 6 | 86.9 | 0.122 | 1.016 | 1.151 | 0.143 | A4 | | 5825 | 165 | 802.11a | FCC #1 | 0.126 | 6 | 86.9 | 0.097 | 1.016 | 1.151 | 0.113 | | | | | | | | | | 5 | 95.1-1992– SAFI
Spatial Peak
Ire/General Popu | | | | | | | 1.6 W/kg | ead
g (mW/g)
over 1 gran | n | | | Note(s): ^{1.} U-NII-1 and U-NII-2A Bands: When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration. ^{1.} Highest reported SAR is \leq 0.4 W/kg. Therefore, further SAR measurements within this exposure condition are not required. # 12.2 Standalone Body-Worn SAR Worn SAR Results #### Table 12.2.1 DTS Body-Worn SAR Report No.: DRRFCC1709-0100 | | | | | | | MEASURE | MENT RESULT | s | | | | | | | | |--|--|---------|-----------------------------|-----------------|----------------|---------------------|------------------|--------------------------|--------------|---------------|-----------|-------------------|----------------------------|---------------|-------| | FREQUE | NCY | Mode | Maximum
Allowed
Power | Conducted Power | Drift
Power | Phantom
Position | Device
Serial | Peak SAR of
Area Scan | Data
Rate | Duty
Cycle | 1g
SAR | Scaling
Factor | Scaling
Factor
(Duty | SAR
(W/kg) | Plots | | MHz | Ch | | [dBm] | [dBm] | [dB] | FOSITION | Number | Area Scall | [Mbps] | Cycle | (W/kg) | i actor | Cycle) | (W/Kg) | " | | 2462 | 11 | 802.11b | 16.5 | 16.14 | 0.020 | 15 mm
[Front] | FCC #1 | 0.041 | 1 | 97.8 | 0.036 | 1.086 | 1.022 | 0.040 | | | 2462 | 62 11 802.11b 16.5 16.14 -0.110 15 mm [Rear] | | | | | | | 0.088 | 1 | 97.8 | 0.081 | 1.086 | 1.022 | 0.090 | A5 | | 2462 11 802.11b 16.5 16.14 -0.110 [Rear] 2462 11 802.11b 16.5 16.14 0.100 15 mm [Rear] | | | | | | | | 0.064 | 1 | 97.8 | 0.062 | 1.086 | 1.022 | 0.069 | | | | ANSI / IEEE C95.1-1992- SAFETY LIMIT | | | | | | | | | | Boo | ly | | | | | | | | | patial Peak | | | | | | | .6 W/kg | | | | | | | | Uncontr | olled Exposur | e/General Popul | ation Expo | osure | | | | ave | eraged ov | er 1 gram | | | | #### Note(s): - 1. Highest reported SAR is ≤ 0.4 W/kg. Therefore, further SAR measurements within this exposure condition are not required. - 2. Blue entries represent hand strap measurements. | | | | | | Adjusted | d SAR results | for OFDM SAR | | | | | | |-----------------------------------|------------|------------------------------|------------|--------------------------------------|-------------------------------|--------------------|-----------------|---------|-------------------------------------|-----------------------------|---------------------------------|-----------------------| | FREQUE | ENCY
Ch | Mode/ Antenna | Service | Maximum
Allowed
Power
[dBm] | 1g
Scaled
SAR
(W/kg) | FREQUENCY
[MHz] | Mode | Service | Maximum
Allowed
Power
[dBm | Ratio of
OFDM to
DSSS | 1g
Adjusted
SAR
(W/kg) | Determine OFDM
SAR | | 2462 | 11 | 802.11b | DSSS | 16.5 | 0.090 | 2437 | 802.11g | OFDM | 15.0 | 0.708 | 0.064 | X | | 2462 11 802.11b DSSS 16.5 0.090 2 | | | | | | | 802.11n
HT20 | OFDM | 14.0 | 0.562 | 0.051 | X | | | Unc | ANSI / IEEE Controlled Expos | Spatial Pe | ak | | | | _ | Bo
1.6 W/kg
averaged o | (mW/g) | - | | Note: SAR is not required for the following 2.4 GHz OFDM conditions. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. #### Table 12.2.2 UNII Body-Worn SAR | | | | | | |
MEASURE | MENT RESU | LTS | | | | | | | | |-------|--|---------|-----------------------------|--------------------|----------------|---------------------|------------------|----------------|--------------|---------------|------------|-------------------|----------------------------|---------------------|-------| | FREQU | ENCY | Mode | Maximum
Allowed
Power | Conducted
Power | Drift
Power | Phantom
Position | Device
Serial | Peak SAR
of | Data
Rate | Duty
Cycle | 1g
SAR | Scaling
Factor | Scaling
Factor
(Duty | 1g
Scaled
SAR | Plots | | MHz | Ch | | [dBm] | [dBm] | [dB] | 1 comon | Number | Area Scan | [Mbps] | Cy o.c | (W/kg) | r doto: | Cycle) | (W/kg) | | | 5300 | 60 | 802.11a | 13.0 | 12.94 | FCC #1 | 0.019 | 6 | 86.9 | 0.020 | 1.014 | 1.151 | 0.023 | | | | | 5300 | 60 802.11a 13.0 12.94 0.070 From the control of | | | | | | FCC #1 | 0.138 | 6 | 86.9 | 0.142 | 1.014 | 1.151 | 0.166 | A6 | | 5300 | 60 | 802.11a | 13.0 | 12.94 | FCC #1 | 0.087 | 6 | 86.9 | 0.086 | 1.014 | 1.151 | 0.100 | | | | | | | | ANSI / IEEE C | | | | | Во | ody | | | | | | | | | | | ; | Spatial Peak | | | | | | | 1.6 W/k | g (mW/g) | | | | | | | Uncont | trolled Exposu | re/General Pop | ulation Exp | posure | | | | | averaged (| | m | | | #### Note(s) - 1. Highest reported SAR is ≤ 0.4 W/kg. Therefore, further SAR measurements within this exposure condition are not required. - 2. Blue entries represent hand strap measurements. | Adjusted SAR results for UNII-1 and UNII-2A SAR | | | | | | | | | | | | | |---|----|---------------|---|-----------------------------|---------------------|--------------------|---------|---------|-----------------------------|--------------------|-----------------------|-------------------------------------| | FREQUENCY | | Mode/ Antenna | Service | Maximum
Allowed
Power | 1g
Scaled
SAR | FREQUENCY
[MHz] | Mode | Service | Maximum
Allowed
Power | Adjusted
Factor | 1g
Adjusted
SAR | SAR for the band with lower maximum | | MHz | Ch | | | [dBm] | (W/kg) | [WHZ] | | | [dBm | i actor | (W/kg) | output power | | 5300 | 60 | 802.11a | OFDM | 13.0 | 0.166 | 5200 | 802.11a | OFDM | 13.0 | 1.000 | 0.166 | X | | | Un | ANSI / IEEE | Body
1.6 W/kg (mW/g)
averaged over 1 gram | | | | | | | | | | #### Vote(s): ^{1.} U-NII-1 and U-NII-2A Bands: When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration. #### Table 12.2.3 UNII Body-Worn SAR | MEASUREMENT RESULTS | | | | | | | | | | | | | | | | |---|-----|---------|-----------------------------|--------------------|----------------|---------------------|------------------|----------------------|--------------|---------------|-----------|-------------------|----------------------------|---------------------|-------| | FREQUENCY | | Mode | Maximum
Allowed
Power | Conducted
Power | Drift
Power | Phantom
Position | Device
Serial | Peak SAR
of | Data
Rate | Duty
Cycle | 1g
SAR | Scaling
Factor | Scaling
Factor
(Duty | 1g
Scaled
SAR | Plots | | MHz | Ch | | [dBm] | [dBm] | [dB] | . comen | Number | Area Scan | [Mbps] | Gy G.G | (W/kg) | i doto. | Cycle) | (W/kg) | | | 5700 | 140 | 802.11a | 13.0 | 12.95 | 0.050 | 15 mm
[Front] | FCC #1 | 0.024 | 6 | 86.9 | 0.018 | 1.012 | 1.151 | 0.021 | | | 5700 | 140 | 802.11a | 13.0 | 12.95 | -0.020 | 15 mm
[Rear] | FCC #1 | 0.064 | 6 | 86.9 | 0.051 | 1.012 | 1.151 | 0.061 | A7 | | 5700 | 140 | 802.11a | 13.0 | 12.95 | -0.090 | 15 mm
[Rear] | FCC #1 | 0.049 | 6 | 86.9 | 0.038 | 1.012 | 1.151 | 0.045 | | | 5825 | 165 | 802.11a | 13.0 | 12.93 | 0.040 | 15 mm
[Front] | FCC #1 | 0.022 | 6 | 86.9 | 0.025 | 1.016 | 1.151 | 0.029 | | | 5825 | 165 | 802.11a | 13.0 | 12.93 | 0.130 | 15 mm
[Rear] | FCC #1 | 0.162 | 6 | 86.9 | 0.172 | 1.016 | 1.151 | 0.201 | A8 | | 5825 | 165 | 802.11a | 13.0 | 12.93 | 0.010 | 15 mm
[Rear] | FCC #1 | 0.101 | 6 | 86.9 | 0.104 | 1.016 | 1.151 | 0.122 | | | ANSI / IEEE C95.1-1992- SAFETY LIMIT | | | | | | | | Body | | | | | | | | | Spatial Peak | | | | | | | | 1.6 W/kg (mW/g) | | | | | | | | | Uncontrolled Exposure/General Population Exposure | | | | | | | | averaged over 1 gram | | | | | | | | Note(s): 1. Highest reported SAR is ≤ 0.4 W/kg. Therefore, further SAR measurements within this exposure condition are not required. 2. Blue entries represent hand strap measurements. #### 12.3 Standalone Hand SAR Results #### Table 12.3.1 W-LAN Hand SAR Report No.: DRRFCC1709-0100 | | | | | | | MEASURE | MENT RESULT | s | | | | | | | | |--------|---|---------|-----------------------------|--------------------|----------------|---------------------|------------------|--------------------------|--------------|---------------|------------|-------------------|----------------------------|----------------------|-------| | FREQUI | ENCY | Mode | Maximum
Allowed
Power | Conducted
Power | Drift
Power | Phantom
Position | Device
Serial | Peak SAR of
Area Scan | Data
Rate | Duty
Cycle | 10g
SAR | Scaling
Factor | Scaling
Factor
(Duty | 10g
Scaled
SAR | Plots | | MHz | Ch | | [dBm] | [dBm] | [dB] | Position | Number | Area ocan | [Mbps] | Cycle | (W/kg) | 1 actor | Cycle) | SAR | - | | 2462 | 11 | 802.11b | 16.5 | 16.14 | -0.050 | 0 mm
[Top] | FCC #1 | 0.193 | 1 | 97.8 | 0.181 | 1.086 | 1.022 | 0.201 | A9 | | 2462 | 11 | 802.11b | 16.5 | 16.14 | 0.070 | 0 mm
[Front] | FCC #1 | 0.050 | 1 | 97.8 | 0.045 | 1.086 | 1.022 | 0.050 | | | 2462 | 11 | 802.11b | 16.5 | 16.14 | 0.020 | 0 mm
[Rear] | FCC #1 | 0.109 | 1 | 97.8 | 0.103 | 1.086 | 1.022 | 0.114 | | | 2462 | 11 | 802.11b | 16.5 | 16.14 | -0.010 | 0 mm
[Right] | FCC #1 | 0.013 | 1 | 97.8 | 0.012 | 1.086 | 1.022 | 0.013 | | | 2462 | 0 mm | | | | | | | 0.046 | 1 | 97.8 | 0.045 | 1.086 | 1.022 | 0.050 | | | | ANSI / IEEE C95.1-1992- SAFETY LIMIT | | | | | | | | - | - | Hand | i | <u>-</u> | • | | | | Spatial Peak | | | | | | | 4.0 W/kg (mW/g) | | | | | | | | | | Uncontrolled Exposure/General Population Exposure | | | | | | | | | ave | raged ove | r 10 gram | | | | #### Note(s): - Highest reported SAR is ≤ 1.0 W/kg. Therefore, further SAR measurements within this exposure condition are not required. Blue entries represent hand strap measurements. | | Adjusted SAR results for OFDM SAR | | | | | | | | | | | | | |--------|-----------------------------------|------------------------------|---------|-----------------------------|--|--------------------|--|---------|-----------------------------|-----------------------------|------------------------|-----------------------|--| | FREQUE | ENCY | Mode/ Antenna | Service | Maximum
Allowed
Power | 10g
Scaled
SAR | FREQUENCY
[MHz] | Mode | Service | Maximum
Allowed
Power | Ratio of
OFDM to
DSSS | 10g
Adjusted
SAR | Determine OFDM
SAR | | | IVITIZ | Cn | | | [dBm] | (W/kg) | | | | [dBm | | (W/kg) | | | | 2462 | 11 | 802.11b | DSSS | 16.5 | 0.201 | 2437 | 802.11g | OFDM | 15.0 | 0.708 | 0.142 | X | | | 2462 | 11 | 802.11b | DSSS | 16.5 | 0.201 | 2437 | 7 802.11n OFDM 14.0 0.562 0.113 | | | | | | | | | Unc | ANSI / IEEE Controlled Expos | ak | | Hand 4.0 W/kg (mW/g) averaged over 10 gram | | | | | | | | | Note: SAR is not required for the following 2.4 GHz OFDM conditions. When the highest reported
SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 3.0 W/kg. FCC ID: V2X-PM66W Report No.: DRRFCC1709-0100 #### Table 12.3.2 UNII Hand SAR | | | | | | | MEASURE | MENT RESU | LTS | | | | | | | | |--------|---|---------|-----------------------------|--------------------|----------------|---------------------|------------------|-----------------|--------------|---------------|------------|-------------------|----------------------------|----------------------|-------| | FREQUE | NCY | Mode | Maximum
Allowed
Power | Conducted
Power | Drift
Power | Phantom
Position | Device
Serial | Peak SAR
of | Data
Rate | Duty
Cycle | 10g
SAR | Scaling
Factor | Scaling
Factor
(Duty | 10g
Scaled
SAR | Plots | | MHz | Ch | | [dBm] | [dBm] | [dB] | Position | Number | Area Scan | [Mbps] | Cycle | (W/kg) | Factor | Cycle) | (W/kg) | * | | 5300 | 60 | 802.11a | 13.0 | 12.94 | -0.030 | 0 mm
[Top] | FCC #1 | 0.123 | 6 | 86.9 | 0.100 | 1.014 | 1.151 | 0.117 | | | 5300 | 60 | 802.11a | 13.0 | 12.94 | 0.060 | 0 mm
[Front] | FCC #1 | 0.025 | 6 | 86.9 | 0.020 | 1.014 | 1.151 | 0.023 | | | 5300 | 60 | 802.11a | 13.0 | 12.94 | -0.010 | 0 mm
[Rear] | FCC #1 | 0.112 | 6 | 86.9 | 0.112 | 1.014 | 1.151 | 0.131 | A10 | | 5300 | 60 | 802.11a | 13.0 | 12.94 | 0.100 | 0 mm
[Right] | FCC #1 | 0.027 | 6 | 86.9 | 0.018 | 1.014 | 1.151 | 0.021 | | | 5300 | 60 | 802.11a | 13.0 | 12.94 | -0.020 | 0 mm
[Rear] | FCC #1 | 0.040 | 6 | 86.9 | 0.036 | 1.014 | 1.151 | 0.042 | | | | ANSI / IEEE C95.1-1992- SAFETY LIMIT | | | | | | | | | | Ha | ınd | | | _ | | | Spatial Peak | | | | | | | 4.0 W/kg (mW/g) | | | | | | | l | | | Uncontrolled Exposure/General Population Exposure | | | | | | | | | a | veraged o | ver 10 gra | am | | | - Highest reported SAR is ≤ 1.0 W/kg. Therefore, further SAR measurements within this exposure condition are not required. Blue entries represent hand strap measurements. | | Adjusted SAR results for UNII-1 and UNII-2A SAR | | | | | | | | | | | | |-------|--|---------------|---------|-----------------------------|----------------------|--------------------|---------|---------|-----------------------------|--------------------|------------------------|-------------------------------------| | FREQU | ENCY | Mode/ Antenna | Service | Maximum
Allowed
Power | 10g
Scaled
SAR | FREQUENCY
[MHz] | Mode | Service | Maximum
Allowed
Power | Adjusted
Factor | 10g
Adjusted
SAR | SAR for the band with lower maximum | | MHz | Ch | | | [dBm] | (W/kg) | [IWI 12] | | | [dBm | 1 actor | (W/kg) | output power | | 5300 | | | | | | | 802.11a | OFDM | 13.0 | 1.000 | 0.131 | X | | | ANSI / IEEE C95.1-1992- SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Exposure ANSI / IEEE C95.1-1992- SAFETY LIMIT Hand 4.0 W/kg (mW/g) averaged over 10 gram | | | | | | | | | | | | Note(s): 1. U-NII-1 and U-NII-2A Bands: When different maximum output power is specified for the bands, begin SAR measurement in the band with higher than 10 and specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 3.0 W/kg, SAR is not required for the band with lower maximum output power in that test configuration. #### Table 12.3.3 UNII Hand SAR | | | | | | | MEASURE | MENT RESU | LTS | | | | | | | | |--------|---|---------|-----------------------------|-----------------------------|------------------------|---------------------|----------------------------|-----------------------------|------------------------|---------------|----------------------|-------------------|----------------------------|----------------------|------------| | FREQU | ENCY | Mode | Maximum
Allowed
Power | Conducted
Power
[dBm] | Drift
Power
[dB] | Phantom
Position | Device
Serial
Number | Peak SAR
of
Area Scan | Data
Rate
[Mbps] | Duty
Cycle | 10g
SAR
(W/kg) | Scaling
Factor | Scaling
Factor
(Duty | 10g
Scaled
SAR | Plots
| | IVITIZ | CII | | [dBm] | [] | 11 | 0 200 200 | | | [] | | (*****3) | | Cycle) | (W/kg) | | | 5700 | 140 | 802.11a | 13.0 | 12.95 | -0.010 | 0 mm
[Top] | FCC #1 | 0.068 | 6 | 86.9 | 0.053 | 1.012 | 1.151 | 0.062 | A11 | | 5700 | 140 | 802.11a | 13.0 | 12.95 | 0.010 | 0 mm
[Front] | FCC #1 | 0.022 | 6 | 86.9 | 0.013 | 1.012 | 1.151 | 0.015 | | | 5700 | 140 | 802.11a | 13.0 | 12.95 | 0.000 | 0 mm
[Rear] | FCC #1 | 0.069 | 6 | 86.9 | 0.039 | 1.012 | 1.151 | 0.045 | | | 5700 | 140 | 802.11a | 13.0 | 12.95 | 0.090 | 0 mm
[Right] | FCC #1 | 0.029 | 6 | 86.9 | 0.021 | 1.012 | 1.151 | 0.024 | | | 5700 | 140 | 802.11a | 13.0 | 12.95 | 0.000 | 0 mm
[Rear] | FCC #1 | 0.066 | 6 | 86.9 | 0.030 | 1.012 | 1.151 | 0.035 | | | 5825 | 165 | 802.11a | 13.0 | 12.93 | -0.060 | 0 mm
[Top] | FCC #1 | 0.141 | 6 | 86.9 | 0.122 | 1.016 | 1.151 | 0.143 | | | 5825 | 165 | 802.11a | 13.0 | 12.93 | -0.050 | 0 mm
[Front] | FCC #1 | 0.029 | 6 | 86.9 | 0.024 | 1.016 | 1.151 | 0.028 | | | 5825 | 165 | 802.11a | 13.0 | 12.93 | 0.020 | 0 mm
[Rear] | FCC #1 | 0.128 | 6 | 86.9 | 0.136 | 1.016 | 1.151 | 0.159 | A12 | | 5825 | 165 | 802.11a | 13.0 | 12.93 | 0.110 | 0 mm
[Right] | FCC #1 | 0.031 | 6 | 86.9 | 0.021 | 1.016 | 1.151 | 0.025 | | | 5825 | 5825 165 802.11a 13.0 12.93 -0.010 0 mm [Rear] F | | | | | | FCC #1 | 0.046 | 6 | 86.9 | 0.044 | 1.016 | 1.151 | 0.051 | | | | - | | | 95.1-1992- SAFI | ETY LIMIT | - | = | Hand | | | | | | | | | | | | | Spatial Peak | | | | | | | | g (mW/g) | | | | | | Uncontrolled Exposure/General Population Exposure | | | | | | | averaged over 10 gram | | | | | | | | Note(s): 1. Highest reported SAR is ≤ 1.0 W/kg. Therefore, further SAR measurements within this exposure condition are not required. 2. Blue entries represent hand strap measurements. # 12.4 SAR Test Notes #### General Notes: The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication447498 D01v06. Report No.: DRRFCC1709-0100 - 2. Batteries are fully charged at the beginning of the SAR measurements. A standard battery was used for all SAR measurements. - 3. Liquid tissue depth was at least 15.0 cm for all frequencies. - 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units - 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCCKDB Publication 447498 D01v06. - 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 15 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance. - 7. Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported boy-worn SAR was not > 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were performed. #### WLAN Notes: - The initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured. - 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required duo to the maximum allowed powers and the highest reported DSSS SAR when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output and the adjust SAR is ≤ 1.2 W/kg. - 3. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI single transmission chain operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg. - 4. When the maximum reported 1g averaged SAR ≤ 0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test channels were measured. - 5. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor to determine compliance. # 13. MEASUREMENT UNCERTAINTIES #### 2450 MHz Head (SN: 3866) | France Decembring | Uncertainty | Probability | Divisor | (Ci) | Standard | vi 2 or | |-------------------------------------|-------------|--------------|---------|------|----------|---------| | Error Description | value ±% | Distribution | Divisor | 1g | (1g) | Veff | | Measurement System | | | | | | | | Probe calibration | ± 6.0 | Normal | 1 | 1 | ± 6.0 % | 8 | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.5 % | ∞ | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | |
Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Probe modulation response | ± 2.4 | Rectangular | √3 | 1 | ± 1.4 % | ∞ | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.14 % | ∞ | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.5 % | 8 | | RF Ambient Conditions – Noise | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | RF Ambient Conditions – Reflections | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.23 % | ∞ | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.58 % | 8 | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.9 % | 8 | | SAR Scaling | ± 2.0 | Rectangular | √3 | 1 | ± 1.2 % | 8 | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.3 % | ∞ | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.9 % | ∞ | | Liquid conductivity (Meas.) | ± 3.8 | Normal | 1 | 0.64 | ± 3.8 % | ∞ | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 2.9 % | ∞ | | Liquid permittivity (Meas.) | ± 4.0 | Normal | 1 | 0.6 | ± 4.0 % | ∞ | | Temp. unc Conductivity | ± 1.8 | Rectangular | √3 | 0.78 | ± 1.0 % | ∞ | | Temp. unc Permittivity | ± 1.9 | Rectangular | √3 | 0.23 | ± 1.1 % | ∞ | | Combined Standard Uncertainty | | | | | ± 12 % | 330 | | Expanded Uncertainty (k=2) | | | | | ± 24 % | | Report No.: DRRFCC1709-0100 #### 2450 MHz Body (SN: 3866) | Farer December | Uncertainty | Probability | Divisor | (Ci) | Standard | vi 2 or | |-------------------------------------|-------------|--------------|---------|------|----------|---------| | Error Description | value ±% | Distribution | Divisor | 1g | (1g) | Veff | | Measurement System | | | | | | _ | | Probe calibration | ± 6.0 | Normal | 1 | 1 | ± 6.0 % | ∞ | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.5 % | ∞ | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Probe modulation response | ± 2.4 | Rectangular | √3 | 1 | ± 1.4 % | ∞ | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.14 % | ∞ | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.5 % | ∞ | | RF Ambient Conditions – Noise | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | RF Ambient Conditions – Reflections | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.23 % | ∞ | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.58 % | ∞ | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.9 % | ∞ | | SAR Scaling | ± 2.0 | Rectangular | √3 | 1 | ± 1.2 % | ∞ | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.3 % | ∞ | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.9 % | ∞ | | Liquid conductivity (Meas.) | ± 4.1 | Normal | 1 | 0.64 | ± 4.1 % | ∞ | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 2.9 % | ∞ | | Liquid permittivity (Meas.) | ± 4.2 | Normal | 1 | 0.6 | ± 4.2 % | ∞ | | Temp. unc Conductivity | ± 1.8 | Rectangular | √3 | 0.78 | ± 1.0 % | ∞ | | Temp. unc Permittivity | ± 1.8 | Rectangular | √3 | 0.23 | ± 1.0 % | ∞ | | Combined Standard Uncertainty | | | | | ± 12 % | 330 | | Expanded Uncertainty (k=2) | - | | | - | ± 24 % | | #### 5300 MHz Head (SN: 3916) | Free Description | Uncertainty | Probability | Divisor | (Ci) | Standard | vi 2 or | |-------------------------------------|-------------|--------------|---------|------|----------|---------| | Error Description | value ±% | Distribution | DIVISOR | 1g | (1g) | Veff | | Measurement System | | | | | | | | Probe calibration | ± 6.55 | Normal | 1 | 1 | ± 6.6 % | ∞ | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.5 % | ∞ | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Probe modulation response | ± 2.4 | Rectangular | √3 | 1 | ± 1.4 % | ∞ | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.14 % | ∞ | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.5 % | ∞ | | RF Ambient Conditions – Noise | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | RF Ambient Conditions – Reflections | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.23 % | ∞ | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.58 % | ∞ | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.9 % | ∞ | | SAR Scaling | ± 2.0 | Rectangular | √3 | 1 | ± 1.2 % | ∞ | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.3 % | ∞ | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.9 % | ∞ | | Liquid conductivity (Meas.) | ± 4.1 | Normal | 1 | 0.64 | ± 4.1 % | ∞ | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 2.9 % | ∞ | | Liquid permittivity (Meas.) | ± 3.9 | Normal | 1 | 0.6 | ± 3.9 % | ∞ | | Temp. unc Conductivity | ± 2.0 | Rectangular | √3 | 0.78 | ± 1.2 % | 8 | | Temp. unc Permittivity | ± 1.9 | Rectangular | √3 | 0.23 | ± 1.1 % | 8 | | Combined Standard Uncertainty | | | | | ± 13 % | 330 | | Expanded Uncertainty (k=2) | | | - | | ± 25 % | | #### 5300 MHz Body (SN: 3916) | Free Description | Uncertainty | Probability | Divisor | (Ci) | Standard | vi 2 or | |-------------------------------------|-------------|--------------|---------|------|----------|---------| | Error Description | value ±% | Distribution | DIVISOI | 1g | (1g) | Veff | | Measurement System | | | | | | | | Probe calibration | ± 6.55 | Normal | 1 | 1 | ± 6.6 % | ∞ | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.5 % | ∞ | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Probe modulation response | ± 2.4 | Rectangular | √3 | 1 | ± 1.4 % | ∞ | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.14 % | ∞ | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.5 % | ∞ | | RF Ambient Conditions – Noise | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | RF Ambient Conditions – Reflections | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.23 % | ∞ | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.58 % | ∞ | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.9 % | ∞ | | SAR Scaling | ± 2.0 | Rectangular | √3 | 1 | ± 1.2 % | ∞ | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.3 % | ∞ | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.9 % | ∞ | | Liquid conductivity (Meas.) | ± 3.8 | Normal | 1 | 0.64 | ± 3.8 % | ∞ | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 2.9 % | ∞ | | Liquid permittivity (Meas.) | ± 3.9 | Normal | 1 | 0.6 | ± 3.9 % | ∞ | | Temp. unc Conductivity | ± 1.9 | Rectangular | √3 | 0.78 | ± 1.1 % | 8 | | Temp. unc Permittivity | ± 2.0 | Rectangular | √3 | 0.23 | ± 1.2 % | 8 | | Combined Standard Uncertainty | | | | | ± 13 % | 330 | | Expanded Uncertainty (k=2) | | | - | | ± 25 % | | #### 5600 MHz Head (SN: 3916) | From Description | Uncertainty | Probability | Divisor | (Ci) | Standard | vi 2 or | |-------------------------------------|-------------|--------------|---------|------|----------|---------| | Error Description | value ±% | Distribution | Divisor | 1g | (1g) | Veff | | Measurement System | | | | | • | | | Probe calibration | ± 6.55 | Normal | 1 | 1 | ± 6.6 % | ∞ | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.5 % | ∞ | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Probe modulation response | ± 2.4 | Rectangular | √3 | 1 | ± 1.4 % | ∞ | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.14 % | ∞ | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.5 % | ∞ | | RF Ambient Conditions – Noise | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | RF Ambient Conditions – Reflections | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.23 % | ∞ | | Probe Positioning | ± 2.9 |
Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.58 % | ∞ | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.9 % | ∞ | | SAR Scaling | ± 2.0 | Rectangular | √3 | 1 | ± 1.2 % | ∞ | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.3 % | ∞ | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.9 % | ∞ | | Liquid conductivity (Meas.) | ± 4.2 | Normal | 1 | 0.64 | ± 4.2 % | ∞ | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 2.9 % | ∞ | | Liquid permittivity (Meas.) | ± 3.7 | Normal | 1 | 0.6 | ± 3.7 % | ∞ | | Temp. unc Conductivity | ± 2.0 | Rectangular | √3 | 0.78 | ± 1.2 % | ∞ | | Temp. unc Permittivity | ± 1.8 | Rectangular | √3 | 0.23 | ± 1.0 % | ∞ | | Combined Standard Uncertainty | | | | | ± 13 % | 330 | | Expanded Uncertainty (k=2) | | | - | | ± 25 % | | Report No.: DRRFCC1709-0100 #### 5600 MHz Body (SN: 3916) | Free Description | Uncertainty | Probability | Divisor | (Ci) | Standard | vi 2 or | |-------------------------------------|-------------|--------------|---------|------|----------|---------| | Error Description | value ±% | Distribution | DIVISOR | 1g | (1g) | Veff | | Measurement System | | | | | | | | Probe calibration | ± 6.55 | Normal | 1 | 1 | ± 6.6 % | ∞ | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.5 % | ∞ | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Probe modulation response | ± 2.4 | Rectangular | √3 | 1 | ± 1.4 % | ∞ | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.14 % | ∞ | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.5 % | ∞ | | RF Ambient Conditions – Noise | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | RF Ambient Conditions – Reflections | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.23 % | ∞ | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.58 % | ∞ | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.9 % | ∞ | | SAR Scaling | ± 2.0 | Rectangular | √3 | 1 | ± 1.2 % | ∞ | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.3 % | ∞ | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.9 % | ∞ | | Liquid conductivity (Meas.) | ± 3.9 | Normal | 1 | 0.64 | ± 3.9 % | ∞ | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 2.9 % | ∞ | | Liquid permittivity (Meas.) | ± 4.2 | Normal | 1 | 0.6 | ± 4.2 % | ∞ | | Temp. unc Conductivity | ± 2.1 | Rectangular | √3 | 0.78 | ± 1.2 % | 8 | | Temp. unc Permittivity | ± 2.0 | Rectangular | √3 | 0.23 | ± 1.2 % | 8 | | Combined Standard Uncertainty | | | | | ± 13 % | 330 | | Expanded Uncertainty (k=2) | | | - | | ± 25 % | | # 5800 MHz Head (SN: 3916) | Faren Description | Uncertainty | Probability | Distance | (Ci) | Standard | vi 2 or | |-------------------------------------|-------------|--------------|----------|------|----------|---------| | Error Description | value ±% | Distribution | Divisor | 1g | (1g) | Veff | | Measurement System | | | | | • | | | Probe calibration | ± 6.55 | Normal | 1 | 1 | ± 6.6 % | ∞ | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.5 % | ∞ | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Probe modulation response | ± 2.4 | Rectangular | √3 | 1 | ± 1.4 % | ∞ | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.14 % | ∞ | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.5 % | ∞ | | RF Ambient Conditions – Noise | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | RF Ambient Conditions – Reflections | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.23 % | ∞ | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.58 % | ∞ | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.9 % | ∞ | | SAR Scaling | ± 2.0 | Rectangular | √3 | 1 | ± 1.2 % | ∞ | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.3 % | ∞ | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.9 % | ∞ | | Liquid conductivity (Meas.) | ± 4.1 | Normal | 1 | 0.64 | ± 4.1 % | ∞ | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 2.9 % | ∞ | | Liquid permittivity (Meas.) | ± 4.0 | Normal | 1 | 0.6 | ± 4.0 % | ∞ | | Temp. unc Conductivity | ± 1.8 | Rectangular | √3 | 0.78 | ± 1.0 % | ∞ | | Temp. unc Permittivity | ± 1.8 | Rectangular | √3 | 0.23 | ± 1.0 % | ∞ | | Combined Standard Uncertainty | | | | | ± 13 % | 330 | | Expanded Uncertainty (k=2) | | - | - | | ± 25 % | | Report No.: DRRFCC1709-0100 #### 5800 MHz Body (SN: 3916) | Form Description | Uncertainty | Probability | Divisor | (Ci) | Standard | vi 2 or | |-------------------------------------|-------------|--------------|---------|------|----------|---------| | Error Description | value ±% | Distribution | Divisor | 1g | (1g) | Veff | | Measurement System | | | | | • | | | Probe calibration | ± 6.55 | Normal | 1 | 1 | ± 6.6 % | ∞ | | Axial isotropy | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 1 | ± 5.5 % | ∞ | | Boundary Effects | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | Probe modulation response | ± 2.4 | Rectangular | √3 | 1 | ± 1.4 % | ∞ | | Detection limits | ± 0.25 | Rectangular | √3 | 1 | ± 0.14 % | ∞ | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | ∞ | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.46 % | ∞ | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.5 % | ∞ | | RF Ambient Conditions – Noise | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | RF Ambient Conditions – Reflections | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.23 % | ∞ | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.58 % | ∞ | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.9 % | ∞ | | SAR Scaling | ± 2.0 | Rectangular | √3 | 1 | ± 1.2 % | ∞ | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.3 % | ∞ | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 2.9 % | ∞ | | Liquid conductivity (Meas.) | ± 3.9 | Normal | 1 | 0.64 | ± 3.9 % | ∞ | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 2.9 % | ∞ | | Liquid permittivity (Meas.) | ± 4.0 | Normal | 1 | 0.6 | ± 4.0 % | ∞ | | Temp. unc Conductivity | ± 1.9 | Rectangular | √3 | 0.78 | ± 1.1 % | ∞ | | Temp. unc Permittivity | ± 2.0 | Rectangular | √3 | 0.23 | ± 1.2 % | ∞ | | Combined Standard Uncertainty | | | | | ± 13 % | 330 | | Expanded Uncertainty (k=2) | | | | - | ± 25 % | | Report No.: DRRFCC1709-0100 #### 14. CONCLUSION #### **Measurement Conclusion** The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under the worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested. Report No.: DRRFCC1709-0100 Please note that the absorption and distribution of electromagnetic energy in the body are every complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role impossible biological effect are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. #### 15. REFERENCES [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996. Report No.: DRRFCC1709-0100 - [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006. - [3] ANSI/IEEE C95.1-1992, American National Standard safety
levels with respect to human exposure to radiofrequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992. - [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002. - [5] IEEE Standards Coordinating Committee 39 –Standards Coordinating Committee 34 IEEE Std. 1528-2003,Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices. - [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995. - [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113. - [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. -124. - [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175. - [10] Schmid& Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2. - [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct.1996, pp. 1865-1873. - [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23. - [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bio electromagnetics, Canada: 1987, pp. 29-36. - [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995. - [15] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992. - [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992. - [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652. - [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995. - [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone. - [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3 GHz), Feb. 2005. - [21] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radio communication Apparatus (All Frequency Bands) Issue 5, March 2015. - [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2009 - [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225,D01-D07 - [24] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227 D01v02 - [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474D02-D04 - [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04 - [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02 - [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02 - [29] 615223 D01 802 16e WI-Max SAR Guidance v01, Nov. 13, 2009 - [30] Anexo à Resolução No. 533, de 10 de September de 2009. - [31] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body(frequency range of 30 MHz to 6 GHz), Mar. 2010. ## Attachment 1. - Probe Calibration Data Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client DT&C (Dymstec) Certificate No: EX3-3866_May17 #### CALIBRATION CERTIFICATE Object EX3DV4 - SN:3866 Calibration procedure(s) QA CAL-01 v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25 v6 Calibration procedure for dosimetric E-field probes Calibration date: May 31, 2017 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-17 (No. 217-02521/02522) | Apr-18 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-17 (No. 217-02521) | Apr-18 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-17 (No. 217-02525) | Apr-18 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 07-Apr-17 (No. 217-02528) | Apr-18 | | Reference Probe ES3DV2 | SN: 3013 | 31-Dec-16 (No. ES3-3013_Dec16) | Dec-17 | | DAE4 | SN: 660 | 7-Dec-16 (No. DAE4-660_Dec16) | Dec-17 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-16) | In house check: Jun-18 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-16) | In house check: Oct-17 | Calibrated by: Name Function Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: May 31, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-3866_May17 Page 1 of 38 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) Accreditation No.: SCS 0108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossarv: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvE sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization o φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media, - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on
the signal - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). EX3DV4 - SN:3866 May 31, 2017 # Probe EX3DV4 SN:3866 Manufactured: February 2, 2012 Calibrated: May 31, 2017 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: EX3-3866_May17 Page 3 of 38 EX3DV4-SN:3866 May 31, 2017 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3866 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.41 | 0.32 | 0.36 | ± 10.1 % | | DCP (mV) ^B | 98.7 | 104.7 | 105.6 | | Modulation Calibration Parameters | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ^E
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | cw | X | 0.0 | 0.0 | 1.0 | 0.00 | 128.8 | ±3.8 % | | | | Y | 0.0 | 0.0 | 1.0 | | 129.9 | | | | | Z | 0.0 | 0.0 | 1.0 | | 116.6 | | Note: For details on UID parameters see Appendix. #### Sensor Model Parameters | | C1
fF | C2
fF | α
V-1 | T1
ms.V ⁻² | T2
ms.V ⁻¹ | T3
ms | T4
V-2 | T5
V-1 | Т6 | |---|----------|----------|----------|--------------------------|--------------------------|----------|-----------|-----------|-------| | X | 80.45 | 604.4 | 36.15 | 27.57 | 2.71 | 5.008 | 0.000 | 0.922 | 1.011 | | Y | 55.76 | 412.0 | 35.04 | 17.20 | 1.60 | 4.942 | 0.529 | 0.571 | 1.004 | | Z | 46.51 | 343.2 | 34.91 | 16.57 | 1.418 | 4.95 | 1,280 | 0.347 | 1.004 | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ⁶ Numerical linearization parameter: uncertainty not required. [^] The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the fleid value. EX3DV4-SN:3866 May 31, 2017 #### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3866 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|----------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 10.18 | 10.18 | 10.18 | 0.51 | 0.81 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.60 | 9.60 | 9.60 | 0.50 | 0.80 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.45 | 9.45 | 9.45 | 0.48 | 0.80 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.32 | 8.32 | 8.32 | 0.38 | 0.85 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.93 | 7.93 | 7.93 | 0.42 | 0.80 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.84 | 7.84 | 7.84 | 0.36 | 0.80 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.48 | 7.48 | 7.48 | 0.33 | 0.92 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.28 | 7.28 | 7.28 | 0.45 | 0.80 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 6.99 | 6.99 | 6.99 | 0.20 | 1.25 | ± 13.1 9 | | 5200 | 36.0 | 4.66 | 5.34 | 5.34 | 5.34 | 0.35 | 1.80 | ±13.1 % | | 5300 | 35.9 | 4.76 | 5.25 | 5.25 | 5.25 | 0.35 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.77 | 4.77 | 4.77 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.68 | 4.68 | 4.68 | 0.40 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.90 | 4.90 | 4.90 | 0.40 | 1.80 | ± 13.1 % | G Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. At frequencies below 3 GHz, the validity of tissue parameters (s and o) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and a) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3 6 GHz at any distance larger than half the probe tip diameter from the boundary. May 31, 2017 Report No.: DRRFCC1709-0100 EX3DV4-SN:3866 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3866 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G (mm) | Unc
(k=2) | |----------------------|----------------------------|-------------------------|---------|---------|---------|--------------------|-------------------------|--------------| | 750 | 55.5 | 0.96 | 9.67 | 9.67 | 9.67 | 0.45 | 0.80 | ± 12.0 % | | 835 | 55.2 | 0.97 | 9.44 | 9.44 | 9.44 | 0,46 | 0.82 | ± 12.0 % | | 900 | 55.0 | 1.05 | 9.68 | 9.68 | 9.68 | 0.34 | 0.98 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 8.16 | 8.16 | 8.16 | 0.31 | 0.88 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.83 | 7.83 | 7,83 | 0.41 | 0.80 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 7,65 | 7.65 | 7.65 | 0.36 | 0.90 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.56 | 7.56 | 7.56 | 0.39 | 0.85 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.21 | 7.21 | 7.21 | 0.29 | 0.92 | ± 12.0 % | | 3500 | 51.3 | 3.31 | 6.60 | 6.60 | 6.60 | 0.20 | 1.30 | ± 13.1 % | | 5200 | 49.0 | 5.30 | 4.98 | 4.98 | 4.98 | 0.40 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.78 | 4.78 | 4.78 | 0.40 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 4.21 | 4.21 | 4.21 | 0.45 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5,77 | 4.03 | 4.03 | 4.03 | 0.50 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 4.24 | 4.24 | 4.24 | 0.50 | 1.90 | ± 13.1 % | ^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Full Attraction of the ConvF uncertainty for indicated target tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to the ConvF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) ## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: EX3-3866_May17 Page 9 of 38 ## **Conversion Factor Assessment** # Deviation from Isotropy in Liquid Certificate No: EX3-3866_May17 Page 10 of 38 EX3DV4- SN:3866 May 31, 2017 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3866 #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 61.9 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | EX3DV4- SN:3866 May 31, 2017 Appendix: Modulation Calibration Parameters | UID | Communication System Name | | A
dB | B
dB√μV | С | dB | VR
mV | Max
Unc ^E
(k=2) | |---------------
--|---|----------------|-----------------|----------------|-------|----------|----------------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 128.8 | ± 3.8 % | | | | Y | 0.00 | 0.00 | 1.00 | | 129.9 | | | | | Z | 0.00 | 0.00 | 1.00 | | 116.6 | | | 10010-
CAA | SAR Validation (Square, 100ms, 10ms) | X | 5.95 | 74.05 | 16.36 | 10.00 | 20.0 | ± 9.6 % | | | | Y | 3.07 | 66.56 | 11.43 | | 20.0 | | | - | | Z | 2.99 | 66.54 | 11.31 | | 20.0 | | | 10011-
CAB | UMTS-FDD (WCDMA) | X | 1.28 | 70.56 | 17.37 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 1.08 | 68.10 | 15.82 | | 150.0 | | | 10010 | | Z | 1.04 | 67.68 | 15.48 | | 150.0 | | | 10012-
CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1
Mbps) | × | 1.32 | 65.32 | 16.30 | 0.41 | 150.0 | ± 9.6 % | | | | Y | 1.20 | 64.03 | 15.24 | | 150.0 | | | 40045 | VICES CON 12 AUGUST STATE OF THE TH | Z | 1.19 | 63.96 | 15.11 | | 150.0 | | | 10013-
CAB | IEEE 802,11g WIFI 2,4 GHz (DSSS-
OFDM, 6 Mbps) | X | 5.19 | 66.67 | 17.18 | 1.46 | 150.0 | ± 9.6 % | | | | Y | 4.90 | 66.40 | 16.75 | | 150.0 | | | 40004 | CON CDD (TDM) CHOIC | Z | 4.82 | 66.51 | 16.77 | | 150.0 | | | 10021-
DAC | GSM-FDD (TDMA, GMSK) | X | 12.15 | 85.52 | 22.11 | 9.39 | 50.0 | ± 9.6 % | | | | Y | 6.07 | 75.16 | 16.30 | | 50.0 | | | 40000 | Short the training of the state | Z | 6.56 | 76.45 | 16.67 | | 50.0 | - | | 10023-
DAC | GPRS-FDD (TDMA, GMSK, TN 0) | X | 11.50 | 84.56 | 21.84 | 9.57 | 50.0 | ± 9.6 % | | | | Υ | 5.84 | 74.50 | 16.08 | | 50.0 | | | 10001 | | Z | 6.17 | 75.47 | 16.33 | | 50.0 | - 222 | | 10024-
DAC | GPRS-FDD (TDMA, GMSK, TN 0-1) | X | 26.23 | 96,72 | 23.98 | 6.56 | 60.0 | ± 9.6 % | | | | Y | 5.12 | 74.76 | 14.90 | | 60.0 | | | 40000 | | Z | 5.82 | 76.45 | 15.41 | | 60.0 | | | 10025-
DAC | EDGE-FDD (TDMA, 8PSK, TN 0) | X | 10.67 | 88.40 | 32.75 | 12.57 | 50.0 | ± 9.6 % | | | | Υ | 4.12 | 65.62 | 21.59 | | 50.0 | | | | | Z | 6.56 | 79.23 | 28.97 | | 50.0 | | | 10026-
DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1) | X | 14.94 | 95.03 | 32.08 | 9.56 | 60.0 | ± 9.6 % | | | | Y | 9.51 | 87.13 | 28.83 | | 60.0 | | | 4005- | Sans can (Sall) | Z | 10.55 | 91.01 | 30.74 | 12.22 | 60.0 | | | 10027-
DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2) | X | 100.00 | 113.33 | 27.03 | 4.80 | 80.0 | ± 9.6 % | | | | Y | 5.60 | 77.09 | 14.96 | | 80.0 | | | 10028-
DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3) | Z | 7.37
100.00 | 80.07
113.17 | 15.84
26.19 | 3.55 | 100.0 | ± 9.6 % | | DAG | | Y | 9.35 | 83.25 | 16.28 | | 100.0 | _ | | | | Z | 18.35 | 89.71 | 17.97 | - | 100.0 | | | 10029- | EDGE-FDD (TDMA, 8PSK, TN 0-1-2) | X | 10.87 | 88.71 | 28.82 | 7.80 | 80.0 | ±9.6 % | | DAC | EUGLA DO (TOWA, OF SK, TN 0-1-2) | Ŷ | 6.75 | (223,7) | 340000 | 7.00 | 80.0 | 1 3.0 % | | _ | | Z | 6.88 | 80.75
82.26 | 25.47 | - | 80.0 | | | 10030-
CAA | IEEE 802.15.1 Bluetooth (GFSK, DH1) | X | 43.82 | 102.79 | 26.43
24.81 | 5.30 | 70.0 | ±9.6 % | | UNA | | Y | 4.19 | 73.20 | 13.74 | | 70.0 | | | | | Z | 4.19 | 74.19 | 14.00 | | 70.0 | | | 10031-
CAA | IEEE 802.15.1 Bluetooth (GFSK, DH3) | X | 100.00 | 114.49 | 25.34 | 1.88 | 100.0 | ±9.6 % | | J/M | | Y | 12.27 | 86.90 | 16.08 | | 100.0 | | | _ | 12 | Z | 14.50 | 88.27 | 16.33 | | 100.0 | | | | | | 17.00 | 00.21 | 10.00 | | 100.0 | | | 10032-
CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5) | X | 100.00 | 120.23 | 26.73 | 1.17 | 100.0 | ± 9.6 % | |---------------|--|---|--------|--------|-------|-------|-------|---------| | | | Υ | 100.00 | 107.05 | 20.40 | | 100.0 | | | 10000 | | Z | 100.00 | 107.01 | 20.33 | | 100.0 | | | 10033-
CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1) | × | 10.94 | 88.62 | 24.03 | 5.30 | 70.0 | ± 9.6 % | | | | Y | 4.82 | 76.42 | 18,22 | | 70.0 | | | | | Z | 4.75 | 76.24 | 17.84 | | 70.0 | 100 | | 10034-
CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3) | X | 5.09 | 82.37 | 21.18 | 1.88 | 100.0 | ± 9.6 % | | | | Y | 2.44 | 72.17 | 15.93 | | 100.0 | | | | | Z | 2.33 | 71.44 | 15.08 | | 100.0 | 5.0.3 | | 10035-
CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5) | Х | 3.40 | 78.37 | 19.72 | 1.17 | 100.0 | ± 9.6 % | | | | Y | 1.93 | 70.75 | 15.37 | | 100.0 | | | | | Z | 1.84 | 70.11 | 14.50 | | 100.0 | | | 10036-
CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH1) | X | 12.65 | 91.14 | 24.92 | 5,30 | 70.0 | ± 9.6 % | | | | Y | 5.32 | 77.99 | 18.87 | | 70.0 | | | | | Z | 5.25 | 77.78 | 18,47 | | 70.0 | L. | | 10037-
CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH3) | Х | 4.98 | 82.11 | 21.03 | 1.88 | 100.0 | ± 9.6 % | | | | Y | 2.35 | 71.76 | 15.72 | | 100.0 | | | | | Z | 2.23 | 70.95 | 14.85 | | 100.0 | | | 10038-
CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH5) | X | 3.51 | 79.08 | 20.06 | 1.17 | 100.0 | ± 9.6 % | | | | Y | 1.95 | 71.10 | 15.61 | | 100.0 | | | | | Z | 1.86 | 70.41 | 14.73 | | 100.0 | | | 10039-
CAB | CDMA2000 (1xRTT, RC1) | X | 2.56 | 75.42 | 18.82 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2,30 | 75.01 | 17.60 | | 150.0 | | | | | Z | 1,99 | 73.47 | 16.29 | | 150.0 | - | | 10042-
CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-
DQPSK, Halfrate) | × | 16.20 | 89.31 | 21.91 | 7.78 | 50.0 | ± 9.6 % | | | | Υ | 4.76 | 72.97 | 14.33 | | 50.0 | | | | | Z | 5.04 | 73.85 | 14.55 | | 50.0 | | | 10044-
CAA | IS-91/EIA/TIA-553 FDD (FDMA, FM) | X | 0.00 | 102.20 | 0.07 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 0.00 | 102.73 | 3.92 | | 150.0 | | | | | Z | 0.00 | 99.33 | 2.98 | | 150.0 | | | 10048-
CAA | DECT (TDD, TDMA/FDM, GFSK, Full
Slot, 24) | × | 8.75 | 77.87 | 21.22 | 13.80 | 25.0 | ± 9,6 % | | | | Y | 5.51 | 70.74 | 16.23 | | 25.0 | | | | The state of s | Z | 5.63 | 71.35 | 16.31 | | 25.0 | | | 10049-
CAA | DECT (TDD, TDMA/FDM, GFSK, Double
Slot, 12) | X | 9.70 | 81.24 | 21.09 | 10.79 | 40.0 | ± 9.6 % | | | | Y | 5.71 | 73.25 | 15.92 | | 40.0 | | | | | Z | 5.84 | 73.83 | 16.00 | | 40.0 | 1 | | 10056-
CAA | UMTS-TDD (TD-SCDMA, 1.28 Mcps) | х | 10.12 | 82.67 | 22.58 | 9.03 | 50.0 | ± 9.6 % | | | | Y | 6.84
| 76.82 | 18.79 | | 50.0 | | | | Land of the second | Z | 7.14 | 77.75 | 18.94 | | 50.0 | | | 10058-
DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) | X | 8.43 | 84.30 | 26.55 | 6.55 | 100.0 | ± 9.6 % | | | | Y | 5.31 | 76.88 | 23.34 | | 100.0 | | | 72007 | | Z | 5.24 | 77.48 | 23.87 | | 100.0 | | | 10059-
CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2
Mbps) | X | 1.47 | 67.27 | 17.17 | 0.61 | 110.0 | ± 9.6 % | | | * Y | Y | 1.25 | 65.09 | 15.65 | | 110.0 | | | | | Z | 1.24 | 65.01 | 15.54 | H T | 110.0 | Et | | 10060-
CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps) | Х | 100.00 | 130.10 | 33.13 | 1.30 | 110.0 | ± 9.6 % | | | | Y | 4.36 | 86.40 | 21.16 | | 110.0 | | | | | Z | 4.61 | 87.44 | 21.51 | | 110.0 | | EX3DV4- SN:3866 May 31, 2017 | 10061-
CAB | IEEE 802.11b WiFi 2,4 GHz (DSSS, 11 Mbps) | X | 6.73 | 88.90 | 24.38 | 2.04 | 110.0 | ± 9.6 % | |---------------|--|--------|--------------|----------------|----------------|---------|-------|---------| | | | Y | 2.67 | 75.57 | 19.02 | | 110.0 | | | | And the same of th | Z | 2.69 | 76.06 | 19.25 | 7 | 110.0 | | | 10062-
CAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps) | X | 4.98 | 66,68 | 16.67 | 0.49 | 100.0 | ± 9.6 % | | | | Y | 4.73 | 66.55 | 16.37 | | 100.0 | | | | | Z | 4.63 | 66.59 | 16.34 | | 100.0 | | | 10063-
CAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9
Mbps) | Х | 5.01 | 66.81 | 16.78 | 0.72 | 100.0 | ± 9.6 % | | | | Y | 4.74 | 66.60 | 16.43 | | 100.0 | | | | THE STATE OF THE STATE OF | Z | 4.65 | 66.64 | 16.40 | | 100.0 | | | 10064-
CAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12
Mbps) | X | 5.39 | 67.18 | 17.03 | 0.86 | 100.0 | ± 9.6 % | | | | Y | 5.05 | 66.88 | 16.64 | | 100.0 | | | | | Z | 4.92 | 66.88 | 16.60 | | 100.0 | TITE TO | | 10065-
CAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps) | X | 5.25 | 67.10 | 17.11 | 1.21 | 100.0 | ± 9.6 % | | | | Y | 4.91 | 66.74 | 16.67 | | 100.0 | | | 702.5.4 | | Z | 4.79 | 66.75 | 16.65 | i mag e | 100.0 | 1000 | | 10066-
CAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24
Mbps) | X | 5.29 | 67.18 | 17.29 | 1.46 | 100.0 | ± 9.6 % | | | | Y | 4.92 | 66.72 | 16.78 | | 100.0 | | | | | Z | 4.81 | 66.75 | 16.77 | HET B | 100.0 | | | 10067-
CAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps) | Х | 5.60 | 67.22 | 17.68 | 2.04 | 100.0 | ± 9.6 % | | | | Y | 5.20 | 66.76 | 17.12 | | 100.0 | | | | | Z | 5.09 | 66.89 | 17.16 | | 100.0 | | | 10068-
CAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps) | Х | 5.73 | 67.57 | 17,99 | 2.55 | 100.0 | ±9.6 % | | | | Y | 5.27 | 66.90 | 17.33 | | 100.0 | | | 70777 | | Z | 5.15 | 66.94 | 17.34 | | 100.0 | | | 10069-
CAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54
Mbps) | X | 5.78 | 67.36 | 18.10 | 2.67 | 100.0 | ± 9.6 % | | | | Y | 5.35 | 66.82 | 17.48 | | 100.0 | | | 15.450 | | Z | 5.23 | 66.94 | 17.52 | | 100.0 | | | 10071-
CAB | (DSSS/OFDM, 9 Mbps) | X | 5.31 | 66.82 | 17,48 | 1.99 | 100.0 | ± 9.6 % | | | | Y | 4.99 | 66.45 | 16.98 | | 100.0 | | | 12.252 | | Z | 4.92 | 66.57 | 17.02 | 100 | 100.0 | | | 10072-
CAB | (DSSS/OFDM, 12 Mbps) | Х | 5.36 | 67.31 | 17.73 | 2.30 | 100.0 | ±9.6 % | | | | Y | 4.99 | 66.78 | 17,15 | | 100.0 | | | 10073- | IEEE 802.11g WiFi 2.4 GHz | X | 4.90
5.46 | 66.87
67.54 | 17.19
18.06 | 2.83 | 100.0 | ± 9.6 % | | CAB | (DSSS/OFDM, 18 Mbps) | W | Enr | PP 00 | 47.40 | | 400 n | | | | | Y | 5.05 | 66.89 | 17.40 | | 100.0 | | | 10074-
CAB | IEEE 802.11g WiFi 2.4 GHz
(DSSS/OFDM, 24 Mbps) | Z
X | 4.97
5.46 | 67.03
67.56 | 17.47
18.30 | 3.30 | 100.0 | ± 9.6 % | | LAL. | ואים ופוסטוסו ביווין, ביו ואוטף | Y | 5.03 | 66.79 | 17.52 | | 100.0 | | | | | Z | 4.97 | 66.96 | 17.60 | | 100.0 | | | 10075-
CAB | IEEE 802.11g WiFi 2.4 GHz
(DSSS/OFDM, 36 Mbps) | X | 5.61 | 68.07 | 18,77 | 3.82 | 90.0 | ± 9.6 % | | | | Y | 5.10 | 67.00 | 17.83 | | 90.0 | | | | | Z | 5.03 | 67.12 | 17,89 | | 90.0 | | | 10076-
CAB | IEEE 802.11g WiFi 2.4 GHz
(DSSS/OFDM, 48 Mbps) | x | 5.58 | 67.75 | 18.81 | 4.15 | 90.0 | ± 9.6 % | | | | Y | 5.10 | 66.74 | 17.89 | | 90.0 | | | | | Z | 5.05 | 66.96 | 18.02 | | 90.0 | | | 10077-
CAB | IEEE 802.11g WiFi 2.4 GHz
(DSSS/OFDM, 54 Mbps) | × | 5.60 | 67.82 | 18.90 | 4.30 | 90.0 | ± 9,6 % | | | 2000 | Y | 5.12 | 66.79 | 17.97 | | 90.0 | | | | | Z | 5.08 | 67.04 | 18.11 | | 90.0 | | | 10081-
CAB | CDMA2000 (1xRTT, RC3) | × | 1.27 | 70.24 | 16.36 | 0.00 | 150.0 | ± 9.6 % | |---------------|---|---|--------------|----------------|----------------|------|--------------|---------| | | | Y | 0.98 | 67.71 | 14.08 | | 150.0 | | | | | Z | 0.86 | 66.59 | 12.87 | | 150.0 | | | 10082-
CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-
DQPSK, Fullrate) | X | 1.73 | 62.11 | 7.60 | 4.77 | 80.0 | ± 9.6 % | | | | Y | 0.89 | 58.75 | 4.35 | | 80.0 | | | | | Z | 0.86 | 58.91 | 4.38 | | 80.0 | | | 10090-
DAC | GPRS-FDD (TDMA, GMSK, TN 0-4) | X | 25.29 | 96.24 | 23.88 | 6.56 | 60.0 | ± 9.6 % | | | | Y | 5.08 | 74.63 | 14.87 | | 60.0 | | | | | Z | 5.76 | 76.30 | 15.37 | | 60.0 | | | 10097-
CAB | UMTS-FDD (HSDPA) | × | 2.01 | 68.55 | 16.75 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 1.89 | 68.09 | 16.11 | | 150.0 | | | | | Z | 1.85 | 68.04 | 15.86 | | 150.0 | | | 10098-
CAB | UMTS-FDD (HSUPA, Subtest 2) | X | 1.97 | 68.53 | 16.72 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 1.85 | 68.03 | 16.07 | | 150.0 | | | 1000 | | Z | 1.81 | 67.98 | 15.83 | | 150.0 | | | 10099-
DAC | EDGE-FDD (TDMA, 8PSK, TN 0-4) | X | 14.91 | 94.93 | 32.04 | 9.56 | 60.0 | ± 9.6 % | | | | Y | 9.53 | 87.13 | 28.81 | | 60.0 | | | 40400 | LITE FOR ION POLICE STATE OF | Z | 10.57 | 91.01 | 30.73 | | 60.0 | | | 10100-
CAC | LTE-FDD (SC-FDMA, 100% RB, 20
MHz, QPSK) | X | 3.70 | 72.32 | 17.65 | 0.00 | 150.0 | ±9.6 % | | | | Υ | 3.30 | 71.07 | 17.03 | | 150.0 | | | 40404 | LTE EDD (OO EDAM) ARROW DD OO | Z | 3.15 | 70.59 | 16.83 | 0.00 | 150.0 | | | 10101-
CAC | LTE-FDD (SC-FDMA, 100% RB, 20
MHz, 16-QAM) | X | 3.59 | 68.49 | 16.54 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.34 | 67.87 | 16.11 | | 150.0 | - | | 10100 | LTE FOR /OC FRAM ARROW DR GO | Z | 3.24 | 67.63 | 15.98 | 0.00 | 150.0 | | | 10102-
CAC | LTE-FDD (SC-FDMA, 100% RB, 20
MHz, 64-QAM) | X | 3.68 | 68.35 | 16.59 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.45 | 67.84 | 16.22 | | 150.0 | | | 10103- | LTE-TDD (SC-FDMA, 100% RB, 20 | Z | 3.34 | 67.61 | 16.07 | 2.00 | 150.0 | | | CAC | MHz, QPSK) | | 7.82 | 75.74 | 19.97 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 6.01 | 72.79 | 18.45 | | 65.0 | | | 10104- | LTE-TDD (SC-FDMA, 100% RB, 20 | Z | 6.25 | 74.01 | 19.06 | 0.00 | 65.0 | | | CAC | MHz, 16-QAM) | X | 8.19
6.66 | 75,35 | 20.72 | 3.98 | 65.0 | ± 9.6 % | | | | Z | 6.53 | 73.01
73.21 | 19.41
19.57 | - | 65.0 | | | 10105-
CAC | LTE-TDD (SC-FDMA, 100% RB, 20
MHz, 64-QAM) | X | 7.58 | 73.89 | 20,39 | 3.98 | 65.0
65.0 | ± 9.6 % | | | | Y | 6.04 | 71.14 | 18.90 | _ | 65.0 | | | | | Z | 6.27 | 72.37 | 19.53 | | 65.0 | | | 10108-
CAD | LTE-FDD (SC-FDMA, 100% RB, 10
MHz, QPSK) | X | 3.27 | 71.37 | 17.44 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.89 | 70.23 | 16.85 | | 150.0 | | | | | Z | 2.74 | 69.80 | 16.65 | - | 150.0 | | | 10109-
CAD | LTE-FDD (SC-FDMA, 100% RB, 10
MHz, 16-QAM) | X | 3.27 | 68.30 | 16.53 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.01 | 67.74 | 16.08 | | 150.0 | | | | | Z | 2.90 | 67.51 | 15.90 | 1.00 | 150.0 | | | 10110-
CAD | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | Х | 2.70 | 70.25 | 17.14 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2,36 | 69,21 | 16.48 | | 150.0 | | | | | Z | 2.22 | 68.90 | 16.25 | | 150.0 | | | 10111-
CAD | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | Х | 2.98 | 68.82 | 16.94 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.76 | 68.70 | 16.56 | | 150.0 | | | | | Z | 2.63 | 68.51 | 16.27 | | 150.0 | | EX3DV4- SN:3866 May 31, 2017 | 10112-
CAD | LTE-FDD (SC-FDMA, 100% RB, 10
MHz, 64-QAM) | X | 3.38 | 68.12 | 16.52 | 0.00 | 150.0 | ± 9.6 % | |---------------
--|---|------|-------|-------|------|-------|---------| | | | Y | 3.13 | 67.71 | 16.13 | | 150.0 | | | | | Z | 3.02 | 67.52 | 15.96 | | 150.0 | | | 10113-
CAD | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | Х | 3.13 | 68.77 | 16.98 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.91 | 68.81 | 16.68 | | 150.0 | | | | | Z | 2.79 | 68.66 | 16.40 | | 150.0 | | | 10114-
CAB | IEEE 802.11n (HT Greenfield, 13.5
Mbps, BPSK) | X | 5.38 | 67.36 | 16.61 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.19 | 67.25 | 16.45 | | 150.0 | | | | | Z | 5.11 | 67.25 | 16.43 | | 150.0 | | | 10115-
CAB | IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM) | Х | 5.86 | 67.90 | 16.87 | 0.00 | 150.0 | ±9.6 % | | | | Y | 5.54 | 67.52 | 16.58 | | 150.0 | | | | | Z | 5.39 | 67.35 | 16.49 | | 150.0 | | | 10116-
CAB | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM) | Х | 5.53 | 67.63 | 16.65 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.31 | 67.49 | 16.49 | | 150.0 | | | | | Z | 5.20 | 67.43 | 16.45 | | 150.0 | | | 10117-
CAB | IEEE 802.11n (HT Mixed, 13.5 Mbps,
BPSK) | Х | 5.38 | 67.35 | 16.62 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.18 | 67.22 | 16.45 | | 150.0 | | | | | Z | 5.07 | 67.11 | 16.38 | | 150.0 | | | 10118-
CAB | IEEE 802.11n (HT Mixed, 81 Mbps, 16-
QAM) | Х | 5.83 | 67.70 | 16.77 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.61 | 67.67 | 16.66 | | 150.0 | | | A Transfer | | Z | 5.46 | 67.54 | 16.59 | | 150.0 | | | 10119-
CAB | IEEE 802.11n (HT Mixed, 135 Mbps, 64-
QAM) | X | 5.48 | 67.51 | 16.62 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.28 | 67.43 | 16.47 | | 150.0 | | | | | Z | 5.18 | 67.38 | 16.43 | | 150.0 | | | 10140-
CAC | LTE-FDD (SC-FDMA, 100% RB, 15
MHz, 16-QAM) | Х | 3.74 | 68.35 | 16.51 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.49 | 67.83 | 16.13 | | 150.0 | | | | | Z | 3.38 | 67.61 | 15.99 | | 150.0 | 10 | | 10141-
CAC | LTE-FDD (SC-FDMA, 100% RB, 15
MHz, 64-QAM) | X | 3.85 | 68.30 | 16.62 | 0.00 | 150.0 | ±9.6 % | | | | Y | 3.61 | 67.92 | 16.30 | | 150.0 | | | | | Z | 3.50 | 67.72 | 16.16 | 7. | 150.0 | | | 10142-
CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | X | 2.47 | 70.19 | 17.11 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.15 | 69.32 | 16.33 | | 150.0 | | | NAC ACCORD | | Z | 2.01 | 68.99 | 15.96 | | 150.0 | | | 10143-
CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | X | 2.89 | 69.59 | 17.08 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.67 | 69.73 | 16.56 | | 150.0 | | | | | Z | 2.52 | 69.44 | 16.05 | | 150.0 | | | 10144-
CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | X | 2.70 | 67.64 | 15.72 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.40 | 67.16 | 14.83 | | 150.0 | | | | | Z | 2.24 | 66.84 | 14.28 | | 150.0 | | | 10145-
CAD | LTE-FDD (SC-FDMA, 100% RB, 1.4
MHz, QPSK) | X | 1.97 | 70.10 | 16.38 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 1.52 | 67.65 | 13.88 | | 150.0 | | | | | Z | 1.24 | 65.51 | 11.97 | | 150.0 | | | 10146-
CAD | LTE-FDD (SC-FDMA, 100% RB, 1.4
MHz, 16-QAM) | X | 4.51 | 76.77 | 18.96 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.44 | 68.50 | 13.41 | | 150.0 | | | | | 2 | 1.88 | 65.68 | 11.07 | | 150.0 | | | 10147-
CAD | LTE-FDD (SC-FDMA, 100% RB, 1.4
MHz, 64-QAM) | Х | 5.75 | 80.68 | 20.67 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.03 | 71.42 | 14.87 | | 150.0 | | | | | | | | | | | | | 10149-
CAC | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | × | 3.28 | 68.36 | 16.57 | 0.00 | 150.0 | ± 9.6 % | |---------------|--|-------------|--------------|----------------|-------|-------|-------|---------| | | | Y | 3.02 | 67.81 | 16.13 | | 150.0 | | | | Last the Tarter Co. | Z | 2.90 | 67.58 | 15.95 | | 150.0 | | | 10150-
CAC | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | X | 3.39 | 68.17 | 16,56 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.14 | 67.77 | 16.18 | | 150.0 | | | | | Z | 3.03 | 67.57 | 16.00 | | 150.0 | | | 10151-
CAC | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | Х | 8.20 | 77.58 | 20,81 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 6.49 | 75.24 | 19.50 | | 65.0 | | | | | Z | 6.49 | 75.92 | 19.85 | | 65.0 | | | 10152-
CAC | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | X | 7.78 | 75.36 | 20.58 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 6.15 | 72.70 | 19.01 | | 65.0 | | | | | Z | 6.01 | 72.92 | 19.11 | | 65.0 | 15.5 | | 10153-
CAC | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | Х | 8.10 | 76.01 | 21,20 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 6.53 | 73.66 | 19.80 | | 65.0 | | | | | Z | 6.41 | 73.92 | 19.91 | | 65.0 | | | 10154-
CAD | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | Х | 2.79 | 70.93 | 17.54 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 2.43 | 69.84 | 16.85 | | 150.0 | | | | | Z | 2.28 | 69,36 | 16.54 | | 150.0 | | | 10155-
CAD | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | Х | 2.97 | 68.79 | 16.93 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.75 | 68.70 | 16.56 | | 150.0 | | | | | Z | 2.64 | 68.53 | 16.29 | | 150.0 | | | 10156-
CAD | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | X | 2.38 | 70,70 | 17.32 | 0.00 | 150.0 | ± 9.6 % | | | 4 - 4 | Y | 2.03 | 69.70 | 16.35 | | 150.0 | | | | August 19 - The second second | Z | 1.86 | 69.17 | 15.79 | | 150.0 | | | 10157-
CAD | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | X | 2.56 | 68.45 | 16.06 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.27 | 67.99 | 15.08 | | 150.0 | | | | | Z | 2.10 | 67.52 | 14.38 | | 150.0 | | | 10158-
CAD | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | X | 3.14 | 68.82 | 17.02 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.92 | 68.88 | 16.73 | | 150.0 | | | | 7 K 2 2 4 4 7 7 7 7 9 4 2 7 4 7 | Z | 2.79 | 68.73 | 16.45 | | 150.0 | | | 10159-
CAD | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | X | 2.69 | 68.91 | 16.37 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.41 | 68.63 | 15.46 | | 150.0 | | | | | Z | 2.22 | 68.05 | 14.69 | | 150.0 | | | 10160-
CAC | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | Х | 3.11 | 69.55 | 16.94 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.84 | 68.95 | 16.51 | | 150.0 | | | | | Z | 2.74 | 68.78 | 16.38 | | 150.0 | _ | | 10161-
CAC | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | X | 3.28 | 68.03 | 16.53 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.04 | 67.71 | 16.14 | | 150.0 | | | | | Z | 2.93 | 67.53 | 15.94 | | 150.0 | | | 10162-
CAC | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | X | 3.37 | 67.94 | 16.52 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.15 | 67.79 | 16.21 | | 150.0 | | | | | Z | 3.04 | 67.69 | 16.05 | pin y | 150.0 | 100 | | 10166-
CAD | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | X | 4.28 | 70.28 | 19.69 | 3.01 | 150.0 | ± 9.6 % | | | | Y | 3.74 | 69.45 | 18.87 | | 150.0 | | | | | Z | 3.63 | 69.87 | 19.11 | | 150.0 | | | | | | | | | | | | | 10167-
CAD | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | X | 5.55 | 73.25 | 20.22 | 3.01 | 150.0 | ± 9.6 % | | 10167-
CAD | | X
Y
Z | 5.55
4.69 | 73.25
72.31 | 19.32 | 3.01 | 150.0 | ± 9.6 % | | 10169-
CAC | | Y | | | | | | | |---------------|--|--------|--------|---------|-------|------|-------|---------| | | | 1 1 | 5.28 | 74.84 | 20.79 | | 150.0 | | | | | Z | 5.27 | 76.11 | 21.29 | | 150.0 | | | | LTE-FDD (SC-FDMA, 1 RB, 20 MHz,
QPSK) | Х | 4.34 | 73.27 | 20.82 | 3.01 | 150.0 | ± 9.6 % | | | | Y | 3.28 | 69.91 | 19.02 | | 150.0 | | | | | Z | 3.11 | 69.87 | 19.09 | _ | 150.0 | | | 10170-
CAC | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | X | 6.52 | 79.56 | 22.99 | 3.01 | 150.0 | ± 9.6 % | | 0710 | TO GAIN) | Y | 4.86 | 76.70 | 21.63 | | 150.0 | | | | | Z | 4.75 | 77.55 | 22.02 | | 150.0 | | | 10171-
AAC | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | X | 5.30 | 75.06 | 20.34 | 3.01 | 150.0 | ± 9.6 % | | | | Υ | 3.78 | 71.45 | 18.41 | | 150.0 | _ | | | | Z | 3.67 | 72.20 | 18.78 | | 150.0 | - | | 10172-
CAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz,
QPSK) | X | 14.20 | 92.21 | 27.61 | 6.02 | 65.0 | ± 9.6 % | | | 3, 5,17 | Y | 6.31 | 80.40 | 22.75 | | 65.0 | | | | | Z | 7.75 | 85.93 | 25.05 | | 65.0 | | | 10173- | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, | X | 15.48 | 90.10 | 25.55 | 6.02 | 65.0 | ± 9.6 % | | CAC | 16-QAM) | ^
Y | urarn, | 17,310- | 22.24 | 0.02 | 233 | 1 3.0 % | | | | | 9.20 | 83.52 | | | 65.0 | | | 10174- | LTE TOD /CC FOMA 4 DD CC 4// | Z | 10.68 | 87.60 | 23.70 | 0.00 | 65.0 | 1000 | | CAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | X | 12.86 | 86.06 | 23.83 | 6.02 | 65.0 | ± 9.6 % | | | | Y | 5.38 | 74.78 | 18.72 | | 65.0 | | | 77722 | | Z | 8.28 | 82.76 | 21.60 | - | 65.0 | | | 10175-
CAD | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | X | 4.26 | 72.82 | 20.52 | 3.01 | 150.0 | ± 9.6 % | | | | Υ | 3.23 | 69.49 | 18.71 | | 150.0 | | | | T | Z | 3.07 | 69.51 | 18.82 | - | 150.0 | - | | 10176-
CAD | LTE-FDD (SC-FDMA, 1 RB, 10 MHz,
16-QAM) | X | 6.53 | 79.58 | 23.00 | 3.01 | 150.0 | ± 9.6 % | | 7 - 7 | | Y | 4.87 | 76.73 | 21.64 | | 150.0 | | | | | Z | 4.75 | 77.58 | 22.03 | - | 150.0 | | | 10177-
CAF | LTE-FDD (SC-FDMA, 1 RB, 5 MHz,
QPSK) | × | 4.31 | 73.06 | 20.67 | 3.01 | 150.0 | ± 9.6 % | | | | Y | 3.26 | 69.71 | 18.85 | | 150.0 | | | | | Z | 3.10 | 69.68 | 18.92 | | 150.0 | | | 10178-
CAD | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-
QAM) | X | 6.40 | 79.18 | 22.81 | 3.01 | 150.0 | ±9.6 % | | | | Y | 4.78 | 76.35 | 21.45 | | 150.0 | | | | | Z | 4.69 | 77.29 | 21.89 | | 150.0 | | | 10179-
CAD | LTE-FDD (SC-FDMA, 1 RB, 10 MHz,
64-QAM) | X | 5.82 | 77.04 | 21.48 | 3.01 | 150.0 | ±9,6 % | | | | Y | 4.23 | 73.75 | 19.80 | | 150.0 | | | | | Z | 4.14 | 74.64 | 20.22 | | 150.0 | | | 10180-
CAD | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-
QAM) | Х | 5.26 | 74.91 | 20.25 | 3.01 | 150.0 | ± 9.6 % | | -17- | | Y | 3.76 | 71.33 | 18.33 | | 150.0 | | | | | Z | 3.66 | 72.12 | 18.72 | | 150.0 | | | 10181-
CAC | LTE-FDD (SC-FDMA, 1 RB, 15 MHz,
QPSK) | X | 4.30 | 73.03 | 20,65 | 3.01 | 150.0 | ±9.6 % | | UNU | | Y | 3.26 | 69.69 | 18.83 | | 150.0 | | | | | Z | 3.09 | 69.66 | 18.91 | | 150.0 | - | | 10182-
CAC | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | X | 6.39 | 79.15 | 22.80 | 3.01 | 150,0 | ±9.6 % | | 37.0 | | Y | 4.77 | 76.32 | 21.44 | | 150.0 |
 | | | Z | 4.68 | 77.26 | 21.88 | | 150.0 | | | 10183-
AAB | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | X | 5.26 | 74.89 | 20.24 | 3.01 | 150.0 | ± 9.6 % | | AAU | UT-G(NIVI) | Y | 3.75 | 71.31 | 18.32 | | 150.0 | | | | | Z | 3.65 | 72.09 | 18.71 | | 150.0 | | | 10184-
CAD | LTE-FDD (SC-FDMA, 1 RB, 3 MHz,
QPSK) | X | 4,32 | 73.09 | 20,68 | 3.01 | 150.0 | ± 9.6 % | |---------------|--|---|------|-------|-------|------|-------|---------| | | | Y | 3.27 | 69.74 | 18.86 | | 150.0 | | | | | Z | 3.10 | 69.71 | 18.94 | | 150.0 | | | 10185-
CAD | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-
QAM) | × | 6.42 | 79.23 | 22,83 | 3.01 | 150.0 | ± 9.6 % | | | | Y | 4.80 | 76.41 | 21.48 | | 150.0 | | | | | Z | 4.71 | 77.35 | 21.92 | | 150.0 | | | 10186-
AAD | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-
QAM) | х | 5.28 | 74.95 | 20.27 | 3.01 | 150.0 | ± 9.6 % | | | | Y | 3.77 | 71.37 | 18.36 | | 150.0 | | | | | Z | 3.67 | 72.16 | 18.75 | | 150.0 | | | 10187-
CAD | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | × | 4.32 | 73.09 | 20.70 | 3.01 | 150.0 | ± 9.6 % | | | | Y | 3.28 | 69.77 | 18.91 | | 150.0 | | | | | Z | 3.11 | 69.77 | 19.00 | | 150.0 | | | 10188-
CAD | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | × | 6.69 | 80.08 | 23.26 | 3.01 | 150.0 | ± 9.6 % | | | | Υ | 5.03 | 77.38 | 21.99 | | 150.0 | | | | | 2 | 4.91 | 78.22 | 22.37 | | 150.0 | - | | 10189-
AAD | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | X | 5.42 | 75.48 | 20.58 | 3.01 | 150.0 | ± 9.6 % | | | 1 14 - | Υ | 3.87 | 71.90 | 18.68 | | 150.0 | - | | | 1-2-1 | Z | 3.77 | 72.68 | 19.06 | | 150.0 | I Jan | | 10193-
CAB | IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) | Х | 4.82 | 66.68 | 16.41 | 0.00 | 150.0 | ± 9.6 % | | 1 1 | 17.5 % | Υ | 4.61 | 66.69 | 16.22 | | 150.0 | | | | | Z | 4.51 | 66.70 | 16.15 | | 150.0 | - | | 10194-
CAB | IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) | Х | 5.04 | 67.10 | 16.51 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.80 | 67.04 | 16.34 | | 150.0 | | | | Long and the second of | Z | 4.68 | 67.00 | 16.27 | | 150.0 | | | 10195-
CAB | IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) | Х | 5.08 | 67.07 | 16.50 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.84 | 67.06 | 16.35 | | 150.0 | | | | | Z | 4.72 | 67.03 | 16.29 | | 150.0 | | | 10196-
CAB | IEEE 802.11n (HT Mixed, 6.5 Mbps,
BPSK) | X | 4.85 | 66.81 | 16.45 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.63 | 66.78 | 16.25 | | 150.0 | | | - | A CONTRACTOR OF THE PARTY TH | Z | 4.51 | 66,75 | 16.16 | | 150.0 | | | 10197-
CAB | IEEE 802.11n (HT Mixed, 39 Mbps, 16-
QAM) | X | 5.06 | 67.11 | 16.51 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.81 | 67.06 | 16.35 | | 150.0 | | | 10100 | Lege son of the control contr | Z | 4.69 | 67.02 | 16.28 | | 150.0 | | | 10198-
CAB | IEEE 802.11n (HT Mixed, 65 Mbps, 64-
QAM) | × | 5.09 | 67.08 | 16.50 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.84 | 67.07 | 16.36 | | 150.0 | | | 10015 | Weeks to the second | Z | 4.72 | 67.05 | 16.30 | 7.4 | 150.0 | | | 10219-
CAB | IEEE 802.11n (HT Mixed, 7.2 Mbps,
BPSK) | × | 4.81 | 66.84 | 16.43 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.58 | 66.79 | 16.22 | | 150.0 | | | 10000 | | Z | 4.46 | 66.77 | 16.13 | | 150.0 | | | 10220-
CAB | IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-
QAM) | X | 5.07 | 67.12 | 16,52 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.81 | 67.04 | 16.34 | | 150.0 | | | 1000 | | Z | 4.68 | 66.99 | 16.27 | | 150.0 | | | 10221-
CAB | IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-
QAM) | X | 5.09 | 67.03 | 16.50 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.85 | 67.00 | 16.34 | | 150.0 | | | 76465 | | Z | 4.73 | 66.97 | 16.28 | | 150.0 | | | 10222-
CAB | IEEE 802.11n (HT Mixed, 15 Mbps,
BPSK) | X | 5.37 | 67.40 | 16.64 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.16 | 67.24 | 16.45 | | 150.0 | | | | | Z | 5.05 | 67.12 | 16.38 | | 150.0 | - | EX3DV4- SN:3866 May 31, 2017 | 10223-
CAB | IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM) | X | 5.74 | 67.56 | 16.72 | 0.00 | 150.0 | ± 9.6 % | |---------------|---|---|-------|-------|-------|--------------|-------|---------| | | | Y | 5.49 | 67.44 | 16.57 | | 150.0 | | | | | Z | 5.34 | 67.30 | 16.48 | | 150.0 | | | 10224-
CAB | IEEE 802.11n (HT Mixed, 150 Mbps, 64-
QAM) | × | 5.45 | 67.58 | 16.65 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.21 | 67.34 | 16.43 | | 150.0 | | | | | Z | 5.10 | 67.24 | 16.36 | | 150.0 | | | 10225-
CAB | UMTS-FDD (HSPA+) | × | 3.09 | 66.39 | 16.04 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.90 | 66.33 | 15.61 | | 150.0 | | | | | Z | 2.80 | 66.28 | 15.36 | | 150.0 | | | 10226-
CAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | Х | 16.00 | 90.76 | 25.85 | 6.02 | 65.0 | ± 9.6 % | | | | Y | 9.66 | 84.39 | 22.63 | - | 65.0 | | | | | Z | 11.34 | 88.68 | 24.14 | | 65.0 | | | 10227-
CAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | Х | 14.05 | 87.61 | 24,43 | 6.02 | 65.0 | ± 9.6 % | | | | Y | 8.75 | 81.87 | 21.28 | | 65.0 | | | | | Z | 10.02 | 85.56 | 22.56 | | 65.0 | | | 10228-
CAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz,
QPSK) | X | 16.43 | 95.41 | 28.75 | 6.02 | 65.0 | ± 9.6 % | | | | Y | 8.49 | 85.80 | 24.72 | | 65.0 | | | | | Z | 9.08 | 88.93 | 26.11 | 1 | 65.0 | | | 10229-
CAB | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-
QAM) | X | 15.52 | 90.13 | 25.57 | 6.02 | 65.0 | ± 9.6 % | | | | Y | 9.26 | 83.61 | 22.28 | 100 | 65.0 | | | | | Z | 10.75 | 87.69 | 23.74 | | 65.0 | | | 10230-
CAB | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-
QAM) | X | 13.65 | 87.05 | 24.18 | 6.02 | 65.0 | ± 9.6 % | | | | Y | 8.41 | 81.19 | 20.97 | | 65.0 | | | | | Z | 9.53 | 84.70 | 22.20 | | 65.0 | | | 10231-
CAB | LTE-TDD (SC-FDMA, 1 RB, 3 MHz,
QPSK) | Х | 15.89 | 94.70 | 28.45 | 6.02 | 65.0 | ± 9.6 % | | | | Y | 8.15 | 85.00 | 24.36 | | 65.0 | | | | | Z | 8.68 | 88.03 | 25.73 | Facilities . | 65.0 | | | 10232-
CAC | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-
QAM) | × | 15.51 | 90.13 | 25.57 | 6,02 | 65.0 | ± 9.6 % | | | | Y | 9.24 | 83.59 | 22.27 | | 65.0 | | | | | Z | 10.74 | 87.68 | 23.73 | | 65.0 | | | 10233-
CAC | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-
QAM) | Х | 13.64 | 87.05 | 24.18 | 6.02 | 65.0 | ± 9.6 % | | | | Y | 8.39 | 81.18 | 20.97 | | 65.0 | | | | | Z | 9.51 | 84.69 | 22.19 | | 65.0 | | | 10234-
CAC | LTE-TDD (SC-FDMA, 1 RB, 5 MHz,
QPSK) | Х | 15.33 | 93.90 | 28.11 | 6.02 | 65.0 | ± 9.6 % | | | | Y | 7.84 | 84.19 | 23.97 | | 65.0 | | | | | Z | 8.32 | 87.14 | 25.32 | | 65.0 | | | 10235-
CAC | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | X | 15.52 | 90.15 | 25.58 | 6.02 | 65.0 | ± 9.6 % | | | | Y | 9.24 | 83.60 | 22.28 | | 65.0 | | | | | Z | 10.74 | 87.70 | 23.74 | | 65.0 | | | 10236-
CAC | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | × | 13.71 | 87.13 | 24.20 | 6.02 | 65.0 | ± 9.6 % | | | | Y | 8.44 | 81.24 | 20.98 | | 65.0 | | | | La ra | Z | 9.58 | 84.78 | 22.22 | | 65.0 | | | 10237-
CAC | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | X | 15.95 | 94.80 | 28.48 | 6.02 | 65.0 | ± 9.6 % | | | | Y | 8.16 | 85.03 | 24.37 | | 65.0 | | | | | Z | 8.69 | 88.09 | 25.75 | | 65.0 | 1 | | 10238-
CAC | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | X | 15.50 | 90.13 | 25.57 | 6.02 | 65.0 | ± 9.6 % | | | | Y | 9.23 | 83.56 | 22,26 | | 65.0 | | | | | Z | 10.71 | 87.65 | 23.72 | | 65.0 | | | 10239-
CAC | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | Х | 13.64 | 87.06 | 24.18 | 6.02 | 65.0 | ±9.6% | |---------------
--|---|--------|--------|-------|--------|-------|---------| | | | Y | 8.38 | 81.16 | 20.96 | | 65.0 | | | | | Z | 9.49 | 84.66 | 22.18 | | 65.0 | | | 10240-
CAC | LTE-TDD (SC-FDMA, 1 RB, 15 MHz,
QPSK) | X | 15.91 | 94.76 | 28.47 | 6.02 | 65.0 | ± 9.6 % | | | | Y | 8.13 | 84.99 | 24.36 | | 65.0 | - | | | | Z | 8.67 | 88.05 | 25.74 | 7 | 65.0 | | | 10241-
CAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | X | 11.13 | 82.41 | 25.70 | 6.98 | 65.0 | ± 9.6 % | | -1-1- | | Y | 8.34 | 78.68 | 23.38 | | 65.0 | | | | | Z | 8.64 | 80.88 | 24.34 | BC ALI | 65.0 | | | 10242-
CAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | х | 9.91 | 79.85 | 24.58 | 6.98 | 65.0 | ± 9.6 % | | | | Y | 7.20 | 75.75 | 22.09 | | 65.0 | | | | | Z | 7.99 | 79.38 | 23.68 | | 65.0 | | | 10243-
CAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | X | 8.27 | 77.94 | 24.58 | 6.98 | 65.0 | ±9.6 % | | | | Y | 5.98 | 73.27 | 21.82 | | 65.0 | | | | | Z | 6.43 | 76.20 | 23.27 | | 65.0 | | | | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | Х | 8.97 | 79.15 | 21.15 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 5.58 | 72.44 | 16.74 | | 65.0 | | | | | Z | 5.08 | 71.38 | 15.69 | | 65.0 | | | 10245-
CAB | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | X | 8.92 | 78.82 | 20.99 | 3.98 | 65.0 | ± 9.6 % | | | Y - Y | Y | 5.56 | 72.17 | 16.58 | | 65.0 | | | | | Z | 5.02 | 71.01 | 15.49 | - | 65.0 | | | 10246-
CAB | LTE-TDD (SC-FDMA, 50% RB, 3 MHz,
QPSK) | Х | 7.93 | 79.91 | 21.09 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 4.97 | 73.86 | 17.47 | | 65.0 | | | | | Z | 4.55 | 72.94 | 16.66 | | 65.0 | | | 10247-
CAC | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | X | 7.23 | 76.19 | 20.23 | 3,98 | 65.0 | ± 9.6 % | | | | Y | 5.17 | 72.08 | 17.43 | | 65.0 | | | | | Z | 4.86 | 71.50 | 16.77 | | 65.0 | | | 10248-
CAC | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | X | 7.29 | 75.82 | 20.08 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 5.24 | 71.81 | 17.31 | | 65.0 | | | | | Z | 4.89 | 71.20 | 16.64 | | 65.0 | | | 10249-
CAC | LTE-TDD (SC-FDMA, 50% RB, 5 MHz,
QPSK) | Х | 8.41 | 80.65 | 21.74 | 3.98 | 65.0 | ±9.6 % | | | | Y | 5.79 | 76.14 | 19.09 | | 65.0 | | | 1000 | Laurence and the second | Z | 5.65 | 76.27 | 18.90 | | 65.0 | | | 10250-
CAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | Х | 7.86 | 77.32 | 21.56 | 3.98 | 65.0 | ±9.6 % | | | | Y | 6.11 | 74.47 | 19.80 | | 65.0 | | | 3.54 | | Z | 5.97 | 74.64 | 19.74 | | 65.0 | | | 10251-
CAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | X | 7.54 | 75.43 | 20.55 | 3.98 | 65.0 | ±9.6 % | | | | Y | 5.90 | 72.73 | 18.76 | | 65.0 | | | | Can your man and | Z | 5.74 | 72.89 | 18.69 | | 65.0 | | | 10252-
CAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | х | 8.41 | 79.71 | 21.76 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 6.35 | 76.72 | 20.07 | | 65.0 | | | | Later Land to the control of con | Z | 6.39 | 77.53 | 20.37 | | 65.0 | | | 10253-
CAC | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | X | 7.57 | 74.80 | 20.44 | 3.98 | 65.0 | ±9.6 % | | | 1240 | Y | 6.02 | 72.23 | 18.84 | | 65.0 | | | | Company of the Compan | Z | 5.91 | 72.49 | 18.92 | | 65.0 | | | 10254-
CAC | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | х | 7.91 | 75.46 | 21.02 | 3.98 | 65.0 | ±9.6 % | | | | Y | 6.39 | 73.13 | 19.56 | | 65.0 | | | | | Z | 6.27 | 73.41 | 19.63 | | 65.0 | | | | | | CF 201 | 2 -47. | 10100 | | STATE | | | 10255-
CAC | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | X | 7.97 | 77.29 | 20.97 | 3.98 | 65.0 | ± 9.6 % | |---------------|--|---|------|-------|-------|------|------|---------| | | | Y | 6.28 | 74.88 | 19.59 | | 65.0 | | | | | Z | 6.29 | 75.56 | 19.91 | | 65.0 | | | 10256-
CAA | LTE-TDD (SC-FDMA, 100% RB, 1.4
MHz, 16-QAM) | X | 8.49 | 78.25 | 20.21 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 4.62 | 69.68 | 14.65 | | 65.0 | | | | The second second second | Z | 3.97 | 67.90 | 13.13 | | 65.0 | | | 10257-
CAA | LTE-TDD (SC-FDMA, 100% RB, 1,4
MHz, 64-QAM) | X | 8.47 | 77.86 | 20.00 | 3.98 | 65.0 | ±9.6 % | | | | Y | 4.61 | 69.35 | 14.43 | | 65.0 | | | | | Z | 3.94 | 67.51 | 12.87 | | 65.0 | | | 10258-
CAA | LTE-TDD (SC-FDMA, 100% RB, 1.4
MHz, QPSK) | Х | 7,49 | 79.02 | 20.38 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 4.13 | 71.05 | 15.63 | | 65.0 | | | | | Z | 3.55 | 69.20 | 14.22 | | 65.0 | | | 10259-
CAB | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | Х | 7.45 | 76.46 | 20.64 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 5.53 | 72.93 | 18.27 | | 65.0 | | | 1. 10. 10. | | Z | 5,29 | 72.68 | 17.86 | | 65.0 | | | 10260-
CAB | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | Х | 7.53 | 76.34 | 20.62 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 5.60 | 72.83 | 18.25 | | 65.0 | | | 14. | | Z | 5.33 | 72.52 | 17.80 | | 65.0 | | | 10261-
CAB | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | Х | 8.18 | 79.85 | 21.65 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 5.83 | 75.89 | 19.33 | | 65.0 | | | | | Z | 5.75 | 76.27 | 19.31 | | 65.0 | 1000 | | 10262-
CAC | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | Х | 7.86 | 77.29 | 21.53 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 6.10 | 74.42 | 19.75 | | 65.0 | 1 | | | | Z | 5.95 | 74.58 | 19.70 | | 65.0 | | | 10263-
CAC | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | х | 7.54 | 75.44 | 20.55 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 5.89 | 72.72 | 18.75 | - | 65.0 | | | | | Z | 5,73 | 72.88 | 18.68 | - | 65.0 | | | 10264-
CAC | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | Х | 8.37 | 79.61 | 21.70 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 6.30 | 76.58 | 19.99 | | 65.0 | | | | | Z | 6.33 | 77.37 | 20.28 | E- | 65.0 | | | 10265-
CAC | LTE-TDD (SC-FDMA, 100% RB, 10
MHz, 16-QAM) | Х | 7.78 | 75.36 | 20.58 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 6.14 | 72.70 | 19.01 | | 65.0 | | | | | Z | 6.01 | 72.92 | 19.12 | | 65.0 | | | 10266-
CAC | LTE-TDD (SC-FDMA, 100% RB, 10
MHz, 64-QAM) | Х | 8.10 | 76.01 | 21.19 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 6.53 | 73.65 | 19.79 | | 65.0 | | | 7.5 | | Z | 6.41 | 73.91 | 19.90 | | 65.0 | | | 10267-
CAC | LTE-TDD (SC-FDMA, 100% RB, 10
MHz, QPSK) | Х | 8.19 | 77.55 | 20.80 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 6.48 | 75.21 | 19.49 | | 65.0 | | | | | Z | 6.48 | 75.89 | 19.83 | | 65.0 | | | 10268-
CAC | LTE-TDD (SC-FDMA, 100% RB, 15
MHz, 16-QAM) | X | 8.29 | 75.07 | 20.77 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 6.83 | 72.94 | 19.54 | | 65.0 | | | 1 | | Z | 6.70 | 73.16 | 19.68 | | 65.0 | | | 10269-
CAC | LTE-TDD (SC-FDMA, 100% RB, 15
MHz, 64-QAM) | Х | 8,21 | 74.70 | 20.71 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 6.81 | 72.63 | 19.48 | i i | 65.0 | | | | | Z | 6.69 | 72.85 | 19.62 | | 65.0 | | | 10270-
CAC | LTE-TDD (SC-FDMA, 100% RB, 15
MHz, QPSK) | Х | 8.08 | 75.76 | 20.23 | 3.98 | 65.0 | ±9.6 % | | | | Υ | 6.62 | 73.80 | 19.12 | | 65.0 | | | | 1 | Z | 6.57 | 74.24 | 19.38 | | 65.0 | | | 10274-
CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP
Rel8.10) | X | 2.76 | 66.59 | 15,87 | 0,00 | 150.0 | ± 9.6 % | |---------------
--|---|------|-------|-------|---------|-------|---------| | | | Y | 2.64 | 66.60 | 15.48 | | 150.0 | | | | | Z | 2.59 | 66.69 | 15.30 | | 150.0 | | | 10275-
CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP
Rel8.4) | X | 1.90 | 69.79 | 16.94 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 1.69 | 68.48 | 15.99 | | 150.0 | | | | | Z | 1.62 | 68.20 | 15.71 | 14 | 150.0 | | | 10277-
CAA | PHS (QPSK) | X | 5.02 | 68.20 | 13.47 | 9.03 | 50.0 | ± 9.6 % | | | | Y | 3.07 | 63.14 | 8.94 | | 50.0 | | | | | Z | 2.83 | 62.55 | 8.24 | | 50.0 | | | 10278-
CAA | PHS (QPSK, BW 884MHz, Rolloff 0.5) | Х | 8.60 | 78.91 | 20.42 | 9.03 | 50.0 | ± 9.6 % | | | | Y | 4.73 | 69.97 | 14.69 | | 50.0 | | | | | Z | 4.23 | 68.38 | 13.48 | | 50.0 | | | 10279-
CAA | PHS (QPSK, BW 884MHz, Rolloff 0.38) | X | 8.80 | 79.14 | 20.52 | 9.03 | 50.0 | ± 9.6 % | | | | Y | 4.84 | 70.19 | 14.82 | | 50.0 | | | | | Z | 4.32 | 68,59 | 13.61 | 1 7,311 | 50.0 | | | 10290-
AAB | CDMA2000, RC1, SO55, Full Rate | X | 2.08 | 72.13 | 17.20 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 1.73 | 70.79 | 15.54 | | 150.0 | | | | | Z | 1.49 | 69.39 | 14.25 | | 150.0 | | | 10291-
AAB | CDMA2000, RC3, SO55, Full Rate | X | 1.23 | 69.84 | 16.17 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 0.95 | 67.41 | 13.92 | | 150.0 | | | | Lorent de la company com | Z | 0.84 | 66.34 | 12.73 | | 150.0 | | | 10292-
AAB | CDMA2000, RC3, SO32, Full Rate | X | 1.63 | 75.37 | 19.05 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 1.33 | 73.19 | 16.99 | | 150.0 | | | | Secure Assessment of the second of | Z | 1.19 | 71.89 | 15.72 | | 150.0 | | | 10293-
AAB | CDMA2000, RC3, SO3, Full Rate | Х | 2.37 | 81.78 | 22.06 | 0.00 | 150.0 | ±9.6 % | | | | Y | 2.51 | 83.07 | 21.32 | | 150.0 | | | | The state of s | Z | 2.33 | 81.64 | 20.01 | | 150.0 | | | 10295-
AAB | CDMA2000, RC1, SO3, 1/8th Rate 25 fr. | X | 8.12 | 78.82 | 22.36 | 9.03 | 50.0 | ± 9.6 % | | | | Y | 6.35 | 75.25 | 19.41 | | 50.0 | | | | | Z | 6.85 | 76.57 | 19.54 | | 50.0 | | | 10297-
AAB | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | Х | 3.29 | 71.49 | 17,51 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.91 | 70.36 | 16.93 | | 150.0 | | | | | 2 | 2.76 | 69.91 | 16.72 | | 150.0 | | | 10298-
AAC | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | X | 2.19 | 70.68 | 16.97 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 1.81 | 69.34 | 15.44 | | 150.0 | | | | | Z | 1.58 | 68.11 | 14.28 | | 150.0 | | | 10299-
AAC | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | х | 4.44 | 75.75 | 18.97 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.00 | 70.72 | 15.22 | I mart | 150.0 | 1 | | | | Z | 2.65 | 69.43 | 13.85 | | 150.0 | 1 | | 10300-
AAC | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | Х | 3.42 | 70.62 | 16.09 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.26 | 66.10 | 12.36 | | 150.0 | | | | | 2 | 1.94 | 64.85 | 10.97 | | 150.0 | | | 10301-
AAA | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC) | X | 5.45 | 66.39 | 18.27 | 4.17 | 50.0 | ± 9.6 % | | | | Y | 4.76 | 65.03 | 17.30 | 7 == +1 | 50.0 | 1 | | | | Z | 4.59 | 65.00 | 17.17 | | 50.0 | | | 10302-
AAA | IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols) | Х | 5.95 | 67.03 | 18.97 | 4.96 | 50.0 | ± 9.6 % | | | | Y | 5.29 | 65.83 | 18.09 | 2 | 50.0 | | | | | Z | 5.20 | 66.17 | 18.17 | T | 50.0 | | EX3DV4- SN:3866 May 31, 2017 | 10303-
AAA | (EEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC) | X | 5.78 | 67.02 | 19.02 | 4.96 | 50.0 | ± 9.6 % | |---------------|---|---|------|-------|-------|-------|-------|------------| | | | Y | 5.06 | 65.55 | 17.98 | | 50.0 | | | | | Z | 4.97 | 65.86 | 18.03 | | 50.0 | | | 10304-
AAA | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) | X | 5.48 | 66,51 | 18.31 | 4.17 | 50.0 | ± 9.6 % | | | | Y | 4.84 | 65.37 | 17.46 | | 50.0 | | | | | Z | 4.75 | 65.67 | 17.49 | | 50.0 | | | 10305-
AAA | IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols) | X | 6.08 | 72.50 | 22.89 | 6.02 | 35.0 | ± 9.6 % | | 3.77 | | Y | 4.70 | 67.98 | 19.95 | | 35.0 | | | | | Z | 4.73 | 69.00 | 20.20 | | 35.0 | | | 10306-
AAA | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols) | X | 5.79 | 68.34 | 20.52 | 6.02 | 35.0 | ± 9.6 % | | | | Y | 4.91 | 66.57 | 19.26 | | 35.0 | | | | | Z | 4.87 | 67.25 | 19.44 | | 35.0 | Factor Co. | | 10307-
AAA | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols) | Х | 5.95 | 70.24 | 21.57 | 6.02 | 35.0 | ± 9.6 % | | | | Y | 4.86 | 66.96 | 19.34 | | 35.0 | | | - | | Z | 4.81 | 67.58 | 19.49 | | 35.0 | | | 10308-
AAA | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) | X | 5.95 | 70.59 | 21.77 | 6.02 | 35.0 | ± 9.6 % | | | | Y | 4.83 | 67.14 | 19.47 | | 35.0 | | | | | Z | 4.80 | 67.86 | 19.67 | | 35.0 | | | 10309-
AAA | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols) | Х | 5.89 | 68.57 | 20.63 | 6.02 | 35.0 | ± 9.6 % | | | | Y | 4.98 | 66.81 | 19.41 | | 35.0 | | | | | Z | 4.92 | 67.45 | 19.58 | | 35.0 | | | 10310-
AAA | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols) | Х | 5.76 | 68.46 | 20.49 | 6.02 | 35.0 | ±9.6 % | | | | Y | 4.87 | 66.70 | 19.27 | | 35.0 | | | | | Z | 4.84 | 67.39 | 19.46 | | 35.0 | | | 10311-
AAB | LTE-FDD (SC-FDMA, 100% RB, 15
MHz, QPSK) | X | 3.67 | 70.83 | 17.17 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.29 | 69.70 | 16.59 | | 150.0 | | | | | Z | 3.13 | 69.21 | 16.37 | | 150.0 | | | 10313-
AAA | IDEN 1:3 | Х | 5.42 | 73.66 | 16.54 | 6.99 | 70.0 | ± 9.6 % | | | | Y | 3.23 | 68.66 | 13.67 | | 70.0 | | | | | Z | 3.24 | 69.09 | 13.89 | | 70.0 | | | 10314-
AAA | IDEN 1:6 | Х | 6.44 | 77.53 | 20.45 | 10.00 | 30.0 | ± 9.6 % | | | | Y | 3.71 | 71.31 | 17.32 | | 30.0 | | | | | Z | 3.76 | 72.02 | 17.68 | | 30.0 | | | 10315-
AAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1
Mbps, 96pc duty cycle) | X | 1.19 | 65.03 | 16.23 | 0.17 | 150.0 | ±9.6 % | | | | Y | 1.10 | 64.01 | 15.31 | | 150.0 | | | | | Z | 1.09 | 63.89 | 15.13 | | 150.0 | | | 10316-
AAB | IEEE 802.11g WiFi 2.4 GHz (ERP-
OFDM, 6 Mbps, 96pc duty cycle) | X | 4.88 | 66.71 | 16.46 | 0.17 | 150.0 | ± 9.6 % | | | | Y | 4.64 | 66.59 | 16.19 | | 150.0 | | | | | Z | 4.54 | 66.61 | 16.15 | | 150.0 | 777 | | 10317-
AAB | IEEE 802.11a WiFi 5 GHz (OFDM, 6
Mbps, 96pc duty cycle) | X | 4.88 | 66.71 | 16.46 | 0.17 | 150.0 | ± 9.6 % | | | | Y | 4.64 | 66.59 | 16.19 | | 150.0 | | | | | Z | 4.54 | 66.61 | 16.15 | 127 | 150.0 | | | 10400-
AAC | IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle) | х | 5.07 | 67.13 | 16.48 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.80 | 67.07 | 16.31 | | 150.0 | | | | | Z | 4.66 | 67.04 | 16.26 | | 150.0 | | | 10401-
AAC | IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle) | Х | 5.65 | 67.18 | 16.52 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.44 | 67.12 | 16.38 | 1 | 150.0 | | | | | | 0.44 | | 10.00 | | | | EX3DV4-- SN:3866 May 31, 2017 | 10402-
AAC | IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle) | X | 5.95 | 67.81 | 16.67 | 0.00 | 150.0 | ± 9.6 % | |---------------|--|---|--------------|----------------|----------------|--------|----------------|------------| | | | Y | 5.73 | 67.64 | 16.50 | | 150.0 | | | | | Z | 5.61 | 67.51 | 16.42 | | 150.0 | | | 10403-
AAB | CDMA2000 (1xEV-DO, Rev. 0) | X | 2.08 | 72.13 | 17.20 | 0.00 | 115.0 | ± 9.6 % | | | | Y | 1.73 | 70.79 | 15.54 | | 115.0 | | | | | Z | 1.49 | 69.39 | 14.25 | | 115.0 | | | 10404-
AAB | CDMA2000 (1xEV-DO, Rev. A) | X | 2.08 | 72.13 | 17.20 | 0.00 | 115.0 | ± 9.6 % | | | | Y | 1.73 | 70.79 | 15.54 | | 115.0 | | | | Annual Street Control of the Control | Z | 1.49 | 69.39 | 14.25 | | 115.0 | | | 10406-
AAB | CDMA2000, RC3, SO32, SCH0, Full
Rate | X | 25.96 | 105.00 | 28.55 | 0.00 | 100.0 | ± 9.6 % | | | | Y | 35.97 | 107.39 | 27.34 | | 100.0 | | | 100 | | 2 | 100.00 | 117.41 | 28.38 | | 100.0 | | | 10410-
AAB | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL
Subframe=2,3,4,7,8,9) | X | 39.66 | 105.40 | 27.14 | 3.23 | 80.0 | ± 9.6 % | | 7 7 | | Y | 5.60 | 78.79 | 17.37 | | 80.0 | | | 1.4 | | Z | 6.13 | 80.71 | 17.76 | | 80.0 | | | 10415- | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 | X | 1.05 | 63.68 | 15.52 | 0.00 | 150.0 | ±9.6 % | | AAA | Mbps, 99pc duty cycle) | Y | 1557 | Larren | Telet. | 0.00 | 10000 | 1 3.0 % | | | | | 1.02 | 63.25 | 14.93 | | 150.0 | | | 10416-
AAA | IEEE 802.11g WiFi 2.4 GHz (ERP-
OFDM, 6 Mbps, 99pc duty cycle) | X | 1.01
4.81 | 63.14
66.68 | 14.73
16.41 | 0.00 | 150.0
150.0 | ± 9.6 % | | 777 | OF DWI, G Mops, sape duty cycle) | Y | 4.04 | 00.70 | 40.07 | | 4500 | | | | | | 4.61 | 66.73 | 16.27 | | 150.0 | | | 10117 | | Z | 4.51 | 66,73 | 16.21 | | 150.0 | | | 10417-
AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6
Mbps, 99pc duty cycle) | × | 4.81 | 66.68 | 16.41 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.61 | 66.73 | 16.27 | | 150.0 | | | | | Z | 4.51 | 66.73 | 16,21 | | 150.0 | | | 10418-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 6 Mbps, 99pc duty cycle, Long
preambule) | X | 4.80 | 66.82 | 16.41 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.60 | 66.88 | 16.28 | _ | 150.0 | | | | | Z | 4.50 | 66.90 | 16.24 | | 150.0 | | | 10419-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 6 Mbps, 99pc duty cycle, Short
preambule) | × | 4.82 | 66.78 | 16.43 | 0.00 | 150.0 | ±9.6 % | | | | Y | 4.62 | 66.83 | 16.29 | | 150.0 | | | | | Z | 4.52 | 66.84 | 16.24 | | 150.0 | | | 10422-
AAA | IEEE 802.11n (HT Greenfield, 7.2 Mbps,
BPSK) | X | 4.96 | 66.79 | 16.43 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.75 | 66.83 | 16.30 | - | 150.0 | | | | 7 | Z | 4.64 | 66.83 | 16.25 | | 150.0 | | | 10423-
AAA | IEEE 802.11n (HT Greenfield, 43.3
Mbps, 16-QAM) | X | 5.21 | 67.23 | 16.59 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.94 | 67.18 | 16.43 | | 150.0 | | | | | Z | 4.80 | 67.14 | 16.36 | | 150.0 | | | 10424- | IEEE 802,11n (HT Greenfield, 72.2 | X | 5.10 | 67.16 | 16.55 | 0.00 | 150.0 | ±9.6 % | | AAA | Mbps, 64-QAM) | Y | 4.85 | 67.13 | 16.40 | 0.00 | | ± 3.0 % | | - | | Z | | | | | 150.0 | | | 10425-
AAA | IEEE 802.11n (HT Greenfield, 15 Mbps,
BPSK) | X | 5.64 | 67.09
67.50 | 16.33
16.68 | 0.00 | 150.0
150.0 | ± 9.6 % | | | | Y | 5.42 | 67.40 | 16.50 | | 450.0 | | | | | | | 67.40 | 16.52 | - | 150.0 | | | 10400 | IEEE 902 11a (UT CE-IJ DO LE | Z | 5.31 | 67.34 | 16.48 | 1 A 22 | 150.0 | The second | | 10426-
AAA | IEEE 802.11n (HT Greenfield, 90 Mbps,
16-QAM) | Х | 5.66 | 67.55 | 16.69 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.42 | 67.41 | 16.52 | | 150.0 | 1.3 | | | | Z | 5.32 | 67.37 | 16.49 | | 150.0 | | EX3DV4- SN:3866 May 31, 2017 | 10427-
AAA | IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) | X | 5.70 | 67.63 | 16.73 | 0.00 | 150.0 | ± 9.6 % | |----------------|--|---|-------|--------|-------|------|-------|---------| | | | Y | 5.44 | 67.42 | 16.53 | | 150.0 | | | | | Z | 5.33 | 67.35 | 16.48 | | 150.0 | | | 10430-
AAA | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) | X | 4,61 | 70.13 | 18.46 | 0.00 | 150.0 | ±9.6 % | | | | Y | 4.54 | 71.62 | 18.84 | | 150.0 | | | | | Z | 4.34 | 71.47 | 18.45 | | 150.0 | | | 10431-
AAA | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) | X | 4.62 | 67.28 | 16.57 | 0.00 | 150.0 | ± 9.6 % | | 7 to 160- | | Y | 4.33 | 67.30 | 16.34 | | 150.0 | | | and the second | | Z | 4.19 | 67.30 | 16.21 | | 150.0 | | | 10432-
AAA | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) | X | 4.90 | 67.21 | 16.56 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.62 | 67.17 | 16.36 | | 150.0 | | | | | Z | 4.49 | 67.16 | 16.28 | | 150.0 | 5.5 | | 10433-
AAA | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) | X | 5.13 | 67.24 | 16.60 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.86 | 67.17 | 16.42 | | 150.0 | | | | | Z | 4.73 | 67.13 | 16.35 | 1 | 150.0 | | | 10434-
AAA | W-CDMA (BS Test Model 1, 64 DPCH) | Х | 4.70 | 70.75 | 18.51 | 0.00 | 150.0 | ± 9.6 % | | ** | | Y | 4.71 | 72.68 | 18.95 | 1 | 150.0 | | | | | Z | 4.48 | 72.50 | 18.48 | | 150.0 | | | 10435-
AAB | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х | 37.53 | 104.49 | 26.87 | 3.23 | 80.0 | ± 9.6 % | | | | Υ | 5.44 | 78.34 | 17.17 | 1 | 80.0 | | | | | Z | 5.88 | 80.12 | 17.53 | | 80.0 | | | 10447-
AAA | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1,
Clipping 44%) | Х | 3.97 | 67.39 | 16.31 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 3.65 | 67.40 | 15.84 | | 150.0 | | | | | Z | 3.48 | 67.35 | 15.53 | | 150.0 | | | 10448-
AAA | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1,
Clippin 44%) | X | 4.41 | 67.05 | 16.43 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.16 | 67.08 | 16.20 | | 150.0 | | | | | Z | 4.03 | 67.09 | 16.08 | | 150.0 | | | 10449-
AAA | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1,
Cliping 44%) | Х | 4.65 | 67.03 | 16.47 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.42 | 67.01 | 16.27 | | 150.0 | | | | | Z | 4.30 | 66.99 | 16.19 | | 150.0 | | | 10450-
AAA | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1,
Clipping 44%) | Х | 4.81 | 66.98 | 16.46 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.61 | 66.94 | 16.28 | | 150.0 | | | | | Z | 4,50 | 66.91 | 16.21 | | 150.0 | | | 10451-
AAA | W-CDMA (BS Test Model 1, 64 DPCH,
Clipping 44%) | × | 3.93 | 67.73 | 16.20 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.57 | 67.69 | 15.58 | | 150.0 | | | | | Z | 3.37 | 67.51 | 15.13 | | 150.0 | 17 | | 10456-
AAA | IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle) | X | 6.49 | 68.19 | 16.87 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 6.27 | 67.99 | 16.68 | | 150.0 | | | | | Z | 6,17 | 67.89 | 16.63 | | 150.0 | | | 10457-
AAA | UMTS-FDD (DC-HSDPA) | X | 3.92 | 65.38 | 16.20 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.83 | 65.36 | 16.00 | | 150.0 | | | | | Z | 3.78 | 65.38 | 15.92 | | 150.0 | | | 10458-
AAA | CDMA2000 (1xEV-DO, Rev. B, 2 carriers) | × | 3.67 | 66.56 | 15.63 | 0.00 | 150.0 | ±9.6 % | | 7.5 | | Y | 3.38 | 66.92 | 15.01 | | 150.0 | | | | | Z | 3.18 | 66.77 | 14.47 | | 150.0 | | | 10459-
AAA | CDMA2000 (1xEV-DO, Rev. B, 3 carriers) | X | 4,75 | 64.52 | 15.97 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.38 | 64.72 | 15.57 | | 150.0 | | | | | Z | 4.28 | 65.18 | 15.52 | | 150.0 | | | 10460-
AAA | UMTS-FDD (WCDMA, AMR) | X | 1.12 | 71.77 | 18.52 | 0.00 | 150.0 | ± 9.6 % | |---------------|--|---|--------|--------|-------|------|-------|---------| | | | Y | 0.94 | 69.07 | 16.80 | | 150.0 | | | | | Z | 0.91 | 68.55 | 16.38 | | 150.0 | | | 10461-
AAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz,
QPSK, UL Subframe=2,3,4,7,8,9) | X | 100.00 | 119.31 | 30.82 | 3.29 | 80.0 | ± 9.6 % | | | | Υ | 3.10 | 73.05 | 16.04 | | 80.0 | | | | | Z | 2.89 | 73.54 | 16.13 | | 80.0 | - | | 10462-
AAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | × | 18.95 | 88.90 | 20.75 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 1.38 | 61.26 | 8.79 | | 80.0 | | | | | Z | 1.06 | 60.00 | 7.67 | | 80.0 | | | 10463-
AAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | X | 10.36 | 80.77 | 17.93 | 3.23 | 80.0 | ± 9.6 % | | 1 | | Υ | 1.23 | 60.00 | 7.78 | | 80.0 | | | | | Z | 1.08 | 60.00 | 7.25 | | 80.0 | | | 10464-
AAA | LTE-TDD (SC-FDMA, 1 RB, 3 MHz,
QPSK, UL Subframe=2,3,4,7,8,9) | X | 100.00 | 117.71 | 29.93 | 3.23 | 80.0 | ± 9.6 % | | | | Υ | 2.52 | 70.33 | 14.54 | | 80.0 | | | | | Z | 2.25 | 70.28 | 14.39 | | 80.0 | | | 10465-
AAA | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-
QAM, UL Subframe=2,3,4,7,8,9) | Х | 14.09 | 85.26 | 19.62 | 3.23 | 80.0 | ± 9.6 % | | | | Υ | 1.33 | 60.91 | 8.56 | | 80.0 | | | | | Z | 1.06 | 60.00 | 7.62 | | 80.0 | | | 10466-
AAA | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-
QAM, UL Subframe=2,3,4,7,8,9) | Х | 8.41 | 78.26 | 17.06 | 3.23 | 80.0 | ± 9.6 % | | 100 | | Y | 1.23 | 60.00 | 7.74 | | 80.0 | | | | | Z | 1.08 | 60.00 | 7.21 | | 80.0 | | | 10467-
AAB | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 100.00 | 117.87 | 30,00 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 2.60 | 70.71 | 14.71 | | 80.0 | | | | A CONTRACTOR OF THE
PARTY TH | Z | 2.33 | 70.74 | 14.59 | | 80.0 | 77.7 | | 10468-
AAB | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-
QAM, UL Subframe=2,3,4,7,8,9) | X | 15.00 | 86.04 | 19.87 | 3.23 | 80.0 | ±9.6 % | | | | Υ | 1.34 | 60.98 | 8.61 | | 80.0 | | | | | Z | 1.05 | 60.00 | 7.63 | | 80.0 | | | 10469-
AAB | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-
QAM, UL Subframe=2,3,4,7,8,9) | X | 8.49 | 78.39 | 17.10 | 3.23 | 80.0 | ±9.6 % | | | | Y | 1.23 | 60.00 | 7.73 | | 80.0 | | | | | Z | 1.08 | 60.00 | 7.21 | | 80.0 | | | 10470-
AAB | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 100.00 | 117.89 | 30.01 | 3.23 | 80.0 | ± 9.6 % | | 1-1 | | Y | 2.59 | 70.68 | 14.70 | | 80.0 | | | | | Z | 2.32 | 70.72 | 14.58 | | 80.0 | | | 10471-
AAB | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-
QAM, UL Subframe=2,3,4,7,8,9) | Х | 14.99 | 86.02 | 19.85 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 1.33 | 60.96 | 8.58 | | 80.0 | | | | | Z | 1.05 | 60.00 | 7.62 | | 80.0 | | | 10472-
AAB | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-
QAM, UL Subframe=2,3.4,7,8,9) | Х | 8.47 | 78,36 | 17.08 | 3.23 | 80.0 | ±9.6 % | | | | Y | 1.23 | 60.00 | 7.72 | | 80.0 | | | | | Z | 1.08 | 60.00 | 7.20 | | 80.0 | 1,- | | 10473-
AAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х | 100.00 | 117.86 | 30.00 | 3.23 | 80.0 | ±9.6 % | | | | Y | 2.58 | 70.66 | 14.68 | | 80.0 | | | | | Z | 2.32 | 70.69 | 14.56 | | 80.0 | | | 10474-
AAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-
QAM, UL Subframe=2,3,4,7,8,9) | Х | 14.86 | 85.93 | 19.82 | 3.23 | 80.0 | ± 9.6 % | | | | Υ | 1.33 | 60.94 | 8.58 | | 80.0 | | | | | Z | 1.05 | 60.00 | 7.62 | | 80.0 | | | 10475-
AAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-
QAM, UL Subframe=2,3,4,7,8,9) | Х | 8.43 | 78.30 | 17.07 | 3.23 | 80.0 | ± 9.6 % | | 7-1 | | Y | 1.23 | 60.00 | 7.73 | | 80.0 | - | | | | Z | 1.07 | 60.00 | 7.20 | | | | EX3DV4- SN:3866 May 31, 2017 | 10477-
AAB | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-
QAM, UL Subframe=2,3,4,7,8,9) | X | 14.24 | 85.37 | 19.64 | 3.23 | 80.0 | ± 9.6 % | |---------------|--|---|-------|-------|-------|--------------|-------|----------| | | | Y | 1.32 | 60.87 | 8.52 | | 80.0 | | | | | Z | 1.05 | 60.00 | 7.60 | The State of | 80.0 | | | 10478-
AAB | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-
QAM, UL Subframe=2,3,4,7,8,9) | × | 8.34 | 78.16 | 17.01 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 1.23 | 60.00 | 7.72 | | 80.0 | | | | | Z | 1.08 | 60.00 | 7.19 | | 80.0 | Towns or | | 10479-
AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 7.58 | 82.44 | 22.68 | 3.23 | 80.0 | ±9.6 % | | | | Y | 3.59 | 72.16 | 17.26 | | 80.0 | 1100 | | | A CONTRACTOR OF THE PARTY TH | Z | 3.82 | 73.96 | 17.62 | | 80.0 | | | 10480-
AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | Х | 8.66 | 80.46 | 20.82 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 3.62 | 69.25 | 14.74 | - | 80.0 | | | | | Z | 3.25 | 68.73 | 13.95 | | 80.0 | | | 10481-
AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | X | 8.32 | 79.39 | 20.20 | 3.23 | 80.0 | ±9.6 % | | 7 1 | | Y | 3.30 | 67.75 | 13.82 | | 80.0 | | | | A STATE OF THE STATE OF THE STATE OF | Z | 2.81 | 66.70 | 12,77 | | 80.0 | 1.2 | | 10482-
AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz,
QPSK, UL Subframe=2,3,4,7,8,9) | х | 4.61 | 74.84 | 18.74 | 2.23 | 80.0 | ± 9.6 % | | - | | Y | 2.45 | 67.42 | 14.54 | | 80.0 | | | | | Z | 2.17 | 66.40 | 13.61 | | 80.0 | - | | 10483-
AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | Х | 7.04 | 78.01 | 20.15 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 3.22 | 67.65 | 14.25 | | 80.0 | | | | | Z | 2.72 | 66.06 | 12.91 | | 80.0 | P = 5.3 | | 10484-
AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | X | 6.88 | 77.42 | 19.95 | 2.23 | 80.08 | ± 9.6 % | | | | Y | 3.19 | 67.33 | 14.13 | | 80.0 | | | | | Z | 2.68 | 65.67 | 12.75 | | 80.0 | | | 10485-
AAB | LTE-TDD (SC-FDMA, 50% RB, 5 MHz,
QPSK, UL Subframe=2,3,4,7,8,9) | X | 4.87 | 75.43 | 19.35 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 2.80 | 68.87 | 15.89 | | 80.0 | | | | | Z | 2.65 | 68.70 | 15.57 | | 80.0 | | | 10486-
AAB | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | X | 4.39 | 71.11 | 17.61 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 2.97 | 66.86 | 14.77 | | 80.0 | | | | | Z | 2.74 | 66.32 | 14.11 | | 80.0 | | | 10487-
AAB | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | х | 4.42 | 70.85 | 17.52 | 2,23 | 80.0 | ± 9.6 % | | | | Υ | 3.01 | 66.70 | 14.70 | | 80.0 | | | | | Z | 2.77 | 66.11 | 14.01 | | 80.0 | | | 10488-
AAB | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 5.15 | 74.67 | 19.27 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 3.29 | 69.38 | 16.67 | | 80.0 | | | | | Z | 3.18 | 69.51 | 16.70 | | 80.0 | | | 10489-
AAB | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | Х | 4.57 | 70.52 | 17.95 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 3.41 | 67.34 | 16.01 | | 80.0 | | | | | Z | 3.29 | 67.38 | 15.90 | | 80.0 | | | 10490-
AAB | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | X | 4.64 | 70.21 | 17.86 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 3.52 | 67.30 | 16.03 | | 80.0 | | | | | Z | 3.39 | 67.34 | 15.91 | | 80.0 | | | 10491-
AAB | LTE-TDD (SC-FDMA, 50% RB, 15 MHz,
QPSK, UL Subframe=2,3,4,7,8,9) | X | 5.16 | 72.89 | 18.65 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 3.65 | 68.85 | 16.62 | | 80.0 | | | | | Z | 3.54 | 68.96 | 16.70 | | 80.0 | | | 10492-
AAB | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | X | 4.86 | 69.73 | 17.79 | 2.23 | 80.0 | ± 9.6 % | | | The state of s | Y | 3.83 | 67.17 | 16.24 | - | 80.0 | | | | | | 0.00 | 01-11 | 10.24 | | 00.0 | | | 10493-
AAB | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | X | 4.93 | 69.55 | 17.75 | 2.23 | 80.0 | ± 9.6 % | |---------------|--|---|------|-------|-------
------|------|---------| | | 5 - G. 01, OE Guonamo-2,0,4,1,0,3) | Y | 3.91 | 67.12 | 16.25 | | 80.0 | 1 | | | | Z | 3.79 | 67.17 | 16.21 | | 80.0 | 1 | | 10494-
AAB | LTE-TDD (SC-FDMA, 50% RB, 20 MHz,
QPSK, UL Subframe=2,3,4,7,8,9) | X | 5.74 | 74.72 | 19.14 | 2.23 | 80.0 | ± 9.6 % | | | a sity of desirante Electric total | Y | 3.85 | 69.89 | 16.87 | | 80.0 | | | | | Z | 3.73 | 69.95 | 16.96 | | 80.0 | | | 10495-
AAB | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | × | 4.96 | 70.37 | 18.01 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 3.85 | 67.52 | 16.39 | | 80.0 | | | | 13.13/ | Z | 3.74 | 67.53 | 16.38 | | 80.0 | | | 10496-
AAB | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | X | 5.01 | 69.97 | 17.90 | 2.23 | 80.0 | ± 9.6 % | | | 1 | Y | 3.95 | 67.37 | 16.38 | | 0.08 | | | | LAMBOARD OF TAXABLE | Z | 3.83 | 67.39 | 16.37 | | 80,0 | | | 10497-
AAA | LTE-TDD (SC-FDMA, 100% RB, 1.4
MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х | 4.01 | 73.25 | 17.74 | 2.23 | 80.0 | ± 9.6 % | | | 127-147-14 | Y | 1.93 | 64.71 | 12.56 | | 80.0 | | | 75.527 | | Z | 1.59 | 62.88 | 11.00 | | 80.0 | | | 10498-
AAA | The same that the same that the same th | х | 3.65 | 69.30 | 15.53 | 2.23 | 80.0 | ±9.6 % | | | | Y | 1.84 | 62.00 | 10.41 | | 80.0 | | | January III | The second of th | Z | 1.45 | 60.03 | 8.60 | | 80.0 | | | 10499-
AAA | LTE-TDD (SC-FDMA, 100% RB, 1.4
MHz, 64-QAM, UL
Subframe=2,3,4,7,8,9) | х | 3.67 | 69.04 | 15.33 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 1.83 | 61.70 | 10.14 | | 80.0 | | | | | Z | 1.46 | 60.00 | 8.46 | | 80.0 | | | 10500-
AAA | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х | 4.83 | 74.54 | 19.13 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 2.97 | 68.88 | 16.15 | | 80.0 | | | - | | Z | 2.85 | 68.93 | 16.01 | | 80.0 | | | 10501-
AAA | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | X | 4.45 | 70.72 | 17.68 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 3.17 | 67.08 | 15.27 | | 80.0 | | | | | Z | 2.99 | 66.87 | 14.86 | | 80.0 | | | 10502-
AAA | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | Х | 4.49 | 70.49 | 17.57 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 3.24 | 67.03 | 15.21 | | 80.0 | | | | | Z | 3.05 | 66.79 | 14.78 | | 80.0 | | | 10503-
AAB | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х | 5.08 | 74.48 | 19.18 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 3.26 | 69.22 | 16.59 | | 80.0 | | | | | Z | 3.14 | 69.35 | 16.62 | | 80.0 | 11,000 | | 10504-
AAB | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | X | 4.55 | 70.45 | 17.91 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 3.39 | 67.26 | 15.96 | | 80.0 | | | 40555 | (((((| Z | 3.27 | 67.30 | 15.84 | | 80.0 | | | 10505-
AAB | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | Х | 4.62 | 70.13 | 17.82 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 3.50 | 67.21 | 15.98 | | 80.0 | | | 10500 | LEE TOR OR FRUIT | Z | 3.38 | 67.26 | 15.86 | | 80.0 | | | 10506-
AAB | LTE-TDD (SC-FDMA, 100% RB, 10
MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 5.70 | 74.57 | 19.08 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 3.82 | 69.76 | 16.81 | | 80.0 | | | 1000 | 120 200 100 200 100 | Z | 3.70 | 69.84 | 16.89 | | 80.0 | | | 10507-
AAB | LTE-TDD (SC-FDMA, 100% RB, 10
MHz, 16-QAM, UL | X | 4.94 | 70.30 | 17.97 | 2.23 | 80.0 | ± 9.6 % | | 7010 | Subframe=2.3.4.7.8.9) | | | | | | | | | 70.0 | Subframe=2,3,4,7,8,9) | Y | 3.84 | 67.45 | 16.35 | | 80.0 | | | 10508-
AAB | LTE-TDD (SC-FDMA, 100% RB, 10
MHz, 64-QAM, UL
Subframe=2,3,4,7,8,9) | X | 5.00 | 69.91 | 17.86 | 2.23 | 80.0 | ± 9.6 % | |---------------|--|---|--------------|----------------|----------------|------|-------|---------| | | S EXERCISING | Y | 3.94 | 67.30 | 16.34 | | 80.0 | | | | | Z | 3.82 | 67.33 | 16.33 | | 80.0 | 77.5 | | 10509-
AAB | LTE-TDD (SC-FDMA, 100% RB, 15
MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 5.79 | 72.95 | 18.48 | 2.23 | 80.0 | ±9.6 % | | | | Y | 4.26 | 69.29 | 16.69 | | 80.0 | | | | | Z | 4.14 | 69.32 | 16.77 | | 80.0 | | | 10510-
AAB | LTE-TDD (SC-FDMA, 100% RB, 15
MHz, 16-QAM, UL
Subframe=2,3,4,7,8,9) | X | 5.42 | 70.01 | 17.89 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 4.37 | 67.55 | 16.52 | | 80.0 | | | 200 | | Z | 4.25 | 67.52 | 16.53 | | 80.0 | | | 10511-
AAB | LTE-TDD (SC-FDMA, 100% RB, 15
MHz, 64-QAM, UL
Subframe=2,3,4,7,8,9) | X | 5.43 | 69.67 | 17.81 | 2.23 | 80.0 | ±9.6 % | | | | Y | 4.43 | 67.38 | 16.51 | | 80.0 | | | | | Z | 4.31 | 67.37 | 16.51 | | 80.0 | | | 10512-
AAB | LTE-TDD (SC-FDMA, 100% RB, 20
MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 6.25 | 74.86 | 19.04 | 2.23 | 80.0 | ±9.6 % | | | | Υ | 4.32 | 70.27 | 16.92 | | 80.0 | | | | | Z | 4.20 | 70.27 | 16.99 | | 80.0 | | | 10513-
AAB | LTE-TDD (SC-FDMA, 100% RB, 20
MHz, 16-QAM, UL
Subframe=2,3,4,7,8,9) | X | 5.36 | 70.54 | 18.07 | 2.23 | 80.0 | ± 9.6.% | | | | Y | 4.24 | 67.74 | 16.56 | | 80.0 | | | | | Z | 4.12 | 67.67 | 16.56 | | 80.0 | | | 10514-
AAB | LTE-TDD (SC-FDMA, 100% RB, 20
MHz, 64-QAM, UL
Subframe=2,3,4,7,8,9) | X | 5.30 | 69.96 | 17.91 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 4.27 | 67.44 | 16.51 | | 80.0 | | | | | Z | 4.16 | 67.39 | 16.51 | | 80.0 | | | 10515-
AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2
Mbps, 99pc duty cycle) | X | 1.02 | 63.96 | 15.65 | 0.00 | 150.0 | ±9.6 % | | | The state of s | Y | 0.98 | 63.45 | 15.00 | | 150.0 | | | | | Z | 0.97 | 63.33 | 14.80 | | 150.0 | | | 10516-
AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5
Mbps, 99pc duty cycle) | X | 0.94 | 78.96 | 21.94 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 0.63 | 71.55 | 18.18 | | 150.0 | | | 10000 | | Z | 0.60 | 70.68 | 17.59 | 0.00 | 150.0 | | | 10517-
AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11
Mbps, 99pc duty cycle) | X | 0.92 | 67.01 | 16.91 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 0.84 | 65.58 | 15.77 | _ | 150.0 | _ | | 40540 | TEER DOO 11-A MEET F OUT TOERS! O | Z | 0.82 | 65.26 | 15.47 | 0.00 | 150.0 | 1000 | | 10518-
AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9
Mbps, 99pc duty cycle) | X | 4.82 | 66.79 | 16.42 | 0.00 | 150.0 | ± 9,6 % | | | | Y | 4.61 | 66,81 | 16.26 | _ | 150.0 | | | 10519-
AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12
Mbps, 99pc duty cycle) | X | 4.50
5.08 | 66.81
67.12 | 16.20
16.56 | 0.00 | 150.0 | ± 9.6 % | | 7000 | mope, eapo duty cycle/ | Y | 4.81 | 67.06 | 16.38 | | 150.0 | | | | - | Z | 4.68 | 67.02 | 16.30 | | 150.0 | | | 10520-
AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18
Mbps, 99pc duty cycle) | X | 4.92 | 67.13 | 16.50 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.67 | 67.05 | 16.31 | | 150.0 | | | | The state of s | Z | 4.53 | 66.99 | 16.23 | | 150.0 | | | 10521-
AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24
Mbps, 99pc duty cycle) | X | 4.85 | 67.15 | 16.50 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.60 | 67.05 | 16.30 | | 150.0 | | | | | Z | 4.47 | 66.98 | 16.22 | | 150.0 | | | 10522-
AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle) | X | 4.87 | 66.98 | 16.46 | 0.00 | 150.0 | ± 9.6 % | | 1.1 | WAR THE STATE OF T | Y | 4.65 | 67.07 | 16.35 | | 150.0 | | | | | Z | 4.53 | 67.08 | 16.31 | | 150.0 | | | 10523-
AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle) | X | 4.75 | 66.99 | 16.37 | 0.00 | 150.0 | ± 9.6 % | |---------------
--|---|------|-------|-------|------|-------|---------| | | A. T. Carretta | Υ | 4.53 | 66.97 | 16.21 | | 150.0 | | | | | Z | 4.42 | 66.97 | 16.17 | | 150.0 | | | 10524-
AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle) | Х | 4.84 | 66.98 | 16.47 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.60 | 67.01 | 16.33 | | 150.0 | | | | | Z | 4.47 | 67.00 | 16.27 | | 150.0 | | | 10525-
AAA | IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle) | X | 4.77 | 66.04 | 16.07 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.57 | 66.07 | 15.93 | | 150.0 | | | | I TO A CONTRACT OF THE PARTY | Z | 4.47 | 66.07 | 15.88 | | 150.0 | | | 10526-
AAA | IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle) | X | 5.00 | 66.46 | 16.21 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.76 | 66.45 | 16.07 | | 150.0 | | | | | Z | 4.63 | 66,42 | 16.01 | | 150.0 | | | 10527-
AAA | IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle) | Х | 4.92 | 66.48 | 16.20 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.67 | 66.43 | 16.03 | | 150.0 | | | | | Z | 4.55 | 66.38 | 15.96 | | 150.0 | | | | IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle) | X | 4.94 | 66.50 | 16.23 | 0.00 | 150.0 | ± 9.6 % | | 7-4- | | Y | 4.69 | 66.44 | 16.06 | | 150.0 | - | | | The second secon | Z | 4.56 | 66.40 | 15.99 | | 150.0 | | | 10529-
AAA | IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle) | Х | 4.94 | 66.50 | 16.23 | 0.00 | 150.0 | ± 9.6 % | | | 217-2-19-90 | Y | 4.69 | 66.44 | 16.06 | | 150.0 | | | | | Z | 4.56 | 66.40 | 15.99 | | 150.0 | | | 10531-
AAA | IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle) | X | 4.97 | 66.67 | 16.25 | 0.00 | 150.0 | ± 9.6 % | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Y | 4.70 | 66.57 | 16.08 | - | 150.0 | | | | | Z | 4.55 | 66.49 | 16.00 | | 150.0 | | | 10532-
AAA | IEEE 802,11ac WiFi (20MHz, MCS7, 99pc duty cycle) | Х | 4.82 | 66.62 | 16.25 | 0.00 | 150.0 | ± 9.6 % | | | to the country of | Y | 4.55 | 66.44 | 16.02 | - | 150.0 | | | | | Z | 4.42 | 66.35 | 15.93 | | 150.0 | | | 10533-
AAA | IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle) | X | 4.96 | 66.50 | 16.19 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.70 | 66.48 | 16.04 | | 150.0 | | | | | Z | 4.58 | 66.46 | 15.98 | | 150.0 | | | 10534-
AAA | IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle) | X | 5.43 | 66.70 | 16.27 | 0.00 | 150.0 | ± 9.6 % | | | de la Marie III de la Companya del Companya del Companya de la Com | Y | 5.21 | 66.56 | 16.10 | - | 150.0 | | | | | Z | 5.10 | 66.47 | 16.03 | | 150.0 | | | 10535-
AAA | IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle) | Х | 5.52 | 66.87 | 16.33 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.27 | 66.70 | 16.15 | | 150.0 | | | | | Z | 5.16 | 66.64 | 16.11 | | 150.0 | | | 10536-
AAA | IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle) | Х | 5.37 | 66.84 | 16.31 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.14 | 66.69 | 16.13 | | 150.0 | | | | | Z | 5.03 | 66.60 | 16.07 | | 150.0 | - | | 10537-
AAA | IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle) | X | 5.44 | 66.79 | 16.28 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 5.20 | 66.65 | 16.12 | | 150.0 | - | | | | Z | 5.09 | 66.56 | 16.06 | 100 | 150.0 | | | 10538-
AAA | IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle) | X | 5.57 | 66.89 | 16.36 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.31 | 66.69 | 16.18 | 1 | 150.0 | 11 | | | | Z | 5.17 | 66,57 | 16.10 | 1.77 | 150.0 | I'L. | | 10540-
AAA | IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle) | X | 5.44 | 66.79 | 16.33 | 0.00 | 150.0 | ±9.6 % | | | | Y | 5.22 | 66.67 | 16.18 | | 150.0 | 100 | | | | Z | 5.10 | 66.57 | 16.12 | | 150.0 | | EX3DV4- SN:3866 May 31, 2017 | 10541-
AAA | IEEE 802,11ac WiFi (40MHz, MCS7, 99pc duty cycle) | X | 5,46 | 66.82 | 16.35 | 0.00 | 150.0 | ± 9.6 % | |---------------|---|---|-------|-------|-------|--------|-------|----------| | | | Y | 5.20 | 66.57 | 16.13 | | 150.0 | | | | | Z | 5.08 | 66.47 | 16.05 | | 150.0 | | | 10542-
AAA | IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle) | X | 5.58 | 66.75 | 16.33 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.35 | 66.62 | 16.16 | | 150.0 | | | | | Z | 5.24 | 66.54 | 16.10 | | 150.0 | - | | 10543- | IEEE 802.11ac WiFi (40MHz, MCS9, | X | 5.72 | 66.87 | 16.39 | 0.00 | 150.0 | ±9.6 % | | AAA | 99pc duty cycle) | Y | 5,43 | 66.64 | 16.19 | | 150.0 | | | | | Ż | 5.31 | 66.56 | 16.13 | | 150.0 | | | 10544-
AAA | IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle) | X | 5.68 | 66.81 | 16.25 | 0.00 | 150.0 | ± 9.6 % | | | 100000000000000000000000000000000000000 | Y | 5.50 | 66.67 | 16.09 | | 150.0 | | | | | Z | 5.41 | 66.59 | 16.03 | | 150.0 | | | 10545-
AAA | IEEE 802,11ac WiFi (80MHz, MCS1, 99pc duty cycle) | X | 5.89 | 67.14 | 16.34 | 0.00 | 150.0 | ± 9.6 % | | | 5000 0013 03000 | Y | 5.69 | 67.04 | 16.21 | | 150.0 | | | | | Z | 5.59 | 66.96 | 16.17 | | 150.0 | | | 10546- | IEEE 802,11ac WiFi (80MHz, MCS2, | X | 5.81 | 67.15 | 16.37 | 0.00 | 150.0 | ± 9.6 % | | AAA | 99pc duty cycle) | Y | 14.57 | | | 5.00 | | 1 3.0 % | | | | | 5.58 | 66.92 | 16.17 | | 150.0 | | | 10547- | IEEE 000 44 MEE (000 H) - 14000 | Z | 5.47 | 66.77 | 16.09 | 0.00 | 150.0 | . 0 0 0/ | | AAA | IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle) | Х | 5.91 | 67,23 | 16.39 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 5.66 | 66.98 | 16.19 | | 150.0 | | | 10510 | TEEL OOD 11 THE TOUR TOUR TOUR | Z | 5.54 | 66.81 | 16.10 | | 150.0 | | | 10548-
AAA | IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle) | X | 6.14 | 68.03 | 16.76 | 0.00 | 150.0 | ±9,6 % | | | | Y | 5.88 | 67.79 | 16.56 | | 150.0 | | | | | Z | 5.73 | 67.57 | 16.45 | -5-7-2 | 150,0 | | | 10550-
AAA | IEEE 802,11ac WiFi (80MHz, MCS6, 99pc duty cycle) | X | 5.82 | 67.06 | 16.33 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.60 | 66.89 | 16.16 | | 150.0 | | | | | Z | 5.50 | 66.80 | 16,11 | | 150.0 | | | 10551-
AAA | IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle) | X | 5.83 | 67.13 | 16.32 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.61 | 66,96 | 16.16 | | 150.0 | | | | | Z | 5.50 | 66.84 | 16.09 | | 150.0 | | | 10552-
AAA | IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle) | Х | 5.74 | 66.94 | 16.25 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.52 | 66.75 | 16.07 | | 150.0 | | | | | Z | 5.43 | 66.67 | 16.02 | | 150.0 | | | 10553-
AAA | IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle) | X | 5.83 | 66.97 | 16.29 | 0.00 | 150.0 | ± 9.6 % | | 1 | | Y | 5.61 | 66.80 | 16.12 | | 150.0 | | | | | Z | 5.50 | 66.69 | 16.05 | | 150.0 | | | 10554-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS0, 99pc duty cycle) | Х | 6.06 | 67.19 | 16.34 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.90 | 67.03 | 16.17 | | 150.0 | | | | | Z | 5.82 | 66.94 | 16.11 | - | 150.0 | | | 10555-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS1, 99pc duty cycle) | Х | 6.26 | 67.62 | 16.52 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 6.03 | 67.32 | 16.29 | | 150.0 | | | | | Z | 5.93 | 67.21 | 16.22 | | 150.0 | | | 10556-
AAA | IEEE 1602,11ac WiFi (160MHz, MCS2, 99pc duty cycle) | X | 6.24 | 67.53 | 16.47 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 6.05 | 67.36 | 16.30 | | 150.0 | | | | | Z | 5.96 | 67.26 | 16.24 | | 150.0 | | | 10557-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS3, 99pc duty cycle) | X | 6.24 | 67.54 | 16.50 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 6.03 | 67.30 | 16.29 | | 150.0 | | | | | | | | | | | | EX3DV4- SN:3866 May 31, 2017 | 10558-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS4, 99pc duty cycle) | X | 6.30 | 67.71 | 16.59 | 0.00 | 150.0 | ± 9.6 % | |---------------
--|---|-------|--------|-------|------|-------|---------| | | | Y | 6.08 | 67.47 | 16.38 | | 150.0 | | | | | Z | 5.97 | 67.32 | 16.31 | | 150.0 | | | 10560-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS6, 99pc duty cycle) | X | 6,32 | 67.63 | 16.59 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 6.08 | 67.33 | 16.36 | | 150.0 | - | | | | Z | 5.97 | 67.18 | 16.28 | | 150.0 | | | 10561- | IEEE 1602.11ac WiFi (160MHz, MCS7, | X | 6,21 | 67.53 | 16.58 | 0.00 | 150.0 | ± 9.6 9 | | AAA | 99pc duty cycle) | Y | 5.99 | 67.28 | 16.37 | 0.00 | 150.0 | 2 0.0 7 | | 0.00 | | Z | 5.89 | 67.14 | 16.29 | | 150.0 | - | | 10562-
AAA | IEEE 1602 11ac WiFi (160MHz, MCS8, 99pc duty cycle) | X | 6.36 | 67.97 | 16.80 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 6.12 | 67.67 | 16.56 | | 150.0 | | | | Leave | Z | 5.99 | 67.47 | 16.46 | | 150.0 | | | 10563- | IEEE 1602,11ac WiFi (160MHz, MCS9, | X | 6.56 | 68.09 | 16.80 | 0.00 | 150.0 | ± 9.6 % | | AAA | 99pc duty cycle) | Y | 6.44 | 68.16 | 16.75 | 0.00 | 150.0 | 15.07 | | | | Z | | | | _ | | | | 10564- | IEEE 802.11g WiFi 2.4 GHz (DSSS- | X | 6.14 | 67.53 | 16.44 | 0.40 | 150.0 | (000 | | AAA | OFDM, 9 Mbps, 99pc duty cycle) | | 5.15 | 66.88 | 16.56 | 0.46 | 150.0 | ± 9.6 % | | | | Y | 4.93 | 66.82 | 16.35 | | 150.0 | | | 10565 | IEEE SOO 44- WEST O 4 ST. 19205 | Z | 4.82 | 66.84 | 16.31 | | 150.0 | | | 10565-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 12 Mbps, 99pc duty cycle) | X | 5.46 | 67.42 | 16.90 | 0.46 | 150.0 | ± 9.6 % | | | | Υ | 5.18 | 67.32 | 16.70 | | 150.0 | | | | | Z | 5.04 | 67.27 | 16.63 | | 150.0 | T. T 3- | | 10566-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 18 Mbps, 99pc duty cycle) | X | 5.28 | 67.29 | 16.72 | 0.46 | 150.0 | ± 9.6 % | | | | Y | 5.01 | 67.17 | 16.51 | | 150.0 | | | | The state of s | Z | 4.88 | 67.12 | 16.44 | | 150.0 | | | 10567-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 24 Mbps, 99pc duly cycle) | Х | 5.30 | 67.69 | 17.07 | 0.46 | 150.0 | ± 9.6 % | | | | Y | 5.04 | 67.62 | 16.90 | | 150.0 | | | | | Z | 4.91 | 67.53 | 16.81 | | 150.0 | | | 10568-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 36 Mbps, 99pc duty cycle) | X | 5.16 | 66.90 | 16.42 | 0.46 | 150.0 | ± 9.6 % | | | | Y | 4.90 | 66.84 | 16.21 | | 150.0 | | | | E STATE OF THE STA | Z | 4.78 | 66.86 | 16.19 | | 150.0 | | | 10569-
AAA | IEEE 802:11g WiFi 2.4 GHz (DSSS-
OFDM, 48 Mbps, 99pc duty cycle) | X | 5.23 | 67.67 | 17.07 | 0.46 | 150.0 | ± 9.6 % | | | | Y | 4.99 | 67.67 | 16.93 | | 150.0 | | | | | Z | 4.87 | 67.63 | 16.87 | - | 150.0 | 1 | | 10570-
AAA | IEEE 802.11g WIFi 2.4 GHz (DSSS-
OFDM, 54 Mbps, 99pc duty cycle) | X | 5.28 | 67.45 | 16.98 | 0.46 | 150.0 | ± 9.6 % | | | | Y | 5.03 | 67.51 | 16.88 | | 150.0 | | | | | Z | 4.90 | 67.48 | 16.81 | 1 | 150.0 | | | 10571-
AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1
Mbps, 90pc duty cycle) | X | 1.35 | 66.13 | 16.64 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 1.19 | 64.43 | 15.36 | | 130.0 | | | | | Z | 1.18 | 64.35 | 15.23 | | 130.0 | 1 | | 10572-
AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2
Mbps, 90pc duty cycle) | X | 1.38 | 66.86 | 17.05 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 1.20 | 65.01 | 15.71 | | 130.0 | | | | | Z | 1.19 | 64.89 | 15.56 | | 130.0 | | | 10573-
AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle) | X | 11.19 | 110.54 | 30.57 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 1.73 | 81.41 | 21.20 | | 130.0 | | | T. L. | | Z | 1.63 | 80.44 | 20.78 | | 130.0 | - | | 10574-
AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11
Mbps, 90pc duty cycle) | X | 1.76 | 75.02 | 20.84 | 0.46 | 130.0 | ± 9.6 % | | AAA | | | | | | | | | | | | Y | 1.35 | 70.98 | 18.69 | | 130.0 | | EX3DV4- SN:3866 May 31, 2017 | 10575-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 6 Mbps, 90pc duty cycle) | X | 4.93 | 66.62 | 16.56 | 0.46 | 130.0 | ±9.6 % | |---------------|---|---|------|-------|-------|------|-------|---------| | | | Y | 4.69 | 66.49 | 16.28 | | 130.0 | | | | | Z | 4.59 | 66.53 | 16.25 | 1 | 130.0 | | | 10576-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 9 Mbps, 90pc duty cycle) | X | 4.96 | 66.79 | 16.64 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.72 | 66.67 | 16.36 | | 130.0 | | | | | Z | 4.61 | 66.70 | 16.32 | | 130.0 | | | 10577-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 12 Mbps, 90pc duty cycle) | X | 5.24 | 67.17 | 16.82 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4,94 | 67.00 | 16.54 | | 130.0 | | | | | Z | 4.81 | 66.98 | 16.49 | | 130.0 | | | 10578-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 18 Mbps, 90pc duty cycle) | Х | 5.13 | 67.36 | 16.93 | 0.46 | 130.0 | ±9.6 % | | | | Y | 4.84 | 67.19 | 16.67 | | 130.0 | | | | | Z | 4.71 | 67.15 | 16.60 | | 130.0 | | | 10579-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 24 Mbps, 90pc duty cycle) | Х | 4,90 | 66.75 | 16.31 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.59 | 66.39 | 15.91 | | 130.0 | | | | | Z | 4.46 | 66.37 | 15.86 | - | 130.0 | | | 10580-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 36 Mbps, 90pc duty cycle) | X | 4.95 | 66.65 | 16.27 | 0.46 | 130.0 | ±9.6 % | | | | Y | 4.63 | 66.38 | 15.90 | | 130.0 | | | | | Z | 4.51 | 66.41 | 15.89 | | 130.0 | | | 10581-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 48 Mbps, 90pc duty cycle) | Х | 5.05 | 67.49 | 16.90 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.73 | 67.22 | 16.59 | | 130.0 | | | | | Z | 4.61 | 67.17 | 16.53 | | 130.0 | | | 10582-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 54 Mbps, 90pc duty cycle) | Х | 4.87 | 66.47 | 16.10 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.53 | 66.11 | 15.67 | | 130.0 | | | | | Z | 4.40 | 66.12 | 15.64 | | 130.0 | | | 10583-
AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6
Mbps, 90pc duty cycle) | X | 4.93 | 66.62 | 16.56 | 0.46 | 130.0 | ±9.6 % | | | | Y | 4.69 | 66.49 | 16.28 | | 130.0 | | | | | Z | 4.59 | 66.53 | 16.25 | | 130.0 | | | 10584-
AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9
Mbps, 90pc duty cycle) | Х | 4.96 | 66.79 | 16.64 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.72 | 66.67 | 16.36 | | 130.0 | | | | | Z | 4.61 | 66.70 | 16.32 | | 130.0 | | | 10585-
AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12
Mbps, 90pc duty cycle) | X | 5.24 | 67.17 | 16.82 | 0.46 | 130.0 | ±9.6 % | | | | Y | 4.94 | 67.00 | 16.54 | | 130.0 | | | | | Z | 4.81 | 66.98 | 16.49 | | 130.0 | | | 10586-
AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18
Mbps, 90pc duty cycle) | Х | 5.13 | 67.36 | 16.93 | 0.46 | 130.0 | ± 9.6 % | | - 7 | | Y | 4.84 | 67.19 | 16.67 | | 130.0 | | | | | Z | 4.71 | 67.15 | 16.60 | | 130.0 | | | 10587-
AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24
Mbps, 90pc duty cycle) | X | 4.90 | 66.75 | 16.31 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.59 | 66.39 | 15.91 | | 130.0 | | | | | Z | 4.46 | 66.37 | 15.86 | | 130.0 | | | 10588-
AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle) | X | 4.95 | 66.65 | 16.27 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.63 | 66.38 | 15.90 | | 130.0 | | | | | Z | 4.51 | 66.41 | 15.89 | | 130.0 | | | 10589-
AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48
Mbps, 90pc duty cycle) | Х | 5.05 | 67.49 | 16.90 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.73 | 67.22 | 16.59 | | 130.0 | | | | | Z | 4.61 | 67.17 | 16.53 | | 130.0 | | | 10590-
AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54
Mbps, 90pc duty cycle) | X | 4.87 | 66.47 | 16.10 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.53 | 66.11 | 15.67 | | 130.0 | | | | | Z | 4.40 | 66.12 | 15.64 | | 130.0 | | | 10591-
AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle) | × | 5.09 | 66.69 | 16.66 | 0.46 | 130.0 | ± 9.6 % | |---------------
--|------|------|-------|-------|------|-------|---------| | | | Y | 4.84 | 66.58 | 16.40 | | 130.0 | | | | | Z | 4.74 | 66.60 | 16.36 | - | 130.0 | | | 10592-
AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle) | X | 5.29 | 67.05 | 16.77 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.01 | 66.92 | 16.53 | | 130.0 | | | | the state of s | Z | 4.89 | 66.93 | 16.49 | | 130.0 | | | 10593-
AAA | IEEE 802.11n (HT Mixed, 20MHz,
MCS2, 90pc duty cycle) | X | 5.23 | 67.04 | 16.70 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4,93 | 66.84 | 16.41 | | 130.0 | | | | Lagrangian war again | Z | 4.80 | 66.82 | 16.36 | | 130.0 | | | 10594-
AAA | IEEE 802.11n (HT Mixed, 20MHz,
MCS3, 90pc duty cycle) | X | 5.27 | 67.16 | 16.83 | 0.46 | 130.0 | ± 9.6 % | | | Charles of American | Y | 4.99 | 67.01 | 16.57 | | 130.0 | | | 77.4 | | Z | 4.86 | 66.99 | 16.52 | | 130.0 | 1 | | 10595-
AAA | IEEE 802.11n (HT Mixed, 20MHz,
MCS4, 90pc duty cycle) | X | 5.27 | 67.18 | 16.76 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.95 | 66.95 | 16.45 | | 130.0 | | | | | Z | 4.82 | 66.94 | 16.41 | | 130.0 | | | 10596-
AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle) | X | 5.19 | 67.13 | 16.73 | 0.46 | 130.0 | ± 9.6 % | | | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | Y | 4.89 | 66.93 | 16.44 | | 130.0 | | | | | Z | 4.76 | 66.93 | 16.41 | | 130.0 | | | 10597- | IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle) | X | 5.15 | 67.11 | 16.67 | 0.46 | 130.0 | ± 9.6 % | | AAA | MCS0, Supc daty cycle) | Y | 4.84 | 66.84 | 16.33 | | 130.0 | | | | | Z | 4.71 | 66.82 | 16.33 | | | | | 10598- | IEEE 802.11n (HT Mixed, 20MHz, | X | | | | 0.40 | 130.0 | | | AAA | MCS7, 90pc duty cycle) | 1000 | 5,13 | 67.41 | 16.95 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.83 | 67.13 | 16.63 | | 130.0 | | | 18888 | | Z | 4.70 | 67.07 | 16.55 | | 130.0 | | | 10599-
AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle) | X | 5.77 | 67.42 | 16.87 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.50 | 67.15 | 16.59 | | 130.0 | - | | | | Z | 5.39 | 67.08 | 16.55 | | 130.0 | | | 10600-
AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle) | Х | 5.99 | 68.01 | 17.13 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.64 | 67.53 | 16.75 | - | 130.0 | | | | | Z | 5.50 | 67.43 | 16.69 | | 130.0 | | | 10601-
AAA | IEEE 802.11n (HT Mixed, 40MHz,
MCS2, 90pc duty cycle) | Х | 5.84 | 67.66 | 16.97 | 0,46 | 130.0 | ± 9.6 % | | 10.14 | PV-7 112 | Y | 5.53 | 67.30 | 16.65 | | 130.0 | | | | | Z | 5.41 | 67.23 | 16.61 | | 130.0 | | | 10602-
AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle) | X | 5.96 | 67.73 | 16.92 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.61 | 67.25 | 16.54 | | 130.0 | | | | | Z | 5.51 | 67.30 | 16.56 | | 130.0 | | | 10603-
AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle) | X | 6.09 | 68.14 | 17.25 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.71 | 67.64 | 16.87 | | 130.0 | | | | | Z | 5.58 | 67.56 | 16.83 | - | 130.0 | | | 10604-
AAA | IEEE 802.11n (HT Mixed, 40MHz,
MCS5, 90pc duty cycle) | X | 5.79 | 67.43 | 16.89 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.50 | 67.09 | 16.59 | | 130.0 | | | | | Z | 5.43 | 67.15 | 16.61 | | 130.0 | | | 10605-
AAA | IEEE 802.11n (HT Mixed, 40MHz,
MCS6, 90pc duty cycle) | Х | 5.88 | 67.61 | 16.98 | 0.46 | 130.0 | ± 9.6 % | | | 7.57-52 | Y | 5.60 | 67.34 | 16.70 | | 130.0 | | | | | Z | 5.50 | 67.35 | 16.70 | | 130.0 | | | 10606-
AAA | IEEE 802.11n (HT Mixed, 40MHz,
MCS7, 90pc duty cycle) | X | 5.64 | 67.11 | 16.61 | 0.46 | 130.0 | ± 9.6 % | | AAA | | - | | | 2.55 | | | _ | | | | Y | 5.38 | 66.83 | 16.31 | | 130.0 | | EX3DV4- SN:3866 May 31, 2017 | 10607-
AAA | IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle) | X | 4.91 | 65.98 | 16.27 | 0.46 | 130.0 | ± 9.6 % | |---------------|---|---|------|-------|-------|------|-------|---------| | | | Y | 4.67 | 65.88 | 16.01 | | 130.0 | | | | | Z | 4.58 | 65.91 | 15.98 | | 130.0 | | | 10608-
AAA | IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle) | × | 5.16 | 66.42 | 16.42 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.87 | 66.29 | 16.18 | | 130.0 | | | | | Z | 4.75 | 66.30 | 16.14 | | 130.0 | | | 10609-
AAA | IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle) | X | 5.04 | 66.34 | 16.31 | 0.46 | 130.0 | ± 9.6 % | | 45.00 | | Y | 4.76 | 66.13 | 16.01 | | 130.0 | | | | | Z | 4.64 | 66.13 | 15.97 | | 130.0 | | | 10610-
AAA | IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle) | х | 5.10 | 66.49 | 16.46 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.81 | 66.31 | 16,18 | | 130.0 | | | | | Z | 4.69 | 66.30 | 16.14 | | 130.0 | | | 10611-
AAA | IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle) | Х | 5.04 | 66.38 | 16.34 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.73 | 66.11 | 16.02 | - | 130.0 | | | | | Z | 4.61 | 66.09 | 15.98 | | 130.0 | | | 10612-
AAA | IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle) | X | 5.05 | 66.47 | 16.34 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.74 | 66.23 | 16.04 | | 130.0 | | | | | Z | 4.61 | 66.23 | 16.01 | | 130.0 | - | | 10613-
AAA | IEEE 802.11ac WiFi (20MHz, MCS6, 90pc duty cycle) | X | 5.07 | 66.42 | 16,27 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.75 | 66.14 | 15.94 | | 130.0 | | | | | Z | 4.61 | 66.10 | 15.89 | | 130.0 | | | 10614-
AAA | IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle) | X | 5.00 | 66.68 | 16.54 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.69 | 66.38 | 16.21 | | 130.0 | | | | | Z | 4.56 | 66.32 | 16.14 | | 130.0 | | | 10615-
AAA | IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle) | X | 5.03 | 66.12 | 16.09 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.72 | 65.88 | 15.77 | | 130.0 | | | | | Z | 4.60 | 65.91 | 15.74 | | 130.0 | | | 10616-
AAA | IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle) | X | 5.57 | 66.66 | 16.47 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.32 | 66.41 | 16.21 | | 130.0 | | | | | Z | 5.21 | 66.36 | 16.18 | | 130.0 | | | 10617-
AAA | IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle) | X | 5.66 | 66.81 | 16.51 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.37 | 66.51 | 16.23 | | 130.0 | | | | | Z | 5.28 | 66.52 | 16.23 | | 130.0 | | | 10618-
AAA | IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle) | X | 5.53 | 66.83 | 16.55 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.27 | 66.59 | 16.29 | | 130.0 | | | | | Z | 5.17 | 66.54 | 16.25 | | 130.0 | | | 10619-
AAA | IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle) | × | 5.55 | 66.62 | 16.38 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.29 | 66.38 | 16.11 | | 130.0 | | | | | Z | 5.18 | 66.32 | 16.08 | | 130.0 | | | 10620-
AAA | IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle) | X | 5.70 | 66.80 | 16.51 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.39 | 66.47 | 16.20 | | 130.0 | | | | | Z | 5.27 | 66.37 | 16.15 | - | 130.0 | | | 10621-
AAA | IEEE 802.11ac WIFi (40MHz, MCS5, 90pc duty cycle) | X | 5.67 | 66.88 | 16.66 | 0.46 | 130.0 | ±9.6 % | | | | Y | 5.39 | 66.61 | 16.40 | | 130.0 | | | | | Z | 5.28 | 66.53 | 16.35 | | 130.0 | - | | 10622-
AAA | IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle) | X | 5.64 | 66.90 | 16.67 | 0.46 | 130.0 | ±9.6 % | | | 7.77.77.77.77 | Y | 5.39 | 66.71 | 16.44 | | 130.0 | | | | | | | | | | | | EX3DV4- SN:3866 May 31, 2017 | 10623- | IEEE 802.11ac WiFi (40MHz, MCS7, | X | 5.58 | 66.69 | 16.45 | 0.46 | 130.0 | ± 9.6 % | |---------------
--|---|------|-------|-------|-----------|-------|---------| | AAA | 90pc duty cycle) | , | 0,00 | 00.00 | 10.43 | 0.40 | 150.0 | 1 3.0 % | | | | Y | 5.27 | 66.24 | 16.08 | | 130.0 | | | | | Z | 5.16 | 66.20 | 16.05 | | 130.0 | 4 | | 10624-
AAA | IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle) | X | 5,72 | 66.66 | 16.50 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.46 | 66.44 | 16.25 | | 130.0 | | | | A | Z | 5.35 | 66.40 | 16.21 | | 130.0 | | | 10625-
AAA | JEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle) | X | 6.02 | 67.31 | 16.86 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.83 | 67.39 | 16.77 | | 130.0 | | | | | Z | 5.66 | 67.19 | 16.66 | | 130.0 | | | 10626-
AAA | IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle) | X | 5.80 | 66.70 | 16.41 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.59 | 66.47 | 16.17 | | 130.0 | | | 10000 | | Z | 5.51 | 66.43 | 16.14 | | 130.0 | | | 10627-
AAA | IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle) | X | 6.04 | 67.10 | 16.54 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.82 | 66.97 | 16,37 | | 130.0 | | | | | Z | 5.73 | 66.93 | 16.35 | | 130.0 | | | 10628-
AAA | IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle) | X | 5.89 | 66.92 | 16.41 | 0.46 | 130.0 | ±9.6 % | | | | Y | 5.64 | 66.58 | 16.10 | | 130.0 | | | 1000 | | Z | 5,53 | 66.47 | 16.06 | | 130.0 | | | 10629-
AAA | IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle) | × | 6.00 | 67.02 | 16.44 | 0.46 | 130.0 | ±9.6 % | | | | Y | 5.73 | 66.66 | 16.13 | | 130.0 | | | ***** | VENEZ AND | Z | 5.60 | 66.52 | 16.07 | | 130.0 | | | 10630-
AAA | IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle) | X | 6.47 | 68.52 | 17.19 | 0.46 | 130.0 | ±9.6 % | | | | Y | 6.14 | 68.04 | 16.82 | | 130.0 | | | 79 000 | | Z | 5.94 | 67.72 | 16.68 | | 130.0 | | | 10631-
AAA | IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle) | X | 6.47 | 68.60 | 17.41 | 0.46 | 130.0 | ±9.6 % | | | | Y | 6.09 | 68.05 | 17.04 | | 130.0 | | | TAX STATE | | Z | 5.91 | 67.74 | 16.88 | | 130.0 | | | 10632-
AAA | IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle) | X | 6.09 | 67.42 | 16.84 | 0.46 | 130.0 | ±9.6 % | | | | Y | 5.81 | 67.11 | 16.59 | | 130.0 | | | | | Z | 5.71 | 67.03 | 16.54 | | 130.0 | | | 10633-
AAA | IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle) | X | 6.02 | 67,23 | 16.58 | 0.46 | 130.0 | ± 9.6 % | | | | Υ | 5.72 | 66.79 | 16.24 | | 130.0 | | | | | Z | 5.61 | 66.68 | 16.19 | | 130.0 | | | 10634-
AAA | IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle) | X | 6.01 | 67.25 | 16.65 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.71 | 66.84 | 16.34 | | 130.0 | | | 1435 | | Z | 5.59 | 66.71 | 16.27 | | 130.0 | | | 10635-
AAA | IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle) | X | 5.88 | 66.55 | 16.04 | 0.46 | 130.0 | ±9.6 % | | | | Y | 5.57 | 66.09 | 15.67 | | 130.0 | | | 1434 | | Z | 5.46 | 66.00 | 15.63 | 1 - 1 - 1 | 130.0 | _ 3.5 = | | 10636-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS0, 90pc duty cycle) | X | 6.19 | 67.09 | 16.50 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 6,00 | 66.85 | 16.26 | | 130.0 | | | 40007 | IEEE 2000 44 STORY | Z | 5.92 | 66.78 | 16.22 | | 130.0 | | | 10637-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS1, 90pc duty cycle) | X | 6.42 | 67.60 | 16.73 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 6.15 | 67.20 | 16.41 | | 130.0 | | | 10007 | Name and the column a | Z | 6.07 | 67.13 | 16.38 | 111 | 130.0 | | | 10638-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS2, 90pc duty cycle) | X | 6.36 | 67.41 | 16.61 | 0.46 | 130.0 | ± 9.6 % | | 11. | | Y | 6.15 | 67.18 | 16.37 | | 130.0 | | | | | Z | 6.07 | 67.12 | 16.35 | | 130.0 | | EX3DV4- SN:3866 May 31, 2017 | 10639-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS3, 90pc duty cycle) | X | 6.39 | 67.51 | 16.71 | 0.46 | 130.0 | ± 9.6 % | |---------------|---|---|-------|-------|-------|------|-------|---------| | 74.14 | | Y | 6.15 | 67.18 | 16.43 | | 130.0 | | | | | Z | 6.05 | 67,07 | 16.37 | | 130.0 | | | 10640-
AAA | IEEE 1602.11ac WIFi (160MHz, MCS4, 90pc duty cycle) | × | 6.42 | 67.57 | 16.68 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 6.15 | 67.18 | 16.36 | - | 130.0 | | | | | Z | 6.04 | 67.05 | 16.30 | | 130.0 | | | 10641-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS5, 90pc duty cycle) | X | 6.42 | 67.34 | 16.58 | 0.46 | 130.0 | ± 9.6 % | | 16.10 | | Y | 6.17 | 67.01 | 16.29 | | 130.0 | - | | | | Z | 6.09 | 66.98 | 16.28 | | 130.0 | | | 10642-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS6, 90pc duty cycle) | Х | 6.53 | 67.76 | 16.96 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 6.25 | 67.39 | 16.66 | - | 130.0 | | | | | Z | 6.14 | 67.25 | 16.60 | 1 | 130.0 | | | 10643-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS7, 90pc duty cycle) | X | 6.32 | 67.36 | 16.66 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 6.06 | 66.99 | 16.35 | | 130.0 | | | | 2 | Z | 5.97 | 66.91 | 16.32 | | 130.0 | 1,000 | | 10644-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS8, 90pc duty cycle) | X | 6.56 | 68.07 | 17.04 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 6.25 | 67.56 | 16.65 | | 130.0 | | | | | Z | 6.11 | 67.33 | 16.55 | 100 | 130.0 | | | 10645-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS9, 90pc duty cycle) | Х | 6.75 | 68.14 | 17.02 | 0,46 | 130.0 | ± 9.6 % | | 2.5 | | Y | 6.64 | 68.25 | 16.94 | 11 | 130.0 | | | | | Z | 6.31 | 67.55 | 16.62 | | 130.0 | - / - | | 10646-
AAC | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7) | Х | 17,14 | 96.60 | 31.35 | 9,30 | 60.0 | ± 9.6 % | | | | Y | 11.66 | 91.33 | 28.76 | | 60.0 | | | | | Z | 14.54 | 98.42 | 31.68 | | 60.0 | | | 10647-
AAB | LTE-TDD (SC-FDMA, 1 RB, 20 MHz,
QPSK, UL Subframe=2,7) | Х | 17.01 | 97.08 | 31.61 | 9,30 | 60.0 | ± 9.6 % | | | | Y | 11.05 | 90.83 | 28.68 | | 60.0 | | | | | Z | 13.46 | 97.50 | 31,51 | | 60.0 | | | 10648-
AAA | CDMA2000 (1x Advanced) | Х | 1.00 | 66.85 | 14.21 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 0.78 | 64.69 | 11.99 | | 150.0 | | | | | Z | 0.68 | 63.70 | 10.81 | | 150.0 | | E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.