Test Mode: TM 3 & ANT 1 & Ch.151

Maximum Power Spectral Density

Test Mode: TM 4 & ANT 1 & Ch.42

Maximum Power Spectral Density

Test Mode: TM 4 & ANT 1 & Ch.106

Maximum Power Spectral Density

	F 50Ω AC		SENSE:PUL		ALIGN OFF	03:15:59 PM Apr 04, 202	
enter Freq	5.77500000	DU GHZ PNO: Fast + IFGain:Low	➡ Trig: Free Ru #Atten: 30 dB		pe: RMS	TRACE 12345 TYPE A WWWW DET A A A A A	A
0 dB/div Re	ef 15.00 dBm				Mkı	1 5.772 50 GH -15.89 dBr	z Auto Tune n
5.00							Center Fre 5.775000000 GH
15.0	Halihandaki	Halisbyingerbrief	nykypennekjästenny pette	udine in the analytic internal	novenkeitendelede	shekthaladanin (a	Start Fre 5.725000000 GH
25.0		ante a france a construction of the second sec					Stop Fre 5.825000000 GH
45.0 55.0 ////////////////////////////////////	/					hand a bridge	CF Ste 10.000000 M⊢ Auto Ma
65.0							Freq Offse 0 ⊦
^{75.0}	00 GHz		W 300 kHz			Span 100.0 MH 2.40 ms (3001 pts	IZ

Test Mode: TM 1 & ANT 2 & Ch.36

Maximum Power Spectral Density

Test Mode: TM 1 & ANT 2 & Ch.52

Maximum Power Spectral Density

Test Mode: TM 1 & ANT 2 & Ch.100

Maximum Power Spectral Density

Test Mode: TM 1 & ANT 2 & Ch.149

Maximum Power Spectral Density



Test Mode: TM 2 & ANT 2 & Ch.36

Maximum Power Spectral Density

Test Mode: TM 2 & ANT 2 & Ch.52

Maximum Power Spectral Density

Test Mode: TM 2 & ANT 2 & Ch.100

Maximum Power Spectral Density



Test Mode: TM 2 & ANT 2 & Ch.149

Maximum Power Spectral Density

RL RF	50 Ω i			SENSE	EPULSE		ALIGN OFF		1 Apr 04, 2023	Frequency
enter Freq 5.	825000	PN	Z IO: Fast ↔ ain:Low	. Trig: Free #Atten: 30		#Avg Typ	e: RMS	TY	E 123456 E A WWWWW T A A A A A A A	
	5.00 dB	m					Mkr		66 GHz 98 dBm	Auto Tur
										Center Fre 5.825000000 GH
5.0	N	vinana	www.ww	www	1 /\f\Wyyy /	MMMM	1. Mariana			Start Fre 5.810000000 GH
5.0	- And a start							how you		Stop Fre 5.840000000 GH
5.0 MMMMMMMM	/ ⁴								www.	CF Ste 3.000000 Mi <u>Auto</u> Mi
5.0										Freq Offs 0 I
enter 5.82500 Res BW 100 kH			#\/R\/	300 kHz			Sweep 3.	Span 3	0.00 MHz 3001 pts)	

Test Mode: TM 3 & ANT 2 & Ch.38

Maximum Power Spectral Density

Test Mode: TM 3 & ANT 2 & Ch.54

Maximum Power Spectral Density

Test Mode: TM 3 & ANT 2 & Ch.102

Maximum Power Spectral Density

Test Mode: TM 3 & ANT 2 & Ch.151

Maximum Power Spectral Density

Test Mode: TM 4 & ANT 2 & Ch.42

Maximum Power Spectral Density

Test Mode: TM 4 & ANT 2 & Ch.106

Maximum Power Spectral Density

	RF 50 Ω	AC CC	RREC	SENS	E:PULSE		ALIGN OFF		M Apr 04, 2023	Frequency
enter Fred	5.77500	F	Z NO: Fast ↔ Gain:Low	_ Trig: Free #Atten: 30		#Avg Typ	e: RMS	T١	CE 1 2 3 4 5 6 /PE A WWWWW DET A A A A A A	
0 dB/div R	ef 15.00 d	dBm					Mkı	1 5.780 -15.	00 GHz .62 dBm	Auto Tun
5.00										Center Fre 5.775000000 GH
5.00	Ana handaati	Kalahabahatana	ine perfective to the t	an the first and the second	1 perindhiskohd	hereling the state of the		in the state of the		Start Fre 5.725000000 G⊦
95.0	1 . Full KLowler	alleder on a led of each of					alda olan oo 1 .			Stop Fre 5.825000000 GH
5.0									hinder the second second	CF Ste 10.000000 Mł <u>Auto</u> Ma
i5.0										Freq Offs 0 F
enter 5.775 Res BW 100			#VBV	V 300 kHz			Sweep_1	Span ′ 2.40 ms	100.0 MHz (3001 pts)	
G G			<i>"</i> • E •				STATU		(eres bro)	

5.5 Unwanted Emissions

Test Requirements

- Part 15.407(b) & RSS-Gen[6.2]

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

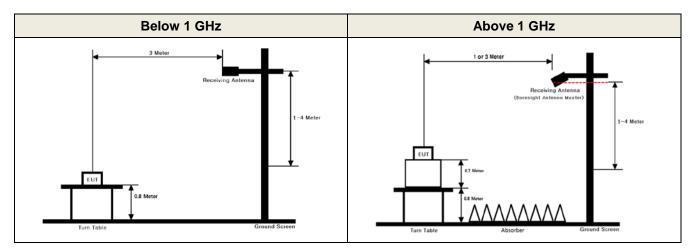
- (1) For transmitters operating in the 5.15 GHz 5.25 GHz band: all emissions outside of the 5.15 GHz 5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25 GHz 5.35 GHz band: all emissions outside of the 5.15 GHz 5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47 GHz 5.725 GHz band: all emissions outside of the 5.47 GHz 5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725 GHz 5.85 GHz band: (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (5) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in Section 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in Section 15.207.

Frequency (MHz)	FCC Limit (uV/m)	IC Limit (µA/m)	Measurement Distance (m)
0.009 - 0.490	2 400 / F (kHz)	6.37/F (F in kHz)	300
0.490 - 1.705	24 000 / F (kHz)	63.7/F (F in kHz)	30
1.705 – 30.0	30	0.08	30

- Part 15.209 & RSS-247[8.9]: General requirements

Frequency (MHz)	FCC Limit (uV/m)	IC Limit (uV/m)	Measurement Distance (m)
30 ~ 88	100 **	100	3
88 ~ 216	150 **	150	3
216 ~ 960	200 **	200	3
Above 960	500	500	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.


- Part 15.205(a): Restricted band of operation

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.414 25 ~ 8.414 75	108 ~ 121.94	1 300 ~ 1 427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1 435 ~ 1 626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.173 5 ~ 2.190 5	12.519 75 ~ 12.520 25	149.9 ~ 150.05	1 645.5 ~ 1 646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.576 75 ~ 12.577 25	156.524 75 ~ 156.525 25	1 660 ~ 1 710	8.025 ~ 8.5	22.01 ~ 23.12
4.177 25 ~ 4.177 75	13.36 ~ 13.41	156.7 ~ 156.9	1 718.8 ~ 1 722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.207 25 ~ 4.207 75	16.42 ~ 16.423	162.012 5 ~ 167.17	2 200 ~ 2 300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.694 75 ~ 16.695 25	167.72 ~ 173.2	2 310 ~ 2 390	10.6 ~ 12.7	36.43 ~ 36.5
6.267 75 ~ 6.268 25	16.804 25 ~ 16.804 75	240 ~ 285	2 483.5 ~ 2 500	13.25 ~ 13.4	Above 38.6
6.311 75 ~ 6.312 25	25.5 ~ 25.67	322 ~ 335.4	2 655 ~ 2 900		
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3 260 ~ 3 267		
8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3 332 ~ 3 339		
8.376 25 ~ 8.386 75	74.8 ~ 75.2	960 ~ 1 240	3 345.8 ~ 3 358		
			3 600 ~ 4 400		

- RSS-Gen[8.10]: Restricted frequency bands

MHz	MHz	MHz	MHz	MHz	GHz
0.090 ~ 0.110	8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3 345.8 ~ 3 358	9.0 ~ 9.2
0.495 ~ 0.505	8.376 25 ~ 8.386 75	74.8 ~ 75.2	960 ~ 1 427	3 500 ~ 4 400	9.3 ~ 9.5
2.173 5 ~ 2.190 5	8.414 25 ~ 8.414 75	108 ~ 138	1 435 ~ 1 626.5	4 500 ~ 5 150	10.6 ~ 12.7
3.020 ~ 3.026	12.29 ~ 12.293	149.9 ~ 150.05	1 645.5 ~ 1 646.5	5 350 ~ 5 460	13.25 ~ 13.4
4.125 ~ 4.128	12.519 75 ~ 12.520 25	156.524 75 ~	1 660 ~ 1 710	7 250 ~ 7 750	14.47 ~ 14.5
4.177 25 ~ 4.177 75	12.576 75 ~ 12.577 25	156.525 25	1 718.8 ~ 1 722.2	8 025 ~ 8 500	15.35 ~ 16.2
4.207 25 ~ 4.207 75	13.36 ~ 13.41	156.7 ~ 156.9	2 200 ~ 2 300		17.7 ~ 21.4
5.677 ~ 5.683	16.42 ~ 16.423	162.01 25 ~ 167.17	2 310 ~ 2 390		22.01 ~ 23.12
6.215 ~ 6.218	16.694 75 ~ 16.695 25	167.72 ~ 173.2	2 483.5 ~ 2 500		23.6 ~ 24.0
6.267 75 ~ 6.268 25	16.804 25 ~ 16.804 75	240 ~ 285	2 655 ~ 2 900		31.2 ~ 31.8
6.311 75 ~ 6.312 25	25.5 ~ 25.67	322 ~ 335.4	3 260 ~ 3 267		36.43 ~ 36.5
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3 332 ~ 3 339		Above 38.6

Test Configuration

Test Procedure

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m.
- 2. The turn table shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 1 m or 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Radiated spurious emission measured using following Measurement Procedure of KDB789033 D02v02r01

► General Requirements for Unwanted Emissions Measurements

The following requirements apply to all unwanted emissions measurements, both in and outside of the restricted bands:

- EUT Duty Cycle
 - (1) The EUT shall be configured or modified to transmit continuously except as stated in (ii), below. The intent is to test at 100 percent duty cycle; however a small reduction in duty cycle (to no lower than 98 percent) is permitted if required by the EUT for amplitude control purposes. Manufacturers are expected to provide software to the test lab to permit such continuous operation.
 - (2) If continuous transmission (or at least 98 percent duty cycle) cannot be achieved due to hardware limitations of the EUT (e.g., overheating), the following additions to the measurement and reporting procedures are required:
 - The EUT shall be configured to operate at the maximum achievable duty cycle.
 - Measure the duty cycle, x, of the transmitter output signal.
 - Adjustments to measurement procedures (e.g., increasing test time and number of traces averaged) shall be performed as described in the procedures below.
 - The test report shall include the following additional information:
 - The reason for the duty cycle limitation.
 - The duty cycle achieved for testing and the associated transmit duration and interval between transmissions.
 - The sweep time and the amount of time used for trace stabilization during max-hold measurements for peak emission measurements.
- (3) Reduction of the measured emission amplitude levels to account for operational duty factor is not permitted. Compliance is based on emission levels occurring during transmission not on an average across on and off times of the transmitter.

► Measurements below 1 000 MHz

DDt&C

- a) Follow the requirements in section II.G.3, "General Requirements for Unwanted Emissions Measurements".
- b) Compliance shall be demonstrated using **CISPR quasi-peak detection**; however, **peak detection** is permitted as an alternative to quasi-peak detection.

► Measurements Above 1 000 MHz (Peak)

- a) Follow the requirements in section II.G.3, "General Requirements for Unwanted Emissions Measurements".
- b) Peak emission levels are measured by setting the analyzer as follows:
 - (i) **RBW = 1 MHz.**
 - (ii) **VBW** ≥ 3 MHz.
 - (iii) **Detector = Peak.**
 - (iv) Sweep time = Auto.
 - (v) Trace mode = Max hold.
 - (vi) Allow sweeps to continue until the trace stabilizes. Note that if the transmission is not continuous, the time required for the trace to stabilize will increase by a factor of approximately 1/x, where x is the duty cycle. For example, at 50 percent duty cycle, the measurement time will increase by a factor of two relative to measurement time for continuous transmission.

Measurements Above 1000 MHz (Method AD)

- (i) **RBW = 1 MHz.**
- (ii) **VBW** ≥ 3 MHz.
- (iii) Detector = RMS, if span / (# of points in sweep) ≤ RBW / 2. Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, the detector mode shall be set to peak.
- (iv) Averaging type = power (i.e., RMS)
 - As an alternative, the detector and averaging type may be set for linear voltage averaging. Some analyzers require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.
- (v) Sweep time = Auto.
- (vi) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, the number of traces shall be increased by a factor of 1/x, where x is the duty cycle. For example, with 50 percent duty cycle, at least 200 traces shall be averaged.
- (vii) If tests are performed with the EUT transmitting at a duty cycle less than 98 percent, a correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
 - If power averaging (RMS) mode was used in step (iv) above, the correction factor is 10 log(1/x), where x is the duty cycle. For example, if the transmit duty cycle was 50 percent, then 3 dB must be added to the measured emission levels.
 - If linear voltage averaging mode was used in step (iv) above, the correction factor is 20 log (1/x), where x is the duty cycle. For example, if the transmit duty cycle was 50 percent, then 6 dB must be added to the measured emission levels.
 - If a specific emission is demonstrated to be continuous (100 percent duty cycle) rather than turning on and off with the transmit cycle, no duty cycle correction is required for that emission.

Test Mode	Date rate	T _{on} (ms)	T _{on+off} (ms)	$x = T_{on} / (T_{on+off})$	DCCF = 10 log(1/x) (dB)
TM 1	6 Mbps	1.426	1.527	0.933 9	0.30
TM 2	MCS 0	1.336	1.435	0.931 0	0.31
TM 3	MCS 0	0.663	0.763	0.868 9	0.61
TM 4	MCS 0	0.332	0.431	0.769 0	1.14

Duty Cycle Correction factor

Note1: Where, T = Transmission duration / x = Duty cycle Note2: Please refer to the appendix II for duty cycle plots.

Test Results

Test Notes

1. The radiated emissions were investigated 9 kHz to 40 GHz. And no other spurious and harmonic emissions were found below listed frequencies. 2. Information of Distance Correction Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

In this case, the distance factor is applied to the result.

- Calculation of distance correction factor

At frequencies below 30 MHz = 40 log(tested distance / specified distance)

At frequencies at or above 30 MHz = 20 log(tested distance / specified distance) When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.

3. Sample Calculation.

Margin = Limit - Result / Result = Reading + TF+ DCCF + DCF / TF = AF + CL + HL + AL - AG

Where, TF = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, HL = High pass filter Loss, AL = Attenuator Loss, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

4. The limit is converted to field strength.

E(dBuV/m) = EIRP(dBm) + 95.2 dB = -27 dBm + 95.2 = 68.2 dBuV/m

Unwanted Emissions data(9 kHz ~ 40 GHz) : TM1

Band	Tested Frequency (MHz)	Freq. (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
		5 149.78	Н	Х	PK	63.00	3.39	N/A	N/A	66.39	74.00	7.61
	5 180	5 149.31	Н	Х	AV	44.89	3.39	0.30	N/A	48.58	54.00	5.42
U-NII 1		10 361.15	V	Z	PK	42.40	10.14	N/A	N/A	52.54	68.20	15.66
	5 200	10 400.01	V	Z	PK	42.69	10.48	N/A	N/A	53.17	68.20	15.03
	5 240	10 479.48	V	Z	PK	43.28	11.25	N/A	N/A	54.53	68.20	13.67
	5 260	10 519.72	V	Z	PK	44.70	11.42	N/A	N/A	56.12	68.20	12.08
		10 598.58	V	Z	PK	43.71	11.37	N/A	N/A	55.08	68.20	13.12
	5 300	10 601.10	V	Z	PK	43.79	11.37	N/A	N/A	55.16	74.00	18.84
U-NII		10 600.84	V	Z	AV	33.72	11.37	0.30	N/A	45.39	54.00	8.61
2A		5 350.90	Н	Х	PK	62.58	3.82	N/A	N/A	66.40	74.00	7.60
	5 320	5 351.44	н	Х	AV	43.92	3.82	0.30	N/A	48.04	54.00	5.96
	5 520	10 640.00	V	Z	PK	43.26	11.43	N/A	N/A	54.69	74.00	19.31
		10 640.15	V	Z	AV	33.11	11.43	0.30	N/A	44.84	54.00	9.16
		5 459.37	Н	Х	PK	56.29	3.76	N/A	N/A	60.05	74.00	13.95
		5 458.88	Н	Х	AV	42.16	3.76	0.30	N/A	46.22	54.00	7.78
	5 500	5 468.66	н	Х	PK	61.87	3.73	N/A	N/A	65.60	68.20	2.60
		11 000.23	V	Z	PK	45.05	11.44	N/A	N/A	56.49	74.00	17.51
U-NII 2C		11 000.58	V	Z	AV	34.58	11.44	0.30	N/A	46.32	54.00	7.68
20	5 580	11 158.35	V	Z	PK	45.07	10.84	N/A	N/A	55.91	74.00	18.09
	5 560	11 158.90	V	Z	AV	34.47	10.84	0.30	N/A	45.61	54.00	8.39
	5 720	11 440.07	V	Z	PK	43.89	9.70	N/A	N/A	53.59	74.00	20.41
	5720	11 440.46	V	Z	AV	33.63	9.70	0.30	N/A	43.63	54.00	10.37
		5 638.48	н	Х	PK	50.88	4.08	N/A	N/A	54.96	68.20	13.24
	5 745	5 719.95	Н	Х	PK	68.58	4.20	N/A	N/A	72.78	110.79	38.01
	5745	11 492.30	V	Х	PK	44.06	9.56	N/A	N/A	53.62	74.00	20.38
		11 492.14	V	Z	AV	33.64	9.56	0.30	N/A	43.50	54.00	10.50
U-NII 3	5 785	11 572.23	V	Z	PK	43.79	9.48	N/A	N/A	53.27	74.00	20.73
0-111 3	5765	11 571.63	V	Z	AV	33.38	9.48	0.30	N/A	43.16	54.00	10.84
		5 856.68	Н	Х	PK	65.48	3.84	N/A	N/A	69.32	110.33	41.01
	5 825	5 932.25	Н	Х	PK	50.83	4.70	N/A	N/A	55.53	68.20	12.67
	5 625	11 648.34	V	Z	PK	44.83	9.53	N/A	N/A	54.36	74.00	19.64
		11 647.91	V	Z	AV	34.32	9.53	0.30	N/A	44.15	54.00	9.85

Band	Frequency (MHz)	Freq. (MHz)	ANT Pol	Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
		5 149.76	Н	Х	PK	63.01	3.39	N/A	N/A	66.40	74.00	7.60
	5 180	5 149.61	Н	Х	AV	45.60	3.39	0.31	N/A	49.30	54.00	4.70
U-NII 1		10 360.65	V	Z	PK	41.71	10.14	N/A	N/A	51.85	68.20	16.35
	5 200	10 399.08	V	Z	PK	42.82	10.47	N/A	N/A	53.29	68.20	14.91
	5 240	10 481.93	V	Z	PK	43.24	11.28	N/A	N/A	54.52	68.20	13.68
	5 260	10 520.39	V	Z	PK	43.66	11.42	N/A	N/A	55.08	68.20	13.12
		10 598.46	V	Z	PK	43.32	11.37	N/A	N/A	54.69	68.20	13.51
	5 300	10 601.91	V	Z	PK	44.26	11.37	N/A	N/A	55.63	74.00	18.37
U-NII		10 601.49	V	Z	AV	33.78	11.37	0.31	N/A	45.46	54.00	8.54
2A		5 350.57	Н	Х	PK	61.83	3.82	N/A	N/A	65.65	74.00	8.35
	5 220	5 351.27	Н	Х	AV	44.94	3.82	0.31	N/A	49.07	54.00	4.93
	5 320	10 642.10	V	Z	PK	43.91	11.43	N/A	N/A	55.34	74.00	18.66
		10 641.63	V	Z	AV	33.23	11.43	0.31	N/A	44.97	54.00	9.03
		5 458.16	Н	Х	PK	55.93	3.76	N/A	N/A	59.69	74.00	14.31
		5 457.92	Н	Х	AV	42.47	3.76	0.31	N/A	46.54	54.00	7.46
	5 500	5 468.91	V	Z	PK	60.15	3.73	N/A	N/A	63.88	68.20	4.32
		11 001.88	V	Z	PK	46.06	11.43	N/A	N/A	57.49	74.00	16.51
U-NII 2C		11 001.78	V	Z	AV	34.41	11.43	0.31	N/A	46.15	54.00	7.85
20	E E 00	11 158.81	V	Z	PK	44.48	10.84	N/A	N/A	55.32	74.00	18.68
	5 580	11 159.35	V	Z	AV	34.42	10.84	0.31	N/A	45.57	54.00	8.43
	5 700	11 440.03	V	Z	PK	44.29	9.70	N/A	N/A	53.99	74.00	20.01
	5 720	11 439.03	V	Z	AV	33.90	9.71	0.31	N/A	43.92	54.00	10.08
		5 637.50	Н	Х	PK	51.45	4.08	N/A	N/A	55.53	68.20	12.67
	E 74E	5 718.58	Н	Х	PK	65.23	4.20	N/A	N/A	69.43	110.40	40.97
	5 745	11 489.67	V	Z	PK	44.82	9.56	N/A	N/A	54.38	74.00	19.62
		11 489.23	V	Z	AV	33.64	9.57	0.31	N/A	43.52	54.00	10.48
	E 70E	11 571.86	V	Z	PK	43.87	9.48	N/A	N/A	53.35	74.00	20.65
U-NII 3	5 785	11 571.69	V	Z	AV	33.43	9.48	0.31	N/A	43.22	54.00	10.78
		5 858.74	Н	Х	PK	65.61	3.84	N/A	N/A	69.45	109.75	40.30
	E 90E	5 928.32	Н	Х	PK	51.47	4.67	N/A	N/A	56.14	68.20	12.06
	5 825	11 651.98	V	Z	PK	45.15	9.53	N/A	N/A	54.68	74.00	19.32
		11 651.45	V	Z	AV	34.12	9.53	0.31	N/A	43.96	54.00	10.04

10.	10664A-PM560	
IC.	10004A-LINI200	,

Unwanted Emissions data(9 kHz ~ 40 GHz) : <i>TM</i> 3												
Band	Tested Frequency (MHz)	Freq. (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
U-NII 1	5 190	5 149.86	Н	Х	PK	59.20	3.39	N/A	N/A	62.59	74.00	11.41
		5 149.73	Н	Х	AV	46.16	3.39	0.61	N/A	50.16	54.00	3.84
		10 377.84	V	Z	PK	42.62	10.29	N/A	N/A	52.91	68.20	15.29
	5 230	10 461.70	V	Z	PK	43.37	11.10	N/A	N/A	54.47	68.20	13.73
U-NII 2A	5 270	10 539.71	V	Z	PK	44.31	11.41	N/A	N/A	55.72	68.20	12.48
	5 310	5 350.50	Н	Х	PK	59.22	3.82	N/A	N/A	63.04	74.00	10.96
		5 350.56	Н	Х	AV	45.23	3.82	0.61	N/A	49.66	54.00	4.34
		10 619.51	V	Z	PK	43.49	11.40	N/A	N/A	54.89	74.00	19.11
		10 619.79	V	Z	AV	32.64	11.40	0.61	N/A	44.65	54.00	9.35
	5 510	5 459.26	Н	Х	PK	51.62	3.76	N/A	N/A	55.38	74.00	18.62
U-NII 2C		5 467.56	Н	Х	PK	56.58	3.74	N/A	N/A	60.32	68.20	7.88
		5 459.64	V	Z	AV	41.91	3.76	0.61	N/A	46.28	54.00	7.72
		11 021.41	V	Z	PK	45.42	11.35	N/A	N/A	56.77	74.00	17.23
		11 021.53	V	Z	AV	34.47	11.35	0.61	N/A	46.43	54.00	7.57
	5 550	11 099.73	V	Z	PK	43.37	11.10	N/A	N/A	54.47	74.00	19.53
		11 099.03	V	Z	AV	33.55	11.10	0.61	N/A	45.26	54.00	8.74
	5 710	11 421.70	V	Z	PK	43.73	9.78	N/A	N/A	53.51	74.00	20.49
		11 421.73	V	Z	AV	33.60	9.78	0.61	N/A	43.99	54.00	10.01
U-NII 3	5 755	5 644.65	Н	Х	PK	51.67	4.09	N/A	N/A	55.76	68.20	12.44
		5 709.75	Н	Х	PK	68.27	4.21	N/A	N/A	72.48	107.93	35.45
		11 507.65	V	Z	PK	44.42	9.53	N/A	N/A	53.95	74.00	20.05
		11 508.14	V	Z	AV	33.35	9.53	0.61	N/A	43.49	54.00	10.51
	5 795	5 880.04	Н	Х	PK	56.50	4.25	N/A	N/A	60.75	101.47	40.72
		5 928.08	Н	Х	PK	50.48	4.67	N/A	N/A	55.15	68.20	13.05
		11 591.43	V	Z	PK	43.42	9.50	N/A	N/A	52.92	74.00	21.08
		11 592.24	V	Z	AV	33.30	9.50	0.61	N/A	43.41	54.00	10.59

IC: 10664A-PM560

Band	Tested Frequency (MHz)	Freq. (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
U-NII 1	5 210	5 149.71	Н	Х	PK	59.13	3.39	N/A	N/A	62.52	74.00	11.48
		5 149.38	Н	Х	AV	45.53	3.39	1.14	N/A	50.06	54.00	3.94
		10 421.61	V	Z	PK	42.28	10.70	N/A	N/A	52.98	68.20	15.22
U-NII 2A	5 290	5 351.60	Н	Х	PK	55.73	3.82	N/A	N/A	59.55	74.00	14.45
		5 352.09	Н	Х	AV	44.42	3.82	1.14	N/A	49.38	54.00	4.62
		10 581.71	V	Z	PK	42.58	11.38	N/A	N/A	53.96	68.20	14.24
U-NII 2C	5 530	5 459.23	Н	Х	PK	56.54	3.76	N/A	N/A	60.30	74.00	13.70
		5 469.85	Н	Х	PK	60.94	3.73	N/A	N/A	64.67	68.20	3.53
		5 459.46	Н	Х	AV	44.81	3.76	1.14	N/A	49.71	54.00	4.29
		11 058.97	V	Z	PK	44.31	11.20	N/A	N/A	55.51	74.00	18.49
		11 058.51	V	Z	AV	34.11	11.20	1.14	N/A	46.45	54.00	7.55
	5 690	11 380.94	V	Z	PK	43.82	9.93	N/A	N/A	53.75	74.00	20.25
		11 380.14	V	Z	AV	33.44	9.93	1.14	N/A	44.51	54.00	9.49
U-NII 3	5 775	5 645.48	Н	Х	PK	54.85	4.10	N/A	N/A	58.95	68.20	9.25
		5 678.50	Н	Х	PK	59.40	4.14	N/A	N/A	63.54	89.29	25.75
		5 883.52	Н	Х	PK	56.10	4.29	N/A	N/A	60.39	98.90	38.51
		5 928.52	Н	Х	PK	55.66	4.67	N/A	N/A	60.33	68.20	7.87
		11 552.43	V	Z	PK	43.51	9.47	N/A	N/A	52.98	74.00	21.02
		11 552.15	V	Z	AV	33.28	9.47	1.14	N/A	43.89	54.00	10.11

Unwanted Emissions data(9 kHz ~ 40 GHz) : TM4

5.6 AC Power-Line Conducted Emissions

Test Requirements, §15.207 & RSS-Gen[8.8]

An intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

	Conducted Limit (dBuV)						
Frequency Range (MHz)	Quasi-Peak	Average					
0.15 ~ 0.5	66 to 56 *	56 to 46 *					
0.5 ~ 5.0	56	46					
5 ~ 30	60	50					

* Decreases with the logarithm of the frequency

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs for the actual connections between EUT and support equipment.

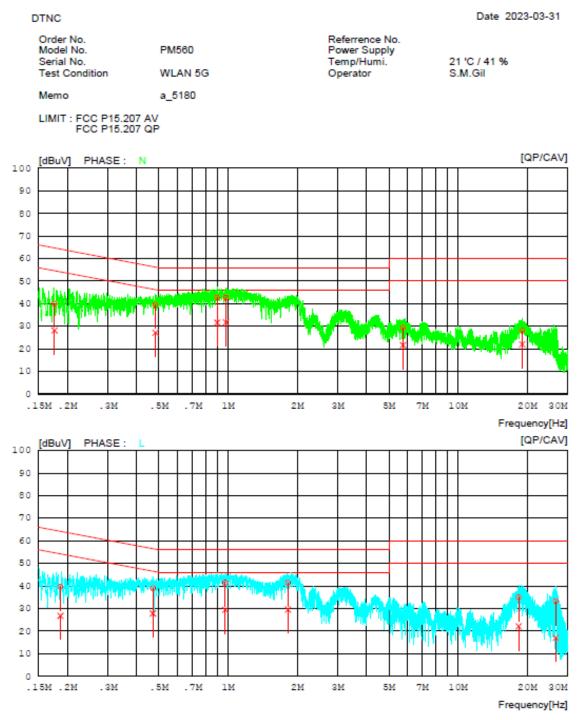
Test Procedure

Conducted emissions from the EUT were measured according to the ANSI C63.10-2013.

1. The test procedure is performed in a 6.5 m \times 3.5 m \times 3.5 m (L \times W \times H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) \times 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.

2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.

3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.


4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

Test Results: Comply

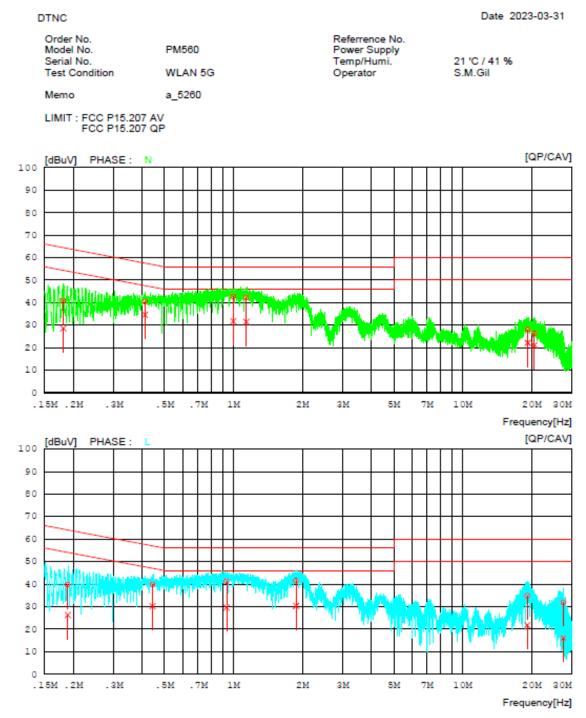
Refer to the next page. The worst case data was reported.

AC Power-Line Conducted Emissions (Graph)

Test Mode: U-NII 1 & TM 1 & 5 180 MHz

DTNC

AC Power-Line Conducted Emissions (Data List)

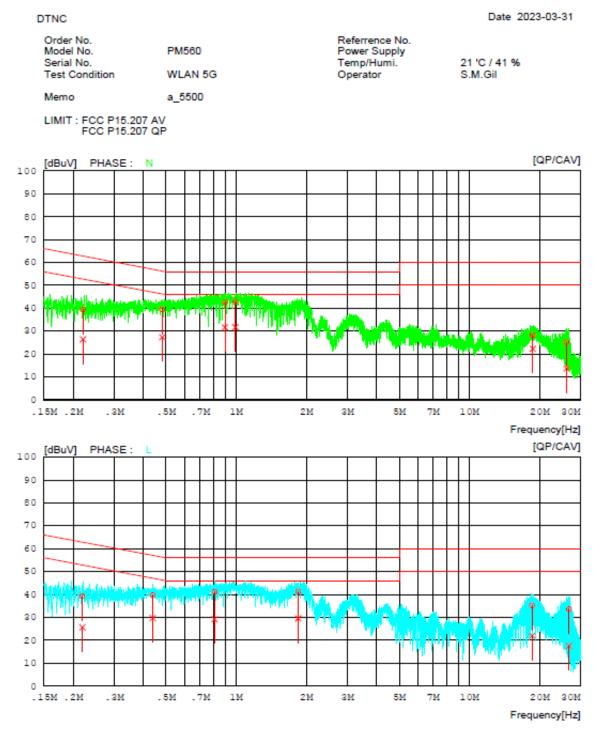

Test Mode: U-NII 1 & TM 1 & 5 180 MHz <u>Results of Conducted Emission</u>

Date 2023-03-31

Order No. Model No. Serial No. Test Conditio	PM560 n WLAN 5G	Referrence No. Power Supply Temp/Humi. Operator	21 'C / 41 % S.M.Gil	
Memo	a_5180			
LIMIT : FCC FCC NO FRE [MHz	P15.207 QP Q READING C.FACTOR QP CAV	RESULT LIMIT QP CAV QP CAV [dBuV][dBuV] [dBuV][dBuV]	MARGIN PHASE QP CAV] [dBuV] [dBuV]	
2 0.483 3 0.896 4 0.976 5 5.766 6 19.026 7 0.186 8 0.476 9 0.972 10 1.822 11 18.356	200 31.5519.44 9.98 200 31.3419.57 10.04	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24.6326.42 N 16.7619.12 N 13.2814.31 N 13.2814.25 N 30.5428.39 N 31.9627.93 N 24.5927.36 L 17.4818.74 L 14.4716.58 L 14.6216.39 L 25.0327.93 L 26.7732.92 L	

AC Power-Line Conducted Emissions (Graph)

Test Mode: U-NII 2A & TM 1 & 5 260 MHz

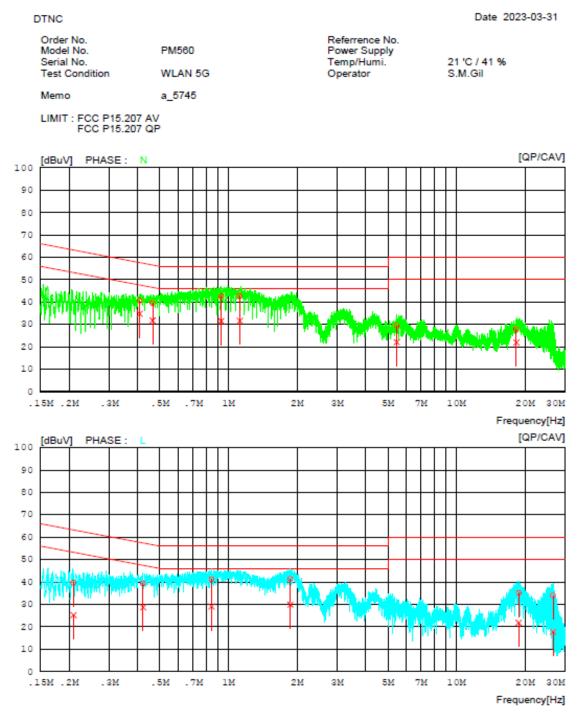

AC Power-Line Conducted Emissions (Data List)

Test Mode: U-NII 2A & TM 1 & 5 260 MHz Results of Conducted Emission

DTNC							Date	2023-03-31	
Order No. Model No. Serial No. Test Condition		PM560 WLAN S	5G	F	Referrence Power Sup Femp/Hun Operator	oply	21 'C / 41 ^o S.M.Gil	%	
Memo	0	a_5260							
LIMIT	FCC P15. FCC P15.								
NO	FREQ	READING	C.FACTOR	RESULT	T, T	TIM	MARGIN	PHASE	
110	11.0%		0.1110101			CI 7 1 7	0.0		
140	[MHz]	QP CAV [dBuV] [dBuV]		QP CAV [dBuV] [dBuV	QP	CAV [dBuV]	QP CAV 7] [dBuV][dBuV	7]	
1	[MHz]	QP CAV [dBuV][dBuV] 30.9018.65] [dB] 9.99	QP CAV [dBuV][dBuV 40.8928.64	QP 7] [dBuV 64.45	7][dBuV 54.45	7] [d̃BuV][dBuV 23.5625.81	N	_
1 2	[MHz] 0.18077 0.41101	QP CAV [dBuV][dBuV] 30.9018.65 30.5624.63] [dB] 9.99 9.99	QP CAV [dBuV][dBuV 40.8928.64 40.5534.62	QP [dBuV 64.45 57.63	7][dBuV 54.45 47.63	7] [dĒuV][dBuV 23.5625.81 17.0813.01	N N	
1 2 3	[MHz] 0.18077 0.41101 0.99900	QP CAV [dBuV][dBuV] 30.9018.65 30.5624.63 32.7821.71] [dB] 9.99 9.99 10.01	QP CAV [dBuV][dBuV] 40.8928.64 40.5534.62 42.7931.72	QP [dBuV 64.45 57.63 56.00	7][dBuV 54.45 47.63 46.00	7] [dBuV] [dBuV] 23.5625.81 17.0813.01 13.2114.28	N N N	_
1 2	[MHz] 0.18077 0.41101 0.99900 1.13700	QP CAV [dBuV][dBuV] 30.9018.65 30.5624.63] [dB] 9.99 9.99	QP CAV [dBuV][dBuV 40.8928.64 40.5534.62	QP [dBuV 64.45 57.63	7][dBuV 54.45 47.63	7] [dĒuV][dBuV 23.5625.81 17.0813.01	N N	_
1 2 3 4	[MHz] 0.18077 0.41101 0.99900 1.13700 19.24520	QP CAV [dBuV][dBuV] 30.9018.65 30.5624.63 32.7821.71 32.3221.50] [dB] 9.99 9.99 10.01 10.01	QP CAV [dBuV][dBuV] 40.8928.64 40.5534.62 42.7931.72 42.3331.51	QP [dBuV 64.45 57.63 56.00 56.00	7][dBuV 54.45 47.63 46.00 46.00	7] [dBuV] [dBuV] 23.5625.81 17.0813.01 13.2114.28 13.6714.49	N N N N	_
1 2 3 4 5 6 7	[MHz] 0.18077 0.41101 0.99900 1.13700 19.24520 20.54920 0.18931	QP CAV [dBuV][dBuV] 30.9018.65 30.5624.63 32.7821.71 32.3221.50 17.4911.62 15.6910.52 29.8816.39	9.99 9.99 10.01 10.01 10.56 10.55 9.89	QP CAV [dBuV][dBuV] 40.8928.64 40.5534.62 42.7931.72 42.3331.51 28.0522.18 26.2421.07 39.7726.28	QP [dBuV 64.45 57.63 56.00 56.00 60.00 60.00 64.07	7] [dBuV 54.45 47.63 46.00 46.00 50.00 50.00 50.00 54.07	[dBuV] [dBuV] 23.5625.81 17.0813.01 13.2114.28 13.6714.49 31.9527.82 33.7628.93 24.3027.79	N N N N L	_
1 2 3 4 5 6 7 8	[MHz] 0.18077 0.41101 0.99900 1.13700 19.24520 20.54920 0.18931 0.44367	QP CAV [dBuV][dBuV] 30.9018.65 30.5624.63 32.7821.71 32.3221.50 17.4911.62 15.6910.52 29.8816.39 29.9220.33	9.99 9.99 10.01 10.01 10.56 10.55 9.89 9.90	QP CAV [dBuV][dBuV] 40.8928.64 40.5534.62 42.7931.72 42.3331.51 28.0522.18 26.2421.07 39.7726.28 39.8230.23	QP [dBuV 64.45 57.63 56.00 56.00 60.00 60.00 64.07 56.99	7] [dBuV 54.45 47.63 46.00 46.00 50.00 50.00 54.07 46.99	7] [dBuV] [dBuV] 23.5625.81 17.0813.01 13.2114.28 13.6714.49 31.9527.82 33.7628.93 24.3027.79 17.1716.76	N N N N L L	_
1 2 3 4 5 6 7 8 9	[MHz] 0.18077 0.41101 0.99900 1.13700 19.24520 20.54920 0.18931 0.44367 0.93272	QP CAV [dBuV][dBuV] 30.9018.65 30.5624.63 32.7821.71 32.3221.50 17.4911.62 15.6910.52 29.8816.39 29.9220.33 31.3419.79	9.99 9.99 10.01 10.56 10.55 9.89 9.90 9.94	QP CAV [dBuV][dBuV] 40.8928.64 40.5534.62 42.7931.72 42.3331.51 28.0522.18 26.2421.07 39.7726.28 39.8230.23 41.2829.73	QP [dBuV] 64.45 57.63 56.00 56.00 60.00 60.00 64.07 56.99 56.00	7] [dBuV 54.45 47.63 46.00 46.00 50.00 50.00 54.07 46.99 46.00	7] [dBuV][dBuV] 23.5625.81 17.0813.01 13.2114.28 13.6714.49 31.9527.82 33.7628.93 24.3027.79 17.1716.76 14.7216.27	N N N N L L L	_
1 2 3 4 5 6 7 8	[MHz] 0.18077 0.41101 0.99900 1.13700 19.24520 20.54920 0.18931 0.44367 0.93272	QP CAV [dBuV][dBuV] 30.9018.65 30.5624.63 32.7821.71 32.3221.50 17.4911.62 15.6910.52 29.8816.39 29.9220.33	9.99 9.99 10.01 10.01 10.56 10.55 9.89 9.90	QP CAV [dBuV][dBuV] 40.8928.64 40.5534.62 42.7931.72 42.3331.51 28.0522.18 26.2421.07 39.7726.28 39.8230.23	QP [dBuV 64.45 57.63 56.00 56.00 60.00 60.00 64.07 56.99	7] [dBuV 54.45 47.63 46.00 46.00 50.00 50.00 54.07 46.99	7] [dBuV] [dBuV] 23.5625.81 17.0813.01 13.2114.28 13.6714.49 31.9527.82 33.7628.93 24.3027.79 17.1716.76	N N N N L L	_

AC Power-Line Conducted Emissions (Graph)

Test Mode: U-NII 2C & TM 1 & 5 500 MHz


AC Power-Line Conducted Emissions (Data List)

Test Mode: U-NII 2C & TM 1 & 5 500 MHz

DTNC		Date 2023-03-31
Order No. Model No. Serial No. Test Condition	PM560 WLAN 5G	Referrence No. Power Supply Temp/Humi. 21 'C / 41 % Operator S.M.Gil
Memo	a_5500	
LIMIT : FCC P15 FCC P15 NO FREQ [MHz]		QP CAV QP CAV QP CAV
		[dBuV] [dBuV] [dBuV] [dBuV] [dBuV]

AC Power-Line Conducted Emissions (Graph)

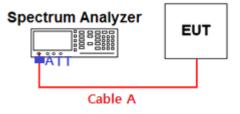
Test Mode: U-NII 3 & TM 1 & 5 745 MHz

DTNC

AC Power-Line Conducted Emissions (Data List)

Test Mode: U-NII 3 & TM 1 & 5 745 MHz Results of Conducted Emission

Date 2023-03-31


Mode Serial	Order No. Model No. Serial No. Test Condition		5G	F				21 'C / 41 % S.M.Gil		
Memo	Memo		a_5745							
LIMIT	FCC P15 FCC P15									
ИО	FREQ [MHz]	READING QP CAV [dBuV][dBuV	C.FACTOR] [dB]	RESULT QP CAV [dBuV][dBuV	QP	MIT CAV][dBuV	QP		phase	
7 8 9 10 11	$\begin{array}{c} 0.46497\\ 0.92907\\ 1.12140\\ 5.47460\\ 18.30520\\ 0.20921\\ 0.42205\\ 0.84346\\ 1.86760\\ 18.76080 \end{array}$	$\begin{array}{c} 30.6524.79\\ 29.5221.76\\ 32.5621.48\\ 32.6421.65\\ 19.211.90\\ 17.3811.41\\ 29.6615.33\\ 29.4818.79\\ 31.3119.14\\ 1.3319.82\\ 24.7411.44\\ 23.51 7.30\\ \end{array}$	9.99 10.00 10.01 10.21 10.55 9.88 9.89 9.90 10.04 10.36 10.35	$\begin{array}{c} 40.6434.78\\ 39.5231.76\\ 42.5731.49\\ 42.6531.66\\ 29.4222.11\\ 27.9321.96\\ 39.5425.21\\ 39.3728.68\\ 41.2129.04\\ 41.3729.86\\ 35.1021.80\\ 33.8617.65 \end{array}$	56.60 56.00 56.00 60.00	$\begin{array}{c} 47.68\\ 46.00\\ 46.00\\ 50.00\\ 50.00\\ 53.24\\ 47.41\\ 46.00\\ 46.00\\ 50.00\\ 50.00\\ 50.00\\ \end{array}$	$\begin{array}{c} 17.041\\ 17.081\\ 13.431\\ 13.351\\ 30.582\\ 23.702\\ 18.041\\ 14.631\\ 24.902\\ 26.143\end{array}$.4.84 .4.51 .4.34 .7.89 .8.04 .8.03 .8.73 .6.96 .6.14 .8.20	N N N N L L L L L	

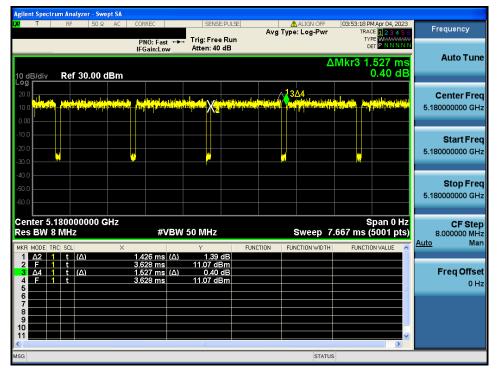
APPENDIX I

Conducted Test set up Diagram

Conducted Measurement

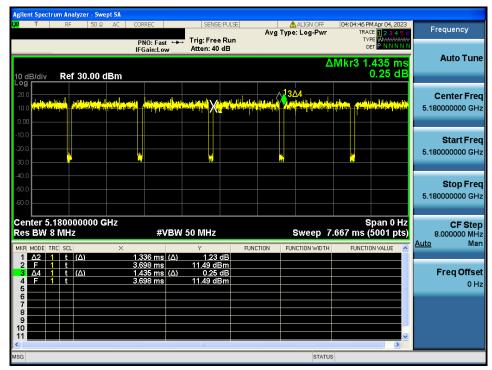
APPENDIX II

Duty Cycle Information

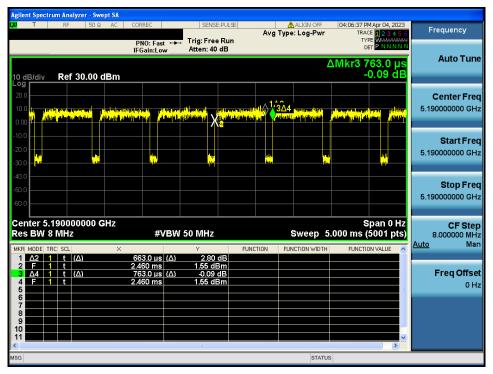

Test Procedure

Duty Cycle [X = On Time / (On + Off time)] is measured using Measurement Procedure of KDB789033 D02v02r01

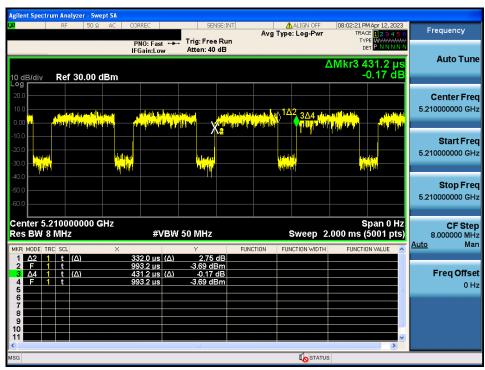
- 1. Set the center frequency of the spectrum analyzer to the center frequency of the transmission.
- 2. Set RBW \geq EBW if possible; otherwise, set RBW to the largest available value.
- 3. Set VBW \geq RBW. Set detector = peak.
- 4. Note : The zero-span measurement method shall not be used unless both RBW and VBW are > 50 / T, where T is defined in section II.B.1.a), and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T ≤ 16.7 microseconds.)
 - T: The minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
 - (*T* = On time of the above table since the EUT operates with above fixed Duty Cycle and it is the minimum On time)


Duty Cycle

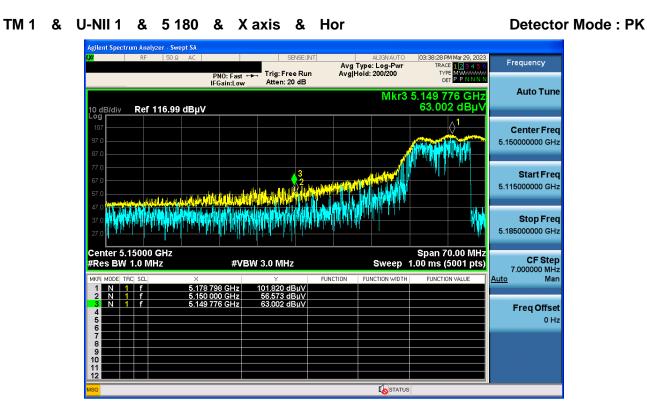
Test Mode: TM1 & Ch.36


Duty Cycle

Test Mode: TM 2 & Ch.36


Duty Cycle

Test Mode: TM 3 & Ch.38

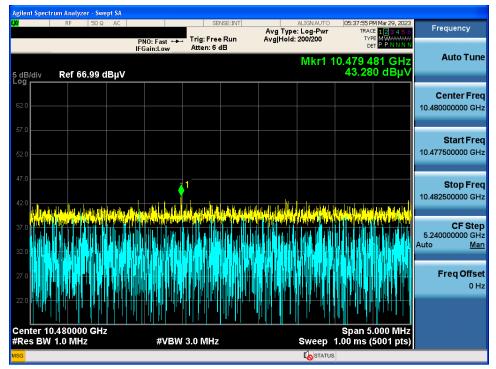

Duty Cycle

Test Mode: TM 4 & Ch.42

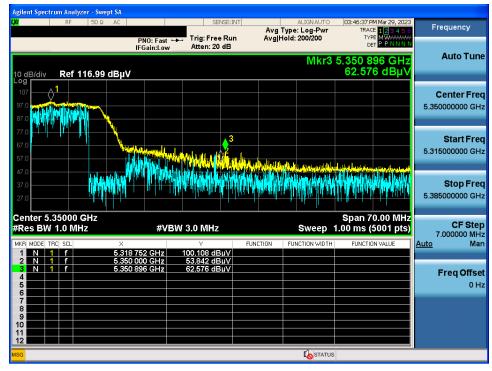
APPENDIX III

Unwanted Emissions (Radiated) Test Plot:

TM 1 & U-NII 1 & 5 180 & X axis & Hor


Detector Mode : AV

Detector Mode : PK

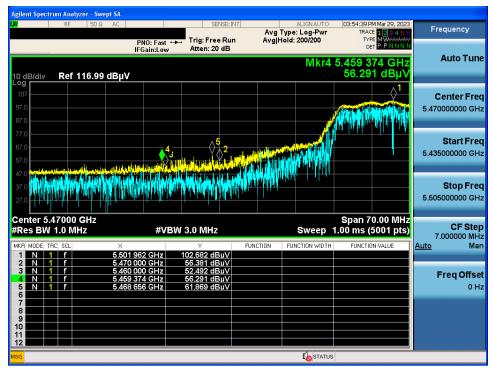


TM 1 & U-NII 1 & 5 240 & Z axis & Ver

TM 1 & U-NII 2A & 5320 & Xaxis & Hor

TM 1 & U-NII 2A & 5 320 & X axis & Hor Detector Mode : AV

TM 1 & U-NII 2A & 5300 & Zaxis & Ver

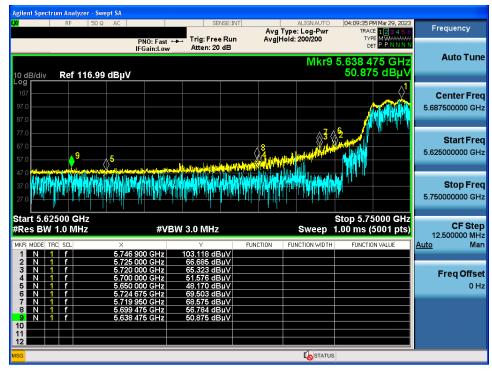

1	RF 5	50 Ω AC		SEN	ISE:INT		ALIGN AUTO		M Mar 29, 2023	Frequency
				Trig: Free	Run	Avg Type Avg Hold:		TRAC TYL	E 1 2 3 4 5 6	Frequency
			PNO: Fast 🔸 IFGain:Low	Atten: 6 d				DI	A P N N N N	
							Mkr1 1	0.600 8	37 GHz	Auto Tun
dB/div	Ref 66.9	l9 dBµV						33.72	4 dBµV	
°g										
62.0										Center Fre
02.0										10.600000000 GH
57.0										
										Start Fre
52.0										10.597500000 GH
47.0										Stop Fre
										10.602500000 GH
42.0										
										CF Ste
37.0						Â1				5.300000000 GH
an o Manufad	والمتحد والملين والمالية		erster anderstanderstand	and the state of the second states of the	dela companya da	Walnut and white	A MARINA MARINA	*****	And the second	Auto <u>Ma</u>
32.0										
27.0										Freq Offse
										он
22.0										
Contor 1).600000 (Snon 5	000 MH-	
	1.0 MHz	sΠZ	#VBM	/ 3.0 MHz*			Sweep	sp an 5 1.00 ms.(.000 MHz 5001 pts)	
sg							STATUS		1.07	

This test report is prohibited to copy or reissue in whole or in part without the approval of Dt&C Co., Ltd. TRF-RF-234(06)210316 Pages: 156 / 184

Detector Mode : AV

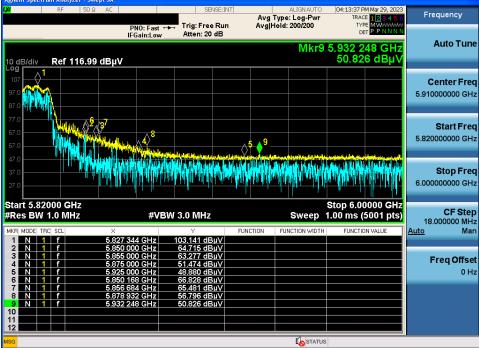
TM 1 & U-NII 2C & 5 500 & X axis & Hor

TM 1 & U-NII 2C & 5 500 & X axis & Hor Detector Mode : AV


Detector Mode : AV

TM 1 & U-NII 2C & 5 550 & Z axis & Ver

	nt Spectr	um Analyze										
L)XI		RF	50 Ω	AC		SE	NSE:INT	Avg Type	ALIGNAUTO	TRA	M Mar 31, 2023	Frequency
					PNO: Fast ↔ IFGain:Low	Trig: Free Atten: 6 d		Avg Hold:		TY D		Auto Tune
5 dE		Ref 66	i.99 d	ΒμV					Mkr1 1	1.000 5 34.57	ö75 GHz ′6 dBμV	Auto Tune
Log 62.0												Center Freq 11.000000000 GHz
57.0 52.0												Start Freq 10.997500000 GHz
47.0 42.0												Stop Freq 11.002500000 GHz
37.0 32.0	. In all the House	her til och prinsen	entrand by d	and an address of the second	, and the state of	il y ny hadaona kita di	tersterly wijnige of the		afartista distantist	uttettystationetyteensje	4.19.19.19.19.19.19	CF Step 5.500000000 GHz Auto <u>Man</u>
27.0												Freq Offset 0 Hz
22.0												
		.000000 1.0 MHz			#VBW	3.0 MHz	ĸ		Sweep	Span 5 1.00 ms (.000 MHz 5001 pts)	
MSG									I STATUS			


TM 1 & U-NII 3 & 5745 & X axis & Hor

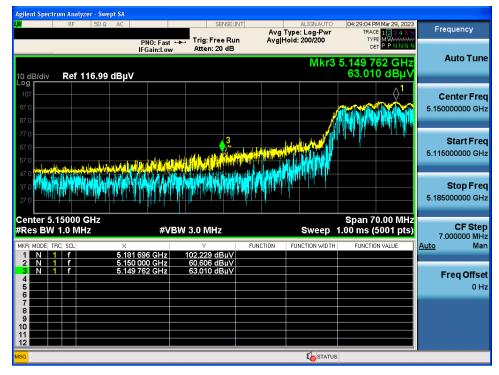
TM 1 & U-NII 3 & 5825 & Xaxis & Hor

Detector Mode : PK

Agilent Spectrum Analyzer - Swept SA

TM 1 & U-NII 3 & 5825 & Zaxis & Ver

Agilent Spectrum Analyzer - Swept SA					
XI RF 50Ω AC	PNO: Fast ↔→	SENSE:INT	ALIGN AUTO Avg Type: RMS Avg Hold: 200/200	10:07:23 AM Mar 31, 2023 TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A P N N N N	Frequency
5 dB/div Ref 66.99 dBµV	IFGain:Low	Atten: 6 dB	Mkr1	11.647 909 GHz 34.323 dBµV	Auto Tune
62.0					Center Freq 11.65000000 GHz
57.0					Start Freq 11.647500000 GHz
42.0					Stop Freq 11.652500000 GHz
37.0 32.0 <mark>4////////////////////////////////////</mark>	internet and the second second	endersteinen gestendigen eine sterreiten eine sterreiten eine sterreiten eine sterreiten eine sterreiten eine s	here of the stand and the left gap of the out	ungu ber afta di setter fatte bisanse da se si da se	CF Step 5.825000000 GHz Auto <u>Man</u>
27.0					Freq Offset 0 Hz
Center 11.650000 GHz #Res BW 1.0 MHz	#VBW	3.0 MHz*	Sweep	Span 5.000 MHz 1.00 ms (5001 pts)	
ISG			K STATU	,	

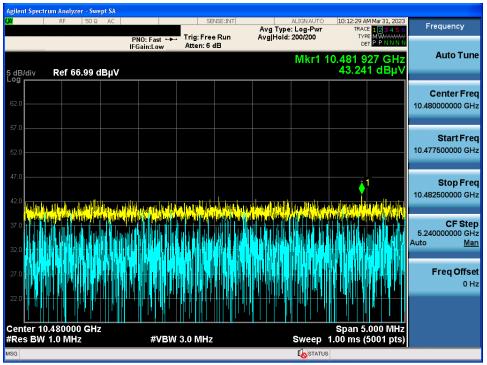

This test report is prohibited to copy or reissue in whole or in part without the approval of Dt&C Co., Ltd. TRF-RF-234(06)210316 Pages: 160 / 184

Detector Mode : AV

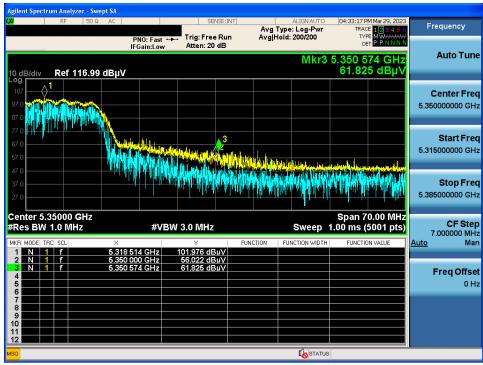
Detector Mode : PK

TM 2 & U-NII 1 & 5180 & X axis & Hor

TM 2 & U-NII 1 & 5 180 & X axis & Hor


Detector Mode : AV

This test report is prohibited to copy or reissue in whole or in part without the approval of Dt&C Co., Ltd. TRF-RF-234(06)210316 Pages: 161 / 184

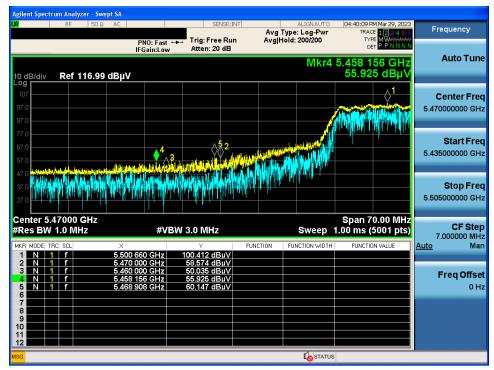

TM 2 & U-NII 1 & 5 240 & Z axis & Ver

This test report is prohibited to copy or reissue in whole or in part without the approval of Dt&C Co., Ltd. TRF-RF-234(06)210316 Pages: 162 / 184

TM 2 & U-NII 2A & 5 320 & X axis & Hor

TM 2 & U-NII 2A & 5 320 & X axis & Hor Detector Mode : AV

Detector Mode : AV


TM 2 & U-NII 2A & 5 300 & Z axis & Ver

	RF	50Ω A	AC		SE	VSE:INT		ALIGN AUTO		M Mar 29, 2023	Frequency
				NO: Fast 🔸	. Trig: Free		Avg Type Avg Hold:		TRAC TYI	E 1 2 3 4 5 6 A MAMMA A P N N N N	requeries
			IF	Gain:Low	Atten: 6	18					Auto Tun
dB/div	Ref 66.	99 dB	μV					IVIKET 1	33.77	88 GHz '9 dBµV	
°g											Center Fre
2.0											10.600000000 GH
7.0											Start Fre
52.0											10.597500000 GH
17.0											Stop Fre
12.0											10.602500000 GH
17.0									1		CF Ste 5.30000000 GH
12.0 	فتحمله فالعام		an should	und interest interes	diament and the second	والمناور والمراجع	loon in the state of the state of the	and the state of the state of the	mining all second	WANNA MARKA	Auto <u>Ma</u>
12.0											
27.0											Freq Offse
											0 H
22.0											
	0.600000 1.0 MHz	GHz		#VBW	3.0 MHz			Sweep	5 Span 1.00 ms	.000 MHz 5001 pts)	
G								STATUS			

Detector Mode : PK

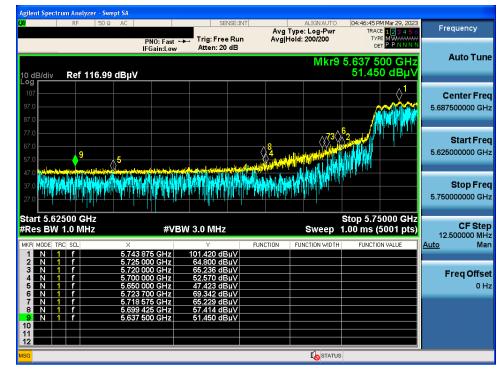
TM 2 & U-NII 2C & 5 500 & X axis & Hor

TM 2 & U-NII 2C & 5 500 & X axis & Hor

Detector Mode : AV

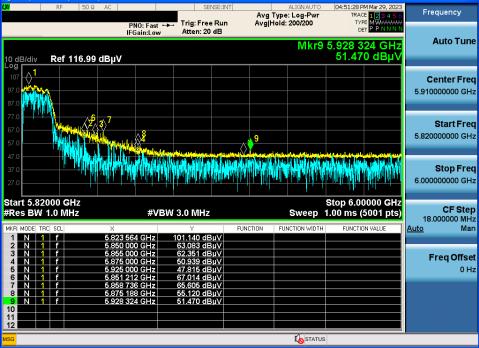
Pages: 165 / 184

Detector Mode : AV


TM 2 & U-NII 2C & 5 500 & Z axis & Ver

	um Analyzer - S									
<u>x/</u>	RF 50	Ω AC	PNO: Fast 🔸			Avg Type Avg Hold:		TRA	M Mar 31, 2023 E 1 2 3 4 5 6 PE A WWWWW ET A P N N N N	Frequency
5 dB/div	Dof 66 00		IFGain:Low	Atten: 6 d				11.001 7	77 GHz 6 dBμV	Auto Tune
	Ref 66.99	σασμν								Center Freq
57.0										Start Free
52.0 47.0										10.997500000 GH2 Stop Fred
42.0								<u> </u>		11.002500000 GH
32.0 311/14/1	www.phaneuru	yrathyterðaldstyfer	innspectionen der	a sayafan shifalif	te del través de la	, the bank of the made and the	Yogiyiliyiyorufayyi	Y AN WHILE HAVE A MAN	aler half for the state of the	5.500000000 GH Auto <u>Mar</u>
27.0										Freq Offse 0 Ha
Center 11 Res BW	.000000 G	Hz	#\/B\A/	3.0 MHz	×		Sweep	Span 5	.000 MHz (5001 pts)	
ISG	1.0 10112			0.0 111112			STATU		ooon pis)	

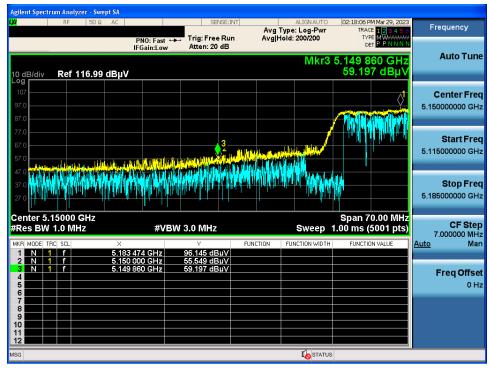
TM 2 & U-NII 3 & 5745 & X axis & Hor


Detector Mode : PK

TM 2 & U-NII 3 & 5825 & X axis & Hor

Detector Mode : PK

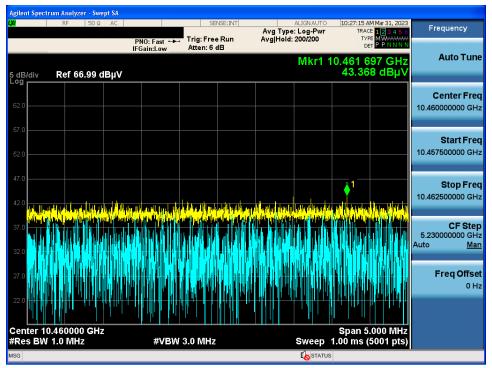
Spectrum Analyzer - Swept SA


TM 2 & U-NII 3 & 5825 & Zaxis & Ver

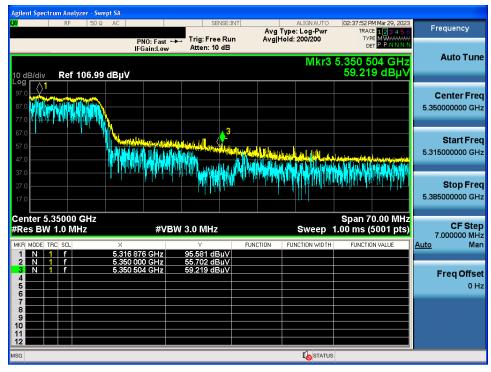
Agilent Spectr	um Analyzer - Swe			0.51				10:00:57.0	MM	
, <mark>X</mark>	RF 50 Ω	AC				Avg Type Avg Hold:		TRAC	M Mar 31, 2023	Frequency
			PNO: Fast 🔸 IFGain:Low	Atten: 6 d		Highloid.				Auto Tune
5 dB/div Log	Ref 66.99 d	Βμ∨					Mkr1 1	1.651 4 34.12	50 GHz 0 dBµV	Auto Tune
										Center Freq
62.0										11.650000000 GHz
57.0										Start Freq
52.0										11.647500000 GHz
47.0										
47.0										Stop Freq 11.652500000 GHz
42.0										
37.0								1		CF Step 5.825000000 GHz
32.0	ngola faloson aqtifotologici sa	i shuhingi na	halan an a	nen kontra (hilonan)	hind the states of	the states	ann hall little nit which	polleripterialistics	en internetien auf	Auto <u>Man</u>
										Freq Offset
27.0										0 Hz
22.0										
Contor 11	.650000 GHz							Snon 5	000 MH-	
#Res BW			#VBW	3.0 MHz*			Sweep	sp an 5 1.00 ms (.000 MHz 5001 pts)	
ISG										

Detector Mode : AV

TM 3 & U-NII 1 & 5190 & X axis & Hor


TM 3 & U-NII 1 & 5190 & X axis & Hor

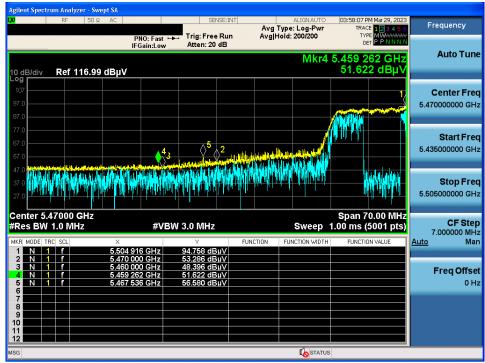
Detector Mode : AV



TM 3 & U-NII 1 & 5 2 30 & Z axis & Ver

TM 3 & U-NII 2A & 5310 & X axis & Hor

TM 3 & U-NII 2A & 5 310 & X axis & Hor Detector Mode : AV


TM 3 & U-NII 2A & 5 310 & Z axis & Ver

Agilent Spectr										
	RF	50Ω AC			NSE:INT	Avg Type		TRAC	M Mar 31, 2023 E <mark>1 2 3 4 5 6</mark>	Frequency
			PNO: Fast +++ IFGain:Low	Atten: 6		Avg Hold:	200/200	DE	EAWWWWW TAPNNNN	
5 dB/div	Ref 66.9	9 dBµV					Mkr1	10.619 7 32.64	89 GHz 0 dBµV	Auto Tune
62.0										Center Freq 10.620000000 GHz
57.0										Start Freq 10.617500000 GHz
47.0										Stop Freq 10.622500000 GHz
37.0				∲ ¹	1 les autors			nde de mai ballessa com	di sta sere da s	CF Step 5.310000000 GHz Auto <u>Man</u>
27.0			ayaantar for falle yir iyota							Freq Offset 0 Hz
22.0 Center 10	.620000 (GH7						Span 5	.000 MHz	
#Res BW			#VBW	3.0 MHz	r.		Sweep	1.00 ms (5001 pts)	
MSG							To STATU:	s		

Detector Mode : AV

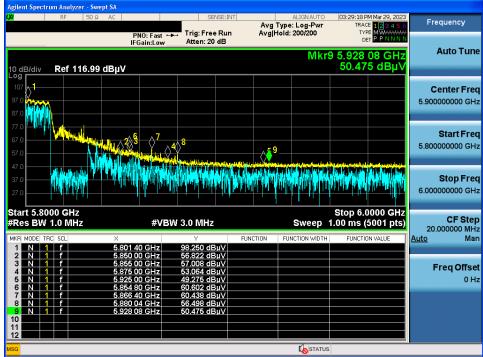
TM 3 & U-NII 2C & 5510 & X axis & Hor

TM 3 & U-NII 2C & 5510 & Zaxis & Ver **Detector Mode : AV**

Detector Mode : AV

TM 3 & U-NII 2C & 5510 & Z axis & Ver

	RF	50 Ω	AC		SEI	VSE:INT		ALIGN AUTO	10:29:37 A	M Mar 31, 2023	
				PNO: Fast ++- IFGain:Low	Trig: Free Atten: 6 d		Avg Type Avg Hold		TYI	CE 123456 PE A WWWWWW ET A P N N N N	Frequency
dB/div	Ref 66	6.99 dl	ЗμV					Mkr1 1		i27 GHz i5 dBµV	Auto Tur
2.0											Center Fre 11.02000000 GH
2.0											Start Fre 11.017500000 GF
2.0											Stop Fre 11.022500000 Gi
2.0	n an	enter parlate	N^{ER (}Philip)	nyay ang si karan	and the state of the	uttern to the	te ada ara gi eta di data da di	natalin an Indonesia	î Ierrepîlênde	enMarrison/Inch	CF Ste 5.510000000 GI Auto <u>M</u> i
.0											Freq Offs 01
	1.02000(1.0 MH;			#VB)A	3.0 MHz			Sween_	Span 5	.000 MHz 5001 pts)	
					ore mi12			STATUS		aavi pioj	

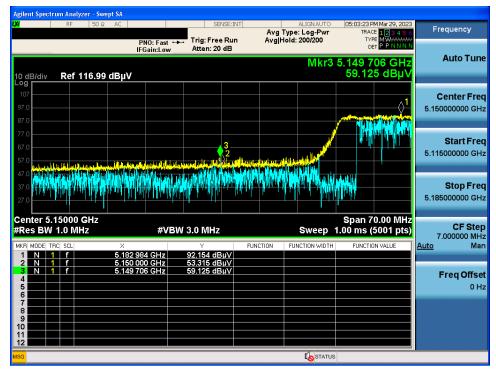

Detector Mode : PK

TM 3 & U-NII 3 & 5755 & X axis & Hor

er - Swept SA Avg Type: Log-Pwr Avg|Hold: 200/200 Frequency Trig: Free Run Atten: 20 dB TYF мW PNO: Fast IFGain:Low DET Auto Tune Mkr9 5.644 650 GHz 10 dB/div Log 51.671 dBµV Ref 116.99 dBµV **Center Freq** 5.687500000 GHz Start Fred 5.625000000 GHz 9 1.4.0 Stop Freq 5.75000000 GHz Start 5.62500 GHz #Res BW 1.0 MHz Stop 5.75000 GHz 1.00 ms (5001 pts) CF Step 12.500000 MHz o Man #VBW 3.0 MHz Sweep FUNCTION FUNCTION WIDTH FUNCTION VALUE Auto 4.772 dBµV .800 dl .914 dl **Freq Offset** 0 Hz 69.497 dBμV 68.273 dBμV 61.418 dBμV 51.671 dBμV 7 325 GHz 4 650 GHz **I**STATUS

TM 3 & U-NII 3 & 5795 & X axis & Hor

TM 3 & U-NII 3 & 5755 & Zaxis & Ver

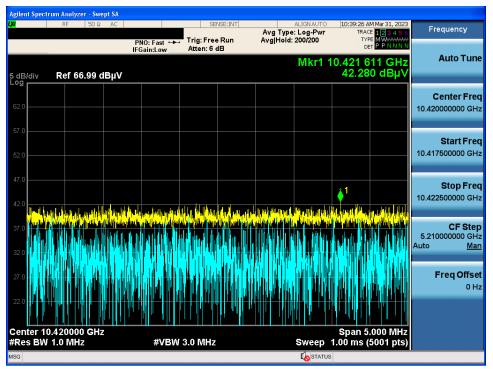

Agilent Spectrum Analyzer - Swept SA						
XI RF 50 Ω AC	PNO: Fast 🔸	SENSE:IN	Avg Ty	ALIGN AUTO pe: RMS d: 200/200	10:36:10 AM Mar 31, 2023 TRACE 1 2 3 4 5 6 TYPE A WWWWW	Frequency
5 dB/div Ref 66.99 dBµV	IFGain:Low	Atten: 6 dB	-	Mkr1	^{Det} APNNN 11.508 135 GHz 33.345 dBµV	Auto Tune
62.0						Center Freq 11.510000000 GHz
57.0						Start Freq 11.507500000 GHz
47.0						Stop Freq 11.512500000 GHz
37.0 32.0 Hollowick on Allowick of Allowick on Allowi	erte fan ten stêr it open finken fei in	Mittel Processing and and and	hallowen de station af fa	elenterin ele terbenet	ti ettipatettipenenettikkytettiintekettiinteketti	CF Step 5.75500000 GHz Auto <u>Mar</u>
27.0						Freq Offset 0 Hz
Center 11.510000 GHz #Res BW 1.0 MHz	#VBW	3.0 MHz*		Sweep	Span 5.000 MHz 1.00 ms (5001 pts)	
MSG						

This test report is prohibited to copy or reissue in whole or in part without the approval of Dt&C Co., Ltd. TRF-RF-234(06)210316 Pages: 176 / 184

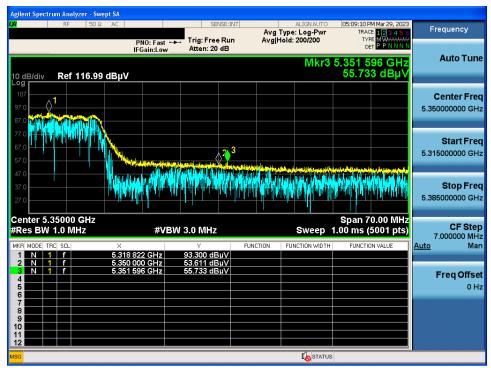
Detector Mode : AV



TM 4 & U-NII 1 & 5 210 & X axis & Hor


TM 4 & U-NII 1 & 5 210 & X axis & Hor

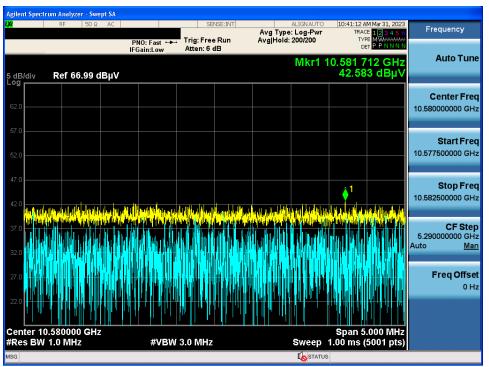
Detector Mode : AV


TM 4 & U-NII 1 & 5 210 & Z axis & Ver

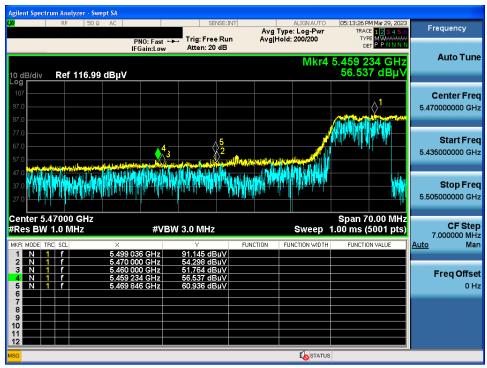
Detector Mode : PK



TM 4 & U-NII 2A & 5 290 & X axis & Hor


TM 4 & U-NII 2A & 5 290 & X axis & Hor

Detector Mode : AV



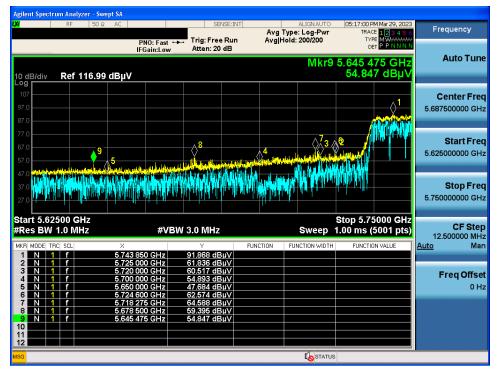
TM 4 & U-NII 2A & 5 290 & Z axis & Ver

TM 4 & U-NII 2C & 5 530 & X axis & Hor

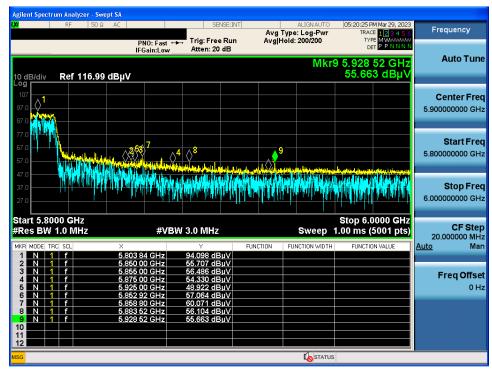
TM 4 & U-NII 2C & 5 530 & X axis & Hor Detector Mode : AV

TM 4 & U-NII 2C & 5 530 & Z axis & Ver

7	RF	50 Ω	AC		SE	NSE:INT		ALIGN AUTO	10:41:44 AM Mar 31, 2023	
				PNO: Fast ↔ IFGain:Low	Trig: Fre Atten: 6		Avg Type Avg Hold:		TRACE 12345 TYPE A WWWW DET A P N N N T	
dB/div	Ref 6	6.99 d	ΒμV					Mkr1 1	1.058 513 GHz 34.107 dBµ∖	Auto Tune
62.0										Center Free 11.060000000 GH
52.0										Start Fre 11.057500000 GH
47.0 42.0										Stop Fre 11.062500000 G⊦
37.0 32.0 114	×41¶sida¥4stud	en al ange	1 Mudden	anter anti-	al a faith an an the long	ud aleques-trans		lader (1.) / arrithment ar hij	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	CF Ste 5.530000000 G⊦ Auto <u>Ma</u>
27.0										Freq Offso 0 ⊦
22.0	1.06000	0 GHz							Span 5.000 MHz	
Res BW	1.0 MH	z		#VB	N 3.0 MHz	*		Sweep 1	1.00 ms (5001 pts	


This test report is prohibited to copy or reissue in whole or in part without the approval of Dt&C Co., Ltd. TRF-RF-234(06)210316 Pages: 182 / 184

Detector Mode : AV


Detector Mode : PK

TM 4 & U-NII 3 & 5775 & X axis & Hor

TM 4 & U-NII 3 & 5775 & X axis & Hor

TM 4 & U-NII 3 & 5775 & Zaxis & Ver

		Avg Ty	pe: RMS	TRACE 1 2 3	Frequency		
PNO: Fast 🔸 IFGain:Low	Atten: 6 dB	Avg Hol	d: 193/200	DET A P N I	NN N		
			Mkr1 1	11.552 145 G 33.280 dB	Hz Auto Tune UV		
					Center Freq		
					11.550000000 GHz		
					Start Freq		
					11.547500000 GHz		
					Stop Freq 11.552500000 GHz		
				<u> </u>	CF Step 5.775000000 GHz		
	en stadeste skiele skrevelielek	والمتعالم والمراجع والمتعاولة والمتعاد		a a de la	Auto <u>Man</u>		
			a de las las destandes				
					Freq Offset		
					0112		
enter 11.550000 GHz Span 5.000 MHz Res BW 1.0 MHz #VBW 3.0 MHz* Sweep 1.00 ms (5001 pts)							
#VBW	3.0 WHZ*				0(5)		
	IFGain:Low	PN0: Fast Trig: Free Run IFGain:Low Atten: 6 dB	PNO: Fast AvglHol IFGain:Low Atten: 6 dB	PN0: Fast Avg Type: RMS AvglHold: 193/200 IFGain:Low Mkr1 1 I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	PN0: Fast Trig: Free Run Avg Type: RMS Trace 12.8 IFGain:Low Trig: Free Run Avg Type: RMS Trace 12.8 Mkr1 11.552 145 G 33.280 dB Image: State of the stat		

This test report is prohibited to copy or reissue in whole or in part without the approval of Dt&C Co., Ltd. TRF-RF-234(06)210316 Pages: 184 / 184

Detector Mode : AV