TEST REPORT

DT&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel: 031-321-2664. Fax: 031-321-1664

1. Report No: DRTFCC2008-0261

2. Customer

• Name (FCC): Point Mobile Co., LTD. / Name (IC): POINTMOBILE CO., LTD

· Address (FCC): B-9F, Kabul Great Valley 32 Digital-ro 9-gil, Geumcheon-gu Seoul South Korea 153-709 Address (IC): B-9F Kabul Great Valley, 32, Digital-ro 9-gil, Geumcheon-gu Seoul Korea (Republic Of)

3. Use of Report: FCC & IC Original Grant

4. Product Name / Model Name : Mobile Computer / PM451W

FCC ID: V2X-PM451W / IC: 10664A-PM451W

5. Test Method Used: ANSI C63.10-2013

Test Specification: FCC Part 15.225

RSS-210 Issue 10, RSS-GEN Issue 5

6. Date of Test: 2020.06.24 ~ 2020.06.26, 2020.06.29 ~ 2020.07.02

7. Location of Test: Permanent Testing Lab

☐ On Site Testing

8. Testing Environment: Refer to appended test report.

9. Test Result: Refer to the attached test result.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

Affirmation

Tested by

Name: JaeHyeok Bang

Reviewed by

Name: JaeJin Lee

(Signature

2020, 08, 24,

DT&C Co., Ltd.

Not abided by KS Q ISO / IEC 17025 and KOLAS accreditation.

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description	Revised by	Reviewed by
DRTFCC2008-0261	Aug. 24, 2020	Initial issue	JaeHyeok Bang	JaeJin Lee

CONTENTS

1. General Information	4
1.1 Explanations for Reference Test Data	4
1.1.1 Introduction	4
1.1.2 Explain the Differences	4
1.1.3 Spot Check Verification Data	4
1.1.4 Reference Section	4
1.2. Testing Laboratory	5
1.3. Testing Environment	5
1.4. Measurement Uncertainty	5
1.5. Details of Applicant	6
1.6. Description of EUT	6
1.6. EUT Capabilities	6
2. Information about test items	7
2.1 Test mode	
2.2 Tested frequency	7
2.3 EMI Suppression Device(s)/Modifications	
3. Antenna requirements	
4. Test report	8
4.1 Summary of tests	8
4.2 Transmitter requirements	9
4.2.1 20dB bandwidth	9
4.2.2 Occupied bandwidth	10
4.2.3 In-band emissions	11
4.2.4 Out-of-band emissions	13
4.2.5 Frequency Stability	15
4.2.6 AC Line Conducted Emissions	16
APPENDIX	19

FCC ID: V2X-PM451W

1. General Information

1.1 Explanations for Reference Test Data

1.1.1 Introduction

This report includes the NFC test data of FCC ID: V2X-PM451 / IC: 10664A-PM451 with reference to KDB 484596 D01v01. The applicant takes full responsibility that the test data as reference section below represents compliance for FCC ID: V2X-PM451W / IC: 10664A-PM451W.

Reference FCC ID / IC	Exhibit type	Separated FCC ID / IC
FCC ID: V2X-PM451 /	Original Grant /	FCC ID: V2X-PM451W /
IC: 10664A-PM451	New Single Certification	IC: 10664A-PM451W

1.1.2 Explain the Differences

FCC ID: V2X-PM451W / IC: 10664A-PM451W is same the internal printed circuit board with FCC ID: V2X-PM451 / IC: 10664A-PM451. For FCC ID: V2X-PM451W / IC: 10664-PM451W, WWAN module has been removed. (It does not changed the SW/HW component of NFC.)

1.1.3 Spot Check Verification Data

Equipment Class	FCC Part/	Mode	TX Freq. (MHz)	Test item	Detector Mode	Refere FCC ID: V2X IC: 10664A	C-PM451 /	Separat FCC ID: V2X-F IC: 10664A-P	PM451W /	Limit (dBuV/m)	Deviation
(capability) RSS Std. (N	(WITIZ)		Wode	Frequency (MHz)	Result (dBuV/m)	Frequency (MHz)	Result (dBuV/m)	(ubuv/iii)	(dB)		
DXX (NFC)	15.225 / RSS-210	-	13.56	Field strength(@30m)	Peak	13.56	27.30	13.56	27.90	84.00	0.60

Note1: The spot check were performed based on worst-case results reported in the original test report.

The spot check test results are within 3dB and two products shows a good correlation. It also complies with the FCC limit.

1.1.4 Reference Section

Reference FCC ID: V2X-PM451 / IC: 10664A-PM451

Equipment Class	FCC Part/ RSS Std.	Capability	Band(MHz)	Exhibit type	Report title	Reference Sections
DXX	15.225 / RSS-210	NFC	13.56	Original Grant/ New Single Certification	DXX	All

FCC ID: V2X-PM451W

Report No.: DRTFCC2008-0261 IC: 10664A-PM451W

1.2. Testing Laboratory

DT&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042.

The test site complies with the requirements of § 2.948 according to ANSI C63.4-2014.

- FCC MRA Designation No.: KR0034

- ISED#: 5740A

www.dtnc.net		
Telephone		+ 82-31-321-2664
FAX	:	+ 82-31-321-1664

1.3. Testing Environment

Ambient Condition	
Temperature	+22 °C ~ +23 °C
Relative Humidity	35 % ~ 40 %

1.4. Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Parameter	Measurement uncertainty
AC conducted emission	3.6 dB (The confidence level is about 95 %, k = 2)
Radiated Disturbance (Below 1 GHz)	4.9 dB (The confidence level is about 95 %, k = 2)

FCC ID: V2X-PM451W

IC: 10664A-PM451W

1.5. Details of Applicant

Applicant (FCC) : Point Mobile Co., LTD.

Applicant (IC) POINTMOBILE CO.,LTD

Address (FCC) : B-9F, Kabul Great Valley 32 Digital-ro 9-gil, Geumcheon-gu Seoul South Korea

153-709

Address (IC) B-9F Kabul Great Valley, 32, Digital-ro 9-gil, Geumcheon-gu Seoul Korea

(Republic Of)

Wilson Park

Contact person

(FCC)

Wilson Park

Contact person

_

(IC)

1.6. Description of EUT

Equipment Class	Low Power Communications Device Transmitter(DXX)
EUT	Mobile Computer
Model Name(FCC, IC)	PM451W
Add Model Name (FCC)	NA
Add Model Name (IC)	NA
Hardware Version	MP
Software Version	45.00XXX
Serial Number (Reference Model) ^{Note1}	Conducted : 2010510294 Radiated: 2010610203
Serial Number (Separated Model) Note2	Conducted : 2010610195 Radiated: 2010610230
Power Supply	DC 3.70 V
Frequency Band	13.56 MHz
Modulation Type	ASK
Channel(s)	1
Antenna type	LDS Antenna

Note1: Reference FCC ID: V2X-PM451 / IC: 10664A-PM451 Note2: Separated FCC ID: V2X-PM451W / IC: 10664A-PM451W

1.6. EUT Capabilities

This EUT contains the following capabilities:

802.11b/g/n/ac WLAN(2.4GHz), 802.11a/n/ac WLAN(5GHz), Bluetooth(BDR, EDR, LE), NFC.

FCC ID: **V2X-PM451W**IC: **10664A-PM451W**

2. Information about test items

2.1 Test mode

Test mode1 Continuous transmitting mode

2.2 Tested frequency

Channel	TX Frequency(MHz)
Lowest	13.56
Middle	-
Highest	-

2.3 EMI Suppression Device(s)/Modifications

EMI suppression device(s) added and/or modifications made during testing \rightarrow None

3. Antenna requirements

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

The internal antenna is attached on the main PCB using the special spring tension. Therefore this E.U.T Complies with the requirement of §15.203

4. Test report

4.1 Summary of tests

FCC part section(s)	RSS section(s)	Parameter	Limit	Test condition	Status Note 1
2.1049	-	20 dB Bandwidth	-		С
-	RSS-Gen [6.7]	Occupied Bandwidth	-		С
15.225 (a)	RSS-210 [B6(a)]	In-Band Emissions	15,848		С
15.225 (b)	RSS-210 [B6(b)]	In-Band Emissions	334 ﷺ 0 m 13.410 MHz – 13.553 MHz 13.567 MHz – 13.710 MHz	Radiated	С
15.225 (c)	RSS-210 [B6(c)]	106 ∠V/m @ 30 m In-Band Emissions 13.110 MHz − 13.410 MHz 13.710 MHz − 14.010 MHz			С
15.225 (d) 15.209	RSS-210 [B6(d)] RSS-GEN [8.9]	Out-of Band Emissions	Emissions outside of the specified band (13.110 MHz - 14.010 MHz) must meet the radiated limits detailed in 15.209		С
15.225 (e)	RSS-210 [B6]	Frequency Stability	±0.01 % of operating frequency	Temp & Humid Test Chamber	С
15.207	RSS-Gen [8.8]	AC Conducted Emissions	FCC Part 15.207	AC Line Conducted	С
15.203	-	Antenna Requirements	FCC Part 15.203	-	С

Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable

Note 2: For radiated emission tests below 30 MHz were performed on semi-anechoic chamber which is correlated with OATS.

4.2 Transmitter requirements

4.2.1 20dB bandwidth

- Procedure:

The 20 dB Bandwidth is measured with a spectrum analyzer connected via a receive antenna placed near the EUT while the EUT is operating in transmission mode.

And spectrum analyzer setting use following test procedure of ANCSI C63.10-2013 - Section 6.9.2.

- 1. Center frequency = EUT channel center frequency
- 2. Span = $2 \sim 5$ times the OBW
- 3. RBW = 1 % ~ 5 % OBW
- 4. VBW \geq 3 x RBW
- 5. Detector = Peak
- 6. Trace = Max hold
- 7. The trace was allowed to stabilize
- 8. Determine the reference value = Set the spectrum analyzer marker to the highest level of the displayed trace
- 9. Using the marker-delta function of the instrument, determine the "-xx dB down amplitude" using [(reference value) xx].
- 10. Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth.

- Measurement Data: Comply

- Minimum Standard: NA

4.2.2 Occupied bandwidth

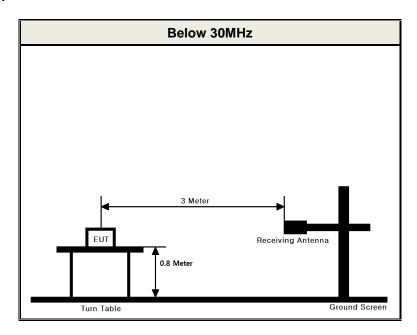
- Procedure:

The transmitter shall be operated at its maximum carrier power measured under normal test conditions. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth (RBW) shall be in the range of 1 % to 5 % of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3 x RBW.

Report No.: DRTFCC2008-0261

- Measurement Data: Comply

- Minimum Standard: NA



4.2.3 In-band emissions

- Test Configuration

- Procedure: The radiated emission was tested according to the section 6.4 of the ANSI C63.10-2013.

The EUT was placed on a 0.8 m high non-conductive table and it was placed at 3 m distance from the antenna. Measurements were performed for each of the three antenna orientations. (ie. parallel, perpendicular, and ground-parallel)

Also, measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

RBW = As specified in below table, VBW \geq 3 x RBW, Sweep = Auto, Detector = Peak Trace mode = Max Hold until the trace stabilizes.

Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

- Minimum Standard: Part 15.225(a), (b), (c) & RSS-210 [B6(a), (b), (c)]

Frequency Band [MHz]	Limit at 30 m measurement distance			
Trequency Band [Winz]	[uV/m]	[dBuV/m]		
13.553-13.567	15,848	84.00		
13.410-13.553 13.567-13.710	334	50.47		
13.110-13.410 13.710-14.010	106	40.51		

FCC ID: V2X-PM451W

Pages: 12 / 20

- Measurement Data:

Tested Frequency : 13.56 MHz

Measurement Distance : 3 Meters

Test Frequency Band [MHz]	Freq. [MHz]	EUT Axis.	ANT (Note 1)	Reading Level [dBuV]	T.F [dB/m]	Field Strength @3 m [dBuV/m]	Field Strength @30 m [dBuV/m]	Limit [dBuV/m]	Margin [dB]
13.110 ~ 13.410	13.384	Z	Р	15.80	10.80	26.60	-13.40	40.51	53.91
13.410 ~ 13.553	13.553	Z	Р	51.30	10.70	62.00	22.00	50.47	28.47
13.553 ~ 13.567	13.560	Z	Р	56.60	10.70	67.30	27.30	84.00	56.70
13.567 ~ 13.710	13.567	Z	Р	52.50	10.70	63.20	23.20	50.47	27.27
13.710 ~ 14.010	13.728	Z	Р	12.40	10.70	23.10	-16.90	40.51	57.41

Note 1. Loop antenna orientation

Note 2. This test item was performed at 3 m and the data were extrapolated to the specified measurement distance of 30 m using the square of an inverse linear distance extrapolation factor (40 dB/decade) as specified in §15.31(f)2.

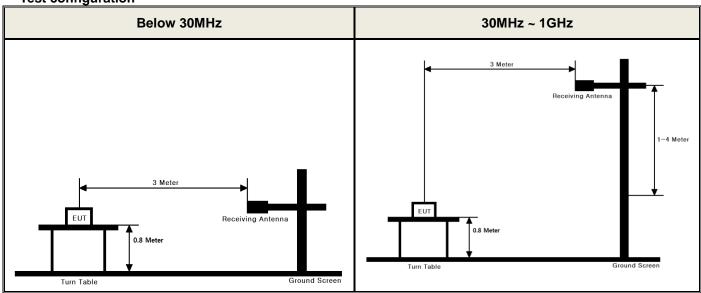
- Extrapolation Factor = $20 \log_{10}(30/3)^2 = 40 \text{ dB}$
- Note 3. All data were recorded using a spectrum analyzer employing a peak detector.

If PK results were meet Quasi-peak limit, Quasi-peak measurements were omitted.

Note 4. Sample Calculation.

Margin = Limit – Field Strength @ 30 m / Field Strength @ 30 m = Field Strength @ 3 m – 40 dB

Field Strength @ 3 m = Reading + T.F I T.F = AF + CL


Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss

[&]quot;P": Parallel, "V": perpendicular, "G": ground-parallel

4.2.4 Out-of-band emissions

- Test configuration

- Procedure: The radiated emission was tested according to the section 6.4, 6.5 of the ANSI C63.10-2013.

The EUT was tested from 9 kHz up to the 1 GHz excluding the band 13.110 MHz - 14.010 MHz. A The EUT was placed on a 0.8 m high non-conductive table and it was placed at 3m distance from the antenna. For measurements below 30 MHz were performed for each of the three antenna orientations. (ie. parallel, perpendicular, and ground-parallel) For measurements above 30 MHz were performed for each of the both horizontal and vertical polarizations.

Also, measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

RBW = As specified in below table, VBW \geq 3 x RBW, Sweep = Auto, Detector = Peak Trace mode = Max Hold until the trace stabilizes.

Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

- Minimum Standard: Part 15.209, 225(d) & RSS-210[B6(d)], RSS-GEN[8.9]

• FCC Part 15.209(a):

Frequency [MHz]	Field Strength [uV/m]	Measurement Distance [Meters]
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30	30	30
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	200	3

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

• FCC Part 15.209(b):

In the emission table above, the tighter limit applies at the band edges.

FCC ID: V2X-PM451W

Report No.: **DK11 GG2000-0201** 10 : **10004A-F M431**

- Measurement Data:

Tested Frequency : 13.56 MHz

Measurement Distance : 3 Meters

Frequency [MHz]	EUT Axis.	ANT (Note 1)	Reading [dBuV]	T.F [dB/m]	Distance factor [dB]	Field Strength [dBuV/m]	Limit [dBuV/m]	Margin [dB]
0.494	Z	Р	39	11.9	40	10.9	33.7	22.8
0.800	Z	Р	36.4	11.9	40	8.3	29.5	21.2
1.668	Z	Р	31.3	12.2	40	3.5	23.2	19.7
12.720	Z	Р	27.2	10.8	40	-2	29.5	31.5
27.120	Z	Р	24.5	9.3	40	-6.2	29.5	35.7
40.670	Z	Н	39	-9.2	0	29.8	40	10.2
82.380	Z	V	32.7	-12.9	0	19.8	40	20.2
230.790	Z	Н	43.4	-8.6	0	34.8	46	11.2
748.763	Z	Н	27.4	4.1	0	31.5	46	14.5
846.731	Z	V	29.9	5.7	0	35.6	46	10.4

Note 1. Loop antenna orientation (30 MHz Below)

"P"= Parallel, "V"= perpendicular, "G"= ground-parallel

Bilog antenna polarization (30 MHz above)

"H"= Horizontal, "V"= Vertical

Note 2. All data were recorded using a spectrum analyzer employing a peak detector.

If PK results were meet Quasi-peak limit, Quasi-peak measurements were omitted.

Note 3. No other spurious and harmonic emissions were reported greater than listed emissions above table.

Note 4. Sample calculation

Margin = Limit - Field Strength

Field Strength = Reading + T.F – Distance factor

T.F = AF + CL - AG

Distance factor = 20log(Measurement distance / The measured distance)²

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain

FCC ID: **V2X-PM451W**IC: **10664A-PM451W**

4.2.5 Frequency Stability

- Procedure:

Part 15.225 requires that devices operating in the 13.553 – 13.567 MHz shall maintain the carrier frequency within 0.01 % of the operating frequency over the temperature variation of -20 degrees to + 50 degrees C at normal supply voltage.

- Measurement Data: Comply

Operating Frequency : 13,560,000 Hz

VOLTAGE (%)	POWER (V _{DC})	TEMP (°C)	Frequency (Hz)	Freq. Dev. (Hz)	Deviation (%)
100%		+20(ref)	13,560,164	164	0.001 209
100%		-20	13,560,254	254	0.001 873
100%		-10	13,560,088	88	0.000 649
100%		0	13,560,112	112	0.000 826
100%	3.700	+10	13,560,224	224	0.001 652
100%		+20	13,560,189	189	0.001 394
100%		+30	13,560,199	199	0.001 468
100%		+40	13,560,261	261	0.001 925
100%		+50	13,560,288	288	0.002 124
115%	4.255	+20	13,560,153	153	0.001 128
BATT.ENDPOINT	3.300	+20	13,560,052	52	0.000 383

- Minimum Standard: Part 15. 225(e) & RSS-210 [B6]

The frequency tolerance of the carrier signal shall be maintained within ±0.01 % of the operating frequency.

IC: 10664A-PM451W

FCC ID: V2X-PM451W

4.2.6 AC Line Conducted Emissions

- Test Requirements and limit

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).

Frequency Range	Conducted Limit (dBuV)			
(MHz)	Quasi-Peak	Average		
0.15 ~ 0.5	66 to 56 *	56 to 46 *		
0.5 ~ 5	56	46		
5 ~ 30	60	50		

^{*} Decreases with the logarithm of the frequency

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

- Test Configuration

See test photographs for the actual connections between EUT and support equipment.

- Test Procedure

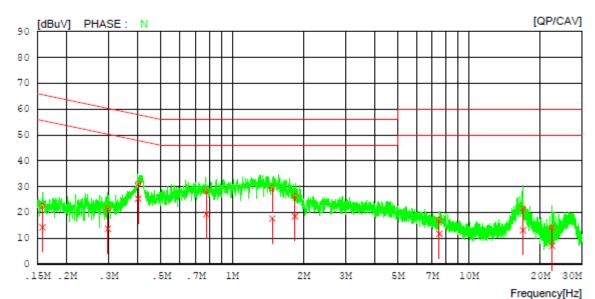
- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors Quasi Peak and Average Detector.
- Measurement Data: Comply (refer to the next page)

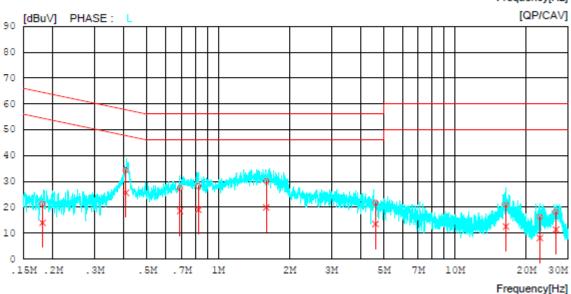
Measurement Data

Results of Conducted Emission

DTNC Date 2020-06-15

Order No. Referrence No.


 Model No.
 PM451
 Power Supply
 120 V, 60 Hz


 Serial No.
 Temp/Humi.
 23 'C / 35 %

 Test Condition
 NFC
 Operator
 J.H. Bang

Memo

LIMIT : FCC P15.207 QP FCC P15.207 AV

Measurement Data

Results of Conducted Emission

Date 2020-06-15 DTNC

Order No. Referrence No. 120 V, 60 Hz 23 'C / 35 % J.H. Bang Model No. PM451 Power Supply Temp/Humi. Operator Serial No. Test Condition NFC

Memo

LIMIT : FCC P15.207 QP FCC P15.207 AV

NC	FREQ	QP CAV		RESULT QP CAV [dBuV][dBuV	QP	MIT CAV][dBuV	MARGIN QP CAV] [dBuV][dBuV	
1	0.15763	12.54 4.29	9.94	22.4814.23	65.59	55.59	43.11 41.36	N
2	0.29783	11.65 3.79	9.95	21.60 13.74	60.30	50.30	38.7036.56	N
3	0.40038	21.28 15.36	9.98	31.26 25.34	57.85	47.85	26.5922.51	N
4	0.77544	18.17 9.34	9.98	28.1519.32	56.00	46.00	27.85 26.68	N
5	1.47441	19.43 7.66	9.99	29.4217.65	56.00	46.00	26.58 28.35	N
6	1.84133	16.36 8.50	10.02	26.3818.52	56.00	46.00	29.62 27.48	N
7	7.49413	6.86 1.53	10.23	17.0911.76	60.00	50.00	42.9138.24	N
8	16.90359	10.99 2.67	10.50	21.49 13.17	60.00	50.00	38.5136.83	N
9	22.45349	3.57 - 3.50	10.55	14.12 7.05	60.00	50.00	45.88 42.95	N
10	0.18085	11.30 3.99	9.94	21.2413.93	64.45	54.45	43.21 40.52	L
11	0.40684	24.2715.64	9.96	34.23 25.60	57.71	47.71	23.48 22.11	L
12	0.68949	17.39 8.54	9.96	27.35 18.50	56.00	46.00	28.65 27.50	L
13	0.82379	18.16 8.97	9.98	28.1418.95	56.00	46.00	27.8627.05	L
14	1.59400	20.09 9.89	10.02	30.1119.91	56.00	46.00	25.89 26.09	L
15	4.61437	11.52 3.33	10.14	21.6613.47	56.00	46.00	34.3432.53	L
16	16.42186	10.35 2.02	10.47	20.8212.49	60.00	50.00	39.1837.51	L
17	22.84527		10.53	16.19 8.05		50.00	43.81 41.95	L
18		7.65 0.78		18.2011.33		50.00	41.8038.67	L

APPENDIX

TEST EQUIPMENT FOR TESTS

FCC ID: **V2X-PM451W**IC: **10664A-PM451W**

Cal.Date Next.Cal.Date Manufacturer Model S/N Type (yy/mm/dd) (yy/mm/dd) Agilent N9020A MY50410357 Spectrum Analyzer 19/12/16 20/12/16 **Technologies** Agilent Spectrum Analyzer N9020A 19/12/16 20/12/16 MY48010133 Technologies **FLUKE** 26030065WS Multimeter 17B 19/12/16 20/12/16 SMBV100A 20/12/16 255571 Signal Generator Rohde Schwarz 19/12/16 Thermohygrometer **BODYCOM** BJ5478 19/12/18 20/12/18 120612-1 **BODYCOM** BJ5478 20/12/18 120612-2 Thermohygrometer 19/12/18 **HYGROMETER TESTO** 608-H1 20/01/21 21/01/21 34862883 19/06/25 20/06/25 SJ-TH-S50-Temp & Humi Test Chamber SJ Science SJ-TH-S50 130930 20/06/24 21/06/24 '00226186 Loop Antenna ETS-Lindgren 6502 19/09/18 21/09/18 **BILOG ANTENNA** Schwarzbeck **VULB 9160** 19/04/23 21/04/23 9160-3362 8447D 2944A07774 PreAmplifier 19/12/16 20/12/16 ESC₁₇ **EMI Test Receiver** Rohde Schwarz 20/01/28 21/01/28 100910 **PULSE LIMITER** Rohde Schwarz ESH3-Z2 19/09/17 20/09/17 101333 **SCHWARZBECK** LISN **NSLK 8128 RC** 20/11/04 8128 RC-387 19/11/04 Cable Radiall TESTPRO3 20/01/16 21/01/16 M-01 M-05 Cable Junkosha MWX315 20/01/16 21/01/16 Cable Junkosha MWX221 20/01/16 21/01/16 M-06 Cable DT&C Cable 20/01/16 21/01/16 RF-82 Radiated Emission Version

NA

NA

NA

NA

2.00.0177

2.00.0170

Pages: 20 / 20

Version

Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017.

Measurement

Measurement

Noise Terminal Voltage

Note2: The cable is not a regular calibration item, so it has been calibrated by DT&C itself.

tsj

tsj

Test Software

Test Software