TEST REPORT

	DT&C Co., Ltd.				
Dt&C	42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel : 031-321-2664, Fax : 031-321-1664				
1. Report No : DRTFCC2105-004	5				
2. Customer					
• Name (FCC) : Point Mobile Co., LTI	D. / Name (IC) : POINTMOBILE CO.,LTD				
 Address (FCC) : B-9F, Kabul Great Address (IC) : B-9F Kabul Great Va 	Valley 32 Digital-ro 9-gil, Geumcheon-gu Seoul South Korea 153-709 lley, 32, Digital-ro 9-gil, Geumcheon-gu Seoul Korea (Republic Of)				
3. Use of Report : FCC & IC Certific	cation				
4. Product Name / Model Name : M FCC ID : V2X-PM30 IC : 10664A-PM30	lobile Computer / PM30				
5. FCC Regulation(s): Part 22, 24, IC Standard(s): RSS-132 Issue 3 Test Method Used : KDB971168					
6. Date of Test : 2021.04.01 ~ 2021	.04.27				
7. Location of Test : 🛛 Permanent	Testing Lab 🔲 On Site Testing				
8. Testing Environment : See apper	nded test report.				
9. Test Result : Refer to attached te	est result.				
The results shown in this test report ref	er only to the sample(s) tested unless otherwise stated.				
Affirmation	Reviewed by				
Name : Changwon Lee	(Signature) Name : JaeJin Lee (Signature)				
2021.05.18.					
DT&C Co., Ltd.					
This test report is a general is not related to	report that does not use the KOLAS accreditation mark and KS Q ISO/IEC 17025 and KOLAS accreditation.				

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description	Revised by	Reviewed by
DRTFCC2105-0045	May. 18, 2021	Initial issue	Changwon Lee	JaeJin Lee

Table of Contents

1. GENERAL INFORMATION 2. INTRODUCTION	
2.1. EUT DESCRIPTION	
2.2. TESTING ENVIRONMENT	
2.3. MEASURING INSTRUMENT CALIBRATION	
2.4. MEASUREMENT UNCERTAINTY	5
2.5. TEST FACILITY	5
3. DESCRIPTION OF TESTS	6
3.1 ERP & EIRP (Effective Radiated Power & Equivalent Isotropic Radiated Power)	6
3.2 PEAK TO AVERAGE RATIO	
3.3 OCCUPIED BANDWIDTH (99 % Bandwidth)	10
3.4 SPURIOUS EMISSIONS AT ANTENNA TERMINAL	11
3.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL	12
3.6 RADIATED SPURIOUS EMISSIONS	13
3.7 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	
4. LIST OF TEST EQUIPMENT	
5. SUMMARY OF TEST RESULTS 6. EMISSION DESIGNATOR AND SAMPLE CALCULATION	
7. TEST DATA	
7 1 PEAK TO AVERAGE RATIO	19
7.1 PEAK TO AVERAGE RATIO 7.2 OCCUPIED BANDWIDTH (99 % Bandwidth)	-
7.2 OCCUPIED BANDWIDTH (99 % Bandwidth)	19
	19 20
7.2 OCCUPIED BANDWIDTH (99 % Bandwidth) 7.3 SPURIOUS MISSIONS AT ANTENNA TERMINAL 7.4 BAND EDGE EMISSIONS AT ANTENNA TERMINAL	19 20 20
7.2 OCCUPIED BANDWIDTH (99 % Bandwidth) 7.3 SPURIOUS MISSIONS AT ANTENNA TERMINAL	19 20 20 21
7.2 OCCUPIED BANDWIDTH (99 % Bandwidth) 7.3 SPURIOUS MISSIONS AT ANTENNA TERMINAL 7.4 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 7.5 EFFECTIVE RADIATED POWER	19 20 20 21 22
 7.2 OCCUPIED BANDWIDTH (99 % Bandwidth) 7.3 SPURIOUS MISSIONS AT ANTENNA TERMINAL 7.4 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 7.5 EFFECTIVE RADIATED POWER 7.6 EQUIVALENT ISOTROPIC RADIATED POWER 	19 20 20 21 22 23
 7.2 OCCUPIED BANDWIDTH (99 % Bandwidth) 7.3 SPURIOUS MISSIONS AT ANTENNA TERMINAL 7.4 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 7.5 EFFECTIVE RADIATED POWER 7.6 EQUIVALENT ISOTROPIC RADIATED POWER 7.7 RADIATED SPURIOUS EMISSIONS 	19 20 21 22 23 27
 7.2 OCCUPIED BANDWIDTH (99 % Bandwidth) 7.3 SPURIOUS MISSIONS AT ANTENNA TERMINAL 7.4 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 7.5 EFFECTIVE RADIATED POWER 7.6 EQUIVALENT ISOTROPIC RADIATED POWER 7.7 RADIATED SPURIOUS EMISSIONS 7.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE 	19 20 21 22 23 27 27
 7.2 OCCUPIED BANDWIDTH (99 % Bandwidth) 7.3 SPURIOUS MISSIONS AT ANTENNA TERMINAL 7.4 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 7.5 EFFECTIVE RADIATED POWER 7.6 EQUIVALENT ISOTROPIC RADIATED POWER 7.7 RADIATED SPURIOUS EMISSIONS 7.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE 7.8.1 FREQUENCY STABILITY (GSM850) 	19 20 21 22 23 27 27 28
 7.2 OCCUPIED BANDWIDTH (99 % Bandwidth) 7.3 SPURIOUS MISSIONS AT ANTENNA TERMINAL 7.4 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 7.5 EFFECTIVE RADIATED POWER 7.6 EQUIVALENT ISOTROPIC RADIATED POWER 7.7 RADIATED SPURIOUS EMISSIONS 7.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE 7.8.1 FREQUENCY STABILITY (GSM850) 7.8.2 FREQUENCY STABILITY (WCDMA850) 	19 20 21 22 23 27 27 28 29
 7.2 OCCUPIED BANDWIDTH (99 % Bandwidth) 7.3 SPURIOUS MISSIONS AT ANTENNA TERMINAL	19 20 21 22 23 23 27 27 27 28 29 30 31
 7.2 OCCUPIED BANDWIDTH (99 % Bandwidth) 7.3 SPURIOUS MISSIONS AT ANTENNA TERMINAL 7.4 BAND EDGE EMISSIONS AT ANTENNA TERMINAL 7.5 EFFECTIVE RADIATED POWER 7.6 EQUIVALENT ISOTROPIC RADIATED POWER 7.7 RADIATED SPURIOUS EMISSIONS 7.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE 7.8.1 FREQUENCY STABILITY (GSM850) 7.8.2 FREQUENCY STABILITY (WCDMA850) 7.8.3 FREQUENCY STABILITY (WCDMA1700) 7.8.4 FREQUENCY STABILITY (GSM1900) 	19 20 21 22 23 23 27 27 27 28 29 30 31
 7.2 OCCUPIED BANDWIDTH (99 % Bandwidth) 7.3 SPURIOUS MISSIONS AT ANTENNA TERMINAL	19 20 21 22 23 27 27 28 29 30 31 . 32
 7.2 OCCUPIED BANDWIDTH (99 % Bandwidth) 7.3 SPURIOUS MISSIONS AT ANTENNA TERMINAL	19 20 21 22 23 27 27 27 27 28 30 31 . 32 32
 7.2 OCCUPIED BANDWIDTH (99 % Bandwidth)	19 20 21 22 23 27 27 27 27 27 30 31 32 32 38 52

1. GENERAL INFORMATION

FCC Classification	:	PCS Licensed Transmitter held to ear(PCE)
FCC ID	:	V2X-PM30
IC	:	10664A-PM30
Product Name	:	Mobile Computer
Model Name	:	PM30
Add Model Name	:	-
Hardware Version	:	MP
Software Version	:	30.00xx
Serial Number	:	2034310066(Conducted), 2034010538(Radiated)
Supplying power	:	DC 3.85 V
Antenna Type	:	LDS Antenna

Mode Tx Frequency	Emission	ERP (Max	. Power)	EIRP (Max. Power)		
Wode	(MHz)	Designator	signator dBm		dBm	w
GSM850	824.2 ~ 848.8	247KGXW	30.32	1.076	32.47	1.766
EDGE850	824.2 ~ 848.8	246KG7W	24.97	0.314	27.12	0.515
GSM1900	1 850.2 ~ 1 909.8	249KGXW	-	-	32.76	1.888
EDGE1900	1 850.2 ~ 1 909.8	254KG7W	-	-	26.60	0.457
WCDMA850	826.4 ~ 846.6	4M16F9W	21.97	0.157	24.12	0.258
WCDMA1700	1 712.4 ~ 1 752.6	4M14F9W	-	-	23.33	0.215
WCDMA1900	1 852.4 ~ 1 907.6	4M15F9W	-	-	24.51	0.282

2. INTRODUCTION

2.1. EUT DESCRIPTION

The Equipment Under Test (EUT) supports 850/1900 GSM, 850/1700/1900 WCDMA, Multi-band LTE, 802.11b/g/n WLAN(2.4GHz), 802.11a/n/ac WLAN(5GHz), Bluetooth(BDR, EDR, LE) and NFC.

2.2. TESTING ENVIRONMENT

Ambient Condition			
• Temperature +22 ℃ ~ +24 ℃			
 Relative Humidity 	42 % ~ 45 %		

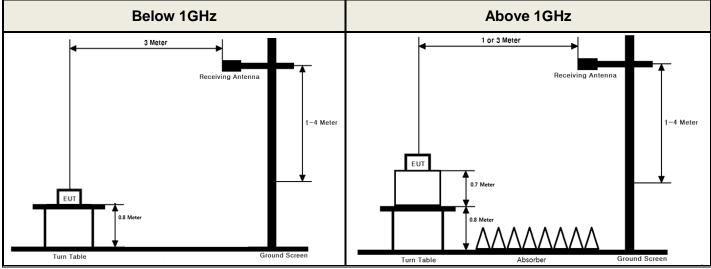
2.3. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.4. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Parameter	Measurement uncertainty
Radiated Disturbance (Below 1 GHz)	4.9 dB (The confidence level is about 95 %, k = 2)
Radiated Disturbance (1 GHz ~ 18 GHz)	5.1 dB (The confidence level is about 95 %, k = 2)
Radiated Disturbance (Above 18 GHz)	5.3 dB (The confidence level is about 95 %, k = 2)


2.5. TEST FACILITY

DT&C Co., Li	d.	
42, Yurim-ro, 1 The test site co	54beor omplies MRA D	conducted measurement facility used to collect the radiated data are located at the n-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042. with the requirements of Part 2.948 according to ANSI C63.4-2014. esignation No. : KR0034
www.dtnc.net		
Telephone	:	+ 82-31-321-2664
FAX	•	+ 82-31-321-1664

3. DESCRIPTION OF TESTS

3.1 ERP & EIRP (Effective Radiated Power & Equivalent Isotropic Radiated Power)

Test Set-up

These measurements were performed at 3 m test site. The equipment under test is placed on a non-conductive table 0.8 or 1.5 meters above a turntable which is flush with the ground plane and 3 meters from the receive antenna. For measurements above 1 GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.

Test Procedure

- ANSI/TIA-603-E-2016 Section 2.2.17
- KDB971168 D01v03 Section 5.2.2
- ANSI 63.26-2015 Section 5.2.4.4.1

Test setting

- 1. Set span to 2 x to 3 x the OBW.
- 2. Set RBW = 1 % to 5 % of the OBW.
- 3. Set VBW \geq 3 x RBW.
- 4. Set number of points in sweep \geq 2 × span / RBW.
- 5. Sweep time:
 - 1) Set = auto-couple, or

2) Set \geq [10 \times (number of points in sweep) \times (transmission period)] for single sweep (automation-compatible) measurement. Transmission period is the on and off time of the transmitter.

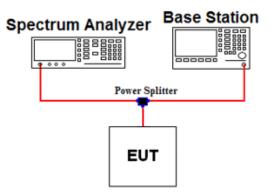
- 6. Detector = power averaging (rms).
- 7. If the EUT can be configured to transmit continuously, then set the trigger to free run.
- 8. If the EUT cannot be configured to transmit continuously, then use a sweep trigger with the level set to enable triggering only on full power bursts and configure the EUT to transmit at full power for the entire duration of each sweep. Verify that the sweep time is less than or equal to the transmission burst duration. Time gating can also be used under similar constraints (i.e., configured such that measurement data is collected only during active full-power transmissions).
- 9. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. To accurately determine the average power over multiple symbols, it can be necessary to increase the number of traces to be

averaged above 100 or, if using a manually configured sweep time, increase the sweep time.

10. Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band or channel power measurement function, with the band/channel limits set equal to the OBW band edges. If the instrument does not have a band or channel power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

The receiver antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer.

A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminal of the substitute antenna is measured.


The ERP/EIRP is calculated using the following formula:

ERP/EIRP = The conducted power at the substitute antenna's terminal [dBm] + Substitute Antenna gain [dBd for ERP, dBi for EIRP]

For readings above 1 GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn antenna and an isotropic antenna are taken into consideration.

3.2 PEAK TO AVERAGE RATIO

Test set-up

Test Procedure

- KDB971168 D01v03 Section 5.7.2
- ANSI C63.26-2015 Section 5.2.3.4

A peak to average ratio measurement is performed at the conducted port of the EUT.

The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The present of time the signal spends at or above the level defines the probability for that particular power level.

Test setting

The spectrum Analyzer's CCDF measurement function is enabled.

- 1. Set resolution/measurement bandwidth \geq OBW or specified reference bandwidth.
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve.
- 3. Set the measurement interval as follows:
 - 1) For continuous transmissions, set to the greater of [10 × (number of points in sweep) × (transmission symbol period)] or 1 ms.
 - 2) For burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize. Set the measurement interval to a time that is less than or equal to the burst duration.
 - 3) If there are several carriers in a single antenna port, the peak power shall be determined for each individual carrier (by disabling the other carriers while measuring the required carrier) and the total peak power calculated from the sum of the individual carrier peak powers.
- 4. Record the maximum PAPR level associated with a probability of 0.1 %.
- 5. The peak power level is calculated form the sum of the PAPR value from step d) to the measured average power.

Alternate Procedure

- KDB971168 D01v03 - Section 5.7.3

- ANSI C63.26-2015 – Section 5.2.6

Use one of the measurement procedures of the peak power and record as $\mathsf{P}_{\mathsf{Pk}}.$

Use one of the measurement procedures of the average power and record as $\mathsf{P}_{\mathsf{Avg}}$.

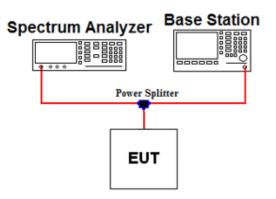
Both the peak and average power levels must be expressed in the same logarithmic units (e.g., dBm). Determine the PAPR from:

PAPR (dB) = P_{Pk} (dBm or dBW) - P_{Avg} (dBm or dBW).

Where,

PAPR peak-to-average power ratio, in dB PPk measured peak power or peak PSD level, in dBm or dBW PAvg measured average power or average PSD level, in dBm or dBW

- Peak Power Measurement


- 1. Set the RBW ≥ OBW
- 2. Set VBW ≥ 3 x RBW
- 3. Set span ≥ 2 x RBW
- 4. Sweep time \ge 10 x (number of points in sweep) x (transmission symbol period).
- 5. Detector = peak
- 6. Trace mode = max hold
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the peak amplitude level.

- Average Power Measurement

- 1. Set span to 2 x to 3 x the OBW.
- 2. Set RBW = 1 % to 5 % of the OBW.
- 3. Set VBW ≥ 3 × RBW.
- 4. Set number of measurement points in sweep \geq 2 \times span / RBW..
- 5. Sweep time = 1) auto-couple, or
 - 2) set ≥ [10 x (number of points in sweep) x (transmission period)] for single sweep (automationcompatible (measurement. Transmission period is the on and off time of the transmitter.
- 6. Detector = power averaging (RMS).
- 7. If the EUT can be configured to transmit continuously, then set the trigger to free run.
- 8. If the EUT cannot be configured to transmit continuously, then use a sweep trigger with the level set to enable Triggering only on full power bursts and configure the EUT to transmit at full power for the entire duration of each Sweep. Verify that the sweep time is less than or equal to the transmission burst duration. Time gating can also be used under similar constraints (i.e., configured such that measurement data is collected only during active full-Power transmissions)
- 9. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. To accurately determine the average power over multiple symbols, it can be necessary to increase the number of traces to be averaged above 100 or, if using a manually configured sweep time, increase the sweep time.
- 10. Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band or channel power measurement function, with the band/channel limits set equal to the OBW band edges. If the instrument does not have a band or channel power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

3.3 OCCUPIED BANDWIDTH (99 % Bandwidth)

Test set-up

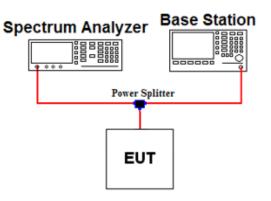
Offset value information

Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)
824.2	7.44	1 850.2	8.19
826.4	7.47	1 852.4	8.19
836.6	7.56	1 880.0	8.21
846.6	7.53	1 907.6	8.23
848.8	7.53	1 909.8	8.23
1 712.4	8.15	-	-
1 732.4	8.15	-	-
1 752.6	8.15	-	-

Note. 1: The offset values from EUT to Spectrum analyzer were measured and used for test.

Test Procedure

- KDB971168 D01v03 Section 4.3
- ANSI C63.26-2015 Section 5.4.4


The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power of a given emission.

Test setting

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99 % occupied bandwidth and the 26 dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 % ~ 5 % of the expected OBW & VBW \geq 3 X RBW
- 3. Detector = Peak
- 4. Trance mode = Max hold
- 5. Sweep = Auto couple
- 6. The trace was allowed to stabilize
- 7. If necessary, step 2 ~ 6 were repeated after changing the RBW such that it would be within 1 % ~ 5 % of the 99 % occupied bandwidth observed in step 6.

3.4 SPURIOUS EMISSIONS AT ANTENNA TERMINAL

Test set-up

Offset value information

Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)
10 000	12.13	20 000	18.25
-	-	-	-

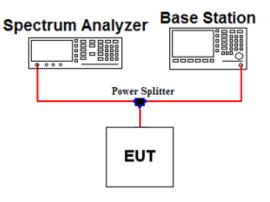
Note. 1: The offset value from EUT to Spectrum analyzer was measured and used for test.

Test Procedure

- KDB971168 D01v03 Section 6
- ANSI C63.26-2015 Section 5.7

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The EUT was setup to maximum output power at its low, middle, high channel with all bandwidths. The spectrum is scanned from 9 kHz up to a frequency including its 10th harmonic.

The power of any spurious emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log(P) dB$, where P is the transmitter power in Watts.


Test setting

- 1. RBW = 100 kHz(Below 1 GHz) or 1 MHz(Above 1 GHz) & VBW ≥ 3 X RBW (Refer to Note 1)
- 2. Detector = RMS & Trace mode = Max hold
- 3. Sweep time = Auto couple
- 4. Number of sweep point \geq 2 X span / RBW
- 5. The trace was allowed to stabilize

Note 1: Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for Part 22 and 1 MHz or greater for Part 24, 27

3.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL

Test set-up

Offset value information

Frequency	Offset Value	Frequency	Offset Value	Frequency	Offset Value
Range(MHz)	(dB)	Range(MHz)	(dB)	Range(MHz)	(dB)
819 - 823	7.43	1 701 – 1 709	8.15	1 845 – 1 855	8.19
823 - 825	7.46	1 705 – 1 715	8.15	1 909 – 1 911	8.27
819 - 829	7.50	1 750 – 1 760	8.15	1 905 – 1 915	8.27
848 - 850	7.53	1 756 – 1 764	8.16	1 911 – 1 915	8.27
844 - 854	7.53	1 845 – 1 849	8.19	-	-
850 - 854	7.53	1 849 – 1 851	8.19	-	-
-	-	-	-	-	-

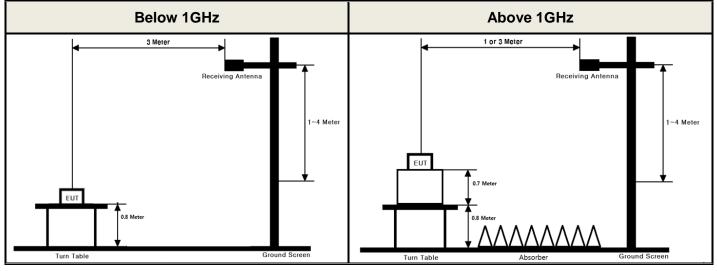
Note. 1: The offset value from EUT to Spectrum analyzer was measured and used for test.

Test Procedure

- KDB971168 D01v03 Section 6
- ANSI C63.26-2015 Section 5.7

All out of band emissions are measured by means of a calibrated spectrum analyzer. The EUT was setup to maximum output power at its lowest and highest channel with all modulations.

The power of any spurious emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log(P) dB$, where P is the transmitter power in Watts.


Test setting

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW \geq 1 % of the emission
- 4. VBW \geq 3 X RBW
- 5. Detector = RMS & Trace mode = Max hold
- 6. Sweep time = Auto couple or 1 s for band edge
- 7. Number of sweep point \ge 2 X span / RBW
- 8. The trace was allowed to stabilize
- Note 1: In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of **at least one percent** of the emission bandwidth of the fundamental emission of the transmitter may be employed to demonstrate compliance with the out-of-band emissions limit.

The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

3.6 RADIATED SPURIOUS EMISSIONS

Test Set-up

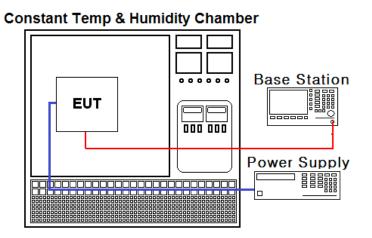
These measurements were performed at 3 m test site. The equipment under test is placed on a non-conductive table 0.8 or 1.5 meters above a turntable which is flush with the ground plane and 3 meters from the receive antenna. For measurements above 1 GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.

Test Procedure

- ANSI/TIA-603-E-2016 Section 2.2.12
- KDB971168 D01v03 Section 5.8
- ANSI C63.26-2015 Section 5.5

Test setting

- 1. RBW = 100 kHz for below 1 GHz and 1 MHz for above 1 GHz / VBW \ge 3 X RBW
- 2. Detector = RMS & Trace mode = Max hold
- 3. Sweep time = Auto couple
- 4. Number of sweep point \geq 2 X span / RBW
- 5. The trace was allowed to stabilize


The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer.

For radiated spurious emission measurements below 1 GHz, a half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading.

For radiated spurious emission measurements above 1 GHz, a Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. The difference between the gain of the horn and an isotropic antenna are taken into consideration.

3.7 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test Set-up

Test Procedure

- ANSI/TIA-603-E-2016
- KDB971168 D01v03 Section 9

The frequency stability of the transmitter is measured by:

a.) Temperature:

The temperature is varied from - 30 °C to + 50 °C in 10 °C increments using an environmental chamber.

b.) Primary Supply Voltage:

The primary supply voltage is varied from 85 % to 115 % of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification:

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block for Part 24, 27. The frequency stability of the transmitter shall be maintained within \pm 0.000 25 % (\pm 2.5 ppm) of the center frequency for Part 22.

Time Period and Procedure:

- The carrier frequency of the transmitter is measured at room temperature. (20 °C to provide a reference)
- 2. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- Frequency measurements are made at 10 °C intervals ranging from -30 °C to +50 °C.
 A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

4. LIST OF TEST EQUIPMENT

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal. Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	20/10/22	21/10/22	MY50200867
Spectrum Analyzer	Agilent Technologies	N9020A	20/06/24	21/06/24	US47360812
DC power supply	Agilent Technologies	66332A	20/06/24	21/06/24	US37473627
Multimeter	FLUKE	17B+	20/12/16	21/12/16	36390701WS
Power Splitter	Anritsu	K241B	20/12/16	21/12/16	016681
Temp & Humi	SJ Science	SJ-TH-S50	20/12/14	21/12/14	U5542113
Radio Communication Analyzer	Agilent Technologies	E5515E	20/06/24	21/06/24	MY52113012
Thermohygrometer	BODYCOM	BJ5478	20/12/16	21/12/16	120612-2
Thermohygrometer	BODYCOM	BJ5478	20/12/16	21/12/16	120612-1
Signal Generator	Rohde Schwarz	SMBV100A	20/12/16	21/12/16	255571
Signal Generator	ANRITSU	MG3695C	20/12/16	21/12/16	173501
Loop Antenna	ETS-Lindgren	6502	21/01/28	23/01/28	00226186
Bilog Antenna	Schwarzbeck	VULB 9160	20/12/16	21/12/16	9160-3362
Dipole Antenna	A.H.Systems Inc.	FCC-4	20/12/16	22/12/16	710A
Dipole Antenna	Schwarzbeck	UHA9105	20/04/10	22/04/10	2262
HORN ANT	ETS	3117	20/12/16	21/12/16	00140394
HORN ANT	ETS	3117	20/10/23	21/10/23	00143278
HORN ANT	A.H.Systems	SAS-574	20/06/24	21/06/24	154
HORN ANT	A.H.Systems	SAS-574	20/06/24	21/06/24	155
Amplifier	EMPOWER	BBS3Q7ELU	20/06/24	21/06/24	1020
PreAmplifier	H.P	8447D	20/12/16	21/12/16	2944A07774
PreAmplifier	Agilent	8449B	20/06/24	21/06/24	3008A02108
High-pass filter	Wainwright	WHKX12-935-1000- 15000-40SS	20/06/24	21/06/24	7
High-pass filter	Wainwright	WHKX10-2838-3300- 18000-60SS	20/06/24	21/06/24	2
High-pass filter	Wainwright	WHKX6-6320-8000- 26500-40CC	20/06/24	21/06/24	2
Cable	HUBER+SUHNER	SUCOFLEX100	21/01/08	22/01/08	M-1
Cable	HUBER+SUHNER	SUCOFLEX100	21/01/08	22/01/08	M-2
Cable	JUNFLON	MWX241/B	21/01/08	22/01/08	M-3
Cable	JUNFLON	MWX221	21/01/08	22/01/08	M-4
Cable	JUNFLON	MWX221	21/01/08	22/01/08	M-5
Cable	DTNC	Cable	21/01/08	22/01/08	M-6
Cable	JUNFLON	J12J101757-00	21/01/08	22/01/08	M-7
Cable	HUBER+SUHNER	SUCOFLEX104	21/01/08	22/01/08	M-8
Cable	HUBER+SUHNER	SUCOFLEX106	21/01/08	22/01/08	M-9
Cable	Radiall	Cable	21/01/16	22/01/16	RF-48

Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017. Note2: The cable is not a regular calibration item, so it has been calibrated by DT & C itself.

5. SUMMARY OF TEST RESULTS

FCC Part Section(s)	RSS Section(s)	Parameter	Status Note 1
2.1046	-	Conducted Output Power	C ^{Note2}
22.913(a) 24.232(c) 27.50(d.4)	RSS-132 [5.4] RSS-133 [6.4] RSS-139 [6.5]	Effective Radiated Power Equivalent Isotropic Radiated Power	C ^{Note3, 4}
2.1049	RSS-Gen [6.7]	Occupied Bandwidth	с
2.1051 22.917(a) 24.238(a) 27.53(h)	RSS-132 [5.5] RSS-133 [6.5] RSS-139 [6.6]	Band Edge Emissions at Antenna Terminal Spurious Emissions at Antenna Terminal	с
24.232(d) 27.50(d.5)	RSS-132 [5.4] RSS-133 [6.4] RSS-139 [6.5]	Peak to Average Ratio	С
2.1053 22.917(a) 24.238(a) 27.53(h)	RSS-132 [5.5] RSS-133 [6.5] RSS-139 [6.6]	Radiated Spurious and Harmonic Emissions	C ^{Note3, 4}
2.1055 22.355 24.235 27.54	RSS-132 [5.3] RSS-133 [6.3] RSS-139 [6.4]	Frequency Stability	С
Note 1: C=Comply Note 2: Refer to R		Not Tested NA=Not Applicable	I

Note 3: This test item was performed in three orthogonal EUT positions and the worst case data was reported.

Note 4: This device supports wireless charging.

So per KDB648474 D03v01r0, the radiated test items were performed all not charging, charging, the handset is placed on the representative charging pad under normal conditions and in a simulated call configuration.

6. EMISSION DESIGNATOR AND SAMPLE CALCULATION

A. Emission Designator

GSM850 Emission Designator

Emission Designator = **247KGXW** GSM OBW = 246.50 kHz G = Phase Modulation

- X = Cases not otherwise covered
- W = Combination (Audio/Data)

GSM1900 Emission Designator

Emission Designator = **249KGXW** GSM OBW = 249.03 kHz G = Phase Modulation X = Cases not otherwise covered W = Combination (Audio/Data)

WCDMA850 Emission Designator

Emission Designator = **4M16F9W** WCDMA OBW = 4.162 3 MHz F = Frequency Modulation 9 = Composite Digital Information W = Combination (Audio/Data)

WCDMA1900 Emission Designator

Emission Designator = **4M15F9W** WCDMA OBW = 4.145 7 MHz F = Frequency Modulation 9 = Composite Digital Information W = Combination (Audio/Data)

EDGE850 Emission Designator

Emission Designator = **246KG7W** EDGE OBW = 245.51 kHz G = Phase Modulation 7 = Cases not otherwise covered W = Combination (Audio/Data)

EDGE1900 Emission Designator

Emission Designator = **254KG7W** EDGE OBW = 253.65 kHz G = Phase Modulation 7 = Cases not otherwise covered W = Combination (Audio/Data)

WCDMA1700 Emission Designator

Emission Designator = **4M14F9W** WCDMA OBW = 4.141 1 MHz F = Frequency Modulation 9 = Composite Digital Information W = Combination (Audio/Data)

B. For substitution method

- 1) The EUT was placed on a turntable with 0.8 meter height for frequency below 1GHz and 1.5 meter height for frequency above 1 GHz respectively above ground.
- 2) The EUT was set 3 meters from the receiving antenna mounted on the antenna tower.
- 3) During the test, the turn table is rotated until the maximum signal is found.
- 4) Record the field strength meter's level. (ex. Spectrum reading level is -8.5 dBm)
- 5) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 6) Increase the signal generator output till the field strength meter's level is equal to the item (4).
- (ex. Signal generator level is -18.04 dBm)
- 7) The gain of the cable and amplifier between the signal generator and terminals of substituted antenna is 46.92 dB at test frequency.
- 8) Record the level at substituted antenna terminal. (ex. 28.88dBm)
- 9) The result is calculated as below;

EIRP(dBm) = LEVLE@ANTENNA TERMINAL + TX Antenna Gain (dBi)

ERP(dBm) = LEVLE@ANTENNA TERMINAL + TX Antenna Gain (dBd)

Where, TX Antenna Gain (dBd) = TX Antenna Gain (dBi) - 2.15 dB

7. TEST DATA

7.1 PEAK TO AVERAGE RATIO

- Plots of the EUT's Peak- to- Average Ratio are shown in Clause 8.1

7.2 OCCUPIED BANDWIDTH (99 % Bandwidth)

Mode	Channel	Frequency (MHz)	Test Result (kHz)
	128	824.2	246.50
GSM850	190	836.6	246.32
	251	848.8	246.01
	128	824.2	244.87
EDGE850	190	836.6	245.51
	251	848.8	241.12
	512	1 850.2	242.68
GSM1900	661	1 880.0	245.86
	810	1 909.8	249.03
	512	1 850.2	246.17
EDGE1900	661	1 880.0	247.25
	810	1 909.8	253.65
	4 132	826.4	4 122.20
WCDMA850	4 183	836.6	4 162.30
	4 233	846.6	4 122.70
	1 312	1 712.4	4 119.40
WCDMA1700	1 412	1 732.4	4 141.10
	1 513	1 752.6	4 132.60
	9 262	1 852.4	4 129.80
WCDMA1900	9 400	1 880.0	4 145.70
	9 538	1 907.6	4 141.50

7.3 SPURIOUS MISSIONS AT ANTENNA TERMINAL

- Plots of the EUT's Conducted Spurious Emissions are shown in Clause 8.3

7.4 BAND EDGE EMISSIONS AT ANTENNA TERMINAL

- Plots of the EUT's Band Edge are shown in Clause 8.4

7.5 EFFECTIVE RADIATED POWER

- Test Notes

This EUT was tested under all configurations and the highest power is reported in GSM mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GSM mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. The worst case data is reported.

- GSM850 data

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBd)	ERP (dBm)	ERP (W)	Note.
GSM850	128	824.2	Н	30.25	-0.76	29.49	0.889	-
GSM850	190	836.6	Н	30.43	-0.85	29.58	0.908	-
GSM850	251	848.8	н	31.27	-0.95	30.32	1.076	-
EGSM850	251	848.8	Н	25.92	-0.95	24.97	0.314	-
GSM850	251	848.8	Н	30.65	-0.95	29.70	0.933	With WCP

- WCDMA850 data

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBd)	ERP (dBm)	ERP (W)	Note.
WCDMA850	4 132	826.4	н	22.74	-0.77	21.97	0.157	-
WCDMA850	4 183	836.6	Н	21.94	-0.85	21.09	0.129	-
WCDMA850	4 233	846.6	Н	21.85	-0.93	20.92	0.124	-
WCDMA850	4 132	826.4	Н	22.09	-0.77	21.32	0.136	With WCP

7.6 EQUIVALENT ISOTROPIC RADIATED POWER

- Test Notes

This EUT was tested under all configurations and the highest power is reported in GSM mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GSM mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. The worst case data is reported.

- GSM1900 data

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Note.
GSM1900	512	1 850.2	V	26.00	5.35	31.35	1.365	-
GSM1900	661	1 880.0	V	27.56	5.20	32.76	1.888	-
GSM1900	810	1 909.8	V	27.02	5.08	32.10	1.622	-
EGSM1900	661	1 880.0	V	21.40	5.20	26.60	0.457	-
GSM1900	661	1 880.0	Н	27.07	5.20	32.27	1.687	WCP

- WCDMA1700 data

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Note.
WCDMA1700	1 312	1 712.4	Н	16.60	6.57	23.17	0.207	-
WCDMA1700	1 412	1 732.4	Н	17.02	6.31	23.33	0.215	-
WCDMA1700	1 513	1 752.6	Н	16.02	6.06	22.08	0.161	-
WCDMA1700	1 412	1 732.4	Н	16.67	6.31	22.98	0.199	With WCP

- WCDMA1900 data

Mode	СН	Frequency (MHz)	Ant. Pol. (H/V)	LEVEL@ TX ANTENNA TERMINAL (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Note.
WCDMA1900	9 262	1 852.4	Н	19.17	5.34	24.51	0.282	-
WCDMA1900	9 400	1 880.0	Н	19.19	5.20	24.39	0.275	-
WCDMA1900	9 538	1 907.6	Н	18.97	5.08	24.05	0.254	-
WCDMA1900	9 262	1 852.4	Н	19.03	5.34	24.37	0.274	With WCP

7.7 RADIATED SPURIOUS EMISSIONS

- Test Notes

- This EUT was tested under all configurations and the highest power is reported in GSM mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GSM mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. The worst case data is reported.
- 2. Limit Calculation = 43 + 10 log₁₀(P[Watts])
- 3. No other spurious and harmonic emissions were reported greater than listed emissions.

- GSM850 data

Channel	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBd)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note.
128	824.2	1 648.54	V	-44.15	4.51	-39.64	-13.00	26.64	-
120	024.2	2 472.75	V	-48.26	4.14	-44.12	-13.00	31.12	-
190	836.6	1 673.19	V	-46.21	4.55	-41.66	-13.00	28.66	-
190	030.0	2 509.76	V	-49.44	4.14	-45.30	-13.00	32.30	-
251	848.8	1 697.58	V	-41.61	4.58	-37.03	-13.00	24.03	-
201	040.0	2 546.14	V	-49.27	4.19	-45.08	-13.00	32.08	-

- GSM850 data (With WCP)

Channel (ERP)	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBd)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note.
251	0 1 0 0	1 697.86	Н	-42.45	4.58	-37.87	-13.00	24.87	-
251	848.8	2 545.88	Н	-49.21	4.19	-45.02	-13.00	32.02	-

- WCDMA850 data

Channel	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBd)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note
4 132	826.4	1 654.58	Н	-65.01	4.53	-60.48	-13.00	47.48	-
4 132	020.4	2 482.33	V	-61.53	4.14	-57.39	-13.00	44.39	-
4 183	836.6	1 671.45	Н	-63.24	4.55	-58.69	-13.00	45.69	-
4 103	030.0	2 512.80	V	-61.86	4.15	-57.71	-13.00	44.71	-
4 233	846.6	1 691.43	Н	-65.97	4.57	-61.40	-13.00	48.40	-
4 233	040.0	2 537.10	V	-62.57	4.18	-58.39	-13.00	45.39	-

- WCDMA850 data (With WCP)

Channel	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBd)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note.
4 4 2 2	926.4	1 655.09	Н	-66.08	4.53	-61.55	-13.00	48.55	-
4 132	826.4	2 482.71	Н	-61.82	4.14	-57.68	-13.00	44.68	-

- GSM1900 data

Channel	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note
512	1 850.2	3 701.68	V	-56.56	8.88	-47.68	-13.00	34.68	-
512	1 030.2	5 550.80	V	-55.12	10.91	-44.21	-13.00	31.21	-
661	1 880.0	3 761.08	V	-55.84	8.93	-46.91	-13.00	33.91	-
001	1 000.0	5 640.39	V	-54.91	11.06	-43.85	-13.00	30.85	-
810	1 909.8	3 818.54	V	-55.95	9.10	-46.85	-13.00	33.85	-
010	1 909.0	5 729.61	V	-55.15	11.24	-43.91	-13.00	30.91	-

- GSM1900 data (With WCP)

Channel	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note
661	1 880.0	3 761.23	V	-56.11	8.93	-47.18	-13.00	34.18	-
001	1 000.0	5 641.83	V	-55.26	11.06	-44.20	-13.00	31.20	-

- WCDMA1700 data

Channel	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note
		3 423.08	V	-62.94	8.66	-54.28	-13.00	41.28	-
1 312	1 712.4	5 140.48	Н	-65.63	10.76	-54.87	-13.00	41.87	-
1312	1712.4	6 852.51	Н	-56.32	11.94	-44.38	-13.00	31.38	-
		8 566.30	V	-59.25	13.54	-45.71	-13.00	32.71	-
		3 466.42	Н	-64.32	8.79	-55.53	-13.00	42.53	-
1 412	1 732.4	5 200.24	Н	-64.05	10.94	-53.11	-13.00	40.11	-
1412	1752.4	6 932.58	V	-55.98	12.14	-43.84	-13.00	30.84	-
		8 657.82	V	-56.78	13.67	-43.11	-13.00	30.11	-
		3 503.68	V	-65.83	8.80	-57.03	-13.00	44.03	-
1 513	1 752.6	5 255.16	Н	-62.74	10.92	-51.82	-13.00	38.82	-
1010	1752.0	7 007.28	Н	-55.36	12.21	-43.15	-13.00	30.15	-
		8 758.68	V	-55.12	13.75	-41.37	-13.00	28.37	-

- WCDMA1700 data (With WCP)

Channel	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note
		3466.79	Н	-66.28	8.79	-57.49	-13.00	44.49	-
1 412	4 440 4700 4	5200.27	Н	-63.19	10.94	-52.25	-13.00	39.25	-
1 412 1732.4	1732.4	6932.47	Н	-55.21	12.14	-43.07	-13.00	30.07	-
		8657.02	Н	-55.30	13.67	-41.63	-13.00	28.63	-

- WCDMA1900 data

Channel	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note
		3705.63	Н	-66.44	8.88	-57.56	-13.00	44.56	-
9 262	1 852.4	5554.27	Н	-58.20	10.92	-47.28	-13.00	34.28	-
9 202	1 002.4	7406.51	Н	-57.67	12.32	-45.35	-13.00	32.35	-
		9257.70	Н	-53.89	13.75	-40.14	-13.00	27.14	-
		3 758.06	Н	-66.15	8.92	-57.23	-13.00	44.23	-
9 400	1 880.0	5 642.53	Н	-57.38	11.06	-46.32	-13.00	33.32	-
9400	1 000.0	7 516.87	Н	-57.24	12.54	-44.70	-13.00	31.70	-
		9 395.57	Н	-58.87	13.79	-45.08	-13.00	32.08	-
		3 816.64	Н	-66.40	9.09	-57.31	-13.00	44.31	-
9 538	1 907.6	5 725.87	Н	-59.60	11.23	-48.37	-13.00	35.37	-
9 556	1 907.0	7 627.33	Н	-54.72	12.62	-42.10	-13.00	29.10	-
		9 533.55	Н	-61.07	13.74	-47.33	-13.00	34.33	-

- WCDMA1900 data (With WCP)

Channel	Tx Freq. (MHz)	Freq. (MHz)	POL (H/V)	LEVEL@ ANTENNA TERMINAL (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Limit (dBm)	Margin (dB)	Note
		3704.91	Н	-67.07	8.88	-58.19	-13.00	45.19	-
9 262	1 852.4	5555.39	Н	-58.39	10.93	-47.46	-13.00	34.46	-
9 202	1 652.4	7405.23	Н	-57.81	12.32	-45.49	-13.00	32.49	-
		9257.22	Н	-54.13	13.75	-40.38	-13.00	27.38	-

7.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

- Test Notes.

Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

7.8.1 FREQUENCY STABILITY (GSM850)

OPERATING FREQUENCY	:	<u>836,600,000 Hz</u>		
REFERENCE VOLTAGE	:	<u>3.85 </u> V DC		
LIMIT(FCC&IC)	:	<u>± 0.000 25 </u> % or	2.5	_ppm

VOLTAGE	POWER	TEMP	FREQ	Dev	iation
(%)	(V DC)	(°C)	(Hz)	(ppm)	(%)
100 %		+20(Ref)	836,600,002	+0.002	+0.000 000 24
100 %		-30	836,599,996	-0.005	-0.000 000 48
100 %		-20	836,600,004	+0.005	+0.000 000 48
100 %		-10	836,600,007	+0.008	+0.000 000 84
100 %	2.05	0	836,599,992	-0.010	-0.000 000 96
100 %	3.85	+10	836,600,001	+0.001	+0.000 000 12
100 %		+20	836,600,002	+0.002	+0.000 000 24
100 %		+30	836,600,007	+0.008	+0.000 000 84
100 %		+40	836,599,995	-0.006	-0.000 000 60
100 %		+50	836,599,997	-0.004	-0.000 000 36
115 %	4.43	+20	836,600,002	+0.002	+0.000 000 24
BATT.ENDPOINT	3.20	+20	836,600,004	+0.005	+0.000 000 48

7.8.2 FREQUENCY STABILITY (WCDMA850)

OPERATING FREQUENCY : REFERENCE VOLTAGE : LIMIT(FCC&IC) :

836,600,000 Hz 3.85 V DC ± 0.000 25 % or 2.5 ppm

VOLTAGE	POWER	TEMP	FREQ	Dev	viation
(%)	(V DC)	(°C)	(Hz)	(ppm)	(%)
100 %		+20(Ref)	836,600,006	+0.007	+0.000 000 72
100 %		-30	836,599,999	-0.001	-0.000 000 12
100 %		-20	836,600,002	+0.002	+0.000 000 24
100 %		-10	836,599,995	-0.006	-0.000 000 60
100 %	3.85	0	836,599,994	-0.007	-0.000 000 72
100 %	3.00	+10	836,600,003	+0.004	+0.000 000 36
100 %		+20	836,600,006	+0.007	+0.000 000 72
100 %		+30	836,600,005	+0.006	+0.000 000 60
100 %		+40	836,599,999	-0.001	-0.000 000 12
100 %		+50	836,600,009	+0.011	+0.000 001 08
115 %	4.43	+20	836,599,995	-0.006	-0.000 000 60
BATT.ENDPOINT	3.20	+20	836,600,003	+0.004	+0.000 000 36

7.8.3 FREQUENCY STABILITY (WCDMA1700)

OPERATING FREQUENCY REFERENCE VOLTAGE LIMIT(FCC&IC) <u>1,732,400,000</u>Hz <u>1,732.40</u>VDC

:

GE : <u>1732.40</u> V DC IC) : <u>The frequency stability shall be sufficient to ensure that the</u>

fundamental emission stays within the authorized frequency block.

VOLTAGE	POWER	TEMP	FREQ	Dev	viation
(%)	(V DC)	(°C)	(Hz)	(ppm)	(%)
100 %		+20(Ref)	1,732,400,003	+0.002	+0.000 000 17
100 %		-30	1,732,399,994	-0.003	-0.000 000 35
100 %		-20	1,732,399,994	-0.003	-0.000 000 35
100 %		-10	1,732,400,007	+0.004	+0.000 000 40
100 %	2 95	0	1,732,399,998	-0.001	-0.000 000 12
100 %	3.85	+10	1,732,400,009	+0.005	+0.000 000 52
100 %		+20	1,732,400,003	+0.002	+0.000 000 17
100 %		+30	1,732,400,003	+0.002	+0.000 000 17
100 %		+40	1,732,400,004	+0.002	+0.000 000 23
100 %		+50	1,732,399,997	-0.002	-0.000 000 17
115 %	4.43	+20	1,732,399,998	-0.001	-0.000 000 12
BATT.ENDPOINT	3.20	+20	1,732,400,001	+0.001	+0.000 000 06

7.8.4 FREQUENCY STABILITY (GSM1900)

OPERATING FREQUENCY	:	<u>1,880,000,000</u> Hz
REFERENCE VOLTAGE	:	3.85 V DC

LIMIT(FCC)

: The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

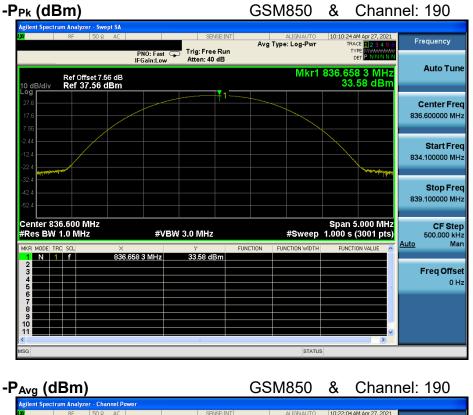
LIMIT(IC) : <u>± 0.000 25 % or 2.5 ppm</u>

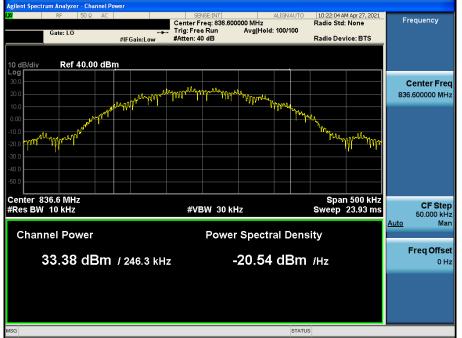
VOLTAGE	POWER	TEMP	FREQ	Dev	viation
(%)	(%) (V DC) (°C)		(Hz)	(ppm)	(%)
100 %		+20(Ref)	1,879,999,995	-0.003	-0.000 000 27
100 %		-30	1,880,000,003	+0.002	+0.000 000 16
100 %		-20	1,880,000,001	+0.001	+0.000 000 05
100 %		-10	1,879,999,991	-0.005	-0.000 000 48
100 %	3.85	0	1,879,999,998	-0.001	-0.000 000 11
100 %	3.00	+10	1,880,000,004	+0.002	+0.000 000 21
100 %		+20	1,879,999,995	-0.003	-0.000 000 27
100 %		+30	1,880,000,005	+0.003	+0.000 000 27
100 %		+40	1,880,000,006	+0.003	+0.000 000 32
100 %		+50	1,880,000,002	+0.001	+0.000 000 11
115 %	4.43	+20	1,879,999,996	-0.002	-0.000 000 21
BATT.ENDPOINT	3.20	+20	1,880,000,007	+0.004	+0.000 000 37

7.8.5 FREQUENCY STABILITY (WCDMA1900)

OPERATING FREQUENCY	:	<u>1,880,000,000</u> Hz
REFERENCE VOLTAGE	:	<u>3.85 V DC</u>

LIMIT(FCC)

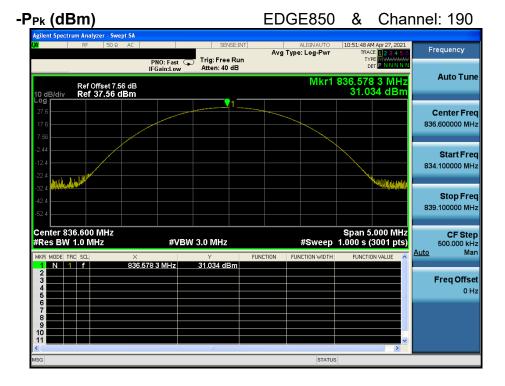

The frequency stability shall be sufficient to ensure that the : fundamental emission stays within the authorized frequency block.


LIMIT(IC) : <u>± 0.000 25 % or 2.5 ppm</u>

VOLTAGE	POWER	TEMP	FREQ	Deviation			
(%)	(V DC)	(°C)	(Hz)	(ppm)	(%)		
100 %	3.85	+20(Ref)	1,880,000,004	+0.002	+0.000 0002 1		
100 %		-30	1,880,000,001	+0.001	+0.000 0000 5		
100 %		-20	1,880,000,004	+0.002	+0.000 0002 1		
100 %		-10	1,879,999,994	-0.003	-0.000 0003 2		
100 %		0	1,879,999,993	-0.004	-0.000 0003 7		
100 %		+10	1,880,000,007	+0.004	+0.000 0003 7		
100 %		+20	1,880,000,004	+0.002	+0.000 0002 1		
100 %		+30	1,880,000,002	+0.001	+0.000 0001 1		
100 %		+40	1,880,000,001	+0.001	1 +0.000 0000 5		
100 %		+50	1,879,999,991	-0.005	-0.000 0004 8		
115 %	4.43	+20	1,879,999,993	-0.004	-0.000 0003 7		
BATT.ENDPOINT	3.20	+20	1,880,000,003	+0.002	+0.000 0001 6		

8. TEST PLOTS

8.1 PEAK TO AVERAGE RATIO



PAPR (dB) = P_{Pk} (dBm) - P_{Avg} (dBm) = 33.58 dBm - 33.38 dBm = 0.20 dB

Dt&C

IC : 10664A-PM30

EDGE850 & Channel: 190 -PAvg (dBm) 10:50:27 AM Apr 27, 2021 Radio Std: None Center Freq: 836.600000 MHz Trig: Freq: Rade Avg|Hold: 100/100 #Atten: 40 dB Frequency Gate: LO #IFGain:Low Radio Device: BTS Ref 40.00 dBm **Center Freq** 836.600000 MHz mm warran warrante YNY 420 March M. West Center 836.6 MHz #Res BW 10 kHz Span 500 kHz Sweep 23.93 ms CF Step 50.000 kHz #VBW 30 kHz <u>Auto</u> Man **Channel Power Power Spectral Density** Freq Offset 27.56 dBm / 246.3 kHz -26.35 dBm /Hz 0 Hz

PAPR (dB) = P_{Pk} (dBm) - P_{Avg} (dBm) = 31.034 dBm - 27.560 dBm = 3.474 dB

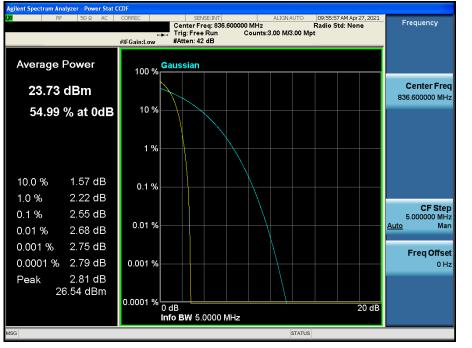
Dt&C

Pk (dBm)				GS	M1900	& Cha		nnel: 661	
LXI RL	ectrum Analyzer - Swept RF 50 Ω req 1.880000	AC		#Avg	ALIGN OFF J Type: Log-Pwr	TRA T)	PM Apr 08, 2021 CE 1 2 3 4 5 6 (PE M WWWWW DET P P P P P P P	Frequer	ncy
10 dB/div	Ref Offset 8.21 Ref 38.21 dE		Mkr2	Auto	o Tu				
Log 28.2 18.2 8.21			21 					Cente 1.8800000	
-1.79 -11.8 -21.8								Sta 1.8775000	
-31.8	kumaa 						"" when to the	Sto 1.8825000	
Center 1. #Res BW	880000 GHz 1.0 MHz	#V	BW 3.0 MHz		Sweep 1.		5.000 MHz (1001 pts)	C 500.0 Auto	F S1
MKR MODE T	f	× 1.880 070 GHz	Y 28.23 dBm	FUNCTION	FUNCTION WIDTH	FUNCT	ION VALUE	Auto	
2 N 1 3 4 5 6		1.880 000 GHz	28.19 dBm					Freq	Off
7								Scale	
10 11			m					Log	
MSG					STATUS				

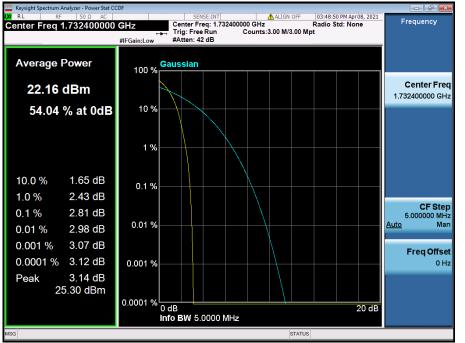
-PAvg (dBm) GSM1900 & Channel: 661 04:41:41 PM Apr 08, 2021 Radio Std: None 🔥 ALIGN OFF SENSE:INTI ALIGN OFF Center Freq: 1.880000000 GHz Trig: Free Run Avg|Hold: 100/100 #Atten: 42 dB Frequency Center Freg 1.880000000 GHz #IFGain:Low Radio Device: BTS Ref 40.00 dBm **Center Freq** 1.880000000 GHz Span 500 kHz Sweep 6.2 ms Center 1.88 GHz #Res BW 10 kHz CF Step 50.000 kHz Man #VBW 30 kHz <u>Auto</u> **Channel Power Power Spectral Density** Freq Offset 28.08 dBm / 245.9 kHz -25.83 dBm /Hz 0 Hz

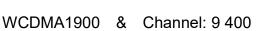
PAPR (dB) = P_{Pk} (dBm) - P_{Avg} (dBm) = 28.23 dBm - 28.08 dBm = 0.15 dB

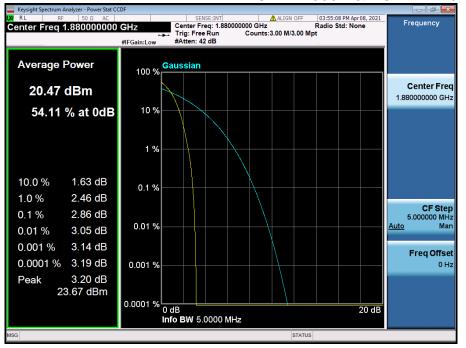
-PAvg (dBm)



EDGE1900 & Channel: 661

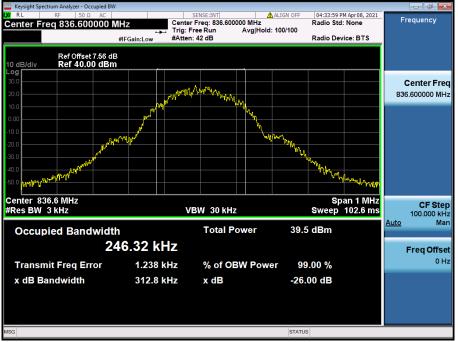


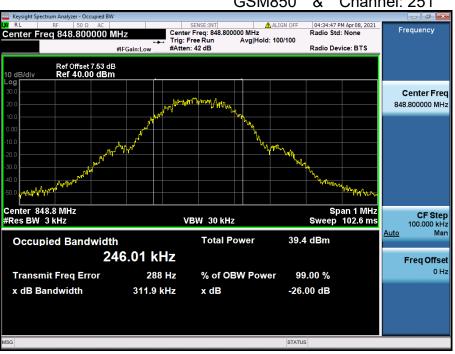

PAPR (dB) = P_{Pk} (dBm) - P_{Avg} (dBm) = 27.34 dBm - 24.37 dBm = 2.97 dB



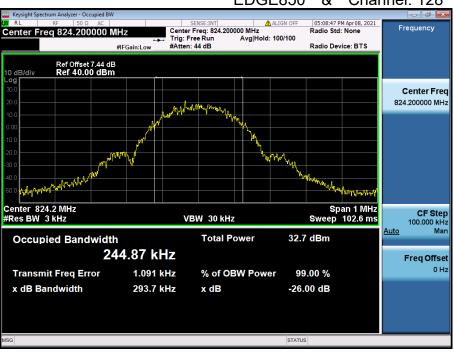
WCDMA850 & Channel: 4 132

WCDMA1700 & Channel: 1 412



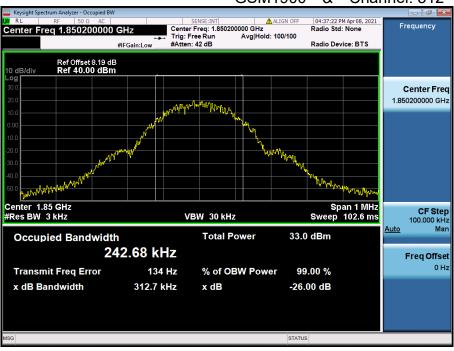


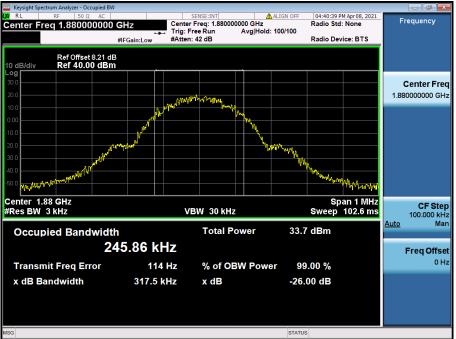
8.2 OCCUPIED BANDWIDTH (99 % Bandwidth)


GSM850 & Channel: 128 Keysight Spectrum Analyzer - Occupied B 04:31:22 PM Apr 08, 2021 Radio Std: None ALIGN OFF Center Freq: 824.200000 MHz Trig: Free Run Avg|Ho #Atten: 44 dB Frequency Center Freq 824.200000 MHz Avg|Hold: 100/100 Radio Device: BTS #IFGain:Low Ref Offset 7.44 dB Ref 40.00 dBm **Center Freq** 824.200000 MHz with may . JUN Span 1 MHz Sweep 102.6 ms Center 824.2 MHz #Res BW 3 kHz CF Step 100.000 kHz VBW 30 kHz <u>Auto</u> Man Total Power 38.5 dBm **Occupied Bandwidth** 246.50 kHz Freq Offset 0 Hz Transmit Freq Error 968 Hz % of OBW Power 99.00 % x dB Bandwidth 317.3 kHz x dB -26.00 dB STATUS

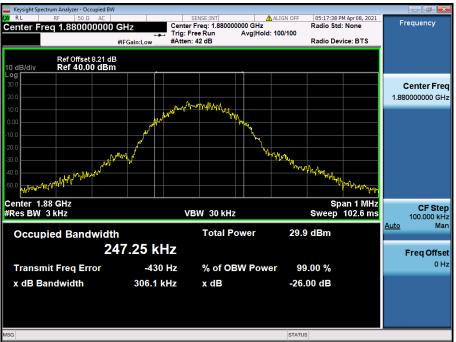
GSM850 & Channel: 190

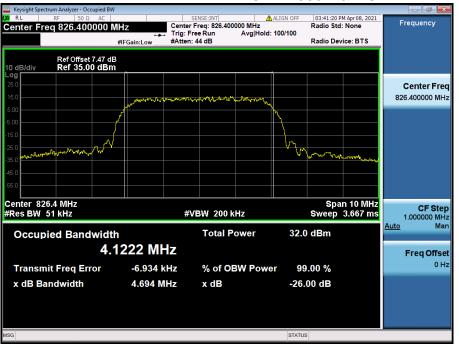
GSM850 & Channel: 251


EDGE850 & Channel: 128


EDGE850 & Channel: 190

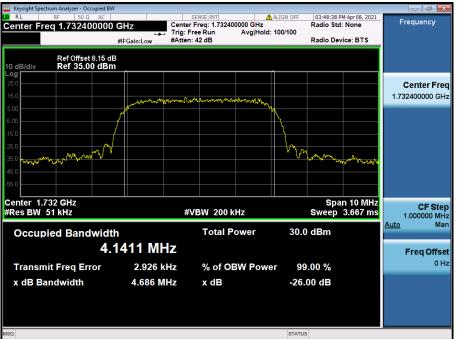

EDGE850 & Channel: 251

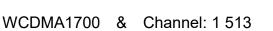


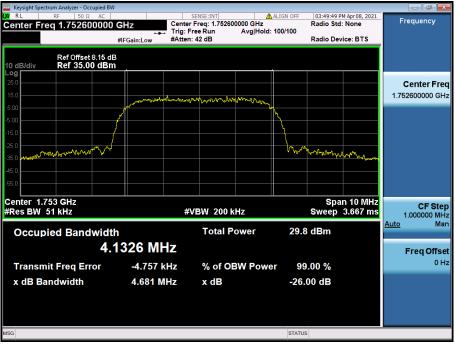




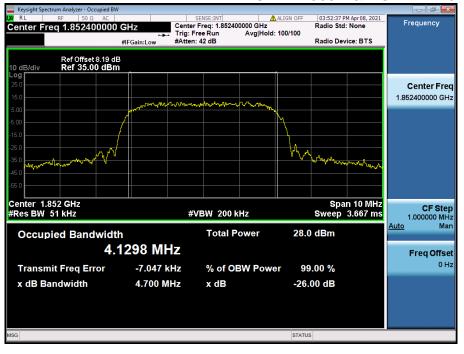
WCDMA850 & Channel: 4 132

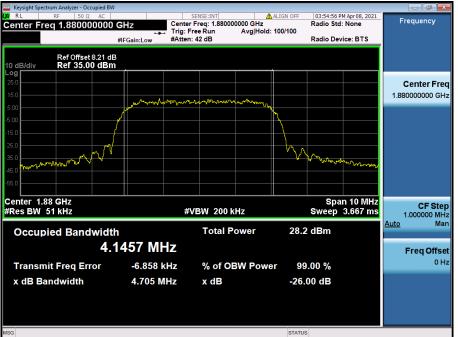

WCDMA850 & Channel: 4 183

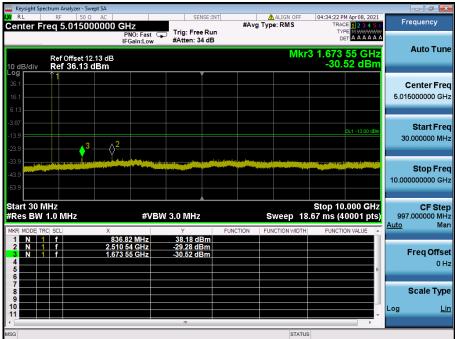




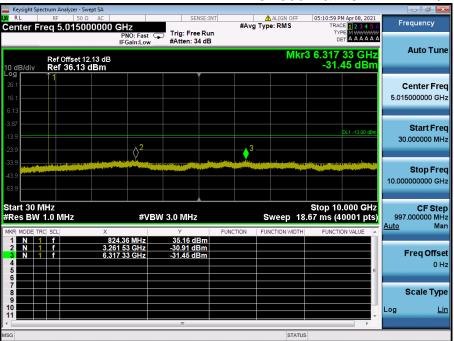
WCDMA850 & Channel: 4 233



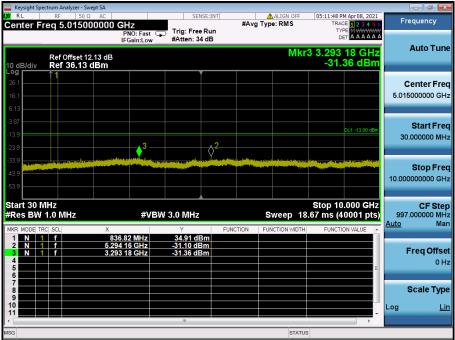




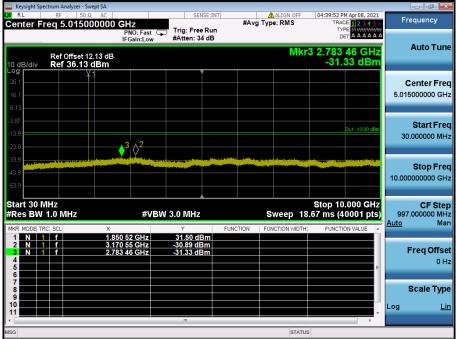
8.3 SPURIOUS EMISSIONS AT ANTENNA TERMINAL

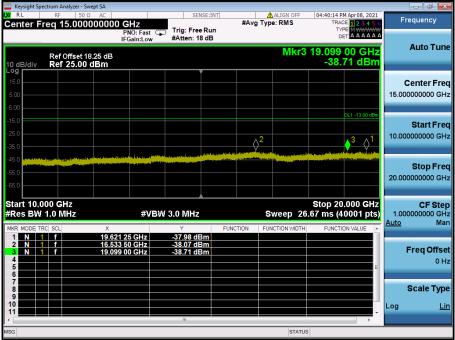

		GSM850	& Chan	nel: 128
Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω AC AC Center Freq 5.015000000 GHz GHz AC A	SENSE:INT	ALIGN OFF #Avg Type: RMS	04:33:33 PM Apr 08, 2021 TRACE 1 2 3 4 5 6 TYPE M WAYAWAY	Frequency
PNO: Fast IFGain:Lov Ref Offset 12.13 dB 10 dB/div Ref 36.13 dBm		Mkr	3 2.472 65 GHz -31.12 dBm	Auto Tune
26.1 16.1				Center Freq 5.015000000 GHz
-3.87 -13.9 -23.9			DL1 -13.00 dBm	Start Freq 30.000000 MHz
-33.9 -43.9 -63.9				Stop Freq 10.000000000 GHz
	/BW 3.0 MHz	· · ·	Stop 10.000 GHz .67 ms (40001 pts)	CF Step 997.000000 MHz <u>Auto</u> Man
MKR MODE TRC SCI X 1 N 1 F 82436 MHz 2 N 1 F 1.64838 GHz 3 N 1 F 2.472 65 GHz 4 5 5 5	38.12 dBm -28.80 dBm -31.12 dBm	FUNCTION FUNCTION WDTH	FUNCTION VALUE	Freq Offset 0 Hz
7 8 9 10 11			-	Scale Type Log <u>Lin</u>
MSG		STATUS	5	

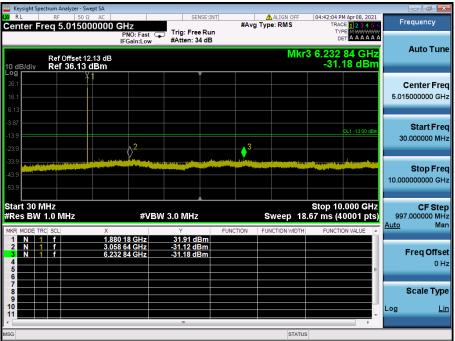
GSM850 & Channel: 190

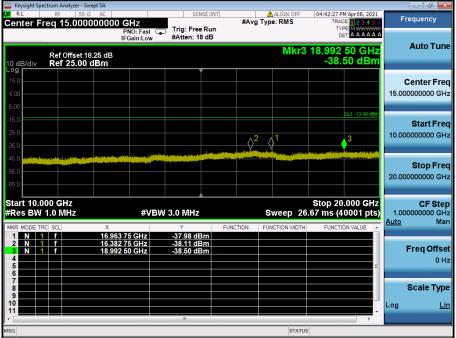

						GOIV	1000	α	Chan	nei.	201
	ectrum Analyzer - S										
RL	RF 50 9		-	SEN	ISE:INT	#Avg Ty	ALIGN OFF		57 PM Apr 08, 2021 TRACE 1 2 3 4 5 (E	requency
enter F	req 5.0150	P	IZ NO:Fast ⊂ Gain:Low	Trig: Free #Atten: 3		#Avg Ty	pe. Rivis				
) dB/div	Ref Offset 1 Ref 36.13						Mkr		97 48 GHz 9.92 dBm		Auto Tun
og 26.1	1										Contor Ero
											Center Free
6.1										5.01	5000000 GH
.13									_		
.87											Start Fre
3.9									DL1 -13.00 dBm	2	0.000000 MH
3.9		3 ∆ ²								30	
		T Y									
3.9 Level Marco	and the property of the last		a state of the sta	and the second	A STREET OF THE OWNER OF THE OWNE						Stop Fre
3.9										10.00	0000000 GH
3.9										10.00	
tart 30 I			-40.750	N O O MUL-					10.000 GHz		CF Stej 7.000000 MH
Res DW	1.0 MHz		#VD	№ 3.0 MHz			sweep 1a	.07 IIIS	(40001 pts)	Auto	Mai
KR MODE T		Х		Y		TION FU	INCTION WIDTH	FUN	ICTION VALUE	<u>riaro</u>	Ind
1 N *		2.546 6	4 MHz	38.19 de -27.23 de	3m Im						
3 N -		1.697 4	8 GHz	-29.92 dE	Bm						Freq Offse
4											0 H
6											
7											Scale Typ
8											scale typ
0										Log	Li
1											
3							STATU	2			
,							STATU	5			

GSM850 & Channel: 251

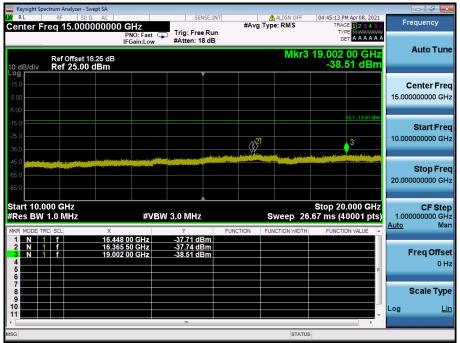

EDGE850 & Channel: 128

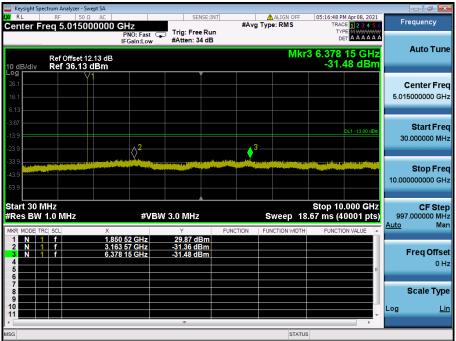

EDGE850 & Channel: 190

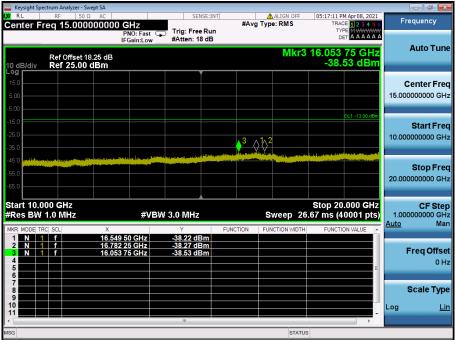


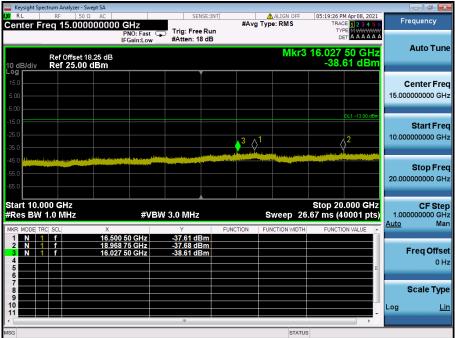

					200	L000	α			1. 201
Keysight Spectrum Analyzer	r - Swept SA									
enter Freq 5.01		Z O: Fast	Trig: Free		#Avg Typ	ALIGN OFF	TF	PM Apr 08, 2021 RACE 1 2 3 4 5 TYPE M VANA A A A	6 V	requency
Ref Offse dB/div Ref 36.7	et 12.13 dB	ain:Low	#Atten: 34	4 dB		Mkr		0 96 GHz 1.66 dBm		Auto Tun
6.1										Center Fre 15000000 GH
87	3	2						DL1 -13.00 dBm	3	Start Fre 0.000000 MH
8.9 ••••••••••••••••••••••••••••••••••••									10.00	Stop Fre 00000000 GH
art 30 MHz Res BW 1.0 MHz		#VBW	3.0 MHz	FUNC		weep 18	.67 ms	10.000 GHz (40001 pts	99 <u>Auto</u>	CF Ste 7.000000 MH Ma
1 N 1 f 2 N 1 f 3 N 1 f 4 5	849.04 3.321 84 2.370 96	GHz	35.41 dE -31.21 dE -31.66 dE	3m 3m						Freq Offse 0 H
6 7 8 9										Scale Typ
									1	
9 0 1								-	Log	Li

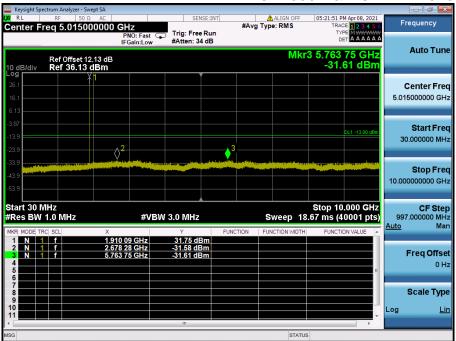
EDGE850 & Channel: 251

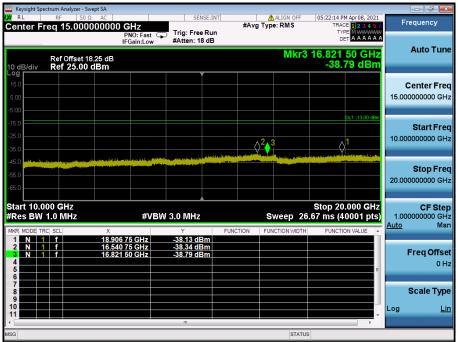


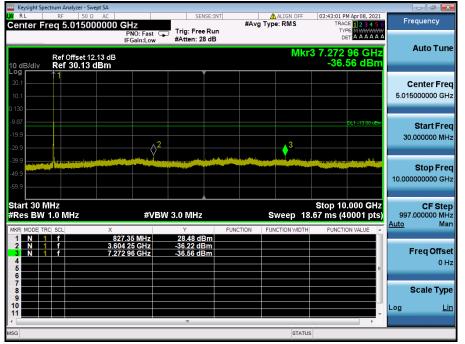




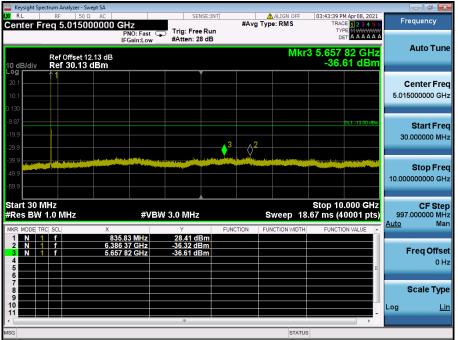

							<u>.</u>		0.10
	ectrum Analyz								- 6 🖻
RL	RF	50 Ω AC		SENSE		ALIGN OFF	04:44:51 PM Apr 08, 20		quency
enter F	reg 5.01	5000000	GHz			g Type: RMS	TRACE 1 2 3 4		quency
			PNO: Fast	Trig: Free R			TYPE M WAWAA DET A A A A		
			IFGain:Low	#Atten: 34 d	в				
						Mkr	3 5.891 36 GF		uto Tun
		et 12.13 dB					-31.39 dB		
0 dB/div .og r	Ref 36	13 dBm					-51.58 UD		
-		۲ħ		T T					
26.1								Ce	enter Fre
6.1								5 0150	00000 GI
								0.0100	
i.13									
3.87									
3.07							DL1 -13.00 d		Start Fre
13.9							021110304		00000 MI
23.9			×2		. 3				
					●ĭ				
33.9	The state of the state of the	States of the local division of the local di	Press Press	Contractory of the local division of the loc	Security of the second second		NAME OF TAXABLE PARTY OF TAXABLE PARTY.		
13.9	Surger and surgers	أشتقناها الاستحد		أتأث والكافع معتماعات وطنا			والمحدقي بمطاقاته والألا		Stop Fre
								10.0000	00000 GI
53.9									
tart 30 N	/Hz						Stop 10.000 GH	1z	CF Ste
	1.0 MHz		#VI	3W 3.0 MHz		Sweep 18	.67 ms (40001 pt	s) 997.0	00000 MI
								Auto	M
KR MODE TR		Х		Y	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	^	
1 N 1	f		10 09 GHz	32.60 dBm					
2 N 1	f	3.1	71 05 GHz	-31.18 dBm	1			Er	eq Offs
3 N 1	f	5.8	91 36 GHz	-31.39 dBm	1				
5								_	01
6								-	
7									
8								S	cale Ty
0									
9									
9								Log	L
9								- Log	L
				III			ŀ	Log	L

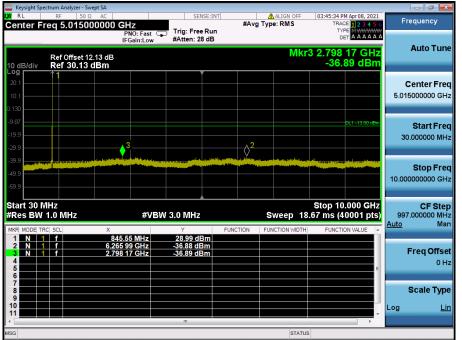


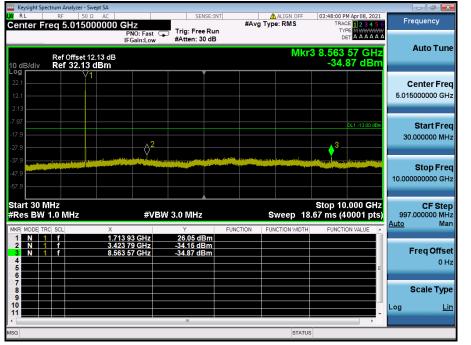


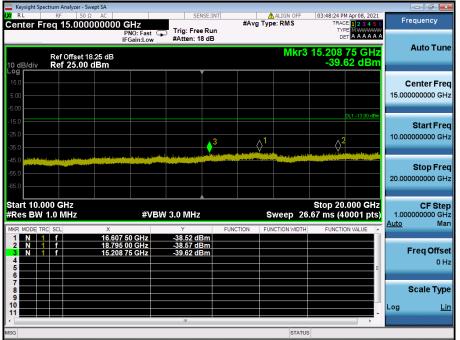


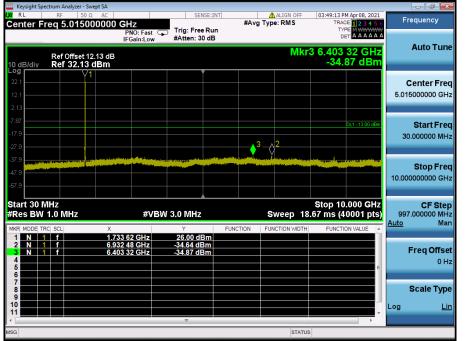
			LDOLIG	<u>, , , , , , , , , , , , , , , , , , , </u>	Onumer. 001
Keysight Spectrum Analyzer - Swept SA					
K RL RF 50Ω AC		SENSE:INT	🔥 ALIGN O		
Center Freq 5.015000000	PNO: Fast	Trig: Free Run #Atten: 34 dB	#Avg Type: RMS	TYPE MA	
Ref Offset 12.13 dB 10 dB/div Ref 36.13 dBm			N	1kr3 3.054 15 -30.87	
26.1 16.1 6.13					Center Freq 5.015000000 GHz
3.87 13.9 23.9	3,2			DL1 -1	3.00 dBm 30.000000 MHz
 33.9 43.9 53.9 					10.00000000 GHz
Start 30 MHz Res BW 1.0 MHz	#VBW 3			Stop 10.000 18.67 ms (4000	1 pts) 997.000000 MH
2 N 1 f 3.3	80 18 GHz 32 81 GHz 54 15 GHz	30.93 dBm -30.73 dBm -30.87 dBm			Freq Offse □ H
7 8 8 9 10					Scale Type
SG			ST	TATUS	

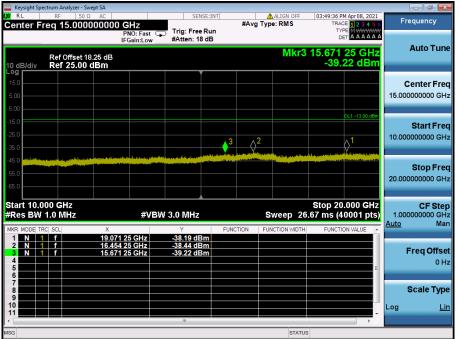


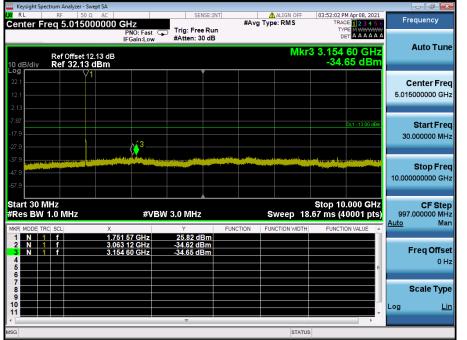


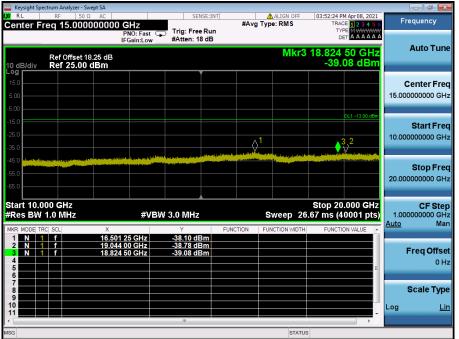

WCDMA850 & Channel: 4 132

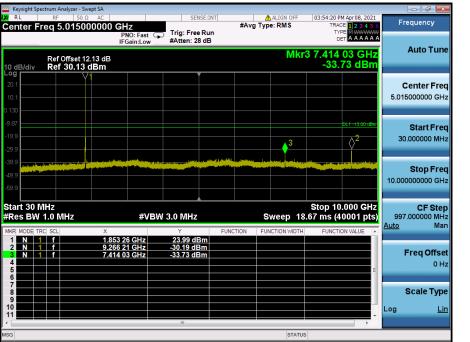

WCDMA850 & Channel: 4 183

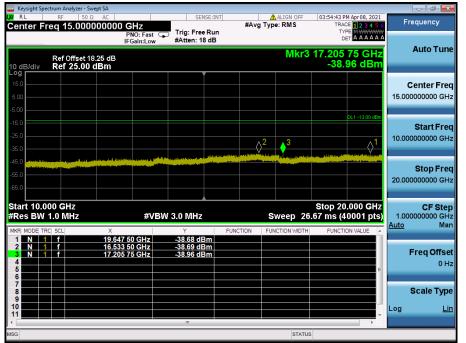


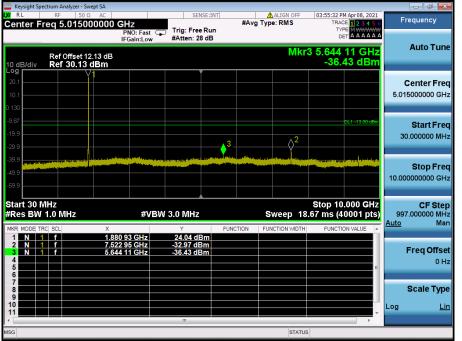


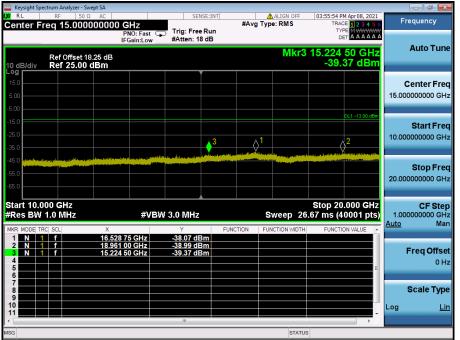

WCDMA850 & Channel: 4 233

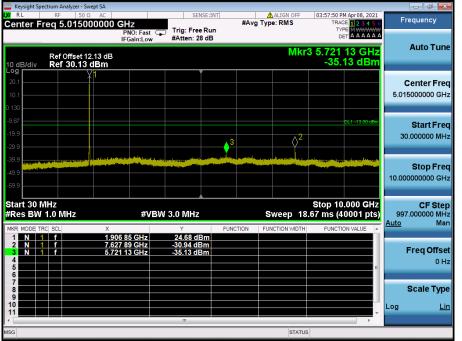


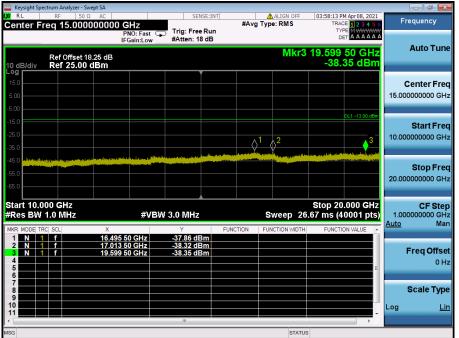


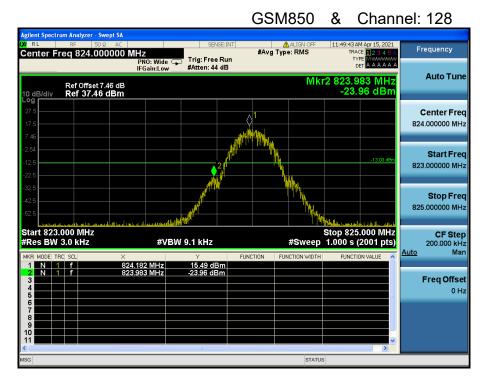


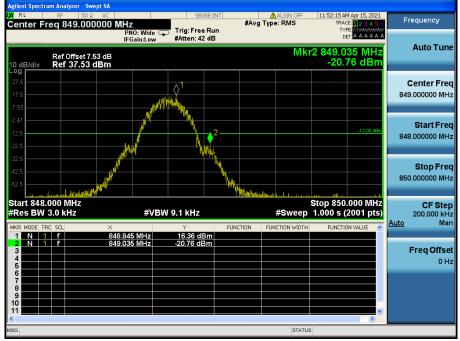




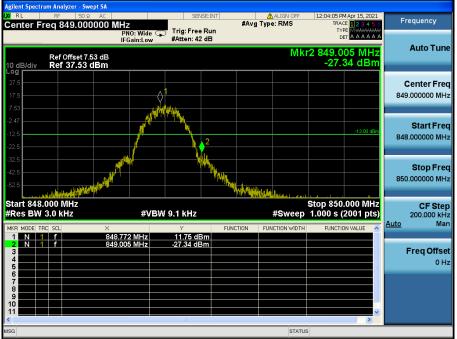


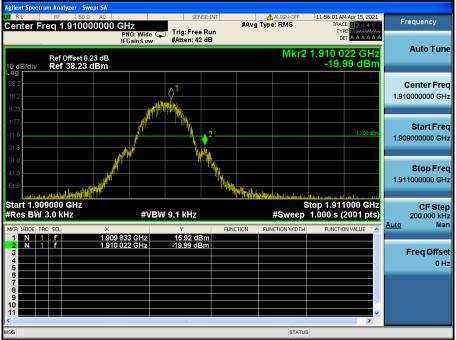




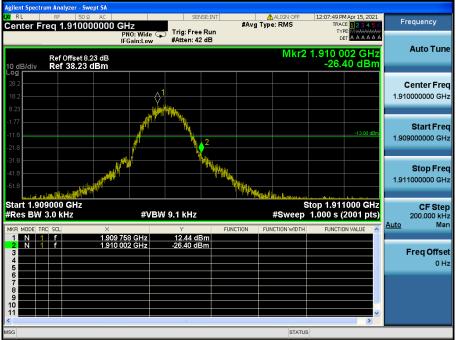


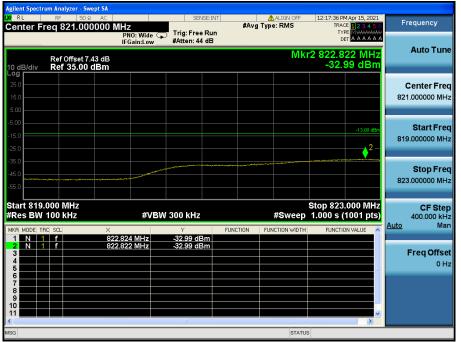
8.4 BAND EDGE EMISSIONS AT ANTENNA TERMINAL


GSM850 & Channel: 251




EDGE850 & Channel: 128

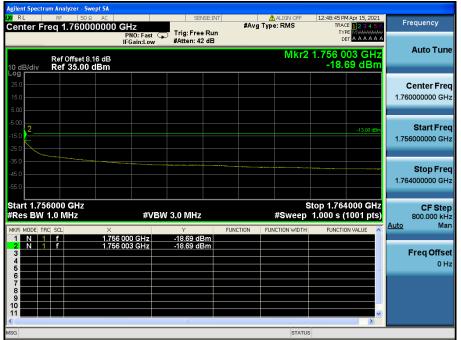

EDGE850 & Channel: 251

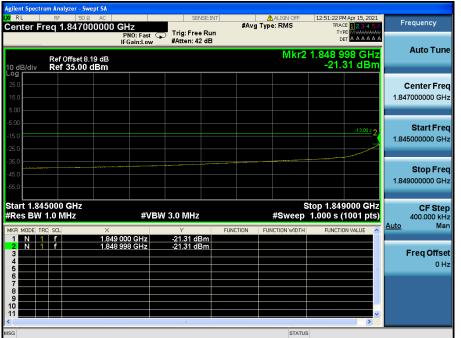


WCDMA850 & Channel: 4 132

WCDMA850 & Channel: 4 132

WCDMA850 & Channel: 4 233


WCDMA850 & Channel: 4 233



RL enter Fi	RF 50 Ω req 1.70500		PNO: Fast C	Trig: Free		#Avg	ALIGN OFF	TRA TY	M Apr 15, 2021 CE 1 2 3 4 5 6 PE MWWWWW ET A A A A A A		requency
0 dB/div	Ref Offset 8. Ref 35.00	15 dB	IFGain:Low	#Atten: 42	dB		Mkr2	1.708 9	96 GHz 42 dBm		Auto Tun
29 5.0 5.0											Center Fre 5000000 GH
.00 .00 5.0 5.0									-13.00 ° 2	1.70	Start Fre 1000000 G⊦
5.0 5.0 5.0										1.70	Stop Fre 9000000 G⊢
Res BW		×		W 3.0 MHz Y		NCTION		1.000 s (9000 GHz (1001 pts) ON VALUE	Auto	CF Ste 800.000 k⊢ Ma
1 N 1 2 N 1 3	f f	1.709 1.708 :	000 GHz 996 GHz	-17.42 dB -17.42 dB	m m 						Freq Offse 0 H
7 B											
3							STATUS	5			

