

MPE Calculation Method

$$E \text{ (V/m)} = (30 \cdot P \cdot G)^{0.5} / d$$

$$\text{Power Density: } P_d \text{ (W/m}^2\text{)} = E^2 / 377$$

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$P_d = (30 \cdot P \cdot G) / (377 \cdot d^2)$$

From the peak EUT RF output power, the minimum mobile separation distance, **d=0.5m**, as well as the gain of the used antenna, the RF power density can be obtained.

Calculated Result and Limit (WORSE CASE IS AS BELOW)

Directional Antenna Gain (Numeric)	Peak Output Power (W)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
31.623 (12+10log2=15dBi)	0.1243 (20.95dBm)	0.13	1	Compiles

Calculated Result and Limit (WORSE CASE IS AS BELOW)

Directional Antenna Gain (Numeric)	Peak Output Power (W)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
3.98 (3+10log2=6dBi)	0.84723 (29.28dBm)	0.11	1	Compiles