

Test Report 21-1-0037301T008a

Number of pages:	26	Date of Report:	2022-Dec-16		
Testing company:	CETECOM GmbH Im Teelbruch 116 45219 Essen Germany Tel. + 49 (0) 20 54 / 95 19-0	Applicant:	WITTE-Velbert GmbH & Co.KG		
	Fax: + 49 (0) 20 54 / 95 19-150				
Product:	BTLE enabled secure vehicle access b	OX			
Model:	flinkey BLE				
FCC ID:	FCC ID: V2TFB33	IC:	IC: 7575A-FB33		
	Contains FCC ID: SQGBL652		Contains IC: 3147A-BL652		
Testing has been	FCC Regulations				
carried out in	Title 47 CFR, Chapter I, Subchapter A, Pa	rt 15			
accordance with:					
	§ 15.207 Conducted limits				
	§ 15.225 Radiated emission limits				
	ISED-Regulations				
	RSS-Gen, Issue 5 + Amendment 2				
	General Requirements for Compliance of Radio Apparatus				
	RSS-210, Issue 10, Annex B.6				
Tested Technology:	NFC 13.56MHz				
Test Results:	☑ The EUT complies with the requirements in respect of all parameters subject to the test.				
	The test results relate only to devices	-			

Signatures:

Nr Pu

Dipl.-Ing. Ninovic Perez Test Lab Manager Authorization of test report

our

Dipl.-Ing. Christian Lorenz Senior Test Manager Responsible of test report

Test Report 21-1-0037301T008a

Table of Contents

Ta	ble o	f Annex	3
1	G	General information	4
	1.1	Disclaimer and Notes	4
	1.2	Attestation	4
	1.3	Summary of Test Results	5
	1.4	Summary of Test Methods	5
2	А	Administrative Data	6
	2.1	Identification of the Testing Laboratory	6
	2.2	General limits for environmental conditions	6
	2.3	Test Laboratories sub-contracted	6
	2.4	Organizational Items	6
	2.5	Applicant's details	6
	2.6	Manufacturer's details	6
	2.7	Equipment under Test (EUT)	7
	2.8	Untested Variant (VAR)	7
	2.9	Auxiliary Equipment (AE)	7
	2.10	Connected cables (CAB)	7
	2.11	Software (SW)	7
	2.12	2 EUT set-ups	8
	2.13	3 EUT operation modes	8
3	E	quipment under test (EUT)	9
	3.1	General Data of Main EUT as Declared by Applicant	9
	3.2	Modifications on Test sample	9
4	Ν	Aeasurements	10
	4.1	Duty-Cycle	10
	4.2	Occupied Channel Bandwidth 99%	11
	4.3	Radiated field strength emissions below 30 MHz	12
	4.4	Radiated field strength emissions 30 MHz – 1 GHz	16
	4.5	AC-Power Lines Conducted Emissions	18
	4.6	Frequency stability	20
	4.7	Equipment lists	23
5	R	Results from external laboratory	24
6	C	Dpinions and interpretations	24
7	L	ist of abbreviations	24
8	Ν	Aeasurement Uncertainty valid for conducted/radiated measurements	25
9	٧	/ersions of test reports (change history)	26

Table of Annex			
Annex No.	Annex No. Contents Reference Description		Total Pages
Annex 1	Test result diagrams	CETECOM_TR21-1-0037301T008a_A1	14
Annex 2	Internal photographs of EUT	CETECOM_TR21-1-0037301T008a_A2	2
Annex 3	External photographs of EUT	CETECOM_TR21-1-0037301T008a_A3	6
Annex 4	Test set-up photographs	CETECOM_TR21-1-0037301T008a_A4	3
The listed attachments are separate documents.			

1 General information

1.1 Disclaimer and Notes

The test results of this test report relate exclusively to the test item specified in this test report as specified in chapter 2.7. CETECOM does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM.

The testing service provided by CETECOM has been rendered under the current "General Terms and Conditions for CETECOM". CETECOM will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM test report include or imply any product or service warranties from CETECOM, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM.

All rights and remedies regarding vendor's products and services for which CETECOM has prepared this test report shall be provided by the party offering such products or services and not by CETECOM.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

The test report must always be reproduced in full; reproduction of an excerpt only is subject to written approval of the testing laboratory. The documentation of the testing performed on the tested devices is archived for 10 years at CETECOM.

Also we refer on special conditions which the applicant should fulfill according §2.927 to §2.948, special focus regarding modification of the equipment and availability of sample equipment for market surveillance tests.

1.2 Attestation

I declare that all measurements were performed by me or under my supervision and that all measurements have been performed and are correct to my best knowledge and belief to Industry Canada standards. All of the above requirements are met in accordance with enumerated standards.

1.3 Summary of Test Results

The EUT integrates RFID technology. Other implemented wireless technologies were not considered within this test report.

Test case	Reference	Reference	Page	Remark	Result
	Clause FCC 🛛	Clause ISED 🛛			
Radiated field strength emissions and emission	§15.225(a)(b)(c)	RSS-210, Issue 10,	12		PASSED
mask	(d)	Annex B.6 (a)			
Radiated field strength emissions below 30	§15.209(a)	RSS-Gen: Issue 5	12		PASSED
MHz		§8.9 Table 6			
Radiated field strength emissions 30 MHz – 1	§15.209(a)	RSS-Gen: Issue 5	16		PASSED
GHz		§8.9 Table 5			
Occupied Channel Bandwidth 99%	§2.202(a)	RSS-Gen, Issue 5,	18		PASSED
	§2.1049(h)	§6.6			
Frequency stability	§2.1055	RSS-210, Issue 10,	20		PASSED
	§15.225(e)	Annex B.6 (b)			
AC-Power Lines Conducted Emissions	§15.207	RSS-Gen Issue 5:	18		PASSED
		§8.8, Table 4			

PASSED	The EUT complies with the essential requirements in the standard.
FAILED	The EUT does not comply with the essential requirements in the standard.
N/A	Test case does not apply to the test object.
NP	The test was not performed by the CETECOM Laboratory.

Decision Rule: CETECOM GmbH follows ILAC G8:2019 chapter 4.2.1 (Simple Acceptance Rule).

1.4 Summary of Test Methods

Test case	Test method
Occupied Channel Bandwidth 99%	ANSI C63.10:2013, §6.9
Radiated field strength emissions below 30 MHz	ANSI C63.10-2013 §6.3, §6.4
Radiated field strength emissions 30 MHz- 1 GHz	ANSI C63.4-2014 §8.2.3, ANSI C63.10-2013 §6.3, § 6.5
Frequency stability tests	ANSI C63.10-2013; §6.8
AC-Power Lines Conducted Emissions	ANSI C63.4-2014 §7, ANSI C63.10-2013 § 6.2

2 Administrative Data

2.1 Identification of the Testing Laboratory

Company name:	CETECOM GmbH
Address:	Im Teelbruch 116
	45219 Essen - Kettwig
	Germany
Responsible for testing laboratory:	DiplIng. Ninovic Perez
Accreditation scope:	DAkkS Webpage: <u>FCC ISED</u>
IC Lab company No. / CAB ID:	3462D / DE0005
Test location:	CETECOM GmbH; Im Teelbruch 116; 45219 Essen - Kettwig

2.2 General limits for environmental conditions

Temperature:	22±2 °C
Relative. humidity:	45±15% rH

2.3 Test Laboratories sub-contracted

Company name:

2.4 Organizational Items

Responsible test manager:	DiplIng. Christian Lorenz
Receipt of EUT:	2022-Aug-16
Date(s) of test:	2022-Aug-22 to 2022-Dez-07
Version of template:	22.0901

2.5 Applicant's details

Applicant's name:	WITTE-Velbert GmbH & Co.KG
Address:	Höferstr. 3 - 15 42551 Velbert
	Germany
Contact Person: Contact Person's Email:	Christian Goldschmidt christian.goldschmidt@witte.digital

2.6 Manufacturer's details

Manufacturer's name:	WITTE-Velbert GmbH & Co.KG	
Address:	Höferstr. 3 - 15	
	42551 Velbert	
	Germany	

EUT	Sample No.	Product	Model	Туре	SN	HW	SW
No.*)							
EUT 1	21-1-00373S20_C01	BTLE enabled	flinkey Box	n/a	#DR0080	3.3	EMCTest
		secure vehicle					
		access box					
EUT 2	21-1-00373S30_C01	BTLE enabled	flinkey Box	n/a	#DR0083	3.3	EMCTest
		secure vehicle					
		access box					
EUT 3	21-1-00373S29_C01	BTLE enabled	flinkey Box	n/a	#DR0081	3.3	EMCTest
		secure vehicle				(no NFC	
		access box				antenna)	

2.7 Equipment under Test (EUT)

*) EUT short description is used to simplify the identification of the EUT in this test report.

2.8 Untested Variant (VAR)

VAR	Sample No.	Product	Model	Туре	SN	нพ	SW
No.*)							

*) The listed additional untested model variant(s) (VAR) is/are not object of evaluation of compliance. For further information please see Annex 5: Declaration of applicant of model differences.

If the table above does not show any other line than the headline, no untested variants are available.

2.9 Auxiliary Equipment (AE)

AE	Sample No.	Auxiliary	Model	SN	HW	SW
No.*)		Equipment				
AE 1	21-1-00373S18_C01	AC/DC Adapter	Q5004-EU	DR055	N/A	N/A
AE 2	21-1-00373S32_C01	NFC control cards	START	#1		
			NFC PRBS Mode	#2		
			NFC Mode CWF	#3		
			ACTUATOR DEMO DISABLE	#4		

*) AE short description is used to simplify the identification of the auxiliary equipment in this test report. If the table above does not show any other line than the headline, no AE was used during testing nor was taken into account for evaluation

2.10 Connected cables (CAB)

CAB No.*)	Sample No.	Cable Type	Connectors / Details	Length
CAB 1	21-1-00373S17_C01	Cable	USB-C	120 cm

*) CAB short description is used to simplify the identification of the connected cables in this test report. If the table above does not show any other line than the headline, no cable was used during testing nor was taken into account for evaluation

2.11 Software (SW)

SW	Sample No.	SW Name	Description	SW Status
No.*)				
*				

*) SW short description is used to simplify the identification of the used software in this test report. If the table above does not show any other line than the headline, no SW was used during testing nor was taken into account for evaluation.

2.12 EUT set-ups

set-up no.*)	Combination of EUT and AE	Description
1	EUT 1 + AE1 + CAB1 (+ AE2)	Used for Radiated measurements
2	EUT 2 (+ AE2)	Used for climatic chamber measurements
2	EUT 3 + AE1 + CAB1	Used for conducted EMI-measurements on modified
5	LOT 5 + ALI + CABI	sample without NFC antenna

*) EUT set-up no. is used to simplify the identification of the EUT set-up in this test report.

2.13 EUT operation modes

EUT operating mode no.*)	Operating modes	Additional information
1	TX continuous, modulated	PRBS data scheme, 100% duty-cycle
2	TX continuous, un-modulated	100% duty-cycle with AE2-card: NFC Mode CWF

*) EUT operating mode no. is used to simplify the test report.

3 Equipment under test (EUT)

3.1 General Data of Main EUT as Declared by Applicant

Firmware	\Box for normal use \boxtimes Special version for test execution		cution	
Power supply	AC Mains	-		
	DC Mains	V DC via Connector		
	🛛 Battery Li-lo	-		
Operational conditions	T _{nom} =21 °C	T _{min} =-40 °C	T _{max} =80 °C	
EUT sample type	Pre-Production			
Weight	0.700 kg			
Size [LxWxH]	16.5 cm x 14.0 cm x 6.5 cm	1		
Interfaces/Ports	microUSB power port			
For further details refer Applicants Declaration & following technical documents:				
D102.0_P.04499_D3.3 Technical Data Shee	t			

3.2 Modifications on Test sample

Additions/deviations or exclusions	On EUT 3, replacement of NFC antenna with resistor for EMI-measurements on
	AC-mains due direct field coupling into AC lines on normal sample and
	connected accessories.

4 Measurements

4.1 Duty-Cycle

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

The necessary duty-cycle correction factor is determined on nominal conditions on middle channel only. It is assumed that no noticeable changes occur when tested on other channels or climatic conditions.

EUT settings

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

A special firmware program is used for test purposes. In opposite to normal operating mode a higher duty-cycle is set in order to facilitate the measurements. This is maximized at the extent possible.

The necessary duty-cycle correction factor is determined on nominal conditions on one channel in each operable frequency-band. It is assumed that no noticeable changes occur when tested on other channels or climatic conditions. The Duty-Cycle was constant, means without variations.

Formula to calculate Duty-Cycle:

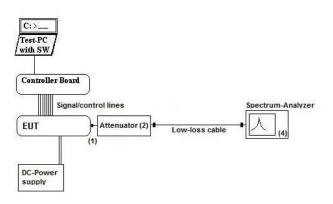
Duty cycle calculations:	Dutu suela fastara DC	Regarding power: $10*log(1/\chi)$ dB
$x = \frac{TX_{ON}}{(TX_{ON} + TX_{OFF})}$	Duty cycle factor: DC=	Regarding field strength: $20*logig(1/_{\chi}ig)$ dB

 \Box The results were corrected in order to evaluate for worst-case result each time when average values are necessary for example average radiated emissions or similar

 \boxtimes No correction necessary: Duty-Cycle > 98%

4.1.1 Result

Duty-Cycle [%]	Duty-Cycle correction Power [dB]	Duty-Cycle correction Field Strength [dB]
100	0	0



4.2 Occupied Channel Bandwidth 99%

4.2.1 Description of the general test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings of the spectrum-analyzer.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Measurement is made using Rohde & Schwarz TS8997 test system.

4.2.2 Measurement Location

 Test site
 120911 - Radio Laboratory 2

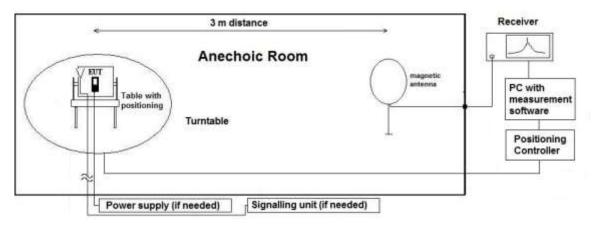
4.2.3 Limit

When the occupied bandwidth limit is not stated in the applicable reference measurement method, the transmitted signal bandwidth shall be reported as the 99% emission bandwidth, as calculated or measured.

4.2.4 Result

Mode	Channel	Frequency [MHz]	99% Occupied bandwidth [MHz]	
1 - TX	Nominal	13.5599 (nominal conditions)	1.0677	
Permarky for more information and graphical plot see appear A1 CETECOM TP31 1 002720170092 A1				

Remark: for more information and graphical plot see annex A1 CETECOM_TR21-1-0037301T008a_A1


4.3 Radiated field strength emissions below 30 MHz

4.3.1 Description of the general test setup and methodology, see below example:

Evaluating the radiated field emissions are done first by an exploratory emission measurement and a final measurement for most critical frequencies determined.

The loop antenna was placed at 1 m height above ground plane and 3 m measurement distance from set-up for investigations. Because of reduced measurement distance, correction data were applied, as stated in chapter "General Limit - Radiated field strength emissions below 30 MHz". The tests are performed in the semi anechoic room recognized by the regulatory commission.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (step 90°, range 0°to 360°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT), the emission spectrum was recorded.

The loop antenna was moved at least to 2-perpendicular axes (antenna vector in direction of EUT and parallel to EUT) in order to maximize the emissions. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a data reduction table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worstcase operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position).

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

$E_{C} = E_{R} + AF + C_{L} + D_{F} - G_{A}$	AF = Antenna factor
	C_L = Cable loss
$M = L_{T} - E_{C}$	D _F = Distance correction factor (if used)
	E _c = Electrical field – corrected value
	E_R = Receiver reading
	G _A = Gain of pre-amplifier (if used)
	$L_T = Limit$
	M = Margin

All units are dB-units, positive margin means value is below limit.

4.3.2 Sample calculation

Raw-Value [dBuV/m]	Antenna factor	Distance Correction [dB]	Cable Loss	Preamplifier	Resulting correction value [dB]	Final result [dBuV/m]	Remarks
19.83	18.9	-70.75	0.18		-51.67	-31.83	30 to 3 m correction used according ANSI C63.10-2013

Remark: This calculation is based on an example value at 458 kHz

4.3.3 Measurement Location

Test site

120901 - SAC - Radiated Emission <1GHz

4.3.4 Correction factors due to reduced meas. distance (f < 30 MHz):

The used correction factors when the measurement distance is reduced compared to regulatory measurement distance, are calculated according Extrapolation formulas valid for EUT's with maximum dimension of 0.625xLambda. Formula 2+3+4 as presented in ANSI C63.10, Chapter 6.4.4 are used for the calculations of proper extrapolation factors

Frequency	f	Lambda	Far-Field	Distance Limit	1st	2nd Condition	Distance
Range	[kHz/MHz]	[m]	Point	accord. 15.209	Condition	(Limit distance	Correction
			[m]	[m]	(dmeas <	bigger dnear-	accord.
			[]	[]	Dnear-field)	field)	Formula
	0	22222.22	F20F 47				
	9	33333.33	5305.17		fullfilled	not fullfilled	-80.00
	10	30000.00	4774.65		fullfilled	not fullfilled	-80.00
	20	15000.00	2387.33	-	fullfilled	not fullfilled	-80.00
	30	10000.00	1591.55		fullfilled	not fullfilled	-80.00
	40	7500.00	1193.66	-	fullfilled	not fullfilled	-80.00
	50 60	6000.00	954.93		fullfilled	not fullfilled	-80.00
	70	5000.00	795.78		fullfilled fullfilled	not fullfilled	-80.00
	80	4285.71	682.09	300	fullfilled	not fullfilled	-80.00
		3750.00	596.83			not fullfilled	-80.00
kHz	90 100	3333.33 3000.00	530.52 477.47		fullfilled fullfilled	not fullfilled not fullfilled	-80.00 -80.00
KI12	100 125	2400.00	381.97		fullfilled	not fullfilled	-80.00
	200		238.73		fullfilled		
	300	1500.00 1000.00	159.16	-	fullfilled	fullfilled fullfilled	-78.02 -74.49
	400	750.00	119.37		fullfilled	fullfilled	-72.00
-	400 490	612.24	97.44		fullfilled	fullfilled	-70.23
	500	600.00	95.49		fullfilled	not fullfilled	-40.00
	600	500.00	79.58		fullfilled	not fullfilled	-40.00
	700	428.57	68.21	_	fullfilled	not fullfilled	-40.00
	800	375.00	59.68		fullfilled	not fullfilled	-40.00
	900	333.33	53.05	05	fullfilled	not fullfilled	-40.00
	1.00	300.00	47.75		fullfilled	not fullfilled	-40.00
	1.59	188.50	30.00		fullfilled	not fullfilled	-40.00
	2.00	150.00	23.87	-	fullfilled	fullfilled	-38.02
	3.00	100.00	15.92		fullfilled	fullfilled	-34.49
	4.00	75.00	11.94		fullfilled	fullfilled	-32.00
	5.00	60.00	9.55		fullfilled	fullfilled	-30.06
	6.00	50.00	7.96		fullfilled	fullfilled	-28.47
	7.00	42.86	6.82		fullfilled	fullfilled	-27.13
	8.00	37.50	5.97		fullfilled	fullfilled	-25.97
	9.00	33.33	5.31		fullfilled	fullfilled	-24.95
	10.00	30.00	4.77	30	fullfilled	fullfilled	-24.04
	10.60	28.30	4.50		fullfilled	fullfilled	-23.53
N411-	11.00	27.27	4.34		fullfilled	fullfilled	-23.21
MHz	12.00	25.00	3.98		fullfilled	fullfilled	-22.45
	13.56	22.12	3.52		fullfilled	fullfilled	-21.39
	15.00	20.00	3.18		fullfilled	fullfilled	-20.51
	15.92	18.85	3.00		fullfilled	fullfilled	-20.00
	17.00	17.65	2.81		not fullfilled	fullfilled	-20.00
	18.00	16.67	2.65		not fullfilled	fullfilled	-20.00
	20.00	15.00	2.39		not fullfilled	fullfilled	-20.00
	21.00	14.29	2.27		not fullfilled	fullfilled	-20.00
	23.00	13.04	2.08		not fullfilled	fullfilled	-20.00
	25.00	12.00	1.91		not fullfilled	fullfilled	-20.00
	27.00	11.11	1.77		not fullfilled	fullfilled	-20.00
	29.00	10.34	1.65		not fullfilled	fullfilled	-20.00
	30.00	10.00	1.59		not fullfilled	fullfilled	-20.00

4.3.5 Limit

Radiated emissions limits, (3 meters)						
Frequency Range [MHz]	Limit [µV/m]	Limit [dBµV/m] *	Distance [m]	Detector	RBW [kHz]	
0.009 - 0.09	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	0.2	
0.09 - 0.11	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Quasi peak	0.2	
0.11 – 0.15	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	0.2	
0.15 – 0.49	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	9	
0.49 – 1.705	24000 / f	87.6 – 20Log(f) (kHz)	30	Quasi peak	9	
	[kHz]					
1.705 - 30	30	29.5	30	Quasi peak	9	

*Remark: In Canada same limits apply, just unit reference is different

4.3.6 Result spectrum-mask

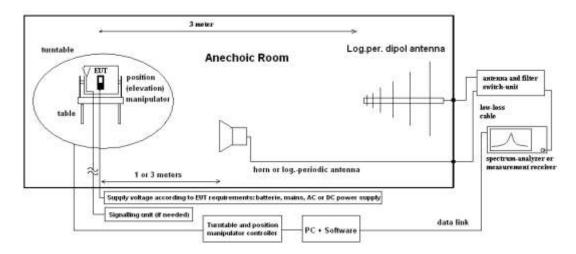
Diagram	Channel	Mode	Maximum Level [dBµV/m] Frequency Range 0.009 – 30 MHz	Result
2.02a	nominal	1 / EUT laying	24.06	Passed
2.02b	nominal	1 / EUT standing	33.41	Passed

Remark: for more information and graphical plot see annex A1 CETECOM_TR21-1-0037301T008a_A1

4.3.7 Result radiated spurious emissions

Diagram	Channel	Mode	Maximum Level [dBµV/m] Frequency Range 0.009 – 30 MHz	Result
2.03	nominal	1 / EUT standing	≤20.0 (Noise level) Carrier visible on diagram, not used for verdict	Passed

Remark: for more information and graphical plot see annex A1 CETECOM_TR21-1-0037301T008a_A1



4.4 Radiated field strength emissions 30 MHz – 1 GHz

4.4.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 16-1-4:2010 compliant semi anechoic room (SAR) and fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 90°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

Measurement antenna: horizontal and vertical, heights: 1,0 m and 1,82 m as worst-case determined by an exploratory emission measurements. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by main-taining the EUT's worst-case operation mode, cable position, etc. either on 10m OATS or 3m semi-anechoic room.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position). The measurement antenna height between 1 m and 4 m.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out

Formula:

$E_{C} = E_{R} + AF + C_{L} + D_{F} - C_{L} +$	G _A (1)	AF = Antenna factor
		C _L = Cable loss
$M = L_T - E_C $ (2)	2)	D _F = Distance correction factor (if used)
		E _c = Electrical field – corrected value
		E _R = Receiver reading
		G _A = Gain of pre-amplifier (if used)
		L _T = Limit
		M = Margin

All units are dB-units, positive margin means value is below limit.

4.4.2 Sample calculation

Raw- Value [dBuV/m]	Antenna factor	Distance Correction [dB]	Cable Loss	Preamplifier	Resulting correction value [dB]	Final result [dBuV/m]	Remarks
32.7	22.25		3.1		25.35	58.05	

Remark: This calculation is based on an example value at 800.4 MHz

4.4.3 Measurement Location

Test site 120901 Radiated emissions 30MHz < f < 1GHz
--

4.4.4 Limit

Radiated emissions limits, (3 meters)					
Frequency Range [MHz]	Limit [µV/m]	Limit [dBµV/m]	Detector	RBW / VBW [kHz]	
30 - 88	100	40.0	Quasi peak	100 / 300	
88 - 216	150	43.5	Quasi peak	100 / 300	
216 - 960	200	46.0	Quasi peak	100 / 300	
960 - 1000	500	54.0	Quasi peak	100 / 300	

4.4.5 Result

Diagram	Channel	Mode	Maximum Level [dBµV/m] Frequency Range 30 – 1000 MHz	Result
3.01a	Nominal	1 / EUT standing	42.06	Passed
3.01b	Nominal	1 / EUT laying	35.79	Passed

Remark: for more information and graphical plot see annex A1 CETECOM_TR21-1-0037301T008a_A1

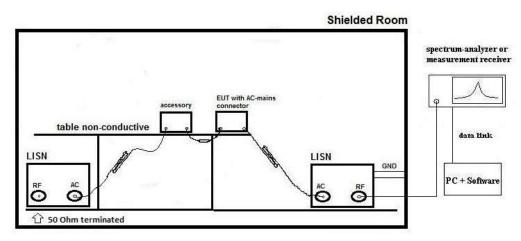
4.5 AC-Power Lines Conducted Emissions

4.5.1 Description of the general test setup and methodology, see below example:

The radio frequency voltage conducted back into the AC power line in the frequency range 150 kHz to 30 MHz has to be investigated.

Compliance should be tested by measuring the radio frequency voltage between each power line and ground at the power terminals in the stated frequency range.

A 50 Ohm / 50 μ H line impedance stabilization network (LISN) is used coupling the interface to the measurement equipment.


The EUT power input leads are connected through the LISN to the AC-power source. The LISN enclosure is electrically connected to the ground plane. The measuring instrument is connected to the coaxial output of the LISN.

Tabletop devices were set-up on an 80 cm height above reference ground plane, floor standing equipment 10 cm raised above ground plane.

Measurements have been performed on each phase line and neutral line of the devices AC-power lines. The EUT was power supplied with 120 V/60 Hz. The EUT was tested in the defined operating mode

and installed (connected) to accessory equipment according the general description of use given by the applicant.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Exploratory, preliminary measurements

As a first step, determines the worst-case phase line (neutral or phase) as well as the most critical operating mode of the equipment. A complete frequency-sweep with PK-Detector is performed on each current-carrying conductor.

Final measurement on critical frequencies

For power phases and critical frequencies (Margin to AV- or QP limit lower than 3 dB) as a second step includes measurements with receivers detector set to Quasi-Peak and Average.

Formula:

$V_{C} = V_{R} + C_{L} (1)$	V _c = measured Voltage –corrected value
$M = L_{T} - V_{C} \qquad (2)$	V _R = Receiver reading
	C _L = Cable loss
	M = Margin
	L _T = Limit

All units are dB-units, positive margin means value is below limit.

4.5.2 Measurement Location

T	225024
l'est site	225924

4.5.3 Limit

Frequency Range [MHz]	QUASI-Peak [dBµV]	AVERAGE [dBµV]
0.15 - 0.5	66 to 56*	56 to 46*
0.5 – 5	56	46
5 – 30	60	50

4.5.4 Result

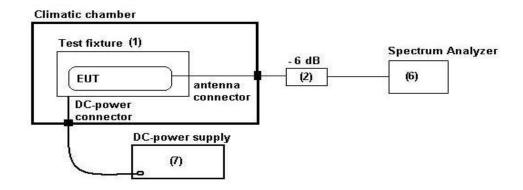
Diagram	Mode	Power Line	Max [dBµV]	Detector	Result
1.01	1/TX	L1/N	43.84	AV	Further investigation necessary due NFC carrier on diagram
1.02	1 /TX. Remark2	L1/N	34.50	QP	Passed

Remarks:

- 1.) see more in diagrams in separate document CETECOM_TR21-1-0037301T008a_A1
- 2.) EUT NFC antenna was substituted by resistor in order to check for coupling of 13.56MHz and first harmonic into ACmain power line. With NFC antenna substituted, the direct RF-coupling into AC-mains cable on 13.56MHz and harmonic could be avoided.

4.6 Frequency stability

4.6.1 Description of the general test setup and methodology, see below example:


A sniffer antenna acts like a coupling antenna for measuring the fundamental frequency. This is placed at about 20cm away from the equipment. Also connecting cables at the equipment are avoided on the extent possible in order not to degrade the resonance frequency of the equipment and integral antenna.

If the equipment is capable of producing an un-modulated carrier then a trace with max-hold function was recorded. The maximum peak within the span was found, then the frequency deviation was recorded with the build-in frequency counter within the spectrum-analyze. The maximum resolution was chosen on the settings.

The frequency deviation was recorded at switching on point of the equipment and on 2 minutes, 5 minutes and 10 minutes after at in accordance with ANSI 63.10: 2013, Chapter 6.8

All measurements data are enclosed in annex measurements. Here only maximum frequency error is reported.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page **Fehler! Textmarke nicht definiert.**)

4.6.2 Measurement Location

Test site	227951	

4.6.3 Limit

Frequency Range	ency Range Frequency tolerance			Remarks
[MHz]	%	[ppm]	[Hz]	
13.553 – 13.567	±0.01	±100	±1355.99161	For voltage variation
13.553 – 13.567	±0.01	±100	±1355.99161	For temperature variation

Remark: for more information and graphical plot see annex A1 CETECOM_TR21-1-0037301T008a_A1

4.6.4 Results

4.6.4.1 Results for voltage variation

Set-up: 2 Op.Mode: 2

FreqError §15.225

DC power supply								
	Nominal condition							
Vnom = 5.0 V	13.55991610	MHz	Limit-> 100ppm:	1355.99161	Hz			
(full battery) Tnom = 21°C			f _{MIN} :	13.55856011	MHz			
			f _{MAX} :	13.56127209	MHz			

	Extreme conditions								
	Voltage Frequency measured Values for Frequency Error								
	[V]		[MHz]		[%]	[ppm]			
	5 50								
V _{MAX}	5.50	13.5599139		-2	0.000016	0.16			
	5.40	13.5599142		-2	0.000014	0.14			
	5.30	13.5599143		-2	0.000013	0.13			
	5.20	13.5599145		-2	0.000012	0.12			
	5.10	13.5599147		-1	0.000010	0.10			
	5.00	13.5599161							
	4.90	13.5599138		-2	0.000017	0.17			
	4.80	13.5599136		-3	0.000018	0.18			
	4.70	13.5599135		-3	0.000019	0.19			
	4.60	13.5599134		-3	0.000020	0.20			
	4.50	13.5599133		-3	0.000021	0.21			
	4.40	13.5599132		-3	0.000021	0.21			
V _{MIN}	4.30	13.5599131		-3	0.000022	0.22			

Remark: for more information and graphical plot see annex A1 CETECOM_TR21-1-0037301T008a_A1

Verdict: PASSED

4.6.4.2 **Results for temperature variation**

Set-up: 2

Op.Mode: 2

FregError §15.225

Nominal conditions Vnom = 5.0V (DC)Supply) Tnom = 21°C

Measured Reference frequency [MHz]

Extreme co Abs. Absolute Values for Frequency Error Measurement period Frequency Verdict Temperature Maximum Maximum after power-up the EUT measured Value value [Hz] [%] [ppm] on StartUp 13.5598895 -26,6000000 -0.000196 -1.96 2 Minutes 13.5598949 -21.2000000 -0.000156 -1.56 Tmax=80°C 1.96 5 Minutes 10 Minutes 13 5598997 -16 4000000 -0 000121 -1 21 -0.69 13.5599067 -9.4000000 0.000069 on StartUp 13.5598467 -69.4000000 -0.000512 -5.12 2 Minutes 5 Minutes 13.5598494 -66.7000000 -0.000492 -4.92 Tmax=70°C 5.12 13.5598515 -64.6000000 -0.000476 -4.76 10 Minutes 13.5598545 -61.6000000 -0.000454 -4.54 on StartUp 13.5598332 -82.9000000 -0.000611 -6.11 2 Minutes 13.5598330 -83,1000000 -0.000613 -6.13 Tmax=60°C 6.13 13.5598330 5 Minutes -83.1000000 -0.000613 -6.13 10 Minutes 13.5598332 -82.9000000 -0.000611 -6.11 on StartUp 13.5598441 -72.0000000 -0.000531 -5.31 13.5598426 2 Minutes -73.5000000 -0.000542 -5.42 Tmax=50°C 5.62 5 Minutes 13.5598414 -74.7000000 -0.000551 -5.51 10 Minutes 13.5598399 -76.2000000 -0.000562 -5.62 on StartUp 13.5598673 -48.8000000 -0.000360 -3.60 2 Minutes 13.5598649 -51.2000000 -0.000378 -3.78 T=40°C 4.09 5 Minutes 13.5598633 -52.8000000 -0.000389 -3.89 10 Minutes 13.5598607 -55.4000000 -0.000409 4.09 on StartUp 13.5598957 -20.4000000 -0.000150 -1.50 2 Minutes 5 Minutes 13 5598828 -33.3000000 -0.000246 -2.46 T=30°C 2.46 -0.000186 -1.86 13.5598909 -25.2000000 10 Minute 13.5598883 27.800000 0.000205 -2.05 14.34 Passed on StartUp 13.5598800 -36.1000000 -0.000266 -2.66 2 Minutes 5 Minutes -2.48 -2.14 13.5598825 -33.6000000 -0.000248 T=10°C 2.66 13.5598871 -29.0000000 -0.000214 10 Minutes 13 5598943 -21.8000000 -0.000161 -1 61 StartUp 13.5599455 0.000217 2.17 29.4000000 2 Minutes 13.5599453 29.2000000 0.000215 2.15 T=0°C 2.17 2.15 5 Minutes 13.5599453 29.2000000 0.000215 10 Minutes 13.5599452 29.100000 0.000215 2.15 StartUp 13.5599392 23.1000000 0.000170 1.70 2 Minutes 13.5599399 23.8000000 0.000176 1.76 T=-10°C 1.80 5 Minutes 13.5599402 24.1000000 0.000178 1.78 10 Minutes 13.5599405 24.4000000 0 000180 1 80 StartUp 13.5598895 -26.6000000 -0.000196 -1.96 2 Minutes 13.5598930 -23.1000000 -0.000170 -1.70 T=-20°C 1.96 5 Minutes -21.0000000 -0.000155 13.5598951 -1.55 10 Minutes 13.5598976 -18.5000000 -0.000136 -1.36 StartUp 13.5598263 -89.800000 -0.000662 -6.62 2 Minutes 13.5598308 -85.3000000 -0.000629 -6.29 T=-30°C 6.62 5 Minutes 13.5598332 -82.9000000 -0.000611 -6.11 10 Minutes 13.5598359 -80.2000000 -0.000591 -5.91 StartUp 13.5597217 194,400000 -0.001434 -14.34 2 Minutes 13.5597278 -188.3000000 -0.001389 -13.89 T=-40°C 14.34 5 Minutes 13.5597313 184.8000000 -0.001363 -13.63 10 Minutes

13.5599161 Limit-> 100 ppm: 1355.99161

Hz

Remark: for more information and graphical plot see annex A1CETECOM_TR21-1-0037301T008a_A1

180.400000

-0.001330

-13.30

13.5597357

Verdict: PASSED

CETECOM_TR21-1-0037301T008a

4.7 Equipment lists

ID	Description	Manufacturer	SerNo	CheckType	Last Check	Interval	Next Check
	120901 - SAC - Radiated Emission <1GHz			calchk	cal: 2015-Jul-21	cal: 10Y	cal: 2025-Jul-21
					chk: 2021-Jul-27	chk: 12M	chk: 2022-Jul-27
20341	Digital Multimeter Fluke 112	Fluke Deutschland GmbH / Glottertal	81650455	cal	cal: 2022-May-18	cal: 24M	cal: 2024-May-18
20442	Semi Anechoic Chamber	ETS-Lindgren Gmbh / Taufkirchen	-	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20482	filter matrix Filter matrix SAR 1	CETECOM GmbH	-	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20574	Biconilog Hybrid Antenna BTA-L	Frankonia GmbH / Heideck	980026L	cal	cal: 2022-Jun-15	cal: 36M	cal: 2025-Jun-15
20620	Test Receiver ESU26	Rohde & Schwarz Messgerätebau GmbH /	100362	cal	cal: 2022-Jun-08	cal: 12M	cal: 2023-Jun-08
		Memmingen					
20885	Power Supply EA3632A	Agilent Technologies Deutschland GmbH	75305850	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
25038	Loop Antenna HFH2-Z2	Rohde & Schwarz Messgerätebau GmbH /	879824/13	cal	cal: 2022-Jul-04	cal: 24M	cal: 2024-Jul-04
		Memmingen					
				cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
	227951 - Environmental Climatic Change			cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20904	Climatic Chamber ClimeEvent C/1000/70a/5	Weiss Umwelttechnik GmbH / Reiskirchen- Lindenstruth	58226223240010	cal	cal: 2022-Nov-29	cal: 24M	cal: 2024-Nov-29
27292	Climatic Chamber WK3-600/70	Weiss Umwelttechnik GmbH / Reiskirchen-	59226080110010	cal	cal: 2022-Nov-25	cal: 24M	cal: 2024-Nov-25
		Lindenstruth					
20431	Near-field probe set Model 7405 EMCO	ETS Lindgreen	9305-2457	сри			
20690	Spectrum Analyzer FSU	Rohde & Schwarz Messgerätebau GmbH	100302/026	cal	Cal: 2021-Mai-20	Cal12	Cal: 2023-Mai-19
20611	Power Supply E3632A	Agilent Technologies Deutschland GmbH	KR 75305854	cpu			

Tools used in 'P1M2'

4.7.1 Legend

Note / remarks	Interval of calibration & Verification
12M	12 months
24M	24 months
36M	36 months
10Y	10 Years

Abbreviation Check Type	Description
cnn	Calibration and verification not necessary
cal	Calibration
calchk	Calibration plus intermediate Verification
chk	Verification
сри	Verification before usage

5 Results from external laboratory

None --

--

--

6 Opinions and interpretations

None

7 List of abbreviations

None

8 Measurement Uncertainty valid for conducted/radiated measurements

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor \mathbf{k} , such that a confidence level of approximately 95% is achieved. For uncertainty determination, each component used in the concrete measurement set-up was taken in account and it contribution to the overall uncertainty according its statistical distribution calculated.

Issue No.	Measurement type	Reference	Frequency range of measurement Start [MHz] Stop [MHz]	Calculated Uncertainty based on confidence level of 95.54%	Remarks
			30 100	4.57	without Pre-Amp
			30 100	4.91	with PreAmp
			100 1000	4.02	without Pre-Amp
			100 1000	4.26	with PreAmp
			1000 18000	4.36	without Pre-Amp
			1000 18000	5.23	with PreAmp
1.	RF-Output power (eirp)		18000 33000	4.92	Schwarzbeck BBHA9170 (#20302) Antenna set-up non-waveguide antenna)
1.	Unwanted emissions (eirp)		33000 50000	4.17	Set-up for Q-Band (WR-22), non-wave guide antenna
	[dB]		40000 60000	4.69	Set-up U-Band (WR-19), non-waveguide antenna
			50000 75000	4.06	External Mixer set-up V-Band (WR-15)
			75000 110000	4.17	External Mixer set-up W-Band (WR-6)
			90000 140000	5.49	External Mixer set-up F-Band (WR-8)
			140000 225000	6.22	External Mixer set-up G-Band (WR-5)
			225000 325000	7.04	External Mixer set-up (WR-3)
			325000 500000	8.84	External Mixer set-up (WR-2.2)
			1000 18000	2.85	Typical set-up with microwave generator and antenna, value for 7GHz calculated
	Radiated Blocking		18000 33000	4.66	Typical set-up with microwave generator and antenna
2.	[dB]		33000 50000	3.48	WR-22 set-up
			50000 75000	3.73	WR-15 set-up
			75000 110000	4.26	WR-6 set-up
	Frequency Error		40000 77000	276.19	calculated for 77 GHz (FMCW) carrier
3	[kHz]		6000 7000	33.92	calculated for 6.5GHz UWB Ch.5
	Frequency error [Hz]		11 14	20.76	calculated for 13.56MHz carrier
4	Magnetic field strength		0.009 30	4.86	Magnetic loop antenna, Pre-amp on

9 Versions of test reports (change history)

Version	Version Applied changes				
	Initial release	2022-Dec-16			
	-				

End Of Test Report