

Test Report 24-1-0032801T007-TR1-R03

Number of pages:	25	Date of Report:	2024-Oct-29	
Testing company:	cetecom advanced GmbH Untertuerkheimer Str. 6-10 66117 Saarbruecken GERMANY	Applicant:	WITTE-Velbert GmbH & Co.KG	
Product:	Automotive NFC Outer Door Handle			
Model:	EDH2507			
FCC ID:	V2T-EDH2507	IC:	7575A-EDH2507 EDH2507	
		PMN: HVIN:	EDH2507	
		TIVIN.		
Testing has been carried out in accordance with:	FCC Regulations Title 47 CFR, Chapter I, Subchapter A, Part 15 Subpart C Intentional Radiators, Radiated Emission Limits, Additional Provisions § 15.225 Operation within the band 13.110-14.010 MHz ISED-Regulations Radio Standards Specification RSS-Gen, Issue 5 General Requirements for Compliance of Radio Apparatus RSS-210, Issue 11 Licence-Exempt Radio Apparatus: Category I Equipment Deviations, modifications or clarifications (if any) to above mentioned documents are written in each section under "Test method and limit".			
Tested Technology:	NFC			
Test Results:	The EUT complies with the requirements in respect of all parameters subject to the test. The test results relate only to devices specified in this document The current version of Test Report R03 replaces the test report R02 dated 2024-Oct-22. The replaced test report is herewith invalid.			
Signatures:				
	Christian Lorenz		Timo Franke	
	Lab Manager		Testing Manager	
	Authorization of test report		Responsible of test report	

Table of Contents

Та	ble o	of Annex	3
1	(General information	4
	1.1	Disclaimer and Notes	4
	1.2	Attestation	4
	1.3	Summary of Test Results	5
	1.4	Summary of Test Methods	6
2	A	Administrative Data	7
	2.1	Identification of the Testing Laboratory	7
	2.2	General limits for environmental conditions	7
	2.3	Test Laboratories sub-contracted	7
	2.4	Organizational Items	7
	2.5	Applicant's details	7
	2.6	Manufacturer's details	7
	2.7	Equipment under Test (EUT)	8
	2.8	Untested Variant (VAR)	8
	2.9	Auxiliary Equipment (AE)	8
	2.1(Connected cables (CAB)	8
	2.12	1 Software (SW)	8
	2.12	2 EUT set-ups	8
	2.13	3 EUT operation modes	8
3	E	Equipment under test (EUT)	9
	3.1	General Data of Main EUT as Declared by Applicant	9
	3.2	Detailed Technical data of Main EUT as Declared by Applicant	9
	3.3	Modifications on Test sample	9
4	ſ	Measurements	.10
	4.1	Radiated field strength emissions and emission mask	.10
	4.2	Occupied Channel Bandwidth 99%	.14
	4.3	Radiated field strength emissions below 30 MHz	.15
	4.4	Radiated field strength emissions 30 MHz – 1 GHz	.19
	4.5	Frequency stability	.21
	4.6	Equipment lists	.22
5	F	Results from external laboratory	.23
6	(Opinions and interpretations	.23
7	L	ist of abbreviations	.23
8	ſ	Measurement Uncertainty valid for conducted/radiated measurements	.24
9	١	/ersions of test reports (change history)	.25

Table of Annex					
Annex No.	Annex No. Contents Reference Description Total Page 1				
Annex 1a	Test result diagrams	24-1-0032801T007_TR1-A201-R01	9		
Annex 1b	Frequency stability test results	24-1-0032801T007_TR1-A202-R01	18		
Annex 2	Internal photographs of EUT	Provided by appicant	-		
Annex 3	External photographs of EUT	24-1-0032801T007_TR1-A101-R01	5		
Annex 4	Annex 4 Test set-up photographs 24-1-0032801T007_TR1-A103-R01 5				
The listed attachments are separate documents.					

1 General information

1.1 Disclaimer and Notes

The test results of this test report relate exclusively to the test item specified in this test report as specified in chapter 2.7. cetecom advanced does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of cetecom advanced.

The testing service provided by cetecom advanced has been rendered under the current "General Terms and Conditions for cetecom advanced".

cetecom advanced will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the cetecom advanced test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the cetecom advanced test report include or imply any product or service warranties from cetecom advanced, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by cetecom advanced.

All rights and remedies regarding vendor's products and services for which cetecom advanced has prepared this test report shall be provided by the party offering such products or services and not by cetecom advanced.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

The test report must always be reproduced in full; reproduction of an excerpt only is subject to written approval of the testing laboratory. The documentation of the testing performed on the tested devices is archived for 10 years at cetecom advanced.

Also we refer on special conditions which the applicant should fulfill according §2.927 to §2.948, special focus regarding modification of the equipment and availability of sample equipment for market surveillance tests.

1.2 Attestation

I declare that all measurements were performed by me or under my supervision and that all measurements have been performed and are correct to my best knowledge and belief to Industry Canada standards. All of the above requirements are met in accordance with enumerated standards.

1.3 Summary of Test Results

The EUT integrates NFC technology. Other implemented wireless technologies were not considered within this test report.

Test case	Reference	Reference	Page	Remark	Result
	Clause FCC 🛛	Clause ISED 🛛			
Radiated field strength emissions and emission mask	§15.225	RSS-210, Issue 11,	10		PASSED
	(a)(b)(c)(d)	Annex B.6 (a)			
Radiated field strength emissions below 30 MHz	§15.209(a)	RSS-Gen: Issue 5	15		PASSED
		§8.9 Table 6			
Radiated field strength emissions 30 MHz – 1 GHz	§15.209	RSS-Gen: Issue 5	19		PASSED
		§8.9 Table 5			
Occupied Channel Bandwidth 99%	§2.202(a)	RSS-Gen Issue 5, §6.7	14		PASSED
	§2.1049(h)				
Frequency stability	§2.1055	RSS-210, Issue 11,	21		PASSED
	§15.225(e)	Annex B.6 (b)			
AC-Power Lines Conducted Emissions	§15.207	RSS-Gen Issue 5:			N/A
		§8.8 Table 4			

PASSED

The EUT complies with the essential requirements in the standard.

The EUT does not comply with the essential requirements in the standard.

Test case does not apply to the test object. N/A NP

The test was not performed by the cetecom advanced laboratory.

Decision Rule: cetecom advanced GmbH follows ILAC G8:2019 chapter 4.2.1 (Simple Acceptance Rule).

FAILED

1.4 Summary of Test Methods

Test case	Test method
Radiated field strength emissions and emission mask	ANSI C63.10-2013
Radiated field strength emissions below 30 MHz	ANSI C63.10-2013 §6.3, §6.4
Radiated field strength emissions 30 MHz- 1 GHz	ANSI C63.4-2014 §8.2.3, ANSI C63.10-2013 §6.3, §6.5
Occupied Channel Bandwidth 99%	ANSI C63.10:2013, §6.9.3
Frequency stability tests	ANSI C63.10-2013 §6.8
AC-Power Lines Conducted Emissions	ANSI C63.4-2014 §7, ANSI C63.10-2013 §6.2

2 Administrative Data

2.1 Identification of the Testing Laboratory

Company name:	cetecom advanced GmbH
Address:	Untertuerkheimer Str. 6-10
	66117 Saarbruecken
	Germany
Responsible for testing laboratory:	DiplIng. (FH) Andreas Luckenbill M.Sc.
Accreditation scope:	DAkkS Webpage: FCC ISED
IC Lab company No. / CAB ID:	3462D / DE0001
Test location 1:	Im Teelbruch 116; 45219 Essen
Test location 2:	-

2.2 General limits for environmental conditions

Temperature:	22±2 °C
Relative. humidity:	45±15% rH

2.3 Test Laboratories sub-contracted

Company name:	

2.4 Organizational Items

Responsible testing manager:	Timo Franke
Receipt of EUT:	2024-Jul-04
Date(s) of test:	2024-Jul-11 to 2024-Aug-02
Version of template:	24.0301

2.5 Applicant's details

Applicant's name:	WITTE-Velbert GmbH & Co.KG	
Address:	Höferstr. 3 - 15	
	42551 Velbert	
	North Rhine-Westphalia	
	Germany	
Contact Person:	Kay Lackmann	
Contact Person's Email:	kay.lackmann@witte-automotive.de	

2.6 Manufacturer's details

Manufacturer's name:	WITTE-Velbert GmbH & Co.KG
Address:	Höferstr. 3 - 15
	42551 Velbert
	Germany

2.7 Equipment under Test (EUT)

EUT No.*)	Sample No.	Product	Model	Туре	SN	нw	SW
EUT 1	24-1-00328502_C01	Automotive NFC Outer Door Handle	EDH2507	EDH250 7	20240702_02	V6	SW 11
EUT 2	24-1-00328S03_C01	Automotive NFC Outer Door Handle	EDH2507	EDH250 7	20240702_01	V6	SW 11

*) EUT short description is used to simplify the identification of the EUT in this test report.

2.8 Untested Variant (VAR)

VAR	Sample No.	Product	Model	Туре	SN	HW	SW
No.*)							

*) The listed additional untested model variant(s) (VAR) is/are not object of evaluation of compliance. For further information please see Annex 5: Declaration of applicant of model differences.

If the table above does not show any other line than the headline, no untested variants are available.

2.9 Auxiliary Equipment (AE)

AE	Sample No.	Auxiliary Equipment	Model	SN	HW	SW
No.*)						
AE 1	24-1-00328S04_C01	NFC Card	N/A	N/A	N/A	N/A
AE 2	24-1-00328S05_C01	NFC Card Holoder	N/A	N/A	N/A	N/A
AE 3	24-1-00328S06_C01	EUT Holder	N/A	N/A	N/A	N/A

*) AE short description is used to simplify the identification of the auxiliary equipment in this test report. If the table above does not show any other line than the headline, no AE was used during testing nor was taken into account for evaluation

2.10 Connected cables (CAB)

CAB	Sample No.	Cable Type	Connectors / Details	Length
No.*)				

*) CAB short description is used to simplify the identification of the connected cables in this test report. If the table above does not show any other line than the headline, no cable was used during testing nor was taken into account for evaluation

2.11 Software (SW)

SW	Sample No.	SW Name	Description	SW Status
No.*)				

*) SW short description is used to simplify the identification of the used software in this test report. If the table above does not show any other line than the headline, no SW was used during testing nor was taken into account for evaluation.

2.12 EUT set-ups

set-up no.*)	Combination of EUT and AE	Description
Set 1	EUT 1	Used for radiated measurements
Set 2	EUT 2 + AE 1 + AE 2 + AE 3	Used for conducted measurements

*) EUT set-up no. is used to simplify the identification of the EUT set-up in this test report.

2.13 EUT operation modes

EUT operating mode no.*)	Operating modes	Additional information
Op 1	ТХ	EUT intermittent transmission searching for counterpart
Op 2	TXRX	EUT intermittent communication to 13.56 MHz RFID tag AE 1

*1) EUT operating mode no. is used to simplify the test report.

3 Equipment under test (EUT)

3.1 General Data of Main EUT as Declared by Applicant

Firmware	□ for normal use	□ for normal use				
Power supply	□ AC Mains	-				
	DC Mains	- V DC via - Connector Lead Acid Car Battery				
	⊠ Battery					
Operational conditions	T _{nom} = 20 °C	T _{min} = -40 °C	T _{max} = +80 °C			
EUT sample type	Engineering Samples					
Weight	0.1 kg					
Size [LxWxH]	23 cm x 4 cm x 5 cm					
Interfaces/Ports	-					
For further details refer Applicants Declaration & following technical documents						

3.2 Detailed Technical data of Main EUT as Declared by Applicant

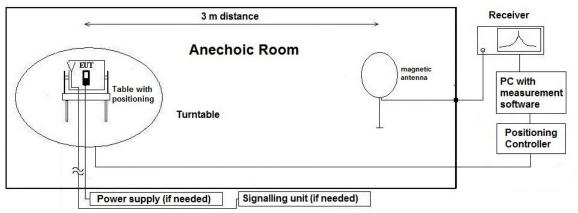
Frequency Band	13.110 MHz – 14.010 MHz				
Number of Channels (USA/Canada -bands)	1 nominal at 13.56 MHz				
Nominal Channel Bandwidth	n/a				
Type of Modulation Data Rate	□ Transmit: MILLER coding				
Type of Modulation Data Rate	□ Receive: LOAD modulation	Receive: LOAD modulation			
	□ RF Sniffer (315 MHz, 434 MHz, 868 MHz, not tested within this report)				
	□ Bluetooth LE (not tested within this report)				
Other installed options	□ Bluetooth EDR (not tested within this report)				
	□ Cellular transceiver (2G/3G/4G/5G/GPS, not tested in this report)				
	🖾 None				
Antenna Type	Loop antenna				
Antenna Gain	n/a dBi				
FCC label attached	No				
Test firmware / software and storage location	EUT				
For further details refer Applicants Decl	aration & following technical docume	nts			
Description of Reference Document (su	pplied by applicant)	Version	Total Pages		

3.3 Modifications on Test sample

Additions/deviations or exclusions

--

4 Measurements


4.1 Radiated field strength emissions and emission mask

4.1.1 Description of the general test setup and methodology, see below example:

Evaluating the radiated field emissions are done first by an exploratory emission measurement and a final measurement for most critical frequencies determined.

The loop antenna was placed at 1 m height above ground plane and 3 m measurement distance from set-up for investigations. Because of reduced measurement distance, correction data were applied, as stated in chapter "Sample calculation". The tests are performed in the semi anechoic room recognized by the regulatory commission.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 6)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (step 90°, range 0°to 360°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT), the emission spectrum was recorded.

The loop antenna was moved at least to 2-perpendicular axes (antenna vector in direction of EUT and parallel to EUT) in order to maximize the emissions. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a data reduction table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worstcase operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position).

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

 $E_{C} = E_{R} + AF + C_{L} + D_{F} - G_{A}$

 $M = L_T - E_C$

AF = Antenna factor C_L = Cable loss D_F = Distance correction factor (if used) E_C = Electrical field – corrected value E_R = Receiver reading G_A = Gain of pre-amplifier (if used) L_T = Limit M = Margin

All units are dB-units, positive margin means value is below limit.

4.1.2 Sample calculation

Raw- Value [dBuV/m]	Antenna factor	Distance Correction [dB]	Cable Loss	Preamplifier	Resulting correction value [dB]	Final result [dBuV/m]	Remarks
19.83	18.9	-70.75	0.18		-51.67	-31.83	30 to 3 m correction used according ANSI C63.10-2013

Remark: This calculation is based on an example value at 458 kHz

4.1.3 Measurement Location

Test site 120901 - SAC3 - Radiated Emission <1GHz

4.1.4 Correction factors due to reduced meas. distance (f < 30 MHz):

The used correction factors when the measurement distance is reduced compared to regulatory measurement distance, are calculated according Extrapolation formulas valid for EUT's with maximum dimension of 0.625xLambda. Formula 2+3+4 as presented in ANSI C63.10, Chapter 6.4.4 are used for the calculations of proper extrapolation factors

Frequency	f	Lambda	Far-Field	Distance Limit	1st	2nd Condition	Distance
Range	[kHz/MHz]	[m]	Point	accord. 15.209	Condition	(Limit distance	Correction
	[]		[m]	[m]	(dmeas <	bigger dnear-	accord.
			[]	[]	Dnear-field)		Formula
					-	field)	
	9	33333.33	5305.17		fullfilled	not fullfilled	-80.00
	10	30000.00	4774.65		fullfilled	not fullfilled	-80.00
	20	15000.00	2387.33		fullfilled	not fullfilled	-80.00
	30	10000.00	1591.55		fullfilled	not fullfilled	-80.00
	40	7500.00	1193.66		fullfilled	not fullfilled	-80.00
	50	6000.00	954.93		fullfilled	not fullfilled	-80.00
	60	5000.00	795.78		fullfilled	not fullfilled	-80.00
	70	4285.71	682.09	300	fullfilled	not fullfilled	-80.00
	80	3750.00	596.83		fullfilled	not fullfilled	-80.00
kHz	90	3333.33	530.52		fullfilled	not fullfilled	-80.00
КПД	100	3000.00	477.47		fullfilled	not fullfilled	-80.00
	125	2400.00	381.97		fullfilled	not fullfilled	-80.00
	200	1500.00	238.73		fullfilled	fullfilled	-78.02
	300	1000.00	159.16		fullfilled	fullfilled	-74.49
	400	750.00	119.37		fullfilled	fullfilled	-72.00
	490	612.24	97.44		fullfilled	fullfilled	-70.23
	500	600.00	95.49		fullfilled	not fullfilled	-40.00
	600	500.00	79.58		fullfilled	not fullfilled	-40.00
	700	428.57	68.21		fullfilled	not fullfilled	-40.00
	800	375.00	59.68		fullfilled	not fullfilled	-40.00
	900 1.00	333.33 300.00	53.05		fullfilled fullfilled	not fullfilled not fullfilled	-40.00 -40.00
			47.75				
	1.59 2.00	188.50	30.00		fullfilled fullfilled	not fullfilled fullfilled	-40.00 -38.02
		150.00	23.87				
	3.00 4.00	100.00 75.00	15.92 11.94		fullfilled fullfilled	fullfilled fullfilled	-34.49
							-32.00
	5.00 6.00	60.00 50.00	<u>9.55</u> 7.96		fullfilled fullfilled	fullfilled fullfilled	-30.06 -28.47
	7.00	42.86	6.82		fullfilled	fullfilled	-27.13
	8.00	37.50	5.97		fullfilled	fullfilled	-25.97
	9.00	33.33	5.31		fullfilled	fullfilled	-24.95
	10.00	30.00	4.77	30	fullfilled	fullfilled	-24.95
	10.60	28.30	4.50		fullfilled	fullfilled	-23.53
	11.00	27.27	4.34		fullfilled	fullfilled	-23.21
MHz	12.00	25.00	3.98		fullfilled	fullfilled	-22.45
	13.56	22.12	3.52		fullfilled	fullfilled	-21.39
	15.00	20.00	3.18		fullfilled	fullfilled	-20.51
	15.92	18.85	3.00		fullfilled	fullfilled	-20.00
	17.00	17.65	2.81		not fullfilled	fullfilled	-20.00
	18.00	16.67	2.65		not fullfilled	fullfilled	-20.00
	20.00	15.00	2.39		not fullfilled	fullfilled	-20.00
	21.00	14.29	2.27		not fullfilled	fullfilled	-20.00
	23.00	13.04	2.08		not fullfilled	fullfilled	-20.00
	25.00	12.00	1.91		not fullfilled	fullfilled	-20.00
	27.00	11.11	1.77		not fullfilled	fullfilled	-20.00
	29.00	10.34	1.65		not fullfilled	fullfilled	-20.00
	30.00	10.00	1.59		not fullfilled	fullfilled	-20.00

4.1.5 Limit

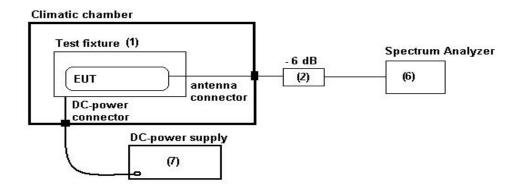
Frequency Range [MHz]	Limit [µV/m]	Limit [dBµV/m]	Detector	RBW [kHz]	Remark
13.553 – 13.567	15,848 at 30 m	84			
13.410 - 13.553	334 at 30 m	50.47			PEAK, TRACE max-hold mode,
and					repetitive scan for exploratory
13.567 - 13.710			DEAK	10	measurements
13.110 - 13.410	106 at 30 m	40.5	- PEAK		Quasi-Peak, for final
and					measurement on critical
13.710 - 14.010					frequencies (f<1GHz)
f ≤ 13.110 – 14.010 ≥ f	30 at 30 m	29.5]		

4.1.6 Result

Diagram	Channel	Mode	Maximum Level [dBµV/m]	Result
2.01	1	Set. 1 / Op. 1 / standing	38.734 (PK)	PASSED
2.02	1	Set. 1 / Op. 1 / lying	25.965 (PK)	PASSED
2.04	1	Set. 2 / Op. 2 / lying	39.165 (PK)	PASSED

Remark 1: for more information and graphical plot see annex 1a **24-1-0032801T007_TR1-A201-R01**

Remark 2: during pre-tests worst case position is determined to be the standing position, therefore further tests are only performed on EUT lying on side position



4.2 Occupied Channel Bandwidth 99%

4.2.1 Description of the general conducted test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings of the spectrum-analyzer.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 6)

EUT settings

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions.

4.2.2 Measurement Location

Test site 120910 - Radio Laboratory 1 (TS 8997)

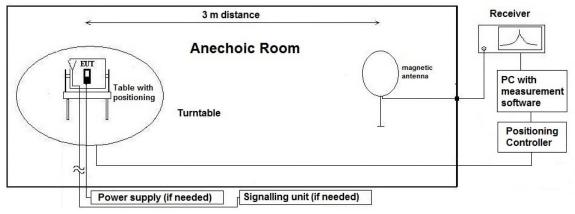
4.2.3 Limit

When the occupied bandwidth limit is not stated in the applicable reference measurement method, the transmitted signal bandwidth shall be reported as the 99% emission bandwidth, as calculated or measured.

4.2.4 Result

Diagram	Mode	Channel	Frequency [MHz]	99% Occupied bandwidth [kHz]			
D001	Set 2. / Op. 2	1	13.56	854.5561			

Remark: for more information and graphical plot see annex 1a 24-1-0032801T007_TR1-A201-R01


4.3 Radiated field strength emissions below 30 MHz

4.3.1 Description of the general test setup and methodology, see below example:

Evaluating the radiated field emissions are done first by an exploratory emission measurement and a final measurement for most critical frequencies determined.

The loop antenna was placed at 1 m height above ground plane and 3 m measurement distance from set-up for investigations. Because of reduced measurement distance, correction data were applied, as stated in chapter "Sample calculation". The tests are performed in the semi anechoic room recognized by the regulatory commission.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 6)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (step 90°, range 0°to 360°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT), the emission spectrum was recorded.

The loop antenna was moved at least to 2-perpendicular axes (antenna vector in direction of EUT and parallel to EUT) in order to maximize the emissions. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a data reduction table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worstcase operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position).

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

 $E_{C} = E_{R} + AF + C_{L} + D_{F} - G_{A}$

 $M = L_T - E_C$

- $\begin{array}{l} \mathsf{AF} = \mathsf{Antenna} \ \mathsf{factor} \\ \mathsf{C}_\mathsf{L} = \mathsf{Cable} \ \mathsf{loss} \\ \mathsf{D}_\mathsf{F} = \mathsf{Distance} \ \mathsf{correction} \ \mathsf{factor} \ (\mathsf{if} \ \mathsf{used}) \\ \mathsf{E}_\mathsf{C} = \mathsf{Electrical} \ \mathsf{field} \mathsf{corrected} \ \mathsf{value} \\ \mathsf{E}_\mathsf{R} = \mathsf{Receiver} \ \mathsf{reading} \\ \mathsf{G}_\mathsf{A} = \mathsf{Gain} \ \mathsf{of} \ \mathsf{pre-amplifier} \ (\mathsf{if} \ \mathsf{used}) \\ \mathsf{L}_\mathsf{T} = \mathsf{Limit} \end{array}$
- M = Margin

All units are dB-units, positive margin means value is below limit.

4.3.2 Sample calculation

Raw- Value [dBuV/m]	Antenna factor	Distance Correction [dB]	Cable Loss	Preamplifier	Resulting correction value [dB]	Final result [dBuV/m]	Remarks
19.83	18.9	-70.75	0.18		-51.67	-31.83	30 to 3 m correction used according ANSI C63.10-2013

Remark: This calculation is based on an example value at 458 kHz

4.3.3 Measurement Location

	Test site	120901 - SAC3 - Radiated Emission <1GHz
--	-----------	---

4.3.4 Correction factors due to reduced meas. distance (f < 30 MHz):

The used correction factors when the measurement distance is reduced compared to regulatory measurement distance, are calculated according Extrapolation formulas valid for EUT's with maximum dimension of 0.625xLambda. Formula 2+3+4 as presented in ANSI C63.10, Chapter 6.4.4 are used for the calculations of proper extrapolation factors

Frequency	f	Lambda	Far-Field	Distance Limit	1st	2nd Condition	Distance
Range	[kHz/MHz]	[m]	Point	accord. 15.209	Condition	(Limit distance	Correction
	[]		[m]	[m]	(dmeas <	bigger dnear-	accord.
			[]	[]	Dnear-field)		Formula
					-	field)	
	9	33333.33	5305.17		fullfilled	not fullfilled	-80.00
	10	30000.00	4774.65		fullfilled	not fullfilled	-80.00
	20	15000.00	2387.33		fullfilled	not fullfilled	-80.00
	30	10000.00	1591.55		fullfilled	not fullfilled	-80.00
	40	7500.00	1193.66		fullfilled	not fullfilled	-80.00
	50	6000.00	954.93		fullfilled	not fullfilled	-80.00
	60	5000.00	795.78		fullfilled	not fullfilled	-80.00
	70	4285.71	682.09	300	fullfilled	not fullfilled	-80.00
	80	3750.00	596.83		fullfilled	not fullfilled	-80.00
kHz	90	3333.33	530.52	-	fullfilled	not fullfilled	-80.00
КПД	100	3000.00	477.47		fullfilled	not fullfilled	-80.00
	125	2400.00	381.97		fullfilled	not fullfilled	-80.00
	200	1500.00	238.73		fullfilled	fullfilled	-78.02
	300	1000.00	159.16		fullfilled	fullfilled	-74.49
	400	750.00	119.37		fullfilled	fullfilled	-72.00
	490	612.24	97.44		fullfilled	fullfilled	-70.23
	500	600.00	95.49		fullfilled	not fullfilled	-40.00
	600	500.00	79.58		fullfilled	not fullfilled	-40.00
	700	428.57	68.21		fullfilled	not fullfilled	-40.00
	800	375.00	59.68		fullfilled	not fullfilled	-40.00
	900 1.00	333.33 300.00	53.05		fullfilled fullfilled	not fullfilled not fullfilled	-40.00 -40.00
			47.75				
	1.59 2.00	188.50	30.00		fullfilled fullfilled	not fullfilled fullfilled	-40.00 -38.02
		150.00	23.87				
	3.00 4.00	100.00 75.00	15.92 11.94		fullfilled fullfilled	fullfilled fullfilled	-34.49
							-32.00
	5.00 6.00	60.00 50.00	<u>9.55</u> 7.96		fullfilled fullfilled	fullfilled fullfilled	-30.06 -28.47
	7.00	42.86	6.82		fullfilled	fullfilled	-27.13
	8.00	37.50	5.97		fullfilled	fullfilled	-25.97
	9.00	33.33	5.31		fullfilled	fullfilled	-24.95
	10.00	30.00	4.77	30	fullfilled	fullfilled	-24.95
	10.60	28.30	4.50		fullfilled	fullfilled	-23.53
	11.00	27.27	4.34		fullfilled	fullfilled	-23.21
MHz	12.00	25.00	3.98		fullfilled	fullfilled	-22.45
	13.56	22.12	3.52		fullfilled	fullfilled	-21.39
	15.00	20.00	3.18		fullfilled	fullfilled	-20.51
	15.92	18.85	3.00		fullfilled	fullfilled	-20.00
	17.00	17.65	2.81		not fullfilled	fullfilled	-20.00
	18.00	16.67	2.65		not fullfilled	fullfilled	-20.00
	20.00	15.00	2.39		not fullfilled	fullfilled	-20.00
	21.00	14.29	2.27		not fullfilled	fullfilled	-20.00
	23.00	13.04	2.08		not fullfilled	fullfilled	-20.00
	25.00	12.00	1.91		not fullfilled	fullfilled	-20.00
	27.00	11.11	1.77		not fullfilled	fullfilled	-20.00
	29.00	10.34	1.65		not fullfilled	fullfilled	-20.00
	30.00	10.00	1.59		not fullfilled	fullfilled	-20.00

4.3.5 Limit

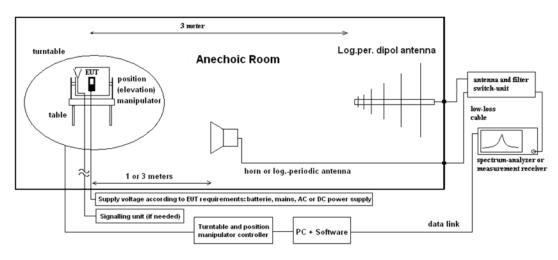
		Radiated emissions	s limits, (3 met	ters)	
Frequency Range [MHz]	Limit [µV/m]	Limit [dBµV/m] *	Distance [m]	Detector	RBW [kHz]
0.009 - 0.09	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	0.2
0.09 - 0.11	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Quasi peak	0.2
0.11 – 0.15	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	0.2
0.15 – 0.49	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	9
0.49 - 1.705	24000 / f [kHz]	87.6 – 20Log(f) (kHz)	30	Quasi peak	9
1.705 - 30	30	29.5	30	Quasi peak	9

*Remark: In Canada same limits apply, just unit reference is different

4.3.6 Result

Diagram	Channel	Mode	Maximum Level [dBµV/m] Frequency Range 0.009 – 30 MHz	Result
2.05	1	Set. 2 / Op. 2	No peaks < 6 dB margin found	PASSED
2.06	1	Set. 1 / Op. 1	No peaks < 6 dB margin found	PASSED

Remark: for more information and graphical plot see annex 1a 24-1-0032801T007_TR1-A201-R01



4.4 Radiated field strength emissions 30 MHz – 1 GHz

4.4.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 16-1-4:2010 compliant semi anechoic room (SAR) and fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 6)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 90°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

Measurement antenna: horizontal and vertical, heights: 1,0 m and 1,82 m as worst-case determined by an exploratory emission measurements. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by main-taining the EUT's worst-case operation mode, cable position, etc. either on 10m OATS or 3m semi-anechoic room. First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position). The measurement antenna height between 1 m and 4 m.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out

Formula:

$E_{\rm C} = E_{\rm R} + AF + C_{\rm L} + D$	F - G _A (1)	AF = Antenna factor
		C _L = Cable loss
$M = L_T - E_C$	(2)	D _F = Distance correction factor (if used)
		E _c = Electrical field – corrected value
		E _R = Receiver reading
		G _A = Gain of pre-amplifier (if used)
		L _T = Limit
		M = Margin

All units are dB-units, positive margin means value is below limit.

4.4.2 Sample calculation

Raw- Value [dBuV/m]	Antenna factor	Distance Correction [dB]	Cable Loss	Preamplifier	Resulting correction value [dB]	Final result [dBuV/m]	Remarks
32.7	22.25		3.1		25.35	58.05	

Remark: This calculation is based on an example value at 800.4 MHz

4.4.3 Measurement Location

Test site	120901 - SAC3 - Radiated Emission <1GHz
Test site	

4.4.4 Limit

Radiated emissions limits, (3 meters)							
Frequency Range [MHz]	Limit [µV/m]	Limit [dBµV/m]	Detector	RBW / VBW [kHz]			
30 - 88	100	40.0	Quasi peak	100 / 300			
88 - 216	150	43.5	Quasi peak	100 / 300			
216 - 960	200	46.0	Quasi peak	100 / 300			
960 - 1000	500	54.0	Quasi peak	100 / 300			

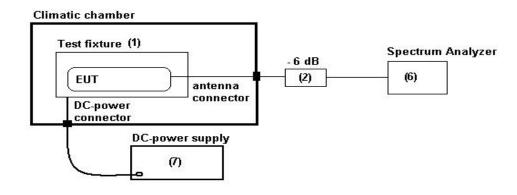
4.4.5 Result

Diagram	Channel	Mode	Maximum Level [dBµV/m] Frequency Range 30 – 1000 MHz	Result	
3.01	1	Set. 1 / Op. 1	32.90 ¹⁾ (PK) @ 40.68 MHz	PASSED	
3.02	1	Set. 2 / Op. 2	35.17 ¹⁾ (PK) @ 40.68 MHz	PASSED	

Remark: for more information and graphical plot see annex 1a **24-1-0032801T007_TR1-A201-R01** Remark 1: level which is most critical in respect to the limit.

4.5 Frequency stability

4.5.1 Description of the general test setup and methodology, see below example:


A sniffer antenna acts like a coupling antenna for measuring the fundamental frequency. This is placed at about 20cm away from the equipment. Also connecting cables at the equipment are avoided on the extent possible in order not to degrade the resonance frequency of the equipment and integral antenna.

If the equipment is capable of producing an un-modulated carrier then a trace with max-hold function was recorded. The maximum peak within the span was found, then the frequency deviation was recorded with the build-in frequency counter within the spectrum-analyze. The maximum resolution was chosen on the settings.

The frequency deviation was recorded at switching on point of the equipment and on 2 minutes, 5 minutes and 10 minutes after at in accordance with ANSI 63.10: 2013, Chapter 6.8

All measurements data are enclosed in annex measurements. Here only maximum frequency error is reported.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 6)

4.5.2 Measurement Location

Test site	120910 - Radio Laboratory 1 (TS 8997)

4.5.3 Results

Frequency	Frequency tolerance limit				F _{offset max} (abs)		
Range [MHz]	%	[ppm]	[Hz]	Remarks	[ppm]	Result	
13.553 – 13.567	±0.01	±100	±1355.99207	Voltage variation	25.40	PASSED	
13.553 – 13.567	±0.01	±100	±1355.99743	Temperature variation	36.72	PASSED	

Remark: for more information and graphical plot see annex 1b 24-1-0032801T007_TR1-A202-R01

4.6 Equipment lists

ID	Description	Manufacturer	SerNo	CheckType	Last Check	Interval	Next Check
	120901 - SAC3 - Radiated Emission <1GHz			calchk	cal: 2015-Jul-21	cal: 10Y	cal: 2025-Jul-2
					chk: 2021-Jul-27	chk: 12M	chk: 2022-Jul-2
20341	Digital Multimeter Fluke 112	Fluke Deutschland GmbH / Glottertal	81650455	cal	cal: 2024-May-13	cal: 24M	cal: 2026-May-1
20442	Semi Anechoic Chamber SAC3	ETS-Lindgren Gmbh / Taufkirchen	without	cnn	cal: -	cal: -	cal:
					chk: -	chk: -	chk:
20482	filter matrix Filter matrix SAR 1	cetecom advanced GmbH / Essen	without	cnn	cal: -	cal: -	cal:
					chk: -	chk: -	chk:
20574	Biconilog Hybrid Antenna BTA-L	Frankonia GmbH / Heideck	980026L	cal	cal: 2022-Jun-15	cal: 36M	cal: 2025-Jun-1
20620	EMI Test Receiver ESU26	Rohde & Schwarz Messgerätebau GmbH /	100362	cal	cal: 2024-May-15	cal: 12M	cal: 2025-May-15
		Memmingen					
20885	Power Supply EA3632A	Agilent Technologies Deutschland GmbH	75305850	cnn	cal: -	cal: -	cal:
					chk: -	chk: -	chk:
25038	Loop Antenna HFH2-Z2	Rohde & Schwarz Messgerätebau GmbH /	879824/13	cal	cal: 2022-Jul-04	cal: 36M	cal: 2025-Jul-04
		Memmingen					
	120910 - Radio Laboratory 1 (TS 8997)			chk			
					chk: 2024-Jul-25	chk: 12M	chk: 2025-Jul-2
20559	Vector Signal Generator SMU200A	Rohde & Schwarz Messgerätebau GmbH /	103736	cal	cal: 2023-May-25	cal: 24M	cal: 2025-May-2
		Memmingen					
20691	Open Switch and control Platform OSP157W 8	Rohde & Schwarz Messgerätebau GmbH /	100950	cal	cal: 2023-Jun-30	cal: 36M	cal: 2026-Jun-3
	Port Plus	Memmingen					
20866	Signal Analyzer FSV3030	Rohde & Schwarz Messgerätebau GmbH /	101247	cal	cal: 2024-Jun-27	cal: 12M	cal: 2025-Jun-2
		Memmingen					
20871	NRP-Z81	Rohde & Schwarz Messgerätebau GmbH /	104631	cal	cal: 2024-May-15	cal: 12M	cal: 2025-May-1
		Memmingen					
20872	NRX Power Meter	Rohde & Schwarz Messgerätebau GmbH /	101831	cal	cal: 2024-May-14	cal: 24M	cal: 2026-May-14
		Memmingen					
20904	Climatic Chamber ClimeEvent C/1000/70a/5	Weiss Umwelttechnik GmbH / Reiskirchen-	58226223240010	cal	cal: 2022-Nov-29	cal: 24M	cal: 2024-Nov-29
		Lindenstruth					
20927	Signal Generator SMF 100A	Rohde & Schwarz Messgerätebau GmbH /	102109	cal	cal: 2022-May-19	cal: 36M	cal: 2025-May-1
		Memmingen					
20978	HMP2020 2-CH power Supply 188W	Rohde & Schwarz Messgerätebau GmbH /	121649	cal	cal: 2024-Aug-06	cal: 24M	cal: 2026-Aug-0
		Memmingen					
80682	USM Switch Matrix	cetecom advanced GmbH / Saarbrücken	D001	cnn	cal: -	cal: -	cal:
ols used in					chk: -	chk: -	chk:

4.6.1 Legend

Note / remarks	Interval of calibration & Verification
12M	12 months
24M	24 months
36M	36 months
10Y	10 Years

Abbreviation Check Type	Description
cnn	Calibration and verification not necessary
cal	Calibration
calchk	Calibration plus intermediate Verification
chk	Verification
сри	Verification before usage

5 Results from external laboratory

_

-

None

6 Opinions and interpretations

None

7 List of abbreviations

None

8 Measurement Uncertainty valid for conducted/radiated measurements

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor **k**, such that a confidence level of approximately 95% is achieved. For uncertainty determination, each component used in the concrete measurement set-up was taken in account and it contribution to the overall uncertainty according its statistical distribution calculated.

lssue No.	Measurement type	Reference		cy range urement Stop [MHz]	Calculated Uncertainty based on confidence level of 95.54%	Remarks
1	Magnetic Field Strength	EN ,FCC, JP, IC	0.009	30	4.86	Magnetic loop antenna, Pre-Amp on
			30	100	4.57	without Pre-Amp
			30	100	4.91	with Pre-Amp
			100	1000	4.02	without Pre-Amp
			100	1000	4.26	with Pre-Amp
			1000	18000	4.36	without Pre-Amp
			1000	18000	5.23	with Pre-Amp
	RF-Output Power (EIRP)		18000	33000	4.92	Schwarzbeck BBHA9170 (#20302) Antenna set-up non-waveguide antenna)
2	Unwanted emissions (EIRP)	EN, FCC, JP, IC	33000	50000	4.17	Set-up for Q-Band (WR-22), non-wave guide antenna
	[dB]		40000	60000	4.69	Set-up U-Band (WR-19), non-waveguide antenna
			50000	75000	4.06	External Mixer set-up V-Band (WR-15)
			75000	110000	4.17	External Mixer set-up W-Band (WR-6)
			90000	140000	5.49	External Mixer set-up F-Band (WR-8)
			140000	225000	6.22	External Mixer set-up G-Band (WR-5)
			225000	325000	7.04	External Mixer set-up (WR-3)
			325000	500000	8.84	External Mixer set-up (WR-2.2)
			1000	18000	2.85	Typical set-up with microwave generator and antenna, value for 7 GHz calculated
	Radiated Blocking		18000	33000	4.66	Typical set-up with microwave generator and antenna
3	[dB]	EN	33000	50000	3.48	WR-22 set-up
	[GB]		50000	75000	3.73	WR-15 set-up
			75000	110000	4.26	WR-6 set-up
	Frequency Error / UWB+FMCW		40000	77000	276.19	calculated for 77 GHz (FMCW) carrier
	[kHz]	EN, FCC, JP, ISED	6000	7000	33.92	calculated for 6.5 GHz UWB Ch.5
4	Frequency Error / NFC [Hz]	EN, FCC, JP, ISED	11.00	14.00	20.76	calculated for 13.56 MHz NFC carrier
			30	6000	1.11	1. Power measurement with Fast-sampling-detector
	TS 8997 Conducted Parameters	FCC15/18 / ISED	30	6000	1.20	2. Power measurement with Spectrum-Analyzer
			30	6000	1.20	3. Power Spectrum-Density measurement
			30	7500	1.20	4. Conducted Spurious emissions
			0.009	30	2.56	5. Conducted Spurious emissions
5			2.4	2.48	1.95 ppm	6a. Bandwidth / 2-Marker Method for 2.4 GHz ISM
			5.18	5.825	7.180 ppm	6b. Bandwidth / 2-Marker Method for 5 GHz WLAN
			5.18	5.825	1.099 ppm	7. Frequency (Marker method) for 5 GHz WLAN
			30	6000	0.11561 µs	8. Medium-Utilization factor / Timing
			30	6000	1.85	9a. Blocking-Level of companion device
			30	6000	1.62	9b. Blocking Generator level
6	Conducted Emissions	EN, FCC	0.009	30	3.57	general EMI-measurements on AC/DC ports

9 Versions of test reports (change history)

Version	Applied changes	Date of release
R01	Initial release	2024-Sep-06
R02	Changed RSS reference in chapter 1.3 Removed field referring to Bluetooth core specifications in chapter 3.1 Small optical changes	2024-Oct-22
R03	Added correction factor table for measurements < 30 MHz to chapter 4.1 Small optical changes	2024-Oct-29

End Of Test Report