

FCC&IC Radio Test Report

FCC ID: UZZSFQ08 IC: 7633A-SFQ08

This report concerns (check one) : Class II Change

Issued Date	:	Nov. 14, 2013
Project No.	:	1310C159
Equipment	:	Sound Rise
Model Name		SFQ-08
Applicant	:	Beautiful Enterprise Co., Ltd.
Address	:	27th Floor, Beautiful Group Tower, 77 Connaught Road Central, Hong Kong

Tested by: Neutron Engineering Inc. EMC Laboratory Date of Receipt: Oct. 28, 2013 Date of Test: Oct. 28, 2013 ~ Nov. 13, 2013

Testing Engineer

Technical Manager

Authorized Signatory

David Mao

(Leo Hung

(Steven Lu)

Neutron Engineering Inc.

No.3, Jinshagang 1st Road, ShiXia, Dalang Town, Dong Guan, China. TEL: 0769-8318-3000 FAX: 0769-8319-6000

Declaration

Neutron represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with the standards traceable to National Measurement Laboratory (**NML**) of **CHINA**, or National Institute of Standards and Technology (**NIST**) of **U.S.A**.

Neutron's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **Neutron** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **Neutron** issued reports.

Neutron's reports must not be used by the client to claim product endorsement by the authorities or any agency of the Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **Neutron-self**, extracts from the test report shall not be reproduced except in full with **Neutron**'s authorized written approval.

Neutron's laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Neutron Engineering Inc.

KEUTROS .	
Table of Contents	Page
1. CERTIFICATION	6
2 . SUMMARY OF TEST RESULTS	7
2.1 TEST FACILITY	8
2.2 MEASUREMENT UNCERTAINTY	8
3 . GENERAL INFORMATION	9
3.1 GENERAL DESCRIPTION OF EUT	9
3.2 DESCRIPTION OF TEST MODES	11
3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	11
3.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTE	D 12
3.5 DESCRIPTION OF SUPPORT UNITS	13
4 . EMC EMISSION TEST	14
4.1 CONDUCTED EMISSION MEASUREMENT	14
4.1.1 POWER LINE CONDUCTED EMISSION LIMITS	14
4.1.2 MEASUREMENT INSTRUMENTS LIST AND SETTING	14
4.1.3 TEST PROCEDURE 4.1.4 DEVIATION FROM TEST STANDARD	15 15
4.1.5 TEST SETUP	15
4.1.6 EUT OPERATING CONDITIONS	15
4.1.7 TEST RESULTS	16
4.2 RADIATED EMISSION MEASUREMENT	21
4.2.1 RADIATED EMISSION LIMITS 4.2.2 MEASUREMENT INSTRUMENTS LIST ANS SETTING	21 22
4.2.3 TEST PROCEDURE	23
4.2.4 DEVIATION FROM TEST STANDARD	23
4.2.5 TEST SETUP 4.2.6 EUT OPERATING CONDITIONS	24
4.2.6 EUT OPERATING CONDITIONS 4.2.7 TEST RESULTS (BELOW 30MHZ)	25 26
4.2.8 TEST RESULTS (BETWEEN30 – 1000 MHZ)	27
4.2.9 TEST RESULTS (ABOVE 1000 MHZ)	52
5 . NUMBER OF HOPPING CHANNEL	76
5.1 APPLIED PROCEDURES / LIMIT	76
5.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING	76
5.1.2 TEST PROCEDURE 5.1.3 DEVIATION FROM STANDARD	76 76
5.1.4 TEST SETUP	76
5.1.5 EUT OPERATION CONDITIONS	76
5.1.6 TEST RESULTS	77
6 . AVERAGE TIME OF OCCUPANCY	79

start Testing Lig	
Neutron Engineering Inc.	
Table of Contents	Page
6.1 APPLIED PROCEDURES / LIMIT	79
6.1.1 MEASUREMENT INSTRUMENTS LIST	79
6.1.2 TEST PROCEDURE	79
6.1.3 DEVIATION FROM STANDARD	79
6.1.4 TEST SETUP	80
6.1.5 EUT OPERATION CONDITIONS	80
6.1.6 TEST RESULTS	81
7 . HOPPING CHANNEL SEPARATION MEASUREMENT	93
7.1 APPLIED PROCEDURES / LIMIT	93
7.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING	93
7.1.2 TEST PROCEDURE	93
7.1.3 DEVIATION FROM STANDARD	93
7.1.4 TEST SETUP	93
7.1.5 EUT OPERATION CONDITIONS	93
7.1.6 TEST RESULTS	94
8 . BANDWIDTH TEST	98
8.1 APPLIED PROCEDURES / LIMIT	98
8.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING	98
8.1.2 TEST PROCEDURE	98
8.1.3 DEVIATION FROM STANDARD	98
8.1.4 TEST SETUP	98
8.1.5 EUT OPERATION CONDITIONS	98
8.1.6 TEST RESULTS	99
9 . PEAK OUTPUT POWER TEST	103
9.1 APPLIED PROCEDURES / LIMIT	103
9.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING	103
9.1.2 TEST PROCEDURE	103
9.1.3 DEVIATION FROM STANDARD	103
9.1.4 TEST SETUP	103
9.1.5 EUT OPERATION CONDITIONS 9.1.6 TEST RESULTS	103
	104
10. ANTENNA CONDUCTED SPURIOUS EMISSION	108
10.1 APPLIED PROCEDURES / LIMIT	108
10.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING	108
10.1.2 TEST PROCEDURE 10.1.3 DEVIATION FROM STANDARD	108 108
10.1.3 DEVIATION FROM STANDARD 10.1.4 TEST SETUP	108
10.1.5 EUT OPERATION CONDITIONS	108
10.1.6 TEST RESULTS	108
11 . EUT TEST PHOTO	121

REPORT ISSUED HISTORY

Issued No.	Description	Issued Date
NEI-FICP-1-1310C159	Original Issue.	Nov. 14, 2013
-	-	-

1. CERTIFICATION

Equipment :	Sound Rise
Brand Name	SOUNDFREAQ
Model Name	SFQ-08
Applicant :	: Beautiful Enterprise Co., Ltd.
Manufacture :	: Beautiful Enterprise Co., Ltd.
Address	27th Floor, Beautiful Group Tower, 77 Connaught Road Central, Hong Kong
Factory	: Shenzhen Synchron Electronics Co., Ltd.
Address	: No. 9 Mei Li Road, Xia Mei Lin, Fu Tian Area, Shenzhen, Guangdong, China
Date of Test	: Oct. 28, 2013 ~ Nov. 13, 2013
Test Item	ENGINEERING SAMPLE
	FCC Part15, Subpart C(15.247) / ANSI C63.4 : 2009
Standard(s)	FCC Public Notice DA 00-705, March 30, 2000.
Stanuaru(S)	Canada RSS-210:2010
	RSS-GEN Issue 3, Dec 2010

The above equipment has been tested and found compliance with the requirement of the relative standards by Neutron Engineering Inc. EMC Laboratory.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. NEI-FICP-1-1310C159) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

2. SUMMARY OF TEST RESULTS

Г

Test procedures according to the technical standard(s):

Applied Standard(s): 47 CFR Part 15, Subpart C; Canada RSS-210:2010			:2010	
Standard(s) SectionRSS-21047 CFRRSS-GEN Issue47 CFR3, Dec 2010Part 15				
		Test Item	Judgment	Remark
RSS-GEN Issue 3, Dec 2010 7.2.4	15.207	Conducted Emission	PASS	
RSS-210, Issue 8, Annex 8, Section 8.5	15.247(d)	Antenna conducted Spurious Emission	PASS	
RSS-210, Issue 8, Annex 8, Section A8.1(b)	15.247 (a)(1)	Hopping Channel Separation	PASS	
RSS-210 Annex 8 (A8.1b)	15.247 (b)(1)	Peak Output Power	PASS	
RSS-210, Issue 8, Annex 8, Section 8.5	15.247(d) 15.209	Radiated Spurious Emission	PASS	
RSS-210, Issue 8, Annex 8, Section A8.1(d)	15.247 (a)(1)(iii)	Number of Hopping Frequency	PASS	
RSS-210, Issue 8, Annex 8, Section A8.1(d)	15.247 (a)(1)(iii)	Dwell Time	PASS	
RSS-GEN Issue 3, Dec 2010 7.2.2	15.205	Restricted Bands	PASS	
RSS-210, Issue 8, Annex 8, Section A8.4	15.203	Antenna Requirement	PASS	

NOTE:

(1)" N/A" denotes test is not applicable in this test report.

(2) According to FCC Public Notice DA 00-705, March 30, 2000.

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is **DG-C02/DG-CB03** at the location of No.3, Jinshagang 1st Road, ShiXia, Dalang Town, Dong Guan, China.523792 Neutron's test firm number for FCC 319330 Neutron's test firm number for IC 4428B-1

2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95** %.

A. Conducted Measurement :

Test Site	Method	Measurement Frequency Range	U , (dB)	NOTE
DG-C02	CISPR	150 KHz ~ 30MHz	1.94	

B. Radiated Measurement :

Test Site	Method	Measurement Frequency Range	Ant. H / V	U,(dB)	NOTE	
		9KHz~30MHz	V	3.79		
		9KHz~30MHz	Н	3.57		
		30MHz ~ 200MHz	V	3.82		
		30MHz ~ 200MHz	Н	3.60		
DG-CB03	CISPR	200MHz ~ 1,000MHz	V	3.86		
DG-CD03	GIGEN	200MHz ~ 1,000MHz	Н	3.94		
		1GHz~18GHz	V	3.12		
			1GHz~18GHz	Н	3.68	
		18GHz~40GHz	V	4.15		
		18GHz~40GHz	Н	4.14		

Neutron Engineering Inc.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	Sound Rise		
Brand Name	SOUNDFREAQ		
Model Name	SFQ-08		
Model Difference	N/A		
Product Description	The EUT is a Sound Rise.Operation Frequency $2402 \sim 2480 \text{ MHz}$ Modulation TechnologyGFSK(1Mbps)Bit Rate of Transmitter $\pi/4$ -DQPSK(2Mbps)Number of Channel79 CH, Please see note 2.(Page 10)Antenna DesignationPlease see note 3.(Page 10)Antenna Gain(Peak)3.67 dBm (1Mbps)Output Power3.69 dBm (3Mbps)More details of EUT technical specification, please refer to the		
Power Source	DC voltage supplied from Adapter Model:NSA15EU-075200 Model:S018KM0900200		
Power Rating	I/P100~240V~50/60Hz 0.5A O/P DC 7.5V 2A I/P100~240V~50/60Hz 500mA O/P DC 9V 2000mA		
Connecting I/O Port(s)	Please refer to the User's Manual		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Neutron Engineering Inc._____

2.

	Channel List				
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

3.

Table for Filed Antenna

• •	2010 1					
	Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
	1	N/A	N/A	Printed Antenna	N/A	-1.72

Neutron Engineering Inc.=

3.2 DESCRIPTION OF TEST MODES

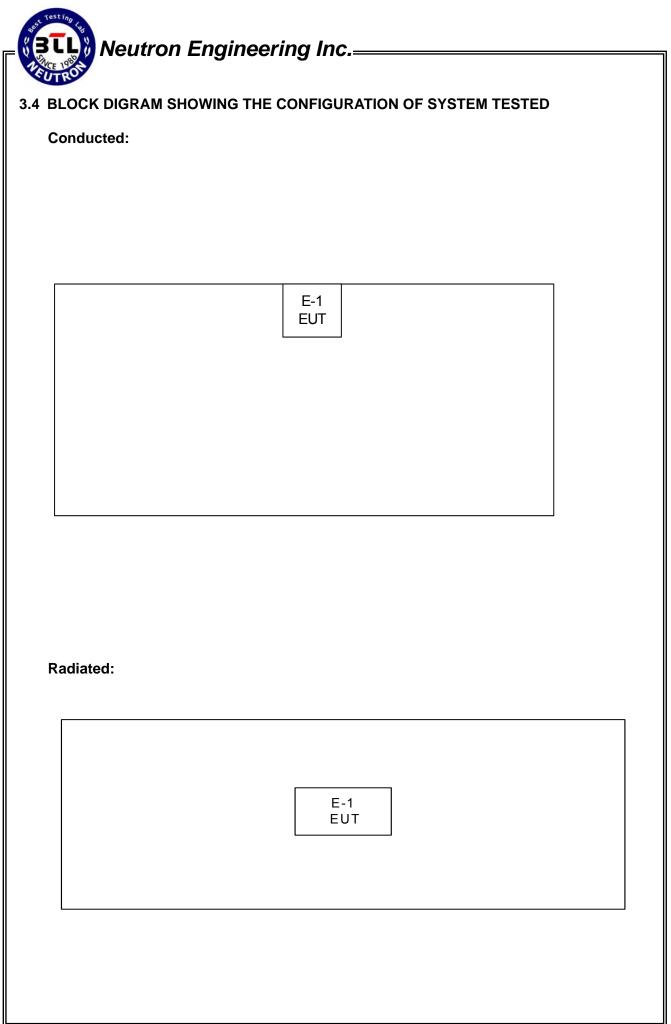
To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	TX
Mode 2	Normal Link

The EUT system operated these modes were found to be the worst case during the pre-scanning test as following:

	For Conducted Emission
Final Test Mode	Description
Mode 2	Normal Link

	For Radiated Emission
Final Test Mode	Description
Mode 1	ТХ


Note:

(1) The measurements are performed at the high, middle, low available channels.

3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output powe r selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS

Test software version		CSR	
Frequency	2402 MHz	2441 MHz	2480 MHz
Parameters-1Mbps	47	18	18
Parameters-3Mbps	47	18	18

3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

E 1 Sound Pice SOURDEREAD [®] SEO 08 UZZSFQ08 / N/A	Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID / IC	Series No.	Note
L-1 Sound Nise Stored Stored 7633A-SFQ08	E-1	Sound Rise	SOUNDFREAQ	SFQ-08		N/A	EUT

Item	Shielded Type	Ferrite Core	Length	Note
-	-	-	-	-

Note:

(1) For detachable type I/O cable should be specified the length in m in [[]Length] column.

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

FREQUENCY (MHz)	Class A	(dBuV)	Class B	(dBuV)	Standard
FREQUENCT (MITZ)	Quasi-peak	Average	Quasi-peak	Average	Stanuaru
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	CISPR
0.50 -5.0	73.00	60.00	56.00	46.00	CISPR
5.0 -30.0	73.00	60.00	60.00	50.00	CISPR

0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	73.00	60.00	56.00	46.00	FCC
5.0 -30.0	73.00	60.00	60.00	50.00	FCC

Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

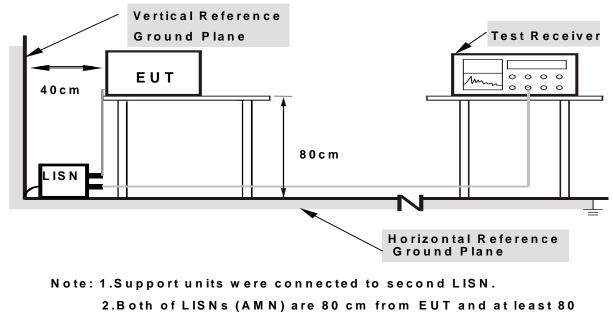
4.1.2 MEASUREMENT INSTRUMENTS LIST AND SETTING

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	LISN	EMCO	3816/2	00052765	Apr. 25, 2014
2	LISN	R&S	ENV216	100087	Nov.16.2013
3	Test Cable	N/A	C_17	N/A	Mar.15.2014
4	EMI TEST RECEIVER	R&S	ESCS30	826547/022	Apr. 25, 2014
5	50Ω Terminator	SHX	TF2-3G-A	08122902	Apr. 25, 2014

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of Equipment List is One Year.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


4.1.3 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

4.1.4 DEVIATION FROM TEST STANDARD

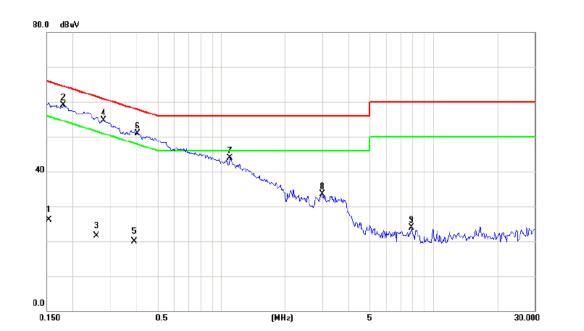
No deviation

4.1.5 TEST SETUP

from other units and other metal planes

4.1.6 EUT OPERATING CONDITIONS

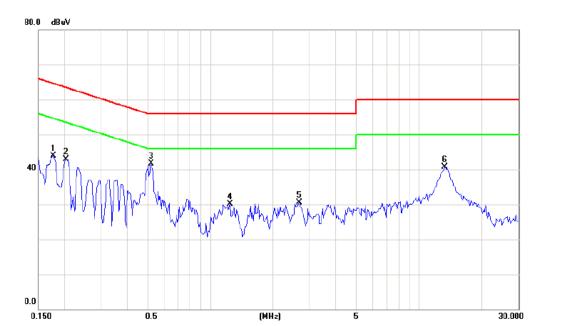
The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT is continue transmitter/receive data or Hopping on mode.


4.1.7 TEST RESULTS

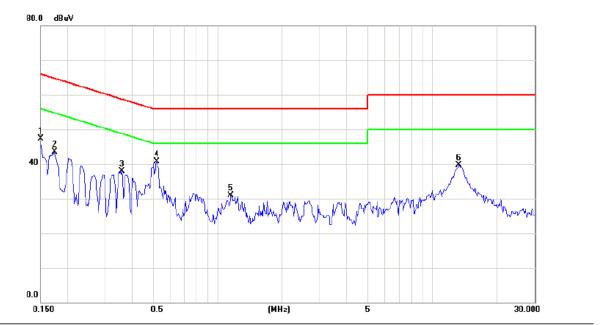
Remark

- (1) All readings are QP Mode value unless otherwise stated AVG in column of Note. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform. In this case, a "*" marked in AVG Mode column of Interference Voltage Measured.
- (2) All readings are peak mode value. If the value of peak trace is less than -6 , QP will not be marked. Otherwise QP and AVG will be marked.
- (3) Measuring frequency range from 150KHz to 30MHz.

EUT:	Sound Rise	Model Name :	SFQ-08
Temperature:	23 ℃	Relative Humidity:	50 %
Test Power:	AC 120V/60Hz	Phase:	Line
Test Mode:	Normal Link/ NSA15EU-075200		


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1540	16.50	9.52	26.02	55.78	-29.76	AVG	
2	*	0.1796	49.54	9.53	59.07	64.50	-5.43	peak	
3		0.2575	11.90	9.53	21.43	51.51	-30.08	AVG	
4		0.2790	45.14	9.54	54.68	60.85	-6.17	peak	
5		0.3830	10.29	9.54	19.83	48.21	-28.38	AVG	
6		0.4040	41.39	9.54	50.93	57.77	-6.84	peak	
7		1.0950	34.27	9.57	43.84	56.00	-12.16	peak	
8		2.9820	23.83	9.60	33.43	56.00	-22.57	peak	
9		7.8670	14.17	9.66	23.83	60.00	-36.17	peak	

UT:			So	und	Ris	e				M	odel Na	me :	SFQ-	08		
emperat	mperature: 2		23	23 °C						Re	Relative Humidity:			50 %		
		AC							Pł	Phase:			Neutral			
est Mod	e:		No	rma	ıl Lir	1k/ 1	NSA	15EU-0	75200							
,		10 V														
t	\$U.U	dBu¥														
	-															
	~	2 X	~	-												
			m'	L.	6 X											
				-	× ×	~~~~		7								
	40						m w	mintin								
									W WWW	8 7 1 100						
	1 X		3		5				WF 14	-0 PW4	Manson			â		
	Î		×		x						man	howwwww	unternen h	man		
	_															
ſ	0.0															
	0.150	0			0	.5			(MHz)		5			30.000		
No.	Mk	Fre		Read Lev		Cor	rect ctor	Measure- ment	Limit	Over						
	max.	MHz	·	dBu		d		dBuV	dBuV	dB	Detector	Comment				
1		0.164	10	16.5	50	9.	52	26.02	55.26	-29.24	AVG					
2	*	0.177	73	49.9	90	9.	53	59.43	64.61	-5.18	peak					
3		0.292	24	14.7	79	9.	54	24.33	50.46	-26.13	AVG					
4		0.310	00	43.5	53	9.	54	53.07	59.97	-6.90	peak					
5		0.462	23	14.7	79	9.	55	24.34	46.65	-22.31	AVG					
6		0.474	12	39.9	93	9.	55	49.48	56.44	-6.96	peak					
7		1.095	50	34.2	27	9.	57	43.84	56.00	-12.16	peak					
8		2.982		25.3			60	34.93	56.00	-21.07	peak					
		27.515		16.2			78	26.04	60.00		peak					


		-	
EUT:	Sound Rise	Model Name :	SFQ-08
Temperature:	23 ℃	Relative Humidity:	50 %
Test Power:	AC 120V/60Hz	Phase:	Line
Test Mode:	Normal Link/ S018KM0900200		

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1773	34.34	9.59	43.93	64.61	-20.68	peak	
2	0.2046	33.32	9.59	42.91	63.42	-20.51	peak	
3 *	0.5210	32.15	9.59	41.74	56.00	-14.26	peak	
4	1.2437	20.48	9.60	30.08	56.00	-25.92	peak	
5	2.6732	20.85	9.62	30.47	56.00	-25.53	peak	
6	13.3046	30.61	10.00	40.61	60.00	-19.39	peak	

EUT:	Sound Rise	Model Name :	SFQ-08
Temperature:	23 ℃	Relative Humidity:	50 %
Test Power:	AC 120V/60Hz	Phase:	Neutral
Test Mode:	Normal Link/ S018KM0900200		

MHz 1 0.150 2 0.174 3 0.357 4 * 0.521 5 1.154 0 12.204	Reading req. Level	Correct Factor	Measure- ment	Limit	Over		
2 0.174 3 0.357 4 * 0.521 5 1.154	MHz dBuV	dB	dBuV	dBuV	dB	Detector	Comment
3 0.357 4 * 0.521 5 1.154	500 37.75	9.59	47.34	66.00	-18.66	peak	
4 * 0.521 5 1.154	740 33.95	9.59	43.54	64.77	-21.23	peak	
5 1.154	3573 28.34	9.59	37.93	58.79	-20.86	peak	
	5210 31.15	9.59	40.74	56.00	-15.26	peak	
0 40.004	540 21.37	9.60	30.97	56.00	-25.03	peak	
6 13.304	3046 29.61	10.00	39.61	60.00	-20.39	peak	

Neutron Engineering Inc.

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	(dBuV/m) (at 3M)		
FREQUENCT (MILZ)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

4.2.2 MEASUREMENT INSTRUMENTS LIST ANS SETTING

·					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Antenna	Schwarbeck	VULB9160	9160-3232	Apr. 25, 2014
2	Amplifier	HP	8447D	2944A09673	Apr. 25, 2014
3	Test Receiver	R&S	ESCI	100382	Apr. 25, 2014
4	Test Cable	N/A	C-01_CB03	N/A	Jun.29.2014
5	Antenna	ETS	3115	00075789	Apr. 25, 2014
6	Amplifier	Agilent	8449B	3008A02274	Apr. 25, 2014
7	Spectrum	Agilent	E4408B	US39240143	Nov. 16.2013
8	Test Cable	HUBER+SUHNER	C-45	N/A	May.01.2014
9	Controller	СТ	SC100	N/A	N/A
10	Horn Antenna	EMCO	3115	9605-4803	Apr. 25, 2014
11	Active Loop Antenna	R&S	HFH2-Z2	830749/020	Apr. 25, 2014
12	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170319	Oct.11.2014

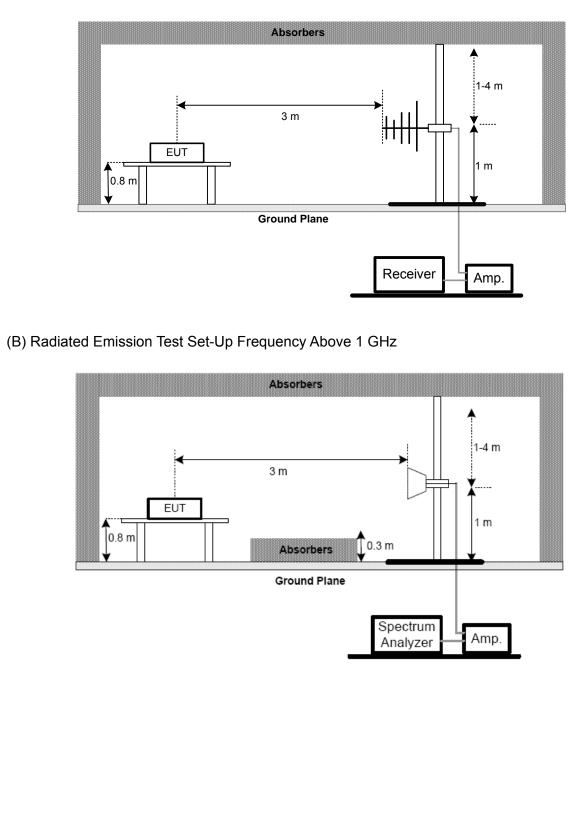
Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of Equipment List is One Year.

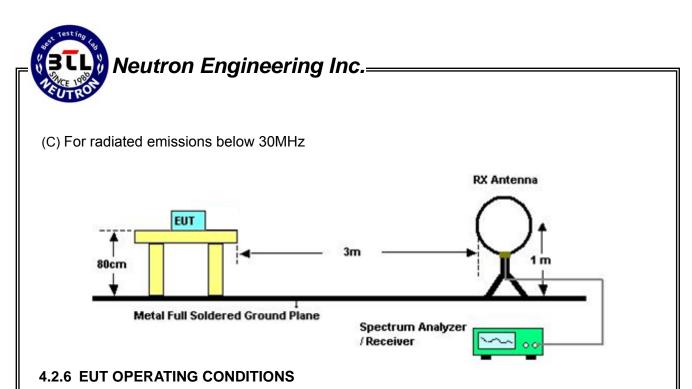
Spectrum Parameter	Setting				
Attenuation	Auto				
Start Frequency	1000 MHz				
Stop Frequency	10th carrier harmonic				
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average				

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~90kHz for PK/AVG detector
Start ~ Stop Frequency	90kHz~110kHz for QP detector
Start ~ Stop Frequency	110kHz~490kHz for PK/AVG detector
Start ~ Stop Frequency	490kHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

4.2.3 TEST PROCEDURE

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.


4.2.4 DEVIATION FROM TEST STANDARD


No deviation

Neutron Engineering Inc.=

4.2.5 TEST SETUP

(A) Radiated Emission Test Set-Up Frequency Below 1 GHz

The EUT tested system was configured as the statements of **4.1.6** Unless otherwise a special operating condition is specified in the follows during the testing.

Neutron Engineering Inc.—

4.2.7 TEST RESULTS (BELOW 30MHZ)

EUT:		Sound Rise		Model Name: SFQ-08					
Temperat	ure:	24 ℃		Relative Humidity: 46 %					
Test Volta	age:	AC120V/60Hz							
Test Mode: TX Mode									
Freq.	Ant.	Reading(RA)	Corr.Factor(CF)	Measured(FS)	Limits(QP)	Margin	Note		
(MHz)	0°/90°	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	NOLC		
0.0094	0°	17.51	24.30	41.81	128.17	-86.36	AVG		
0.0094	0°	19.69	24.30	43.99	148.17	-104.18	PEAK		
0.0135	0°	18.14	24.30	42.44	125.00	-82.56	AVG		
0.0137	0°	20.1	24.30	44.40	145.00	-100.60	PEAK		
0.0241	0°	17.42	24.04	41.46	119.96	-78.50	AVG		
0.0243	0°	20.04	24.04	44.08	139.96	-95.88	PEAK		
0.0326	0°	18.17	23.50	41.67	117.34	-75.67	AVG		
0.0324	0°	20.45	23.50	43.95	137.34	-93.39	PEAK		
0.4230	0°	18.74	19.98	38.72	95.08	-56.35	AVG		
0.4210	0°	18.72	19.98	38.70	115.08	-76.37	PEAK		
1.5240	0°	18.71	19.55	38.26	63.94	-25.69	QP		
Freq.	Ant.	Reading(RA)	Corr.Factor(OF)	Measured(FS)	Limits(QP)	Margin	Note		
(MHz)	0°/90°	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	NOLE		
0.0093	90°	18.52	24.30	42.82	128.21	-85.39	AVG		
0.0094	90°	20.21	24.30	44.51	148.21	-103.70	PEAK		
0.0233	90°	17.54	24.09	41.63	120.26	-78.63	AVG		
0.0235	90°	20.33	24.09	44.42	140.26	-95.84	PEAK		
0.0316	90°	18.43	23.57	42.00	117.61	-75.62	AVG		
0.0317	90°	20.68	23.57	44.25	137.61	-93.37	PEAK		
0.0426	90°	17.84	22.87	40.71	115.02	-74.31	AVG		
0.0427	90°	20.38	22.87	43.25	135.02	-91.77	PEAK		
0.2370	90°	17.35	20.43	37.78	100.11	-62.33	AVG		
0.2390	90°	20.71	20.43	41.14	120.11	-78.97	PEAK		
1.6710	90°	18.62	19.53	38.15	63.14	-24.99	QP		

Remark :

(1) The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

(2) Distance extrapolation factor = 40 log (specific distance / test distance) (dB);.

(3) Limit line = specific limits (dBuV) + distance extrapolation factor..

4.2.8 TEST RESULTS (BETWEEN30 – 1000 MHZ)

Remark :

- (1) Reading in which marked as QP or Peak means measurements by using are Quasi-Peak Mode or Peak Mode with Detector BW=120KHz; SPA setting in RBW=120KHz, VBW =120KHz, Swp. Time = 0.3 sec./MHz.
- (2) All readings are Peak unless otherwise stated QP in column of 『Note』. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (3) Measuring frequency range from 30MHz to 1000MHz.
- (4) If the peak scan value lower limit more than 20dB, then this signal data does not show in table.

T:		Sound	Sound Rise			Mode	Model Name:			SFQ-08		
nperatu	re:	24 ℃			Relat	ive Hu	midity:	56 %				
t Power	r:	AC120	0V/60Hz	Z		Phas	e:	-	Vertical			
t Mode:	:	TX 24	02MHz	-CH00-	1Mbps/	NSA15	EU-07	5200				
80.0	dBuV/m											
40												
										ŝ		
×		3 X		5 X								
	ş	×		^								
0.0												
30.0	00 127.0	0 224.	00 321	.00 418.	00 515.0	D 612.	00 70	9.00 80	6.00	1000.00 MHz		

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	37.7600	44.03	-21.38	22.65	40.00	-17.35	peak	
2		103.7200	40.60	-24.66	15.94	43.50	-27.56	peak	
3		184.2300	42.15	-20.52	21.63	43.50	-21.87	peak	
4		218.1800	37.35	-20.30	17.05	46.00	-28.95	peak	
5		392.7800	33.24	-14.38	18.86	46.00	-27.14	peak	
6		949.5600	30.32	-5.43	24.89	46.00	-21.11	peak	

UT:			Sound	Rise				Mode	I Name:		SFQ-0)8	
emper	atur	e:	24 ℃					Relati	ve Hum	idity:	56 %		
est Po			AC120	V/60Hz	:			Phase			Horizo	ontal	
est Mo	ode:		TX 240	2MHz ·	-Cł	-100-1N	lbps/ N	ISA15	EU-075	200			
			<u>I</u>										
	80.0	dBu∀∕m											
													7
													-
													-
													4
	40		<u>[</u>										
													1
										5 X		Б Х	
					-	3 X		*		••			-
	1				Z X								
	×												1
	0.0											1000.00	
	30.0	00 127.0				418.00	515.00	612.0	00 709.0	00 80	6.00	1000.00	MHz
No.	Mk.	Freq.	Reading Level	g Corre Facto		Measure ment	- Limit	Over					
		MHz	dBuV	dB		dBuV/m	dBuV/m	dB	Detector	Comm	ient		
1		40.6700	30.93	-21.2	5	9.68	40.00	-30.32	peak				
2	3	333.6100	31.70	-17.34	4	14.36	46.00	-31.64	peak				
3	3	392.7800	31.66	-13.4	7	18.19	46.00	-27.81	peak				
4	5	552.8300	29.38	-10.23	3	19.15	46.00	-26.85	peak				
		789.5100	30.14	-7.5		22.61	46.00	-23.39					

24.08 46.00 -21.92

peak

6 * 911.7300 29.34

-5.26

UT:		Sound	d Rise			Mod	el Name	e:	SFQ-0	В	
emperatu	ire:	24 ℃				Rela	tive Hu	midity:	56 %		
est Powe	r:	AC12	0V/60H	z		Phas	se:		Vertical		
est Mode	:	TX 24	41MHz	-CH39	-1Mbps/	NSA1	5EU-07	5200			
80.0	dBuV/m										
40											
-											
-		X						5		б Х	
×	ž			*				×		^	
	0			Ŷ							

	30.0	00 127.00	224.00	321.00	418.00	515.00	612.00	709.00	806.00	1000.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		36.7900	43.81	-21.48	22.33	40.00	-17.67	peak		
2		99.8400	42.92	-24.78	18.14	43.50	-25.36	peak		
3	* 1	181.3200	47.54	-20.03	27.51	43.50	-15.99	peak		
4	3	392.7800	32.32	-14.38	17.94	46.00	-28.06	peak		
5	8	303.0900	29.90	-6.66	23.24	46.00	-22.76	peak		
6	ę	34.0400	29.54	-5.34	24.20	46.00	-21.80	peak		

0.0

			1										050.00				
UT:			Sound	l Ri	se						Name:		SFQ-	08			
Tempe	ratu	ire:	24 ℃						Rela	tive	e Hum	idity:	56 %				
Test Po	we	r:	AC12)//C	60Hz				Phas	e:			Horizo	ontal			
Fest Mo	ode	:	TX 24	41	MHz –C	CH39-	1M	bps/	NSA15	5El	J-0752	200					
			-														
	80.0	dBu∀/m															
															7		
	_														-		
															-		
															4		
	40																
	_													C	-		
											4×		5 X	БХ Х			
						3 X					^				-		
	1		2 X														
	0.0 30.0	000 127.	00 224	00	321.00	418.	00	515.0	0 612	00	709.0	n 900	.00	1000.00			
			Readi		Correct	Meas											
No.	Mk.	Freq.	Leve		Factor	me		Limi	Over	r							
		MHz	dBuV		dB	dBuV	/m	dBuV/r	n dB		Detector	Comm	ent				
1		38.7300	31.33	3	-21.21	10.1	2	40.00	-29.88	3	peak						
2		196.8400	33.44	1	-22.08	11.3	6	43.50	-32.14	1	peak						
3		392.7800		6	-13.47	18.2	9	46.00	-27.7	1	peak						
4		703.1800	30.84	1	-9.04	21.8	0	46.00	-24.20)	peak						
5		805.0300	30.37	7	-7.93	22.4	4	46.00	-23.56	6	peak						
6	*	923.3700	30.69	2	-5.42	25.2	7	46.00	-20.73		peak						

		2 I.							<u>.</u>							
EUT:				Sound	Rise				Model	I Name:	:	SFQ-0	8			
Гетре	era	ture	:	24 ℃					Relati	ve Hum	nidity:	56 %				
Fest P	ow	er:		AC120)V/60H:	z			Phase):		Vertica	ıl			
Fest M	lod	e:		TX 248	30MHz	-CH78	-1Mbp	s/ N	ISA15E	EU-075	200	•				
						-				-						
	80.0	dB	uV/m													
]		
														-		
	-		—					+-								
														4		
														-		
	40															
			∽													
														-		
		1 X	_			2					5 X		Б Х			
			\$			X			\$ X					1		
	0.0 30.	.000	127.00	224.00	0 321.0	.00 418	.00 51	5.00	612.00	0 709.0	0 806	.00	1000.00	 MHz		
				Reading	g Corre	ct Meas										
No.	Mk		Freq.	Level	Facto	or me	in the second se	mit	Over							
	_		MHz	dBuV	dB	dBuV			dB	Detector	Comme	ent				
1	*		5.7900	43.52	-21.48				-17.96	peak						
2			.8400	42.93	-24.78				-25.35	peak						
3			.7800	32.79	-14.38				-27.59	peak						
4			8.9500	29.90	-11.97				-28.07	peak						
5			.7500	29.20	-6.22				-23.02	peak						
6		004	.0400	29.45	-5.34	4 24.1	11 46.	00	-21.89	peak						

JT:	Sound Rise		Model Name:	SFQ-08
mperature:	24 ℃		Relative Humidity:	56 %
st Power:	AC120V/60H	Z	Phase:	Horizontal
st Mode:	TX 2480MHz	-CH78-1Mbps/ N	SA15EU-075200	
80.0 dBu∀/m				
40				
				5 6
		23	4 ×	×
1 ×				
×				
0.0				
30.000 12	7.00 224.00 321		612.00 709.00 80	1000.00 MHz
No. Mk. Fre	Reading Corre		Over	
MHa	dBuV dB	dBuV/m dBuV/m	dB Detector Comm	nent
1 38.730	0 31.19 -21.2	1 9.98 40.00	-30.02 peak	

1	38.7300	31.19	-21.21	9.98	40.00	-30.02	peak
2	392.7800	31.46	-13.47	17.99	46.00	-28.01	peak
3	416.0600	30.49	-12.69	17.80	46.00	-28.20	peak
4	547.9800	28.72	-10.26	18.46	46.00	-27.54	peak
5	795.3300	29.08	-7.27	21.81	46.00	-24.19	peak
6 *	945.6800	29.75	-5.48	24.27	46.00	-21.73	peak

UT:				Sound	Rise					Model	Name:		SFQ-0	08	
empe	rat	ure:		24 ℃						Relativ	e Humi	dity:	56 %		
est P	owo	er:		AC120)V/60	Hz				Phase	:		Vertic	al	
est M	od	e:		TX 240	02M⊦	lz –C	:H00-:	3Mb	ps/ N	SA15E	U-0752	200			
	80.0	dB u/	//m												
															_
															-
															-
	40														_
		1										5		ě	
		i K	z				3 X			\$		X		^	_
							Ŷ			Ŷ					
															-
	0.0														
	30	.000	127.00			321.00	418.0		515.00	612.0	0 709.0	0 8	06.00	1000.0	10 MHz
No.	Mk	. F	req.	Readin Level		orrect actor	Meas mer		Limit	Over					
		١	ИНz	dBuV		dB	dBuV/	m	dBuV/m	dB	Detector	Com	ment		
1	*	36.7	7900	44.09	-2	1.48	22.6	1	40.00	-17.39	peak				
2		99.8	3400	43.10	-24	4.78	18.3	2	43.50	-25.18	peak				
3		392.7		32.52		4.38	18.1		46.00	-27.86	peak				
4		552.8		29.91		1.99	17.9		46.00	-28.08	peak				
5		780.7		29.93		5.21	23.7		46.00	-22.28	peak				
6		932. ⁻	1000	29.27	-	5.45	23.8	2	46.00	-22.18	peak				

UT:			Sound	Rise			Model	Name:		SFQ-08	3	
emper	ature:	4	24 °C				Relativ	e Humic	dity:	56 %		
est Po	wer:	/	AC120	V/60Hz			Phase	:		Horizon	ntal	
est Mo	ode:	-	TX 240	2MHz –C	CH00-3N	lbps/ N	SA15E	U-07520	00			
	80.0 dBu	ıV/m										
]
												-
												1
												1
												1
	40											-
									_		6 X	
					3 X		4 X		5X		x	
			2 X		×							
	¥		x									{
	0.0											
	30.000	127.00	224.0	0 321.00	418.00	515.00	612.00) 709.00	806	6.00	1000.00	MHz
No.	Mk	Freq.	Reading Level	g Correct Factor	Measure ment	- Limit	Over					
140.		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	ent		
1		.7300	31.60	-21.21	10.39	40.00	-29.61	peak				
2		.8400	33.73	-22.08	11.65	43.50	-31.85	peak				
3		7800	31.32	-13.47	17.85	46.00	-28.15	peak				
4	548	.9500	29.86	-10.17	19.69	46.00	-26.31	peak				
5	785	.6300	30.36	-7.72	22.64	46.00	-23.36	peak				
6	* 921	.4300	29.65	-5.44	24.21	46.00	-21.79	peak				

UT:			Sound R	ise			Model	Name:	S	SFQ-08	3	
emper	atu	re:	24 ℃				Relativ	e Humid	ity: 5	6 %		
est Po	we	r:	AC120V/	/60Hz			Phase:		V	/ertical		
est Mo	de	:	TX 2441	MHz –C	H39-3M	ops/ N	SA15E	U-07520	0			
			•									
	80.0	dBuV∕m										
												1
												1
												-
												1
	40											-
	-											
									F		c	1
		1 ×			з Х				5		<u>Ś</u>	
		2 X			X		*					
												-
	0.0											
	30.	.000 127.	00 224.00	321.00	418.00	515.00	612.00	709.00	806.0	10	1000.00	MHz
N.c.	Mk	F	Reading	Correct	Measure-	Limit	Over					
INO.	IVIK	. Freq. MHz	dBuV	Factor dB	ment dBuV/m	dBuV/m	dB	Detector	Commer	at .		
1	*	37.7600		-21.38	22.58	40.00	-17.42	peak	Commen	n		
2		99.8400		-24.78	17.52	43.50	-25.98	peak				
3		392.7800		-14.38	18.38	46.00	-27.62	peak				
4		557.6800		-12.21	17.57	46.00	-28.43	peak				
5		797.2700		-6.37	23.80	46.00	-22.20	peak				
6		902.0300		-6.12	23.77	46.00	-22.23	peak				

EUT:		Sound R	lise			Mode	I Name:	0,	SFQ-08	3	
Temperatu	re:	24 ℃				Relati	ve Humi	dity: 8	56 %		
Test Power	:	AC120V	/60Hz			Phase	e:	ŀ	Iorizon	ital	
Test Mode:		TX 2441	MHz –C	H39-3M	bps/ N	SA15	EU-0752	00			
80.0	dBuV/m			3 X		4		50 5		6 X	
Ż	{	2 X		^							
0.0											
30.	000 127.0		321.00	418.00	515.00	612.0	00 709.00	806.0	10	1000.00	MHz
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over					
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Commer	nt		
1	38.7300	31.55	-21.21	10.34	40.00	-29.66					
	190.0500	34.19	-20.98	13.21	43.50	-30.29					
	392.7800	31.67	-13.47	18.20	46.00	-27.80					
	552.8300	29.47	-10.23	19.24	46.00	-26.76					
5	793.3900	29.55	-7.36	22.19	46.00	-23.81	peak				

23.82 46.00 -22.18

peak

6 * 945.6800

-5.48

29.30

UT:			S	Sound	Ris	se				Model	Name:		SFQ-0)8	
empei	ratu	re:	2	24 ℃						Relativ	e Hum	idity:	56 %		
est Po	we	r:	A	AC120)V/6	60Hz				Phase:			Vertica	al	
est Mo	ode	:	٦	TX 248	30N	1Hz –C	H78-3	Mbp	os/ N	SA15E	U-0752	200	·		
			•												
	80.0	dBu	V/m												
	_														-
															1
									_						1
	40														
	-		1												
	1												5 X	ŝ	1
	1 X	5	2 X				3			4 X			^	^	-
			^				X			^					
	0.0		407.00										000.00	1000.00	
	30.	000	127.00	224.		321.00	418.0		515.00	612.0	0 709.0	0	806.00	1000.00	MHZ
No.	Mk.	F	Freq.	Readin Level		Correct Factor	Measu ment		Limit	Over					
			MHz	dBuV		dB	dBuV/r	n c	lBuV/m	dB	Detector	Co	mment		
1	*	37.	7600	43.62	2	-21.38	22.24		40.00	-17.76	peak				
2		99.	8400	41.66	;	-24.78	16.88		43.50	-26.62	peak				
3			5400	30.14		-14.33	15.81		46.00	-30.19	peak				
4			9200	28.86		-11.89	16.97		46.00	-29.03	peak				
5			9600	29.83		-6.39	23.44		46.00	-22.56	peak				
6		934.	0400	29.07		-5.34	23.73		46.00	-22.27	peak				

JT:				Sound	Rise			Model	Name:		SFQ-(28	
mpe	rati	ure:		24 ℃				Relativ	e Humi	dity:	56 %		
st P	owe	er:		AC120	V/60Hz			Phase			Horizo	ontal	
st M	ode	e:	·	TX 248	0MHz –	CH78-3	Mbps/ N	ISA15E	U-0752	00			
	80.0	dBuV/m											
]
													{
													1
													1
		_											1
	40 _												-
	-												
										5		6 X	1
						Х		4 X		5X		<u>^</u>	
				2									
	X			Ž X									1
	0.0												
	30.0	00 12	7.00	224.00		418.00		612.0) 709.00	D 80	6.00	1000.00	MHz
No.	Mk.	Fre	q.	Reading Level	Correct Factor	Measu ment	1.	Over					
		MH:	· ·	dBuV	dB	dBuV/m		dB	Detector	Comn	nent		
1		38.730)0	30.95	-21.21	9.74	40.00	-30.26	peak				
2		196.840)0	32.70	-22.08	10.62	43.50	-32.88	peak				
3	;	392.780)0	33.50	-13.47	20.03	46.00	-25.97	peak				
4		549.920		29.79	-10.10	19.69		-26.31	peak				
5		776.900		30.63	-8.02	22.61	46.00	-23.39	peak				
6	*	926.280	00	29.89	-5.40	24.49	46.00	-21.51	peak				

EUT:	Sound Rise	Model Name:	SFQ-08
Temperature:	24 °C	Relative Humidity:	56 %
Test Power:	AC120V/60Hz	Phase:	Vertical
Test Mode:	TX 2402MHz CH00-1Mbps/ §	3018KM0900200	-
80.0 dBu∀/m			
80.0 dBuV/m			
80.0 dBu∀/m			
80.0 dBuV/m			
80.0 dBuV/m			
80.0 dBuV/m			

5 X

\$ X

4 X

	0.0 30	.000	127.00	224.00	321.0	0 418	.00 515	.00	612.0	0 709.	00 806	.00	1000.00	MHz
No.	Mk	-	Freq.	Reading Level	Correc Facto		1.1.	nit	Over					
			MHz	dBuV	dB	dBu\	//m dBu\	/m	dB	Detector	Comme	ent		
1	*	57	7.1600	42.99	-14.01	28.9	98 40.0	00 -	-11.02	peak				
2		75	5.5900	42.88	-15.94	26.9	94 40.0	00 -	-13.06	peak				
3		138	3.6400	42.08	-14.48	27.0	60 43.	50 -	-15.90	peak				
4		706	6.0900	29.74	-4.51	25.2	23 46.0	00 -	-20.77	peak				
5		806	6.0000	29.98	-1.92	28.0	06 46.0)0 -	-17.94	peak				
6		924	1.3400	29.56	0.07	29.0	63 46.0	00 -	-16.37	peak				

1 2 X 2 X

3 X

UT:				S	ound	d R	lise						Mode	el Na	ame		SF	Q-08	3		
empe	rat	ure	:	2	4 ℃								Relat	ive	Hum	nidity:	56	%			
est Po	owe	er:		Α	C12	0V	/60H:	Z					Phase	e:			Ho	orizor	ntal		
est M	ode	e:		Т	X 24	02	MHz	–C	:H00-	·1M	bps/	S	018KI	M09	9002	00					
	80.0	dB	uV/m																		
	Γ																				
					r																
	40																				
	+																				
															5 X		6 X				
		1 X		2 X					:	3 K			*		Ŷ						
	0.0																				
	30.	000	127.0	00	224.	00	321.	00	418.	00	515.	00	612.0)0	709.0	00 8	806.00		100	0.00	MHz
No.	Mk		Freq.		Readir Level		Corre Facto		Meas mer		Lim	it	Over								
		-	MHz		dBuV		dB	-	dBuV		dBuV/		dB	D	etector	Com	ment				
1		58	.1300)	35.29)	-14.03	3	21.2	6	40.0	0	-18.74	F	eak						
2		159	.0100)	33.91		-12.8	3	21.0	8	43.5	0	-22.42	F	eak						
3		422	.8500		30.33	3	-9.2	9	21.0	4	46.0	0	-24.96	ķ	eak						
4		550	.8900		29.05	5	-5.89	9	23.1	6	46.0	0	-22.84	F	eak						
5		678	.9300		30.11		-5.02	2	25.0	9	46.0	0	-20.91	p	eak						
6	*		.0000		30.75		-1.92		28.8	-	46.0		-17.17		beak						

UT:					Soun	d Ri	se				Mode	el Nan	ne:		SFQ-0	8		
empe	era	ture	•		24 ℃	ŕ					Rela	tive H	umi	dity:	56 %			
est P	ow	/er:			AC12	20V/0	60Hz				Phas	e:			Vertica	al		
est M	loc	le:			TX 24	141N	/IHz –	-CH39	-1N	1bps/ 3	S018K	M090	020	0				
	80.0) dBu	iV/m															
	40				ſ													
		1 X	ſ	Z X		3 X		4 ×				5X				6X		
	0.0 30	.000	127	00	224.	00	321.00	418.	00	515.00	612.	NN 7	09.00	806.	nn	100	0.00	MHz
No.			Freq		Readir Level	ng (Correct Factor		ure-	Limit	Over							
			MHz		dBuV		dB	dBuV	/m	dBuV/m	dB	Detec	tor	Comme	nt			
1	*		1600		42.49		14.01	28.4		40.00	-11.52		k					
2		138.			42.58		14.48	28.1		43.50	-15.40							
3		226.			39.74		14.75	24.9		46.00	-21.01	pea						
4		393.			35.28		-9.98	25.3		46.00	-20.70							
5		671.	.1700	J	30.88	3	-5.24	25.6	4	46.00	-20.36	pea	k					

30.63 46.00 -15.37

peak

6

924.3400

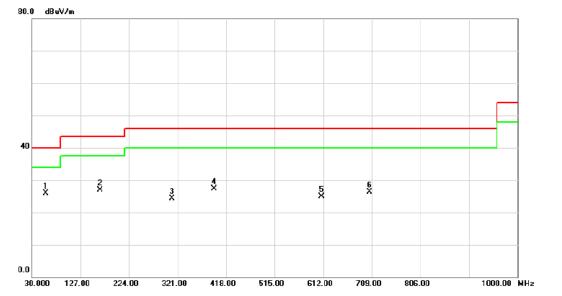
30.56

0.07

UT:				Soun	d Rise					Mode	l Na	ime:		SF	Q-08		
empera	ture	e:		24 °C						Relati	ve I	lum	idity:	56	%		
est Pov	ver:			AC12	0V/60H	łz				Phase	e:			Но	rizon	tal	
est Moo	de:		1	TX 24	41MH	z –0	CH39-	1Mbps/	S	018KN	V09	0020	00				
80.0	н ая	uV/m															
		_															
40																	
	1 X		2 X	3 X				5 X				6 X					
				Ŷ	*												
			-														
0.0																	
30	.000	127	.00	224.	00 32	.00	418.0	0 515.	00	612.0)0	709.0	0 8	06.00		1000.	00 MH
		_		Readir			Measu			~							
No. Mł	ζ.	Freq	-	Level			men			Over							
		MHz		dBuV			dBuV/r			dB		tector	Com	ment			
1 *	* 61.0400 139.6100		40.92			26.29			-13.71	<u> </u>	eak						
2				40.06			25.51			-17.99		eak					
3		2.360		39.14			24.11			-19.39		eak					
4		5.110		33.31			21.20			-24.80		eak					
5		1.260		34.82			25.23			-20.77		eak					
6	671	.170	0	31.88	-5.	24	26.64	46.0	0	-19.36	р	eak					

UT:			ę	Soun	d F	Rise				Model	Name:		SFG	2-08	
emper	atur	e:	2	24 °C	2					Relativ	e Hum	nidity	/: 56 %	6	
est Po	wer		/	AC12	20V	//60Hz				Phase	•		Verti	ical	
est Mo	de:		-	ΓX 24	480)MHz –	C۲	178-1Mb	ops/ S	018KN	09002	00	-		
	80.0	dBu	iV/m												
															_
															_
															-
					┢										
	40				_										_
	-													6 X	
		1 X	2 X			з Х			4 X	5 X				~ ~	-
		^	Î			<u>^</u>			×						
	0.0														
	30.0	00	127.00	2	24.00) 321.0)0	418.00	515.00	612.0	0 709.	.00	806.00	1000.00	MHz
No.	Mk.		Freq.	Rea Lev	_	Corre Facto		Measure- ment	Limit	Over					
			MHz	dB		dB		dBuV/m	dBuV/m	dB	Detector	r C	omment		
1			1600	38		-14.01		24.48	40.00	-15.52	peak				
2			0900	38		-13.86		24.59	43.50	-18.91	peak				
3			0700	39		-14.83		24.99	46.00	-21.01	peak				
4			2600	33.		-9.59		24.23	46.00	-21.77	peak				
5			1800	34		-7.91		26.53	46.00	-19.47	peak				
6	*	926.	2800	30	.53	0.02	2	30.55	46.00	-15.45	peak				

JT:				S	ound R	lise				Mode	١N	lame:		SFQ-0	8	
emper	atu	ire:		24	4 ℃					Relati	ve	Humi	dity:	56 %		
est Po	we	er:		А	C120V	/60Hz				Phase	e:			Horizo	ontal	
est Mo	bde	:		T	X 2480	MHz -	-C	H78-1Mt	ps/ S	018KI	V 0	90020	0			
	80.0	dB	uV/m													
	[
											-					_
																-
																-
	40															
		1		ZX					_		5 X	ě				_
		1 X		Ŷ	£ X				4 X		×	×				
																_
	0.0															
	L	.000	127.	.00	224.00	321	00	418.00	515.0) 612	.00	709.0	00	806.00	1000.00) MHz
					Reading	Corre	ect	Measure-								
No.	Mk	ι.	Freq	-	Level	Fact	or	ment	Limit		r					
			MHz		dBuV	dB		dBuV/m	dBuV/n			Detector	Cor	nment		
1	*		.7300		39.09	-14.6		24.48	40.00			peak				
2			.7600		40.27	-14.1		26.08	43.50			peak				
3			.0600		36.41	-14.8		21.54	46.00			peak				
4			.4200		34.95	-10.4		24.54	46.00			peak				
5			.7600		32.74	-7.2		25.46	46.00			peak				
6		704	.1500	J	29.85	-4.4	8	25.37	46.00	-20.6	5	peak				


UT:			Sound F	Rise			Model	Name:		SFQ-08		
empe	ratui	re:	24 °C				Relativ	e Humic	dity:	56 %		
Test Po	ower	:	AC120V	/60Hz			Phase	:		Vertical		
Fest M	ode:		TX 2402	MHz –C	H00-3N	/lbps/ S	018KN	10900200	0			
	80.0	dBuV∕m										
]
												-
												-
												1
												1
	40											-
		1 2									7	
		X X			3 X	*	5 X			6 X	×	-]
												-
	0.0 30.00	0 127.00	224.00	321.00	418.00	515.00	612.0	0 709.00	806	00	1000.00	
			Reading	Correct	Measure		012.0				1000.00	
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over					
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	ent		
1		78.5000	44.15	-16.32	27.83	40.00	-12.17	peak				
2		24.0900	43.45	-13.86	29.59	43.50	-13.91	peak				
3		93.7500	36.28	-9.98	26.30	46.00	-19.70	peak				
4		67.4700	34.51	-9.35	25.16	46.00	-20.84	peak				
5		48.9500	32.06	-5.94	26.12	46.00	-19.88	peak				
6		70.0200	29.12 28.56	-2.25	26.87 28.02	46.00 54.00	-19.13 -25.98	peak				
	9	01.5900	20.00	-0.04	20.02	54.00	-20.90	peak				

UT:				S	Sound	Rise					Mode	l Na	ame:		SFC	Q-08		
empe	rat	ure		2	4 ℃						Relati	ve l	Humi	dity:	56 %	6		
est Po	owe	er:		Α	C120	V/60⊦	lz				Phase	e:			Hori	zont	al	
est M	ode	e:		Т	X 240	2MHz	<u> </u>	:H00-:	3MI	ops/ S	018KN	N09	0020	0				
	80.0	dB	uV/m															
																		-
	40																	
		1 X		2 X 3 X						5						Б Х		
	_		X3				*	k	5 X									
	0.0																	
	30.	000	127.		224.0		1.00	418.		515.0	612.	.00	709.0	0 80	6.00		1000.00	MHz
No.	Mk		Freq		Reading Level) Con Fac		Meas mer		Limit	Over							
			MHz		dBuV	dl	3	dBuV	/m	dBuV/m	dB	D	etector	Comn	nent			
1	*		.1600		43.49	-14.		29.4	8	40.00	-10.52		peak					
2			.6400		44.08	-14.		29.6		43.50			peak					
3			.9100		42.24	-14.		27.4		46.00	-18.51		peak					
4			.0000		33.97	-9.		24.5		46.00			peak					
5			.3200		34.61	-9.		25.0 29.8		46.00	-20.92 -16.13		peak peak					
6			0.0200 32.12 -2.															

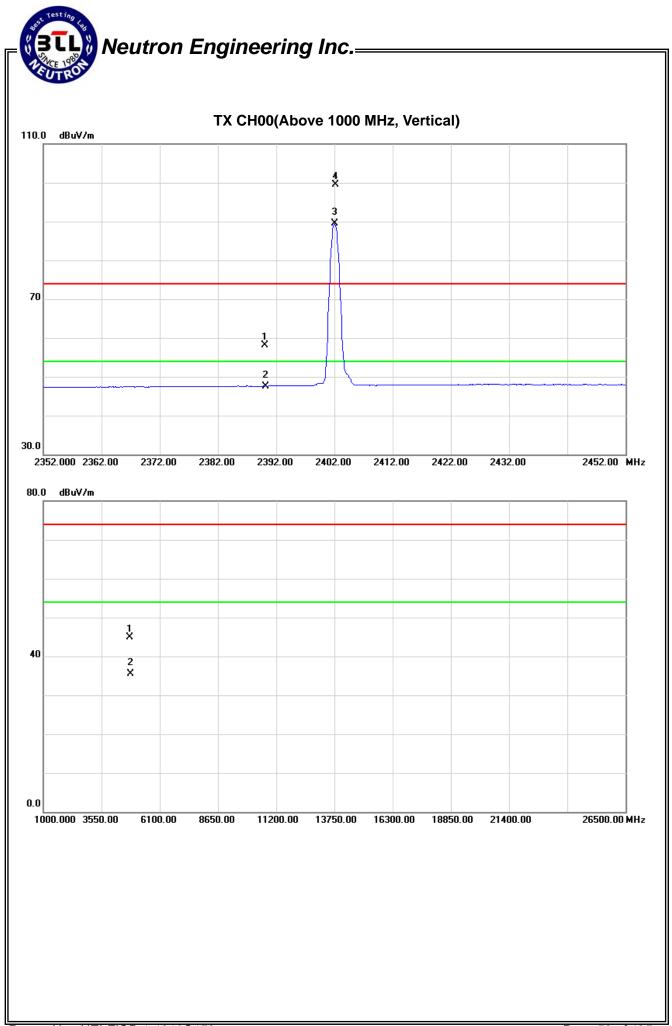
EUT:	Sound Rise	Model Name:	SFQ-08				
Temperature:	24 °C	Relative Humidity:	56 %				
Test Power:	AC120V/60Hz	Phase:	Vertical				
Test Mode:	TX 2441MHz –CH39-3Mbps/ S018KM0900200						

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	57.1600	39.99	-14.01	25.98	40.00	-14.02	peak	
2		165.8000	39.72	-12.79	26.93	43.50	-16.57	peak	
3		310.3300	35.34	-11.03	24.31	46.00	-21.69	peak	
4		393.7500	37.28	-9.98	27.30	46.00	-18.70	peak	
5		609.0900	32.63	-7.78	24.85	46.00	-21.15	peak	
6		704.1500	30.85	-4.48	26.37	46.00	-19.63	peak	

UT:				Sound	d Ri	se			Мо	del	I Name:		SFQ-0	8	
empe	erati	ure:		24 °C					Re	lati	ve Hum	idity:	56 %		
est P	owe	er:		AC12	0V/	60Hz			Ph	ase	e:		Horizontal		
est M	ode	e:		TX 24	41	ЛНz –C	CH39-3	Mbps/	S018	ßKN	/09002	00			
	80.0	dBu	iV/m												Т
															1
															4
	-														4
	40														
															
	_	Ϋ́́	З Х		4 ×		5X			_	5 X				-
					[
															1
	_														-
	0.0														
	30.0	000	127.00	224.	.00	321.00	418.00	515.0)O 6	12.00	0 709.0	0 806	5.00	1000.00	MHz
No.	Mk.		Freq.	Readir Level	-	Correct Factor	Measur ment	e- Limi	it Ov	/er					
			MHz	dBuV		dB	dBuV/m	dBuV/	m d	в	Detector	Comm	ent		
1	*	57.	1600	43.49)	-14.01	29.48	40.0	0 -10	52	peak				
2		75.	5900	43.87		-15.94	27.93	40.0	0 -12	07	peak				
3			0900	43.45		-13.86	29.59	43.5			peak				
4			9100	41.74		-14.75	26.99	46.0			peak				
5			7500	36.78 32.88		-9.98 -5.24	26.80 27.64	46.0			peak				
6								46.0			peak				

UT:			:	Sound	Rise					Model	Name:		SFQ-0	8	
emper	atu	ire:	2	24 ℃						Relativ	e Humi	dity:	56 %		
Test Po	we	r:	/	AC120	V/60H	z				Phase:			Vertica	I	
Test Mo	bde	:	-	TX 248	0MHz	: –C	H78-3	Mbps	s/ S0)18KM	090020	0			
	80.0	dB u\	//m												
]
															ł
															1
															1
	40														{
							_							5	
		1 X	2 X				¥ 3	4 X				5 X		~	1
						_									1
	0.0														
	30.	.000	127.00			21.00	418.0		15.00	612.0	0 709.0	0 80	06.00	1000.00	MHz
No.	Mk	. F	req.	Readin Level		rect ctor	Measu ment		.imit	Over					
		N	MHz	dBuV		В	dBuV/n		uV/m	dB	Detector	Comr	nent		
1	*	62.0	0100	42.30	-14	.75	27.55	4	0.00	-12.45	peak				
2		138.6	6400	41.58	-14	.48	27.10	4	3.50	-16.40	peak				
3		392.7	7800	37.44	-10	.01	27.43	4	6. 00	-18.57	peak				
4		482.9		37.09		.91	27.18		6. 00	-18.82	peak				
5		780.7		30.10		.04	27.06		6. 00	-18.94	peak				
6		964.1	100	30.51	-0	.52	29.99	5	4.00	-24.01	peak				

UT:		9	Sound R	lise			Model I	Name:	1	SFQ-08		
empera	ature	: 2	24 ℃				Relativ	e Humid	lity:	56 %		
est Pov	ver:	/	AC120V	/60Hz			Phase: Horizontal					
est Mo	de:	-	TX 2480	MHz –C	CH78-3M	bps/ S	018KM	0900200)			
8	0.0 dB	luV/m										
												ł
												1
]
	40											1
							- 5				5	
	1×	2 X		3 X	4 X		ž					
				^								-
												1
٥	.0 30.000	127.00	224.00	321.00	418.00	515.00	612.00	709.00	806	00	1000.00	 NH2
			Reading	Correct	Measure-		012.00	100.00			1000.00	
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over					
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	ent		
		7.1600	40.49	-14.01	26.48	40.00	-13.52	peak				
2		1.0900	41.45	-13.86	27.59	43.50	-15.91	peak				
3		4.4400	36.66	-13.40	23.26	46.00	-22.74	peak				
4		4.1200	35.54	-9.48	26.06	46.00	-19.94	peak				
5		9.0900	35.63	-7.78	27.85	46.00	-18.15	peak				
6	948	3.5900	30.33	-0.49	29.84	46.00	-16.16	peak				

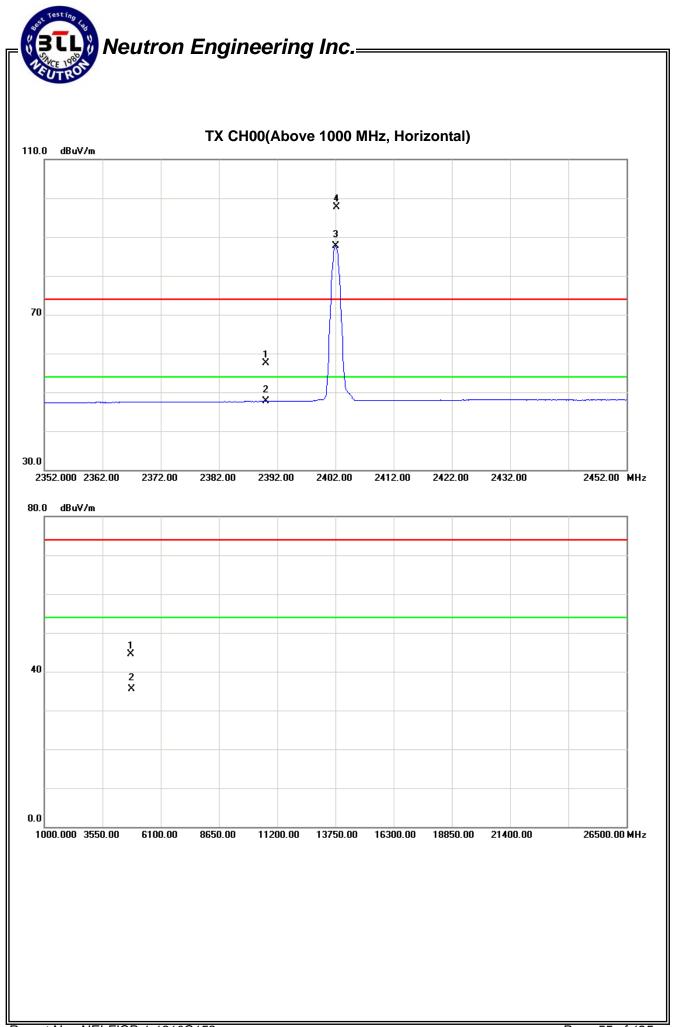

Neutron Engineering Inc.=

4.2.9 TEST RESULTS (ABOVE 1000 MHZ)

EUT :	Sound Rise	Model Name :	SFQ-08
Temperature :	24 ℃	Relative Humidity :	58 %
Pressure :	1010 hPa	Test Voltage :	AC120V/60Hz
Test Mode :	TX 2402MHz – CH 00-1Mbps		

Freq.	Ant.Pol.	Rea	ding	Ant./CF	A	ct.	Lin	nit	Mai	rgin	
		Peak	AV		Peak	AV	Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2390.00	V	23.95	13.50	34.09	58.04	47.59	74.00	54.00	-15.96	-6.41	X/E
2402.20	V	65.45	55.31	34.12	99.57	89.43					X/F
4804.00	V	38.60	29.05	6.38	44.98	35.43	74.00	54.00	-29.02	-18.57	X/H

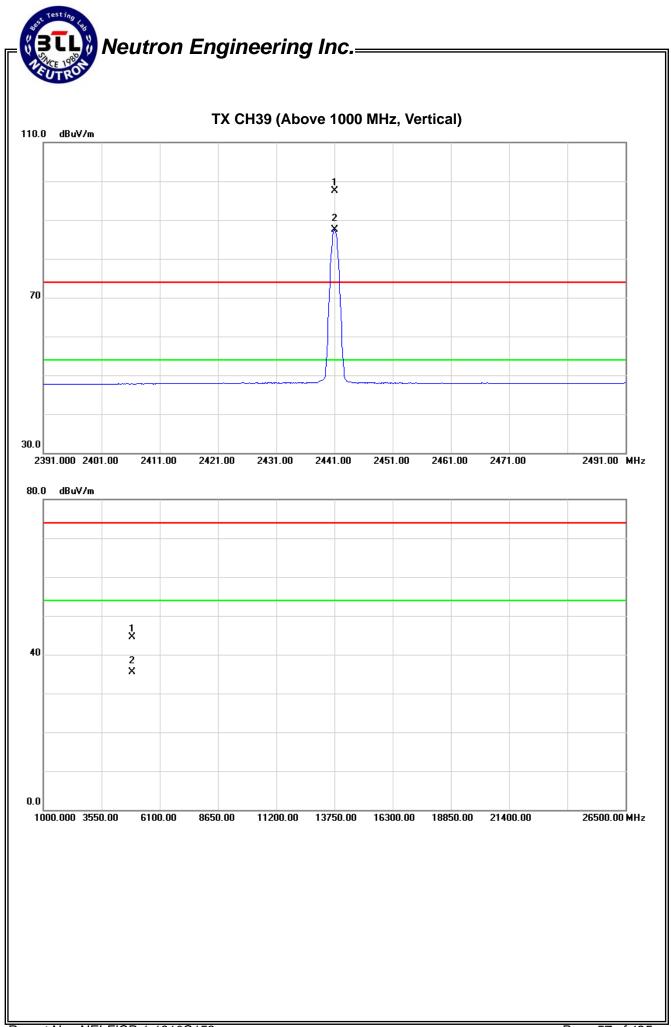
- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency."F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission .
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis : "X" - denotes Laid on Table ; "Y" - denotes Vertical Stand ; "Z" - denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT :	Sound Rise	Model Name :	SFQ-08
Temperature :	24 ℃	Relative Humidity:	58 %
Pressure :	1010hPa	Test Voltage :	AC120V/60Hz
Test Mode :	TX 2402MHz – CH 00-1Mbps	•	

	Freq.	Ant.Pol.	Rea	ding	Ant./CF	A	ct.	Lin	nit	Mai	rgin	
			Peak	AV		Peak	AV	Peak	AV	Peak	AV	Note
	(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2	390.00	Н	23.42	13.56	34.09	57.51	47.65	74.00	54.00	-16.49	-6.35	X/E
2	402.20	Н	63.57	53.58	34.12	97.69	87.70					X/F
4	804.01	Н	38.22	29.03	6.38	44.60	35.41	74.00	54.00	-29.40	-18.59	X/H

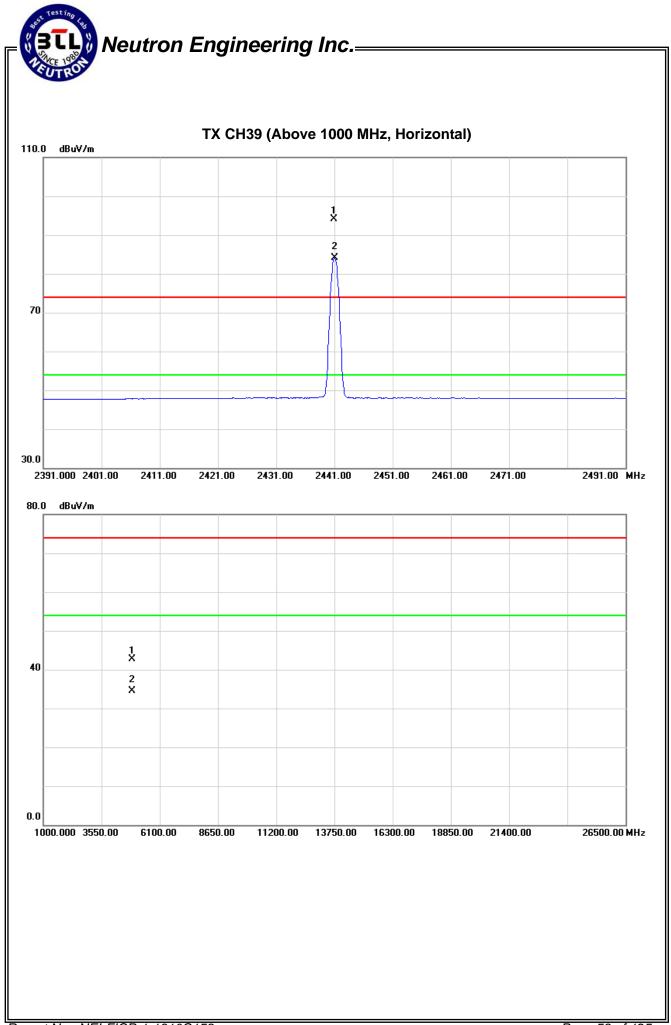
- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency."F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission .
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT :	Sound Rise	Model Name :	SFQ-08
Temperature :	24 ℃	Relative Humidity:	58 %
Pressure :	1010 hPa	Test Voltage :	AC120V/60Hz
Test Mode :	TX 2441MHz –CH39-1Mbps		

Freq.	Ant.Pol.	Rea	ding	Ant./CF	Ac	t.	Lir	nit	Mai	rgin	
Fieq.	AIILFUI.	Peak	AV		Peak	AV	Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	dBuV/m	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2441.00	V	63.22	53.34	34.25	97.47	87.59					X/F
4881.99	V	37.89	28.89	6.61	44.50	35.50	74.00	54.00	-29.50	-18.50	X/H

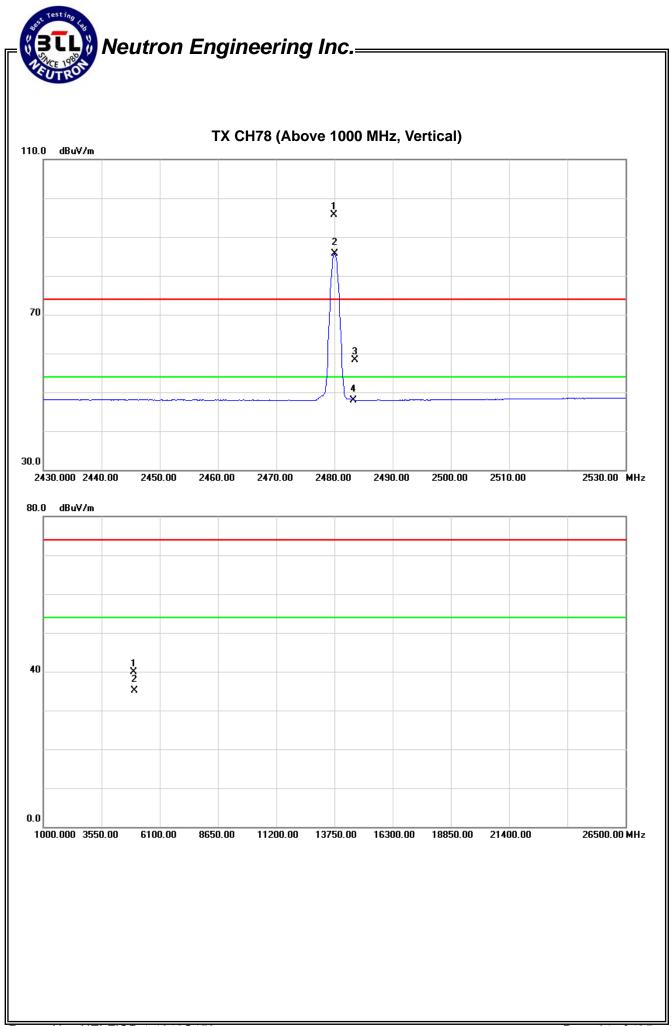
- (1) All readings are Peak unless otherwise stated QP in column of 『Note』. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency."F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission .
- (4) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT :	Sound Rise	Model Name :	SFQ-08
Temperature :	24 ℃	Relative Humidity:	58 %
Pressure :	1010 hPa	Test Voltage :	AC120V/60Hz
Test Mode :	TX 2441MHz –CH39-1Mbps		

Freq.	Ant.Pol.	Rea	ding	Ant./CF	Ac	:t.	Lir	nit	Mai	rgin	
Fieq.	AIILFUI.	Peak	AV		Peak	AV	Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	dBuV/m	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2440.90	Н	59.82	49.76	34.25	94.07	84.01					X/F
4881.97	Н	36.10	27.96	6.61	42.71	34.57	74.00	54.00	-31.29	-19.43	X/H

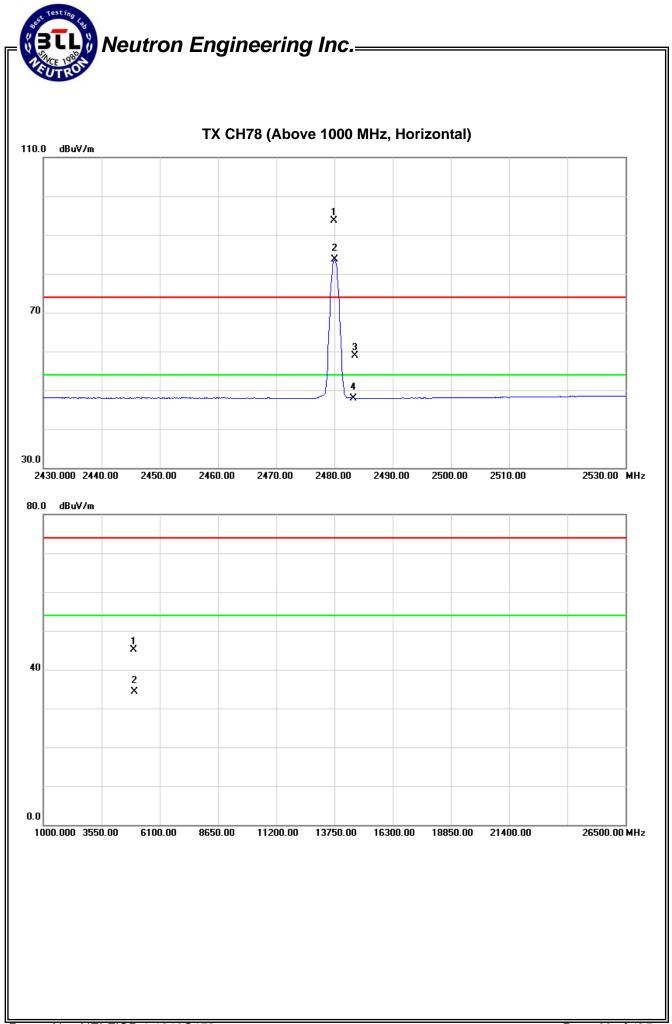
- (1) All readings are Peak unless otherwise stated QP in column of 『Note』. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency."F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission .
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT :	Sound Rise	Model Name :	SFQ-08
Temperature :	24 °C	Relative Humidity:	58 %
Pressure :	1010hPa	Test Voltage :	AC120V/60Hz
Test Mode :	TX 2480MHz –CH78-1Mbps	·	

Freq.	Ant.Pol.	Rea	ding	Ant./CF	A	ct.	Lin	nit	Ma	rgin	
		Peak	AV		Peak	AV	Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2479.90	V	61.41	51.40	34.36	95.77	85.76					X/F
2483.50	V	23.88	13.58	34.37	58.25	47.95	74.00	54.00	-15.75	-6.05	X/E
4959.97	V	33.11	28.19	6.83	39.94	35.02	74.00	54.00	-34.06	-18.98	X/H

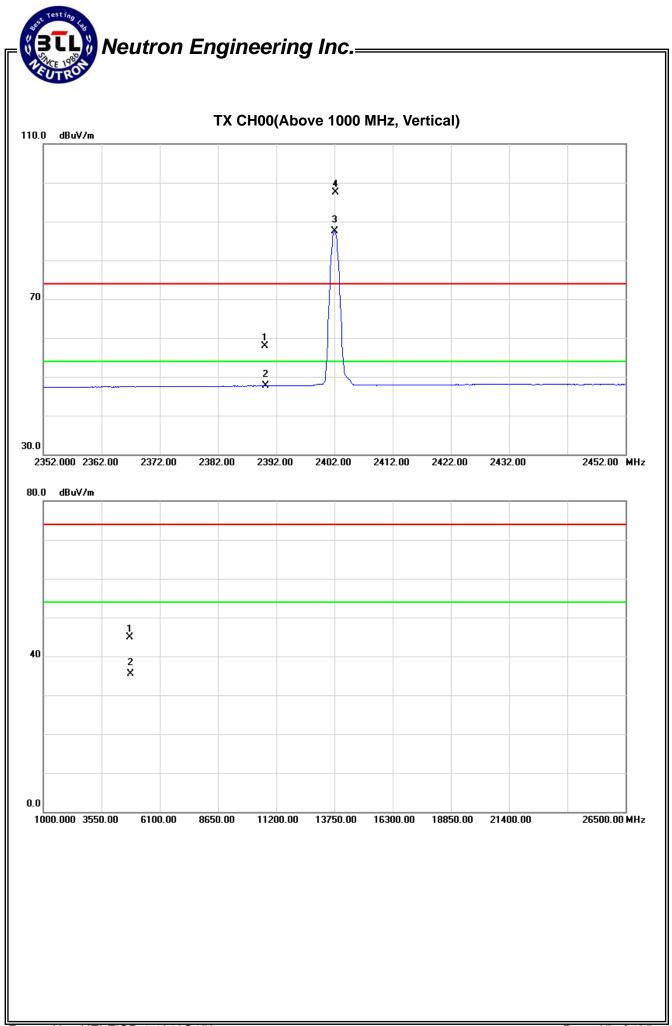
- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency."F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission .
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Sound Rise	Model Name :	SFQ-08
Temperature :	24 ℃	Relative Humidity:	58 %
Pressure :	1010 hPa	Test Voltage :	AC120V/60Hz
Test Mode :	TX 2480MHz –CH78-1Mbps		

Freq.	Ant.Pol.	Rea	ding	Ant./CF	A	ct.	Lir	nit	Mai	rgin	
		Peak	AV		Peak	AV	Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2479.90	Н	59.34	49.30	34.36	93.70	83.66					X/F
2483.50	Н	24.45	13.55	34.37	58.82	47.92	74.00	54.00	-15.18	-6.08	X/E
4959.92	Н	38.28	27.47	6.83	45.11	34.30	74.00	54.00	-28.89	-19.70	X/H

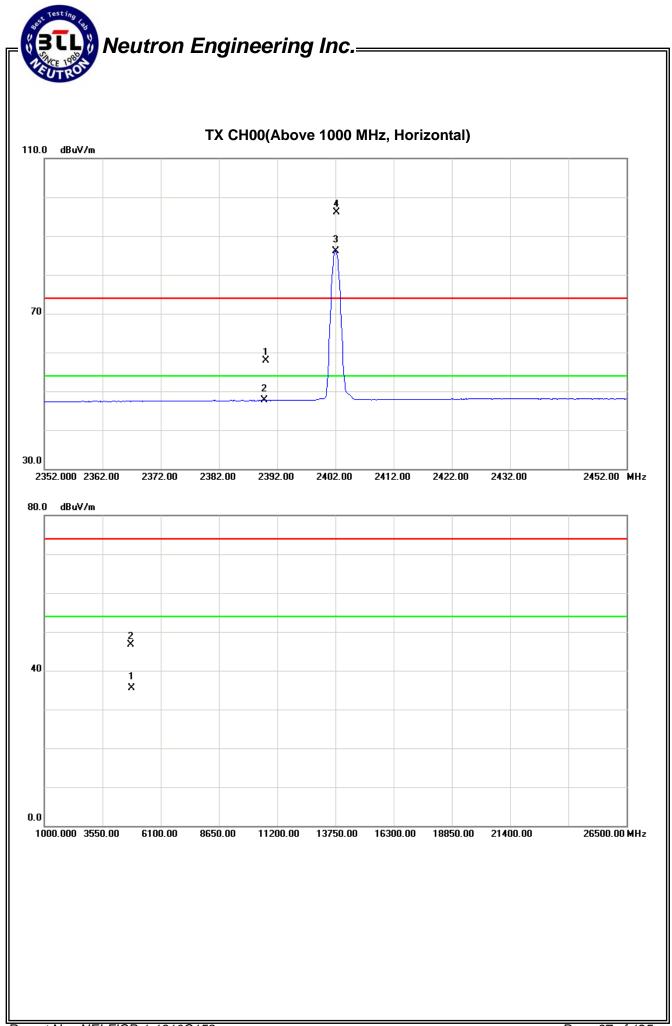
- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency."F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission .
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna


Report No.: NEI-FICP-1-1310C159

EUT :	Sound Rise	Model Name :	SFQ-08
Temperature :	24 ℃	Relative Humidity:	58 %
Pressure :	1010 hPa	Test Voltage :	AC120V/60Hz
Test Mode :	TX 2402MHz – CH 00-3Mbps		

ſ	Freq.	Ant.Pol.	Rea	ding	Ant./CF	A	ct.	Lir	nit	Mai	rgin	
			Peak	AV		Peak	AV	Peak	AV	Peak	AV	Note
	(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
	2390.00	V	23.87	13.54	34.09	57.96	47.63	74.00	54.00	-16.04	-6.37	X/E
	2402.20	V	63.35	53.36	34.12	97.47	87.48					X/F
	4803.93	V	38.58	29.05	6.38	44.96	35.43	74.00	54.00	-29.04	-18.57	X/H

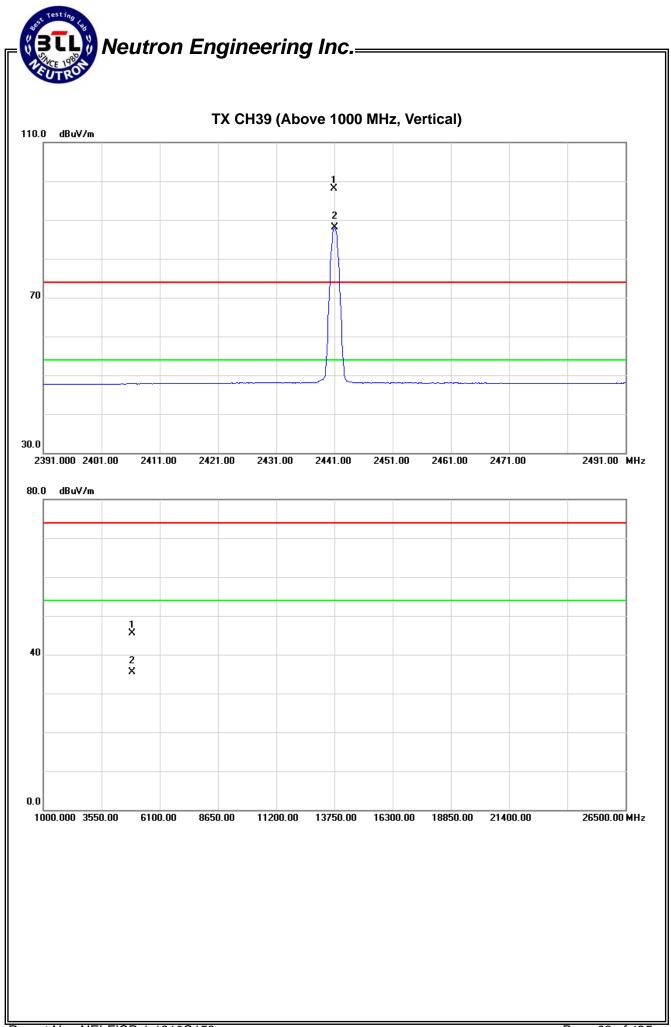
- (1) All readings are Peak unless otherwise stated QP in column of "Note ... Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency.
 "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission .
- (4) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT :	Sound Rise	Model Name :	SFQ-08
Temperature :	24 °C	Relative Humidity:	58 %
Pressure :	1010hPa	Test Voltage :	AC120V/60Hz
Test Mode :	TX 2402MHz – CH 00-3Mbps	·	

Γ	Freq.	Ant.Pol.	Rea	ding	Ant./CF	A	ct.	Lir	nit	Ma	rgin	
			Peak	AV		Peak	AV	Peak	AV	Peak	AV	Note
	(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2	2390.00	Н	23.76	13.54	34.09	57.85	47.63	74.00	54.00	-16.15	-6.37	X/E
1	2402.20	Н	62.05	52.03	34.12	96.17	86.15					X/F
4	4804.07	Н	40.41	29.14	6.38	46.79	35.52	74.00	54.00	-27.21	-18.48	X/H

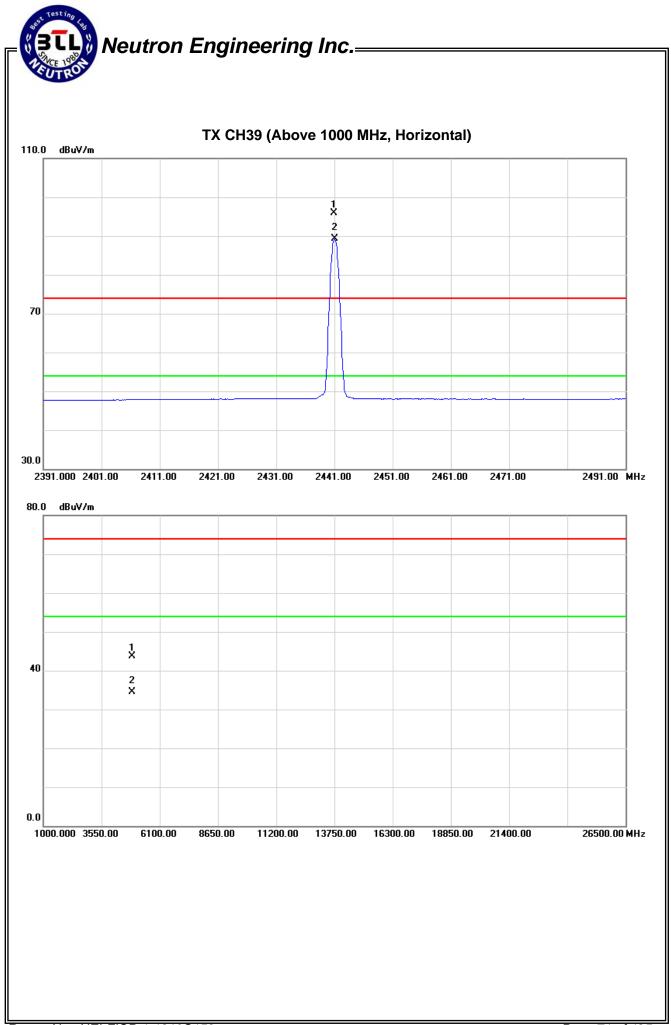
- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency."F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission .
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT :	Sound Rise	Model Name :	SFQ-08
Temperature :	24 ℃	Relative Humidity:	58 %
Pressure :	1010 hPa	Test Voltage :	AC120V/60Hz
Test Mode :	TX 2441MHz –CH39-3Mbps		

Freq.	Ant.Pol.	Rea	ding	Ant./CF	A	ct.	Lir	nit	Mai	rgin	
		Peak	AV		Peak	AV	Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2440.90	V	63.77	53.80	34.25	98.02	88.05					X/F
4881.95	V	38.91	28.84	6.61	45.52	35.45	74.00	54.00	-28.48	-18.55	X/H

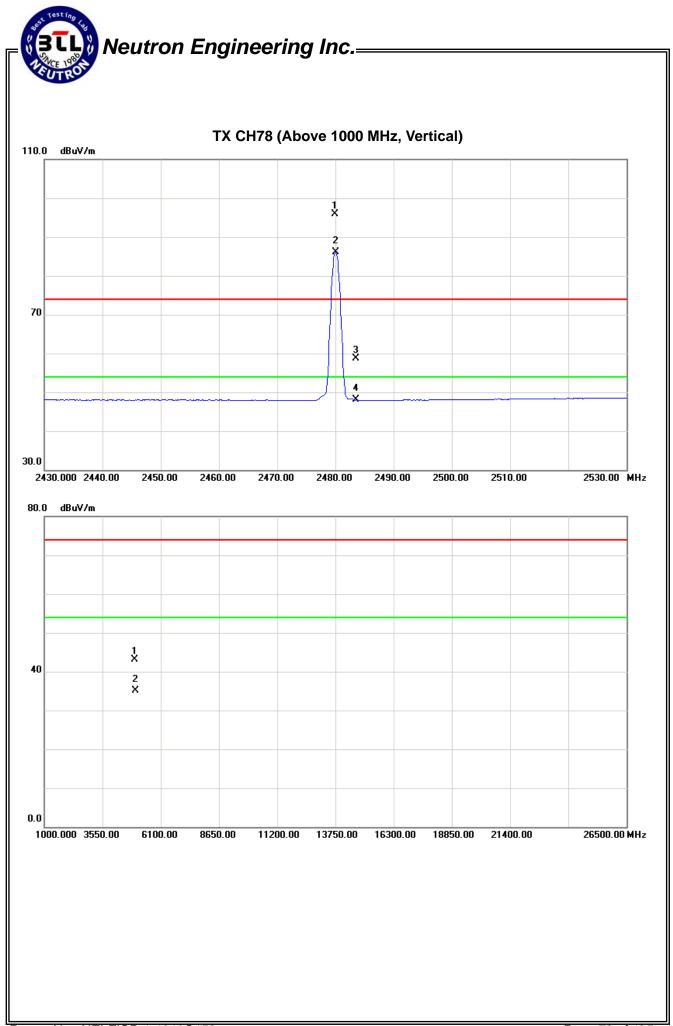
- (1) All readings are Peak unless otherwise stated QP in column of 『Note』. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency."F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission .
- (4) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Sound Rise	Model Name :	SFQ-08
Temperature :	24 ℃	Relative Humidity:	58 %
Pressure :	1010 hPa	Test Voltage :	AC120V/60Hz
Test Mode :	TX 2441MHz –CH39-3Mbps		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Limit		Margin		
		Peak	AV		Peak	AV	Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2440.90	Η	61.67	54.99	34.25	95.92	89.24					X/F
4881.98	Н	37.12	27.99	6.61	43.73	34.60	74.00	54.00	-30.27	-19.40	X/H

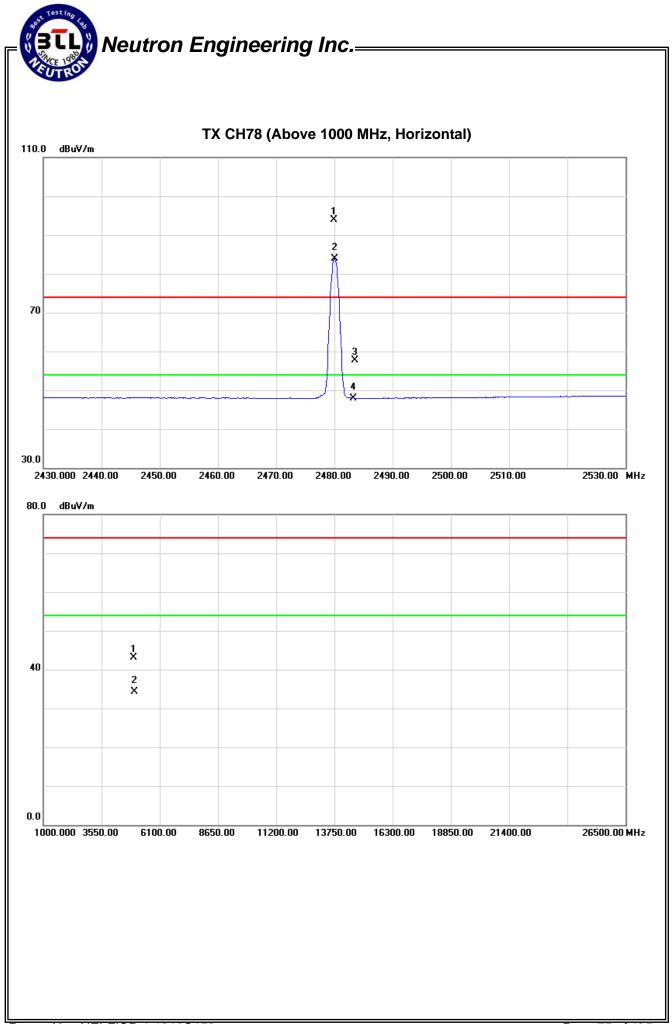
- (1) All readings are Peak unless otherwise stated QP in column of 『Note』. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency."F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission .
- (4) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Sound Rise	Model Name :	SFQ-08
Temperature :	24 °C	Relative Humidity:	58 %
Pressure :	1010hPa	Test Voltage :	AC120V/60Hz
Test Mode :	TX 2480MHz –CH78-3Mbps		

From		Dee	dina		Δ	Act		Limit		Morain	
Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Limit		Margin		
		Peak	AV		Peak	AV	Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2479.90	V	61.63	51.69	34.36	95.99	86.05					X/F
2483.50	V	24.30	13.64	34.37	58.67	48.01	74.00	54.00	-15.33	-5.99	X/E
4959.92	V	36.28	28.20	6.83	43.11	35.03	74.00	54.00	-30.89	-18.97	X/H

- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency.
 "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission .
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Sound Rise	Model Name :	SFQ-08
Temperature :	24 ℃	Relative Humidity:	58 %
Pressure :	1010 hPa	Test Voltage :	AC120V/60Hz
Test Mode :	TX 2480MHz –CH78-3Mbps		

Freq.	Ant.Pol.	Rea	ding	Ant./CF	A	ct.	Lir	nit	Mai	rgin	
		Peak	AV		Peak	AV	Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2479.90	Н	59.59	49.59	34.36	93.95	83.95					X/F
2483.50	Н	23.36	13.61	34.37	57.73	47.98	74.00	54.00	-16.27	-6.02	X/E
4960.01	Н	36.25	27.44	6.83	43.08	34.27	74.00	54.00	-30.92	-19.73	X/H

Remark :

- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency."F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission .
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

Report No.: NEI-FICP-1-1310C159

5. NUMBER OF HOPPING CHANNEL

5.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C				
Section	Test Item	Frequency Range (MHz)	Result	
15.247 (a)(1)(iii)	Number of Hopping Channel	2400-2483.5	PASS	

5.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING

Ite	em	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
	1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 16.2013

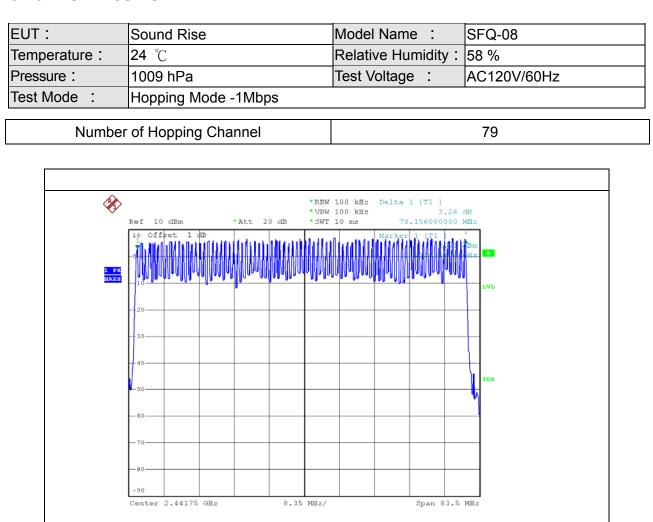
Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of Equipment List is One Year.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> Operating Frequency Range
RB	100 kHz
VB	100 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.1.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=100KHz, Sweep time = Auto.

5.1.3 DEVIATION FROM STANDARD


No deviation.

5.1.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

5.1.5 EUT OPERATION CONDITIONS

Date: 4.NOV.2013 21:01:03

UT:	Sound Ris	e	Model N		SFQ-08
emperature:	24 °C			Humidity:	
essure :	1009 hPa		Test Volt	age :	AC120V/60Hz
st Mode :	Hopping N	lode -3Mbps			
Numb	or of Hopping	Channel			79
	er of Hopping				19
Â			* P.P.F. 100 1-17- 14-		
×	Ref 10 dBm	*Att 20 dB	*RBW 100 kHz Ma: *VBW 100 kHz SWT 10 ms	4.49 2.480327000	
	10 Offset 1 d	в	ЭМа	rker 1 (T1.)	2 68m
	· ·	WWWWWWWWWWW	nal/Invvilu/wall/wall	I WAUUWWWWUUU 1ta B (T1)	<u> </u>
1 P MAX	10			3.67 47.094000000	dB MHZ LVL
	- 20				
	+30				
	40				
	50				3DE
	60				
	70				
	80				
	-90				
	Start 2.4 GHz	8.35	MH2/	Stop 2.4835	GHz
Dat	e: 7.NOV.2013	09:19:02			

6. AVERAGE TIME OF OCCUPANCY

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247 (a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS	

6.1.1 MEASUREMENT INSTRUMENTS LIST

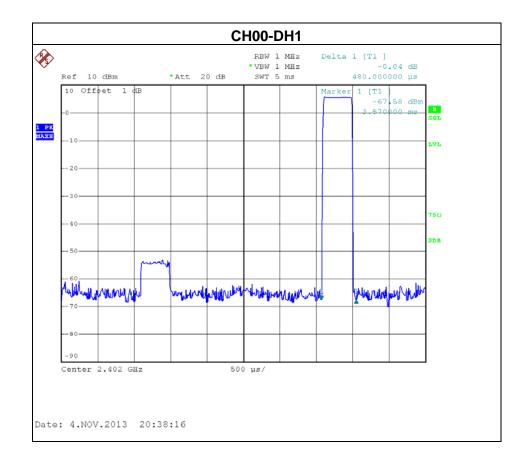
Iten	N Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 16.2013

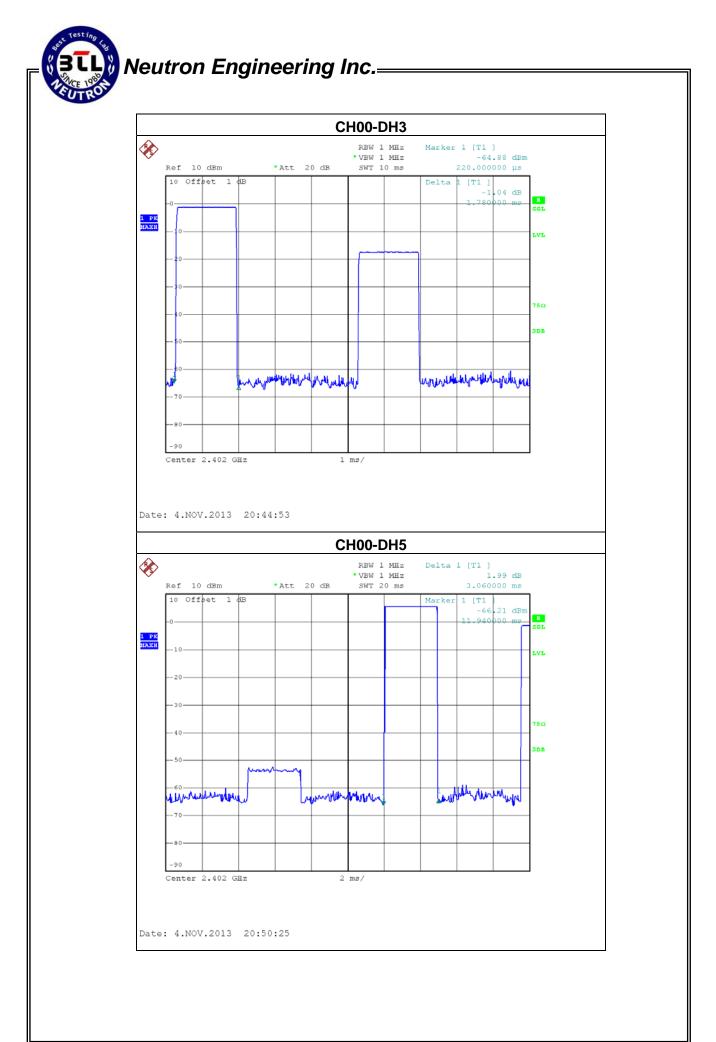
Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of Equipment List is One Year.

6.1.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- \tilde{h} . Measure the maximum time duration of one single pulse.
- i. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 3.37 x 31.6 = 106.6 within 31.6 seconds.
- j. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 5.06 x 31.6 = 160 within 31.6 seconds.
- k. DH1 Packet permit maximum 1600 / 79 /2 = 10.12 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times 10.12 x 31.6 = 320 within 31.6 seconds.

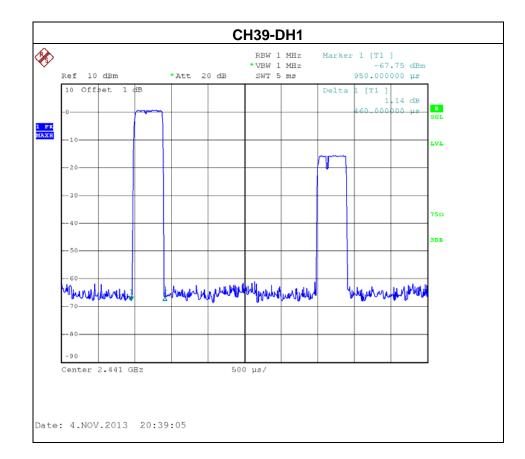
6.1.3 DEVIATION FROM STANDARD

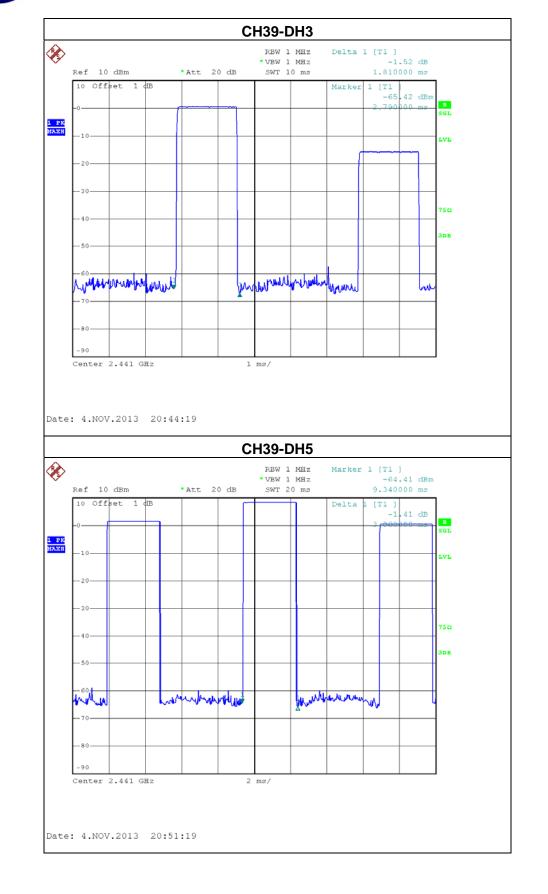

No deviation.


BTL Neu	tron Engine	erina Inc			
ALUTRON					
1.4 TEST SETU	IP				
EUT]			SPECTRUM	
				ANALYZER	
1.5 EUT OPER	ATION CONDITIO	NS			
			ments of 4.1	.6 Unless otherwise a	a special
erating condition	n is specified in the	e follows during	the testing.		, opoolai

EUT :	Sound Rise	Model Name :	SFQ-08
Temperature :	24 °C	Relative Humidity :	58 %
Pressure :	1009 hPa	Test Voltage :	AC120V/60Hz
Test Mode :	CH00-DH1/DH3/DH5 -1Mbps		

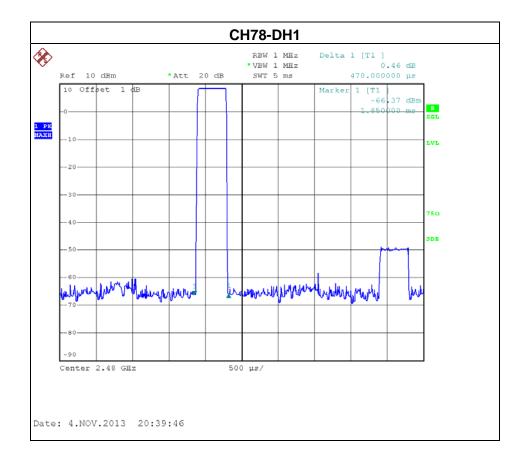
Data Packet	Frequency	Pulse Duration (ms)	Dwell Time (s)	Limits (s)
DH5	2402 MHz	3.0600	0.3264	0.4000
DH3	2402 MHz	1.7800	0.2848	0.4000
DH1	2402 MHz	0.4800	0.1536	0.4000

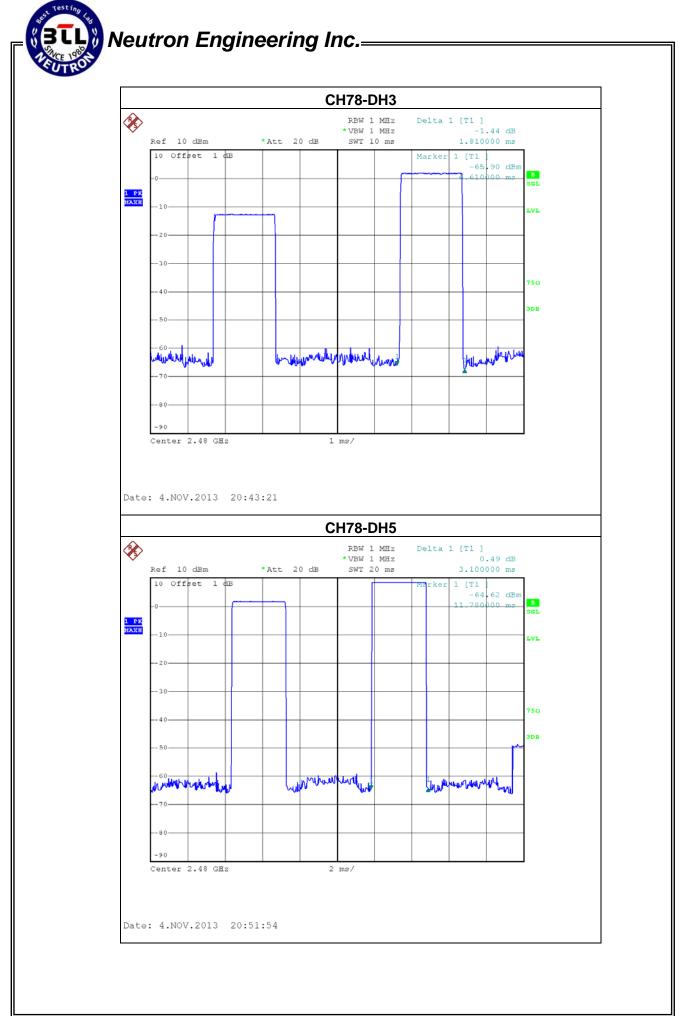




EUT:	Sound Rise	Model Name	:	SFQ-08
Temperature :	24 °C	Relative Humi	dity:	58 %
Pressure :	1009 hPa	Test Voltage	:	AC120V/60Hz
Test Mode :	CH39 -DH1/DH3/DH5 -1Mbps			

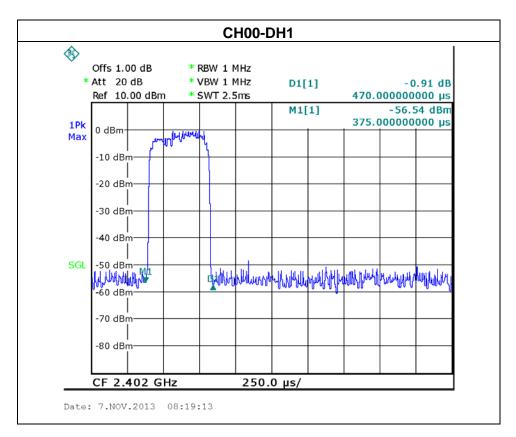
Data Packet	Frequency	Pulse Duration (ms)	Dwell Time (s)	Limits (s)
DH5	2441 MHz	3.0000	0.3200	0.4000
DH3	2441 MHz	1.8100	0.2896	0.4000
DH1	2441 MHz	0.4600	0.1472	0.4000

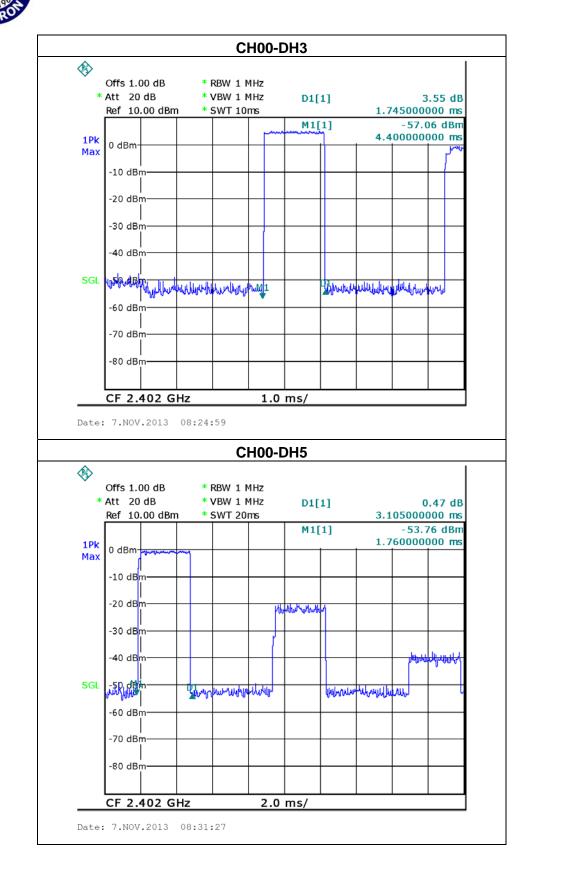




EUT :	Sound Rise	Model Name :	SFQ-08
Temperature :	24 °C	Relative Humidity:	58 %
Pressure :	1009 hPa	Test Voltage :	AC120V/60Hz
Test Mode :	CH78 -DH1/DH3/DH5-1Mbps		

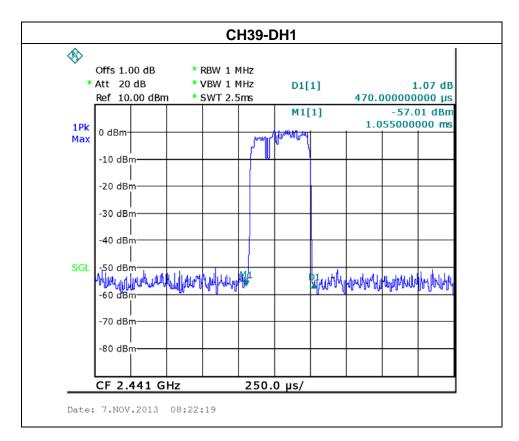
Data Packet	Frequency	Pulse Duration (ms)	Dwell Time (s)	Limits (s)
DH5	2480 MHz	3.1000	0.3307	0.4000
DH3	2480 MHz	1.8100	0.2896	0.4000
DH1	2480 MHz	0.4700	0.1504	0.4000

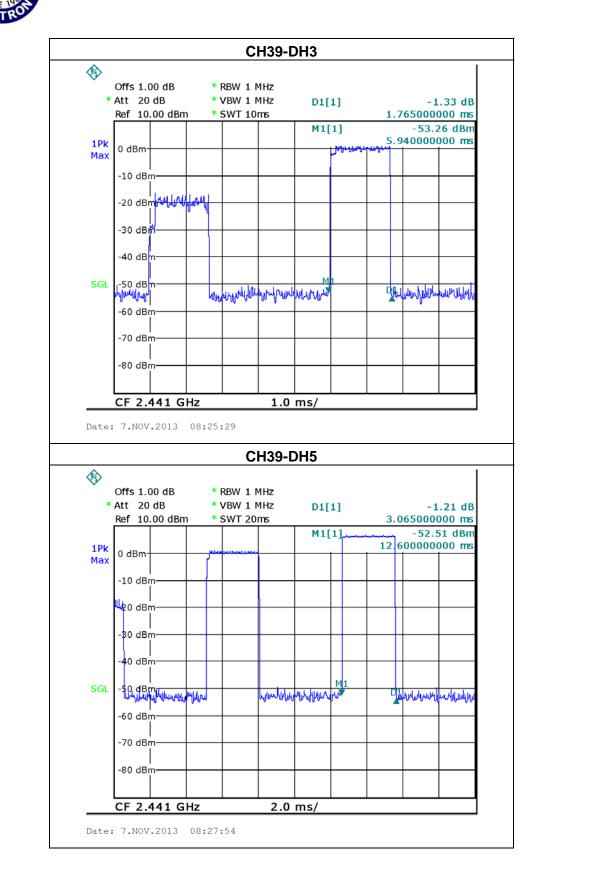




EUT :	Sound Rise	Model Name :	SFQ-08
Temperature :	24 ℃	Relative Humidity:	58 %
Pressure :	1009 hPa	Test Voltage :	AC120V/60Hz
Test Mode :	CH00-DH1/DH3/DH5 -3Mbps		

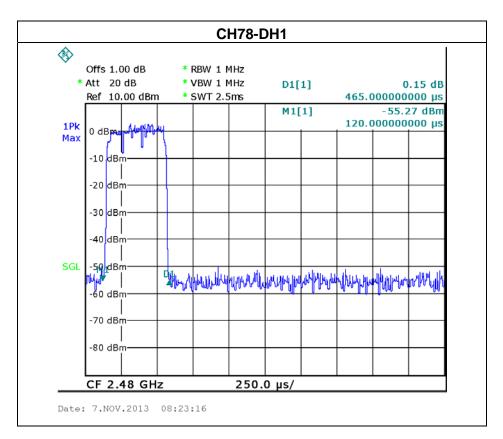
Data Packet	Frequency	Pulse Duration (ms)	Dwell Time (s)	Limits (s)
DH5	2402 MHz	3.1050	0.3312	0.4000
DH3	2402 MHz	1.7450	0.2792	0.4000
DH1	2402 MHz	0.4700	0.1504	0.4000

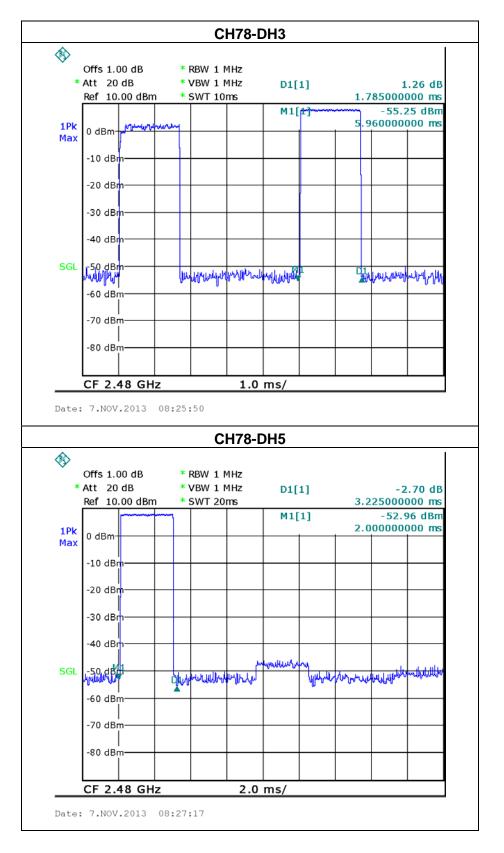




EUT:	Sound Rise	Model Name	:	SFQ-08
Temperature :	24 °C	Relative Humi	dity:	58 %
Pressure :	1009 hPa	Test Voltage	:	AC120V/60Hz
Test Mode :	CH39 -DH1/DH3/DH5 -3Mbps			

Data Packet	Frequency	Pulse Duration (ms)	Dwell Time (s)	Limits (s)
DH5	2441 MHz	3.0650	0.3269	0.4000
DH3	2441 MHz	1.7650	0.2824	0.4000
DH1	2441 MHz	0.4700	0.1504	0.4000





EUT :	Sound Rise	Model Name :	SFQ-08
Temperature :	24 °C	Relative Humidity:	58 %
Pressure :	1009 hPa	Test Voltage :	AC120V/60Hz
Test Mode :	CH78 -DH1/DH3/DH5-3Mbps		

Data Packet	Frequency	Pulse Duration (ms)	Dwell Time (s)	Limits (s)
DH5	2480 MHz	3.2250	0.3440	0.4000
DH3	2480 MHz	1.7850	0.2856	0.4000
DH1	2480 MHz	0.4650	0.1488	0.4000

7. HOPPING CHANNEL SEPARATION MEASUREMENT

7.1 APPLIED PROCEDURES / LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

7.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 16.2013

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of Equipment List is One Year.

Spectrum Parameter	Setting		
Attenuation	Auto		
Span Frequency	ency > Measurement Bandwidth or Channel Separation		
RB	30 kHz		
VB	100 kHz		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

7.1.2 TEST PROCEDURE

- a. The EUT must have its hopping function enabled
- b. Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = auto Detector function = peak Trace = max hold

7.1.3 DEVIATION FROM STANDARD

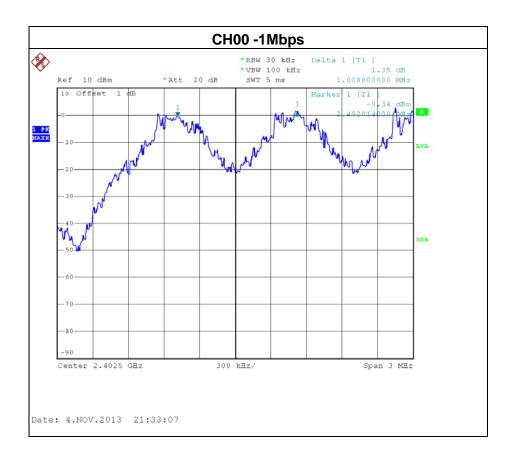
No deviation.

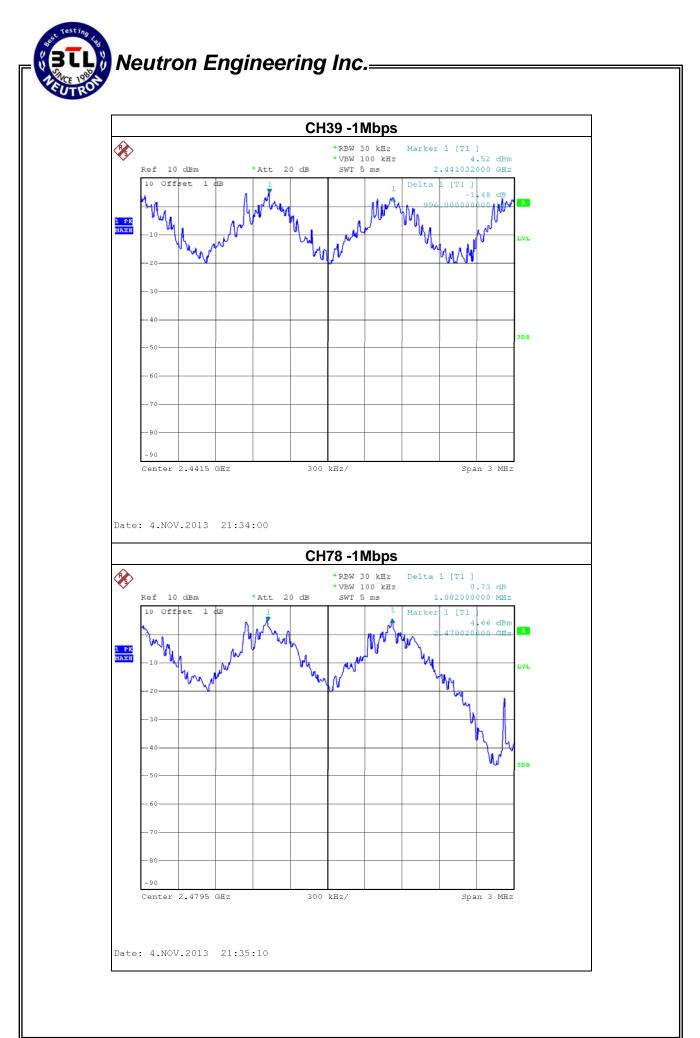
7.1.4 TEST SETUP

Spectrum Analayzer

EUT

7.1.5 EUT OPERATION CONDITIONS

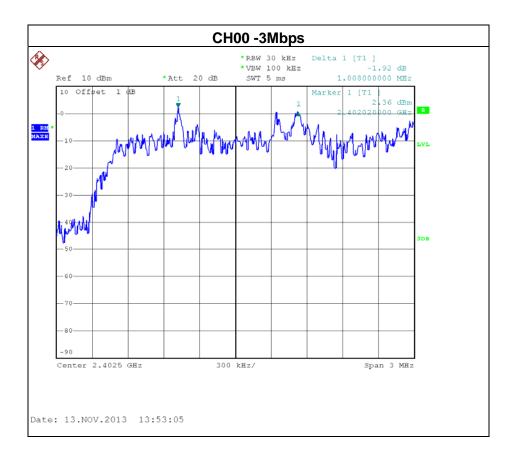

The EUT was programmed to be in hopping mode.

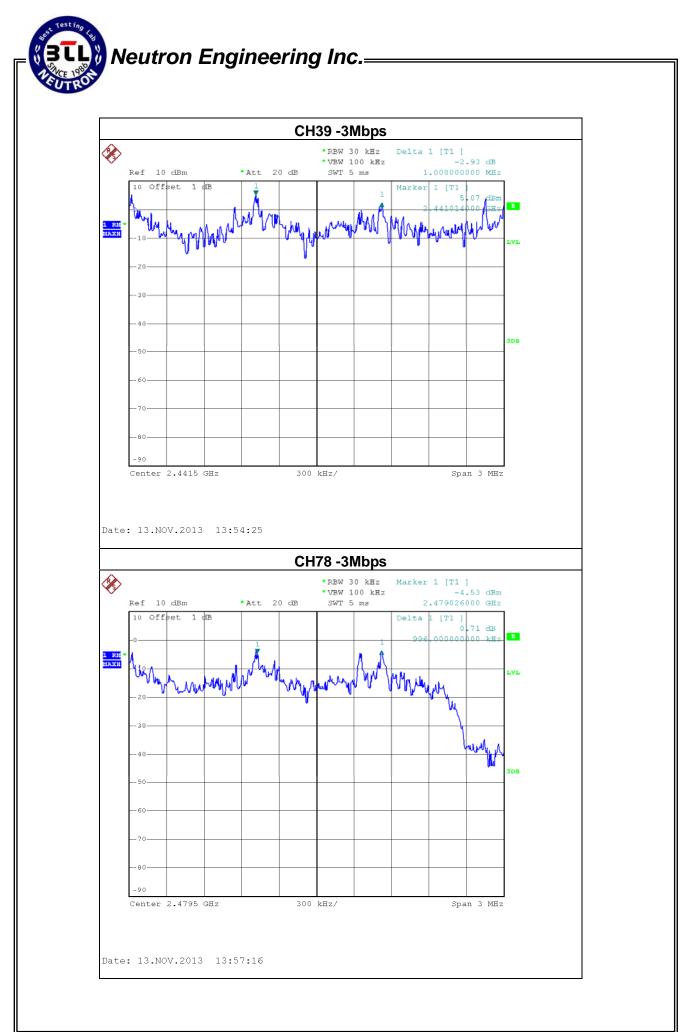


EUT:	Sound Rise	Model Name :	SFQ-08
Temperature :	24 ℃	Relative Humidity :	58 %
Pressure :	1009 hPa	Test Voltage :	AC120V/60Hz
Test Mode :	CH00 / CH39 /CH78-1Mbps		

Frequency	Ch. Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Result
2402 MHz	1.008	0.612	Complies
2441 MHz	0.996	0.619	Complies
2480 MHz	1.002	0.592	Complies

Ch. Separation Limits: >20dB bandwidth or >2/3 of 20dB bandwidth





EUT :	Sound Rise	Model Name :	SFQ-08
Temperature :	24 ℃	Relative Humidity :	58 %
Pressure :	1009 hPa	Test Voltage :	AC120V/60Hz
Test Mode :	CH00 / CH39 /CH78-3Mbps		

Frequency	Ch. Separation (MHz)	20dB Bandwidth (MHz)	Result
2402 MHz	1.008	0.793	Complies
2441 MHz	1.008	0.807	Complies
2480 MHz	0.996	0.800	Complies

Ch. Separation Limits: >20dB bandwidth or >2/3 of 20dB bandwidth

8. BANDWIDTH TEST

8.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C			
Section	Test Item	Frequency Range (MHz)	
15.247 (a)(2)	Bandwidth	2400-2483.5	

8.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING

	Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
ſ	1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 16.2013

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of Equipment List is One Year.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth or Channel Separation
RB	30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)
VB	100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation)
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

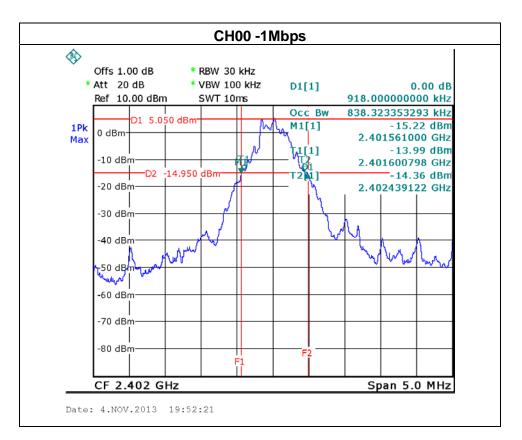
8.1.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 30KHz, VBW=100KHz, Sweep time = Auto.

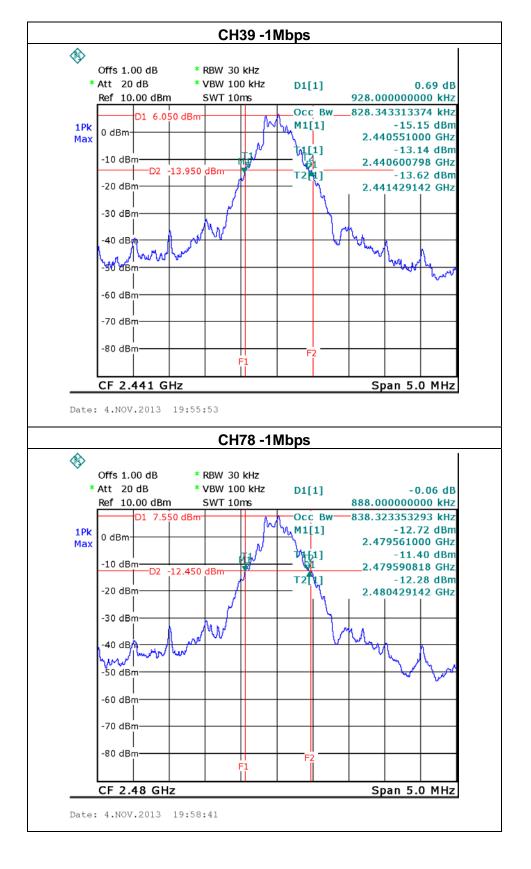
8.1.3 DEVIATION FROM STANDARD

No deviation.

8.1.4 TEST SETUP

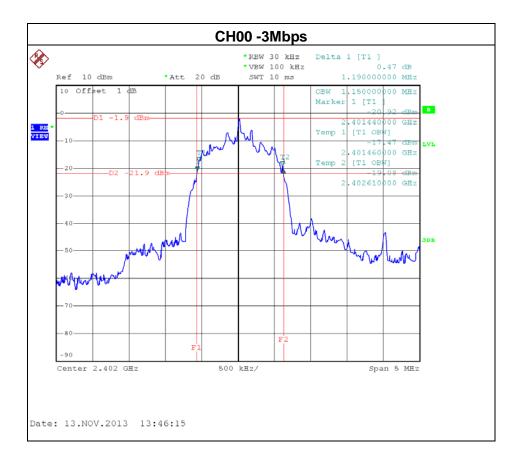

EUT	SPECTRUM	ĺ
	ANALYZER	

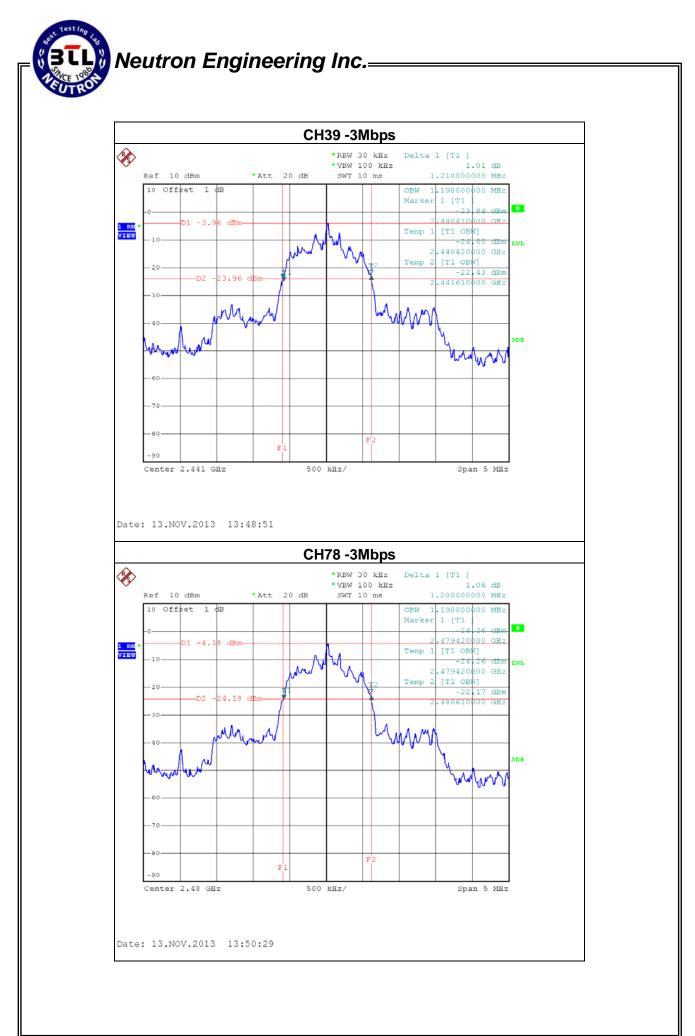
8.1.5 EUT OPERATION CONDITIONS



EUT :	Sound Rise	Model Name :	SFQ-08
Temperature :	24 ℃	Relative Humidity :	58 %
Pressure :	1009 hPa	Test Voltage :	AC120V/60Hz
Test Mode :	CH00 / CH39 /CH78-1Mbps		

Frequency	20dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Result
2402 MHz	0.918	0.838	PASS
2441 MHz	0.928	0.828	PASS
2480 MHz	0.888	0.838	PASS





EUT :	Sound Rise	Model Name :	SFQ-08
Temperature :	24 ℃	Relative Humidity :	58 %
Pressure :	1009 hPa	Test Voltage :	AC120V/60Hz
Test Mode :	CH00 / CH39 /CH78-3Mbps		

Frequency	20dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Result
2402 MHz	1.190	1.150	PASS
2441 MHz	1.210	1.190	PASS
2480 MHz	1.200	1.190	PASS

9. PEAK OUTPUT POWER TEST

9.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247 (b)(1)	Peak Output Power	0.125 watt or 21dBm	2400-2483.5	PASS

9.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 16.2013

Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of Equipment List is One Year.

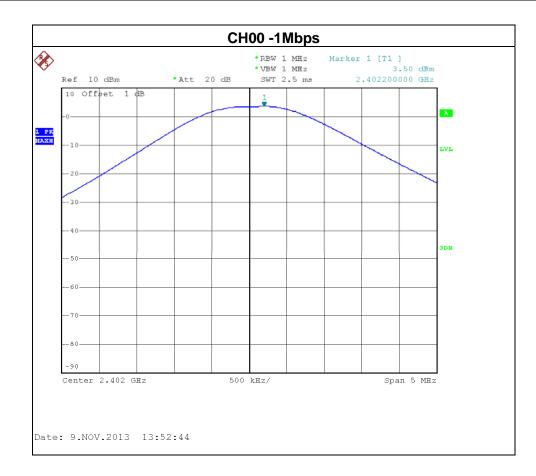
9.1.2 TEST PROCEDURE

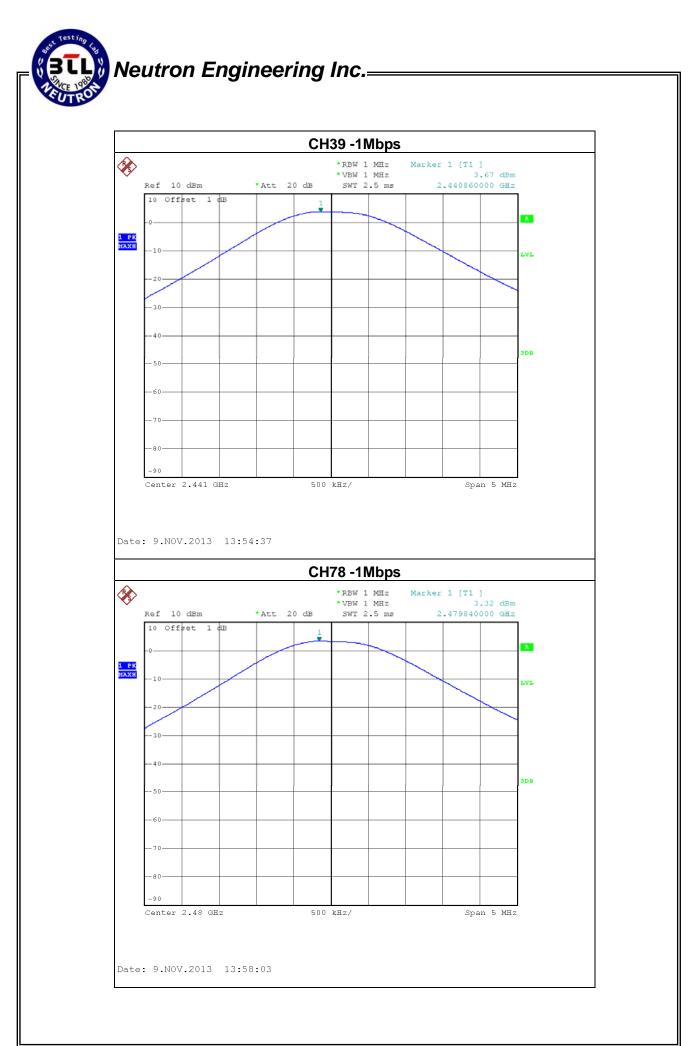
- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 3MHz, VBW= 3MHz, Sweep time = Auto.

9.1.3 DEVIATION FROM STANDARD

No deviation.

9.1.4 TEST SETUP

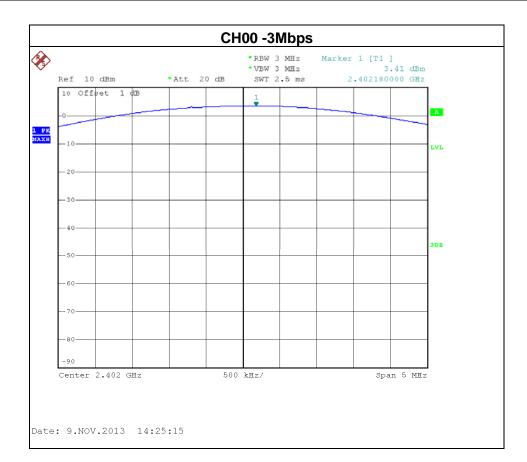


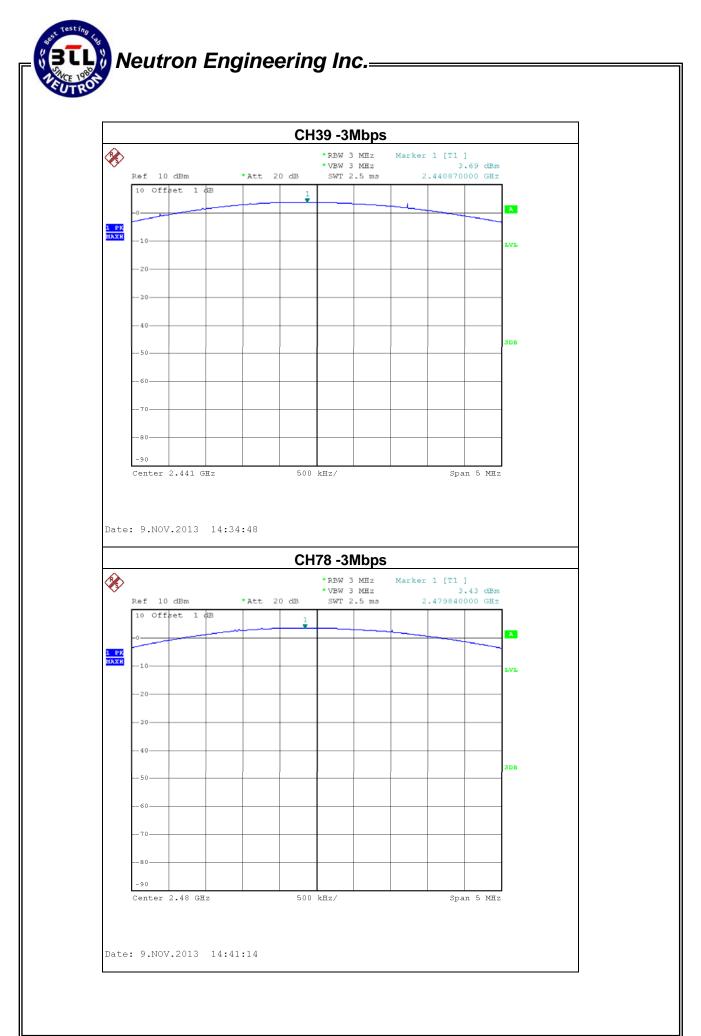

9.1.5 EUT OPERATION CONDITIONS

9.1.6 TEST RESULTS

EUT :	Sound Rise	Model Name :	SFQ-08
Temperature :	24 °C	Relative Humidity :	58 %
Pressure :	1009 hPa	Test Voltage :	AC120V/60Hz
Test Mode :	CH00/ CH39 /CH78 -1Mbps	-	

Test Channel	Frequency (MHz)	Peak Output Power (dBm)	LIMIT (dBm)	LIMIT (W)
CH00	2402	3.50	21	0.125
CH39	2441	3.67	21	0.125
CH78	2480	3.32	21	0.125





EUT :	Sound Rise	Model Name :	SFQ-08
Temperature :	24 ℃	Relative Humidity :	58 %
Pressure :	1009 hPa	Test Voltage :	AC120V/60Hz
Test Mode :	CH00/ CH39 /CH78 -3Mbps		

Test Channel	Frequency (MHz)	Peak Output Power (dBm)	LIMIT (dBm)	LIMIT (W)
CH00	2402	3.41	21	0.125
CH39	2441	3.69	21	0.125
CH78	2480	3.43	21	0.125

10. ANTENNA CONDUCTED SPURIOUS EMISSION

10.1 APPLIED PROCEDURES / LIMIT

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

10.1.1 MEASUREMENT INSTRUMENTS LIST AND SETTING

Iten	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 16.2013

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of Equipment List is One Year.

10.1.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=100KHz, Sweep time = Auto.

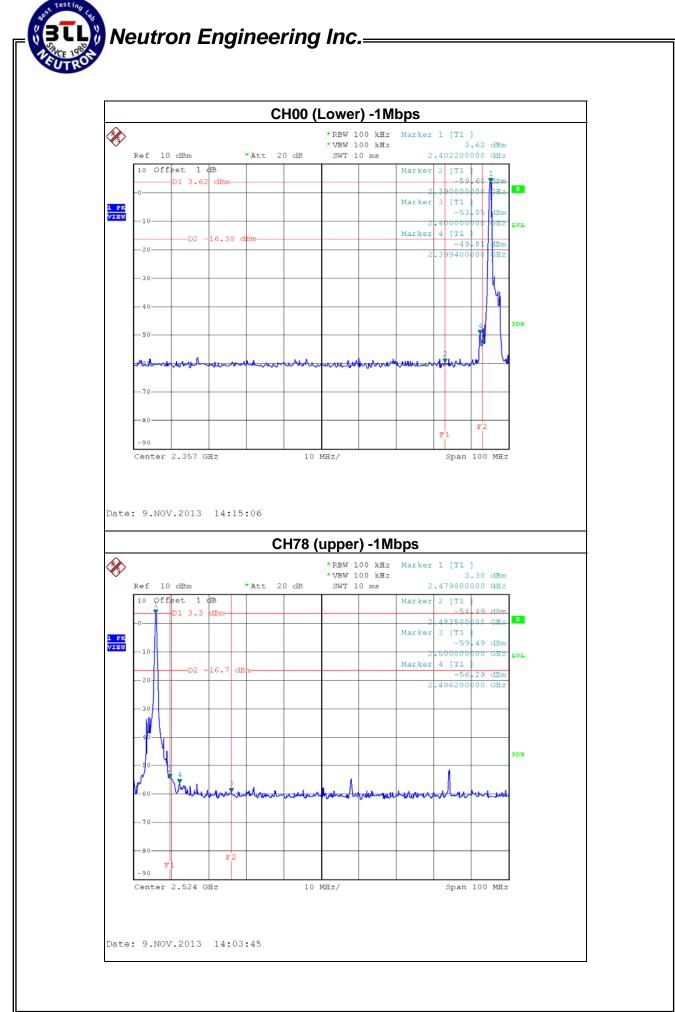
10.1.3 DEVIATION FROM STANDARD

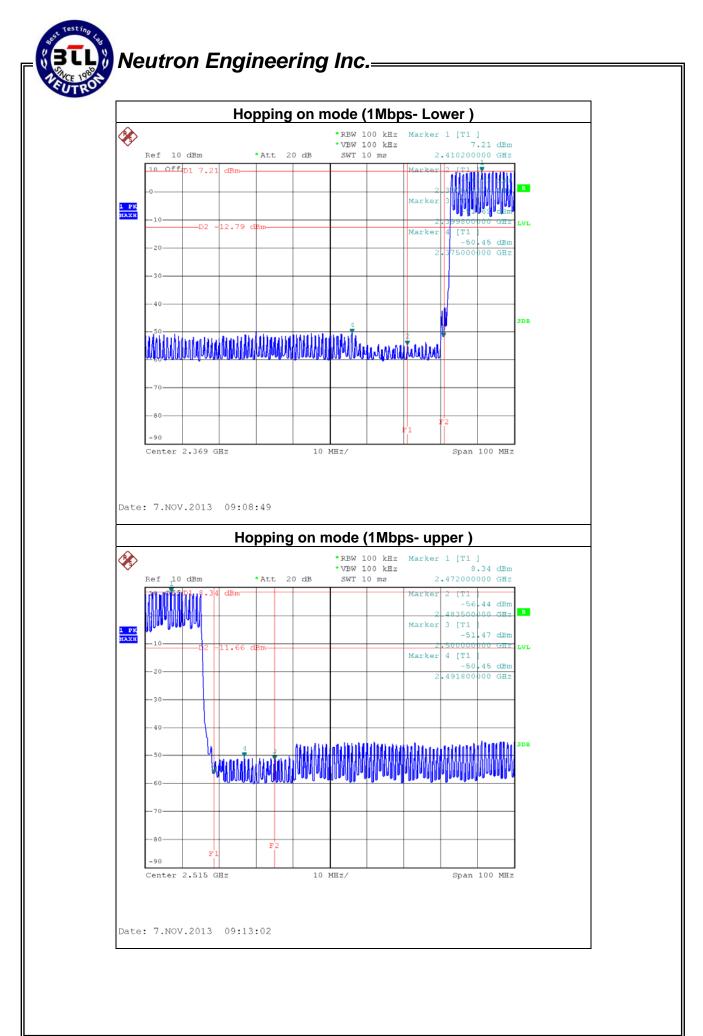
No deviation.

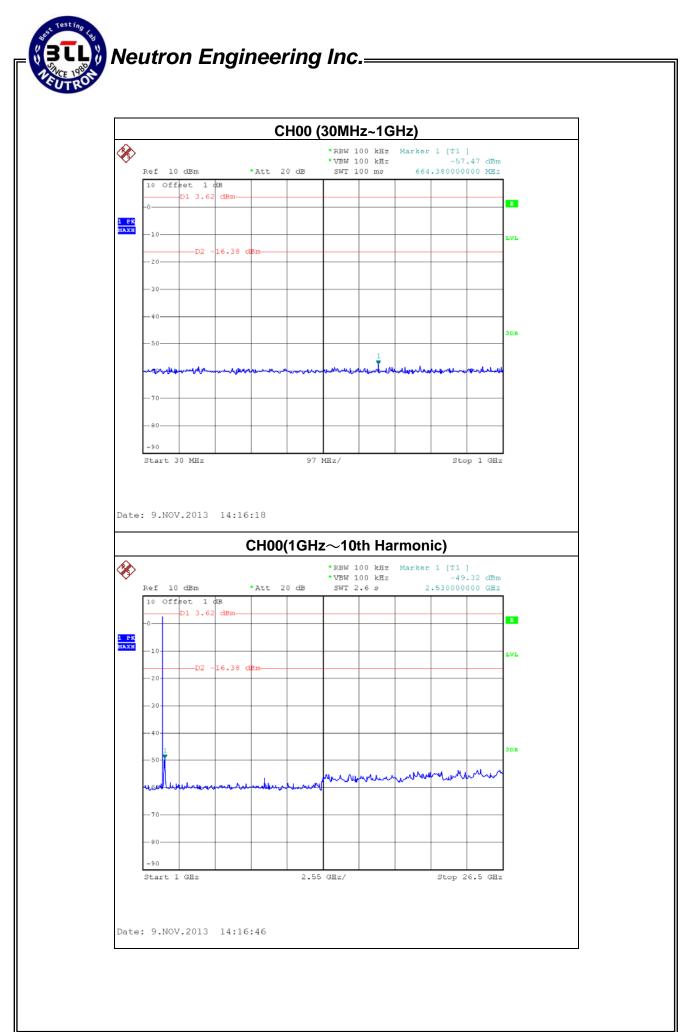
10.1.4 TEST SETUP

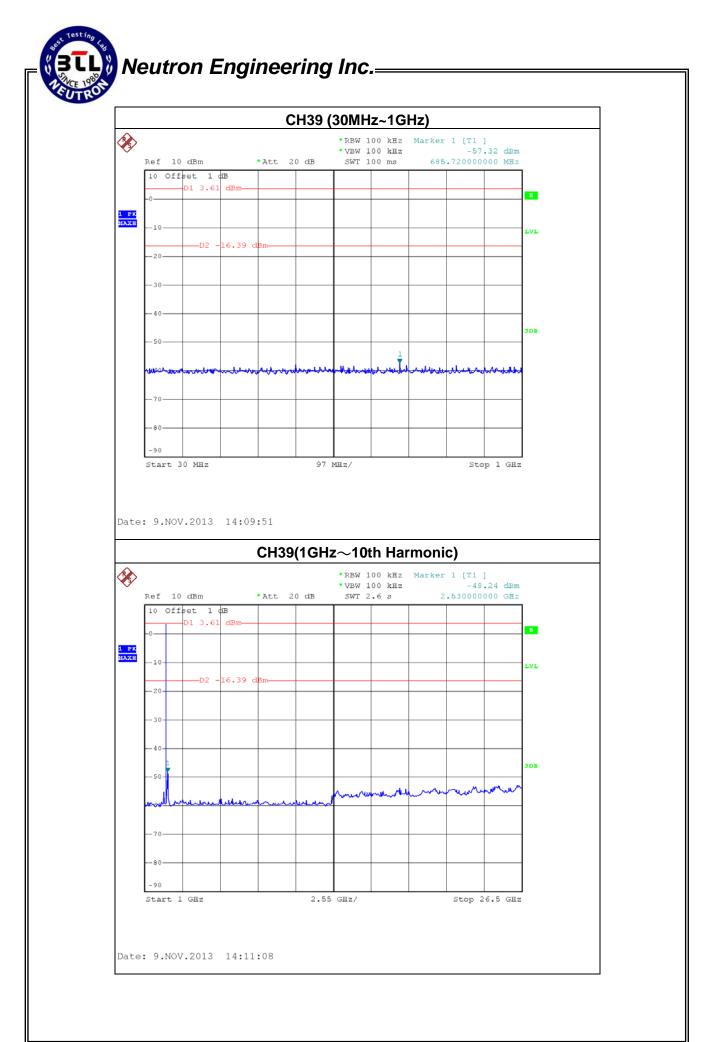
EUT	SPECTRUM
	ANALYZER

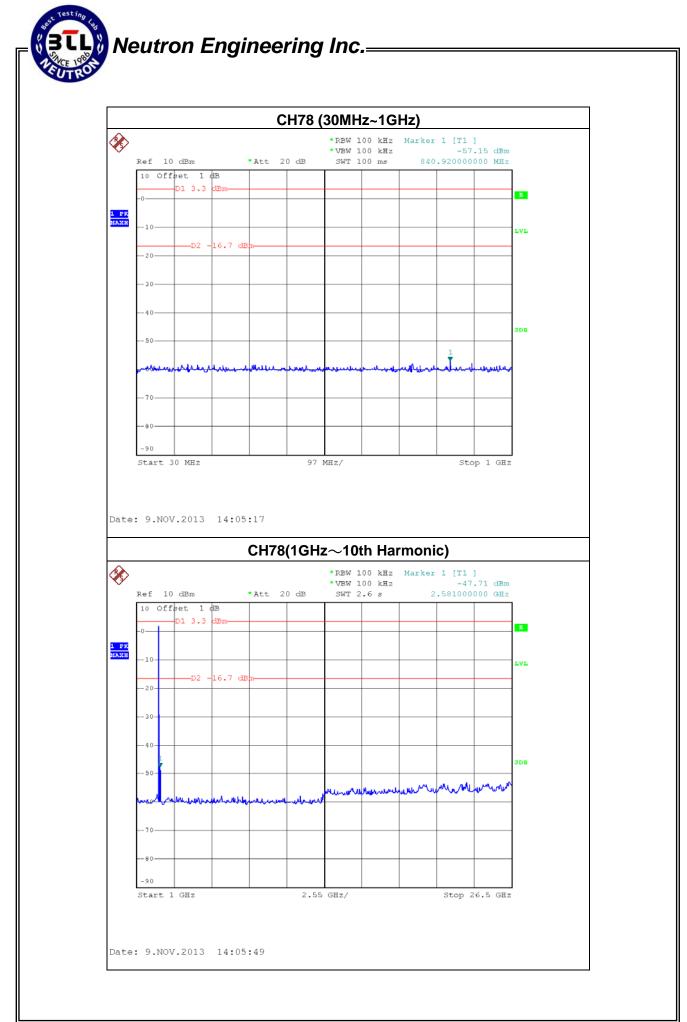
10.1.5 EUT OPERATION CONDITIONS

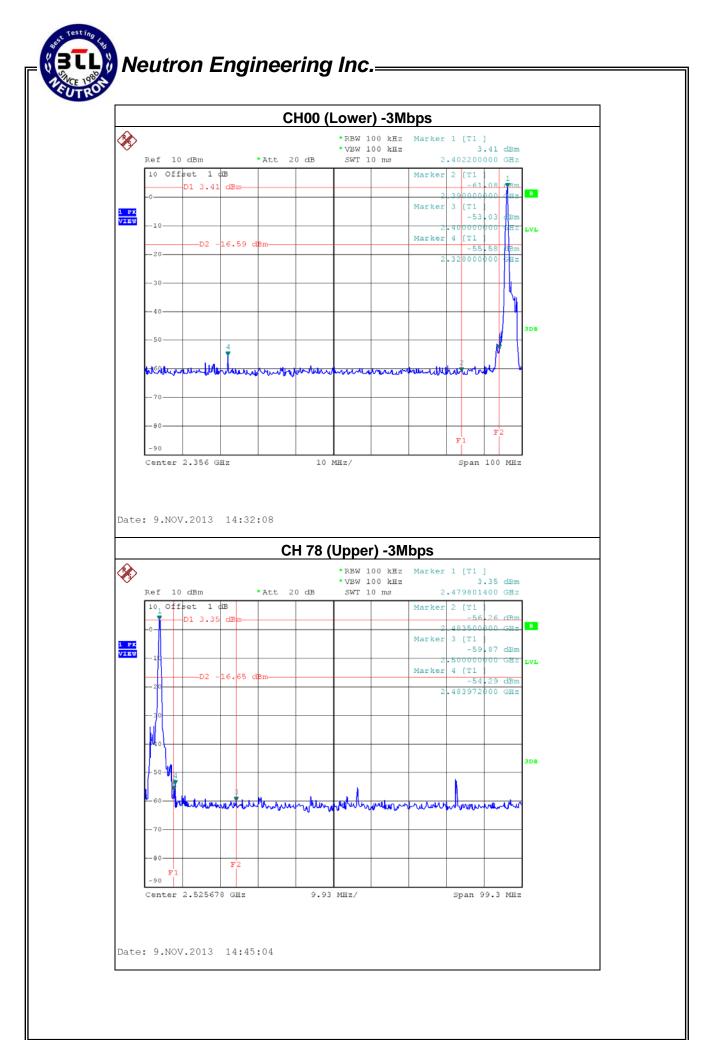


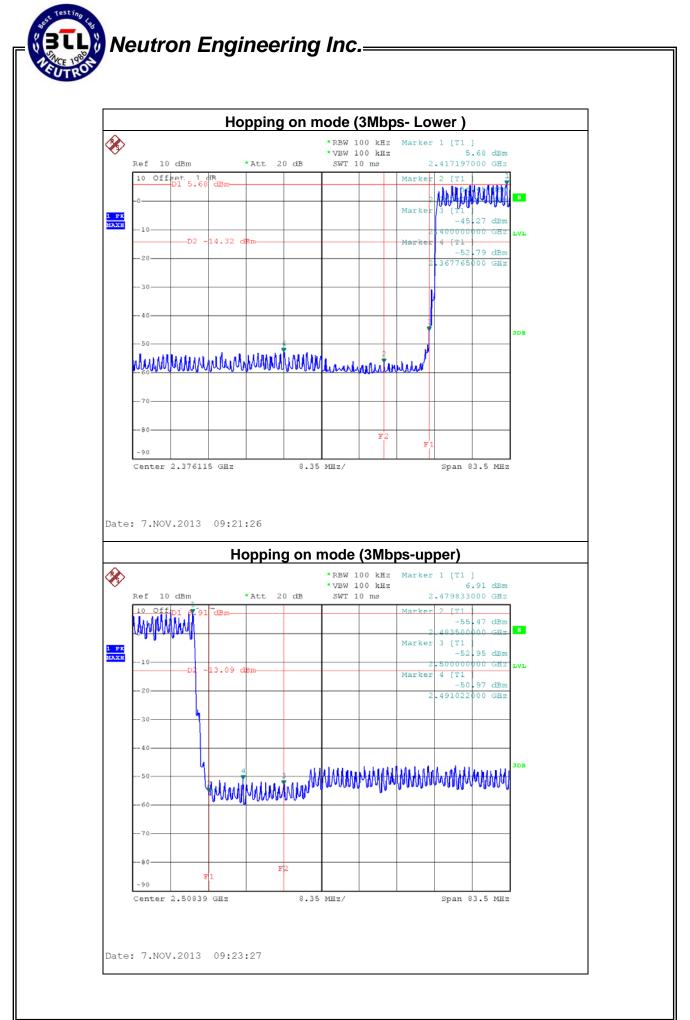

10.1.6 TEST RESULTS


EUT:	Sound Rise	Model Name :	SFQ-08
Temperature :	24 °C	Relative Humidity:	58 %
Pressure :	1009 hPa	Test Voltage :	AC120V/60Hz
Test Mode :	CH00 / CH39/ CH78-1Mbps & Hopping on mode (1Mbps)		

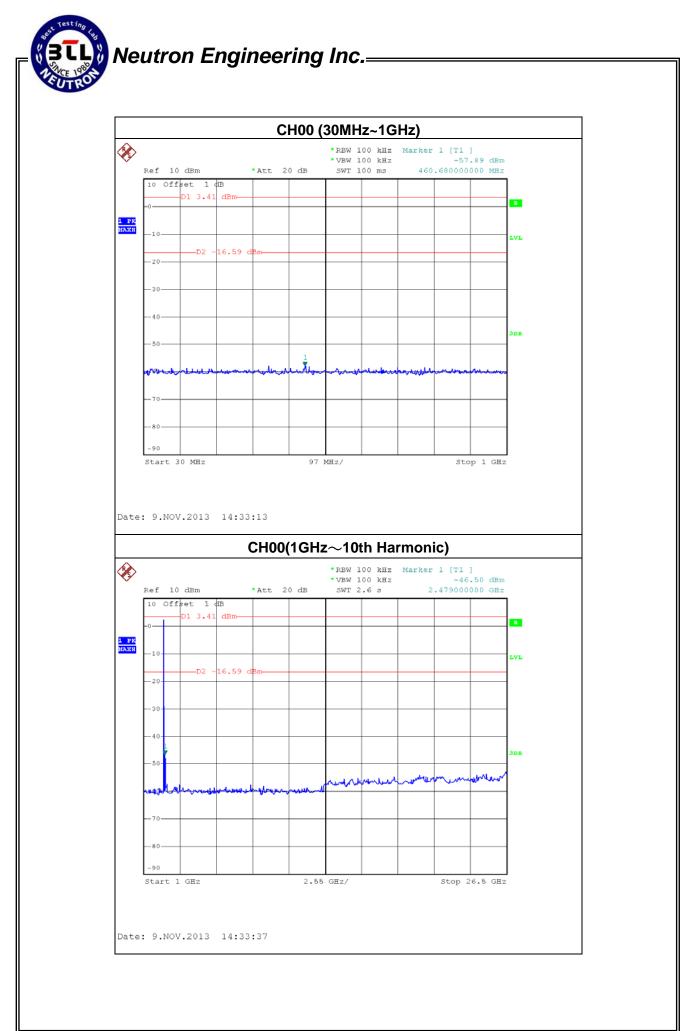

	cy power in any 100kHz the frequency band	The max. radio frequency power in any 100 kHz bandwidth within the frequency band.			
FREQUENCY(MHz)	POWER(dBm)	FREQUENCY(MHz)	POWER(dBm)		
2399.40	-49.81	2486.20	-56.29		
Result					

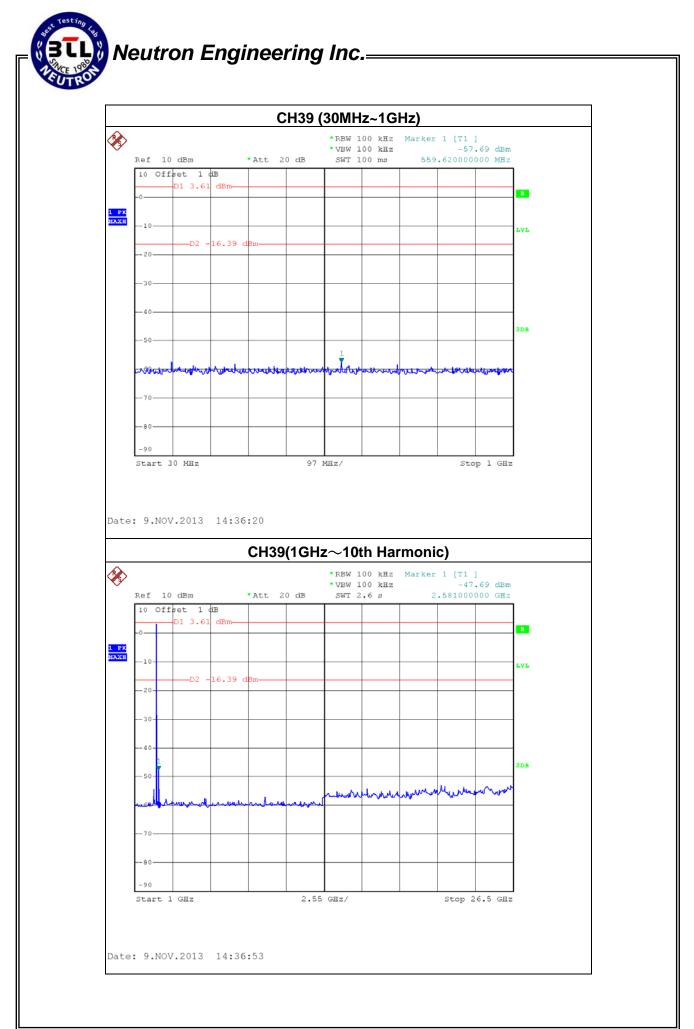

In any 100kHz bandwidth outside the frequency band, the radio frequency power is at least 20dB below that in the 100kHz bandwidth within the band that contains the highest lever of the desired power.

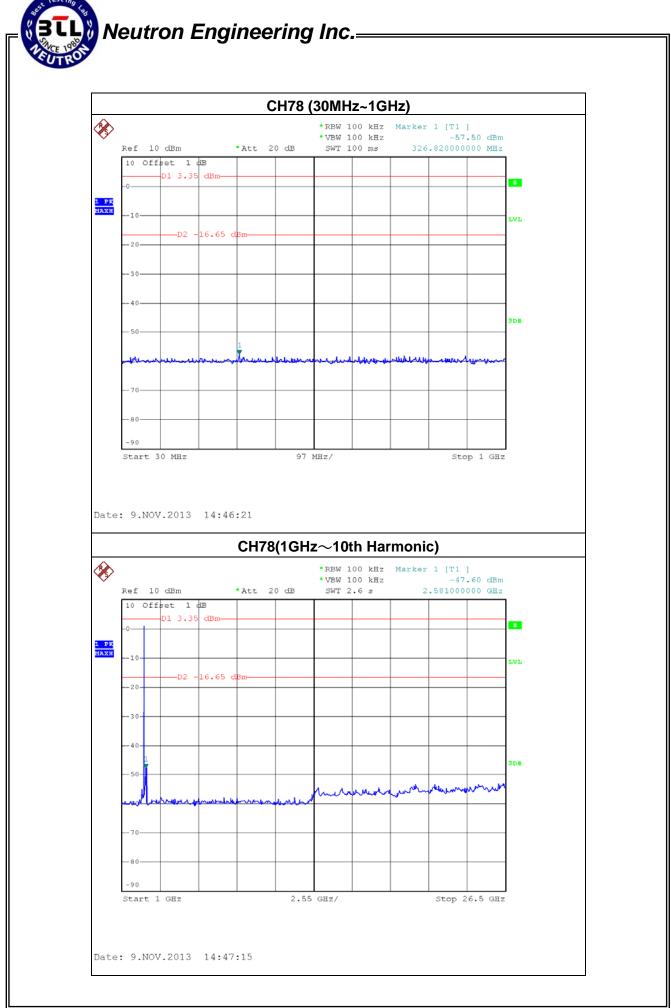

EUT :	Sound Rise	Model Name :	SFQ-08
Temperature :	24 °C	Relative Humidity:	58 %
Pressure :	1009 hPa	Test Voltage :	AC120V/60Hz
Test Mode :	CH00 / CH39/ CH78 -3Mbps & Hopping on mode (3Mbps)		


The max. radio frequency power in any 100kHzThe max. radio frequency power in any 100 kHzbandwidth outside the frequency bandbandwidth within the frequency band.

FREQUENCY(MHz)	POWER(dBm)	FREQUENCY(MHz)	POWER(dBm)
2328.00	-55.58	2483.97	-54.29


Result


In any 100kHz bandwidth outside the frequency band, the radio frequency power is at least 20dB below that in the 100kHz bandwidth within the band that contains the highest lever of the desired power.



Report No.: NEI-FICP-1-1310C159

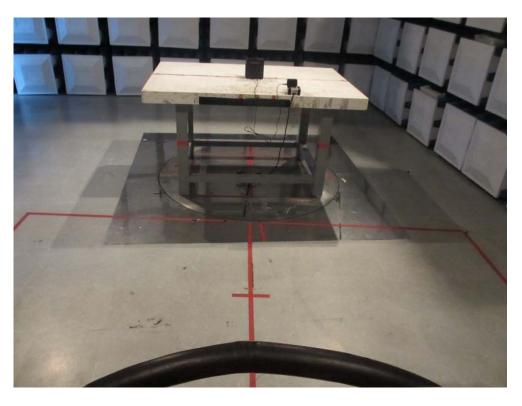
Report No.: NEI-FICP-1-1310C159

11. EUT TEST PHOTO

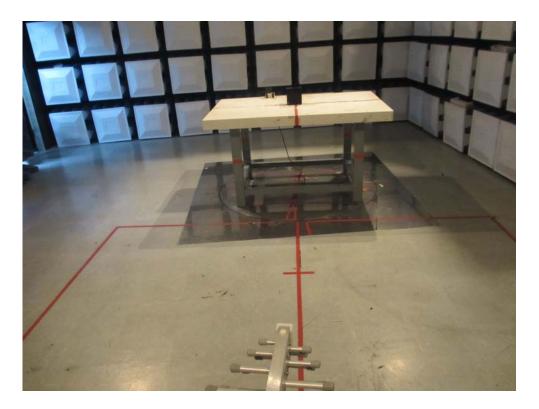
Conducted Measurement Photos Adapter: NSA15EU-075200

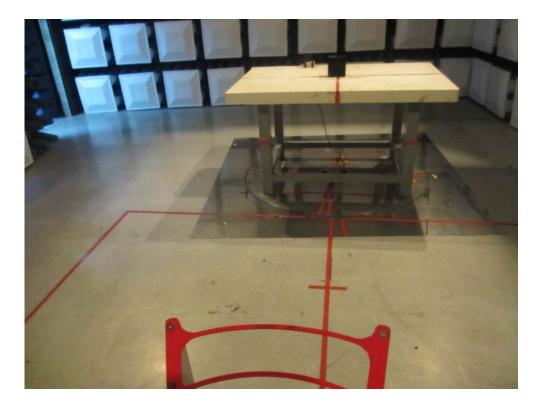
Neutron Engineering Inc._____

Conducted Measurement Photos Adapter: S018KM0900200



Page 122 of 125


Radiated Measurement Photos 9K~30MHz


Radiated Measurement Photos 30M~1000MHz



Radiated Measurement Photos Above 1000MHz

