

FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-247 ISSUE 1

CERTIFICATION TEST REPORT

For

LIFEPROOF AQ11 MODEL NUMBER: LPSAN-0007-A

> FCC ID: UZZLPSAN0007 IC: 7633A-LPSAN0007

REPORT NUMBER: 4787565288.3.1-2

ISSUE DATE: September 26, 2016

Prepared for

Beautiful Enterprise Co., Ltd. 27th Floor, Beautiful Group Tower, 77 Connaught Road Central, Hong Kong

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Room 101, Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China Tel: +86 769 33817100 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products. This report does not imply that the product(s) has met the criteria for certification.

Revision History

Rev.	Issue Date	Revisions	Revised By
	9/26/2016	Initial Issue	

Page 2 of 86

Summary of Test Results						
Clause	Test Items	FCC/IC Rules	Test			
1	20dB Bandwidth	FCC 15.247 (a) (1) IC RSS-247 Clause 5.1 (1)	Complied			
2	Peak Conducted Output Power	FCC 15.247 (b) (1) IC RSS-247 Clause 5.4 (2)	Complied			
3	Carrier Hopping Channel Separation	FCC 15.247 (a) (1) IC RSS-247 Clause 5.1 (2)	Complied			
4	Number of Hopping Frequency	15.247 (a) (1) III IC RSS-247 Clause 5.1 (4)	Complied			
5	Time of Occupancy (Dwell Time)	15.247 (a) (1) III IC RSS-247 Clause 5.1 (4)	Complied			
6	Conducted Bandedge and Spurious	FCC 15.247 (d) IC RSS-247 Clause 5.5	Complied			
7	Radiated Bandedge and Spurious	FCC 15.247 (d) FCC 15.209 FCC 15.205 IC RSS-247 Clause 5.5 IC RSS-GEN Clause 8.9	Complied			
8	Conducted Emission Test For AC Power Port	FCC 15.207 RSS-GEN Clause 8.8	Complied			
9	Antenna Requirement	FCC 15.203 RSS-GEN Clause 8.3	Complied			

.

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	6
2.	ΤE	ST METHODOLOGY	7
3.	FA	CILITIES AND ACCREDITATION	7
4.	CA	LIBRATION AND UNCERTAINTY	8
	4.1.	MEASURING INSTRUMENT CALIBRATION	8
	4.2.	MEASUREMENT UNCERTAINTY	8
5.	EG	QUIPMENT UNDER TEST	9
	5.1.	DESCRIPTION OF EUT	9
	5.2.	MAXIMUM OUTPUT POWER	9
	5.3.	PACKET TYPE CONFIGURATION	9
	5.4.	CHANNEL LIST	10
	5.5.	TEST CHANNEL CONFIGURATION	10
	5.6.	THE WORSE CASE POWER SETTING PARAMETER	10
	5.7.	DESCRIPTION OF AVAILABLE ANTENNAS	11
	5.8.	WORST-CASE CONFIGURATIONS	11
	5.9.	DESCRIPTION OF TEST SETUP	11
	5.10.	MEASURING INSTRUMENT AND SOFTWARE USED	13
6.	ME	EASUREMENT METHODS	14
7.	AN	ITENNA PORT TEST RESULTS	15
	7.1.	20 dB BANDWIDTH	15
	7.1		16
	ייי די		20
	7.2. 7.2	2.1. GFSK MODE	21
	7.2	2.2. 8-DQPSK MODE	23
	7.3.		25
	7.3	3.2. 8-DPSK MODE	25
	7.4.	CARRIER HOPPING CHANNEL SEPARATION	30
	7.4		31
	/.4 7 5		33
	7.5. 7.5	5.1. GFSK MODE	35
	7.5	5.2. 8-DPSK MODE	37
	7.6.	TIME OF OCCUPANCY (DWELL TIME)	38
		Page 4 of 86	

	7.6.1. 7.6.2.	GFSK MODE 8-DPSK MODE	39 41
-	7.7. CON 7.7.1. 7.7.2.	NDUCTED BANDEDGE AND SPURIOUS EMISSIONS GFSK MODE 8-DPSK MODE	43 44 50
8.	RADIAT	ED TEST RESULTS	56
8	3.1. LIM	ITS AND PROCEDURE	56
8	8.2. RES 8.2.1. 8.2.2.	STRICTED BANDEDGE GFSK MODE 8-DPSK MODE	60 60 64
8	3.3. SPL	JRIOUS EMISSIONS (1~25GHz)	68
	8.3.1. 8.3.2.	GFSK MODE	68 74
8	3.4. SPL 8.4.1.	JRIOUS EMISSIONS 30M ~ 1 GHz GFSK MODE	80 80
8	3.5. SPL	JRIOUS EMISSIONS BELOW 30M	82
9.	AC POV	VER LINE CONDUCTED EMISSIONS	83
10	ANTE	NNA REQUIREMENTS	86

Page 5 of 86

.

1. ATTESTATION OF TEST RESULTS

Beautiful Enterprise Co., Ltd.
27th Floor, Beautiful Group Tower, 77 Connaught Road Central, Hong Kong
Shenzhen Synchron Electronics Co., Ltd.
No. 9 Mei Li Road, Xia Mei Lin, Fu Tian Area, Shenzhen, Guangdong, P.R. China
LIFEPROOF AQ11 LIFEPROOF
LPSAN-0007-A UZZLPSAN0007 7633A-LPSAN0007 September 18, 2016 ~ September 21, 2016

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
CFR 47 Part 15 Subpart C	PASS
INDUSTRY CANADA RSS-247 Issue 1	PASS
INDUSTRY CANADA RSS-GEN Issue 4	PASS

Tested By:

Jon Bucu

Denny Huang Engineer Project Associate Approved By:

Aephenbus

Check By:

Shenny ben

Shawn Wen Laboratory Leader

Stephen Guo

Laboratory Manager

Page 6 of 86

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, RSS-GEN Issue 4, and RSS-247 Issue 1.

3. FACILITIES AND ACCREDITATION

Test Location	Shenzhen Huatongwei International Inspection Co., Ltd.
Address	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089
Accreditation Certificate	Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of elect rical testing, and proved to be in compliance with ISO/IEC 17025: 2005 Ge neral Requirements for the Competence of Testing and Calibration Labora tories and any additional program requirements in the identified field of tes ting. Valid time is until December 31, 2016. Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Fed eral Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 317478, Renewal date Jul. 18, 2014, valid time is until Jul. 18, 2017. The 3m Alternate Test Site of Shenzhen Huatongwei International Inspecti on Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Re gistration No. 5377A on Dec. 31, 2013, valid time is until Dec. 31, 2016. Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspect ion Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Re gistration No. 5377A on Dec. 31, 2013, valid time is until Dec. 31, 2016. Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspect ion Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Re gistration No. 5377B on Dec.03, 2014, valid time is until Dec.03, 2017.

Page 7 of 86

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	± 3.39 dB
Radiated Disturbance, 9k to 30 MHz	± 2.20 dB
Radiated Disturbance, 30 to 1000 MHz	± 4.24 dB
Radiated Disturbance, 1 to 18 GHz	± 5.16 dB
Radiated Disturbance, 18 to 40 GHz	± 5.54 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 8 of 86

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Equipment	LIFEPROOF AQ11			
Model Name	LPSAN-0007-A			
	Operation Frequency 2402 MHz		z ~ 2480 MHz	
Product Description	Modulation Type		Data Rate	
	GFSK		1Mbps	
Power Supply	DC 12V, 2000mA			
Battery 1 3.8V, 6000mAh				
Battery 2	3.7V, 6000mAh			
Bluetooth Version	BT 4.2			
Adapter Input: AC 100~240V, 50/60Hz, 600mA Output: DC 12V, 2000mA		mA		

5.2. MAXIMUM OUTPUT POWER

Frequency Range (MHz)	Number of Transmit Chains (NTX)	Bluetooth Mode	Frequency (MHz)	Channel Number	Max PK Conducted Power (dBm)	Max EIRP (dBm)
2400-2483.5	1	GFSK	2402-2480	0-78[79]	3.66	-0.84
2400-2483.5	1	8-DPSK	2402-2480	0-78[79]	5.09	0.59

5.3. PACKET TYPE CONFIGURATION

Test Mode	Packet Type	Setting	
	DH1	27	
GFSK	DH3	183	
	DH5	339	
	2-DH1	54	
∏/4-DQPSK	2-DH3	367	
	2-DH5	679	
	3-DH1	83	
8-DPSK	3-DH3	552	
	3-DH5	1021	

Page 9 of 86 UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

.

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2422	40	2442	60	2462
01	2403	21	2423	41	2443	61	2463
02	2404	22	2424	42	2444	62	2464
03	2405	23	2425	43	2445	63	2465
04	2406	24	2426	44	2446	64	2466
05	2407	25	2427	45	2447	65	2467
06	2408	26	2428	46	2448	66	2468
07	2409	27	2429	47	2449	67	2469
08	2410	28	2430	48	2450	68	2470
09	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

5.4. CHANNEL LIST

5.5. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel Number	Test Channel
GFSK	CH 00, CH 39, CH 78	Low, Middle, High
8-DPSK	CH 00, CH 39, CH 78	Low, Middle, High

5.6. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band				
Test Softwa	are Version	ACTsBTAPP		
Modulation Type	Transmit Antenna	Test Channel		
	Number	CH 00	CH 39	CH 78
GFSK	1	4	4	4
8-DPSK	1	4	4	4

Page 10 of 86

5.7. DESCRIPTION OF AVAILABLE ANTENNAS

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
1	2402-2480	PCB Antenna	-4.50

Test Mode	Transmit and Receive Mode	Description
GFSK	⊠1TX, 1RX	Chain 1 can be used as transmitting/receiving antenna.
8-DPSK	⊠1TX, 1RX	Chain 1 can be used as transmitting/receiving antenna.

5.8. WORST-CASE CONFIGURATIONS

Bluetooth Mode	Modulation Technology	Modulation Type	Data Rate (Mbps)
BR	FHSS	GFSK	1Mbit/s
EDR	FHSS	8-DPSK	3Mbit/s

5.9. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	FCC ID
1	Laptop	ThinkPad	T410	N/A

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	AUX In 1	AUX	Unshielded	0.30	In buttom
2	AUX In 2	AUX	Unshielded	0.30	In Lateral
3	DC In	DC	Unshielded	0.90	DC 12V, 2A
4	USB out 1	USB	Unshielded	0.30	DC 5V, 1A
5	USB out 2	USB	Unshielded	0.30	DC 5V, 0.5A

ACCESSORY

ltem	Accessory	Brand Name	Model Name	Description
1	Power Adapter	N/A	S024AMU1200200	Input: AC 100~240V, 50/60Hz, 600mA Output: DC 12V, 2000mA

Page 11 of 86

TEST SETUP

The EUT can work in an engineer mode with a software through a Laptop.

SETUP DIAGRAM FOR TESTS

Page 12 of 86

	Instrument(Conducted for RF Port)					
Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Expired date
\checkmark	Spectrum Analyze	er R&S	FSV40	100048 I	Nov.3,2015	Nov.3,2016
	lr	strument (Line C	onducted Em	ission (AC Ma	uin))	<u> </u>
Use d	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Expired date
\checkmark	EMI Test Receiver	R&S	ESCI	101247	Nov.3,2015	Nov.3,2016
	Artificial Mains	SCHWARZB ECK	NNLK 8121	573	Nov.3,2015	Nov.3,2016
\checkmark	Pulse Limiter	R&S	ESH3-Z2	101488	Nov.3,2015	Nov.3,2016
\checkmark	Test Software	R&S	ES-K1	N/A	N/A	N/A
	Adapter (see note)	HUNTKEY	HW- 050100C2W	HWHKAPE5 1309936	-	-
		Instrum	ent (Radiated	Tests)		
Use d	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Expired date
\checkmark	EMI Test Receiver	R&S	ESI 26	100009	Nov.2,2015	Nov.2,2016
	RF Test Panel	R&S	TS / RSP	335015/ 0017	N/A	N/A
\checkmark	EMI Test Software	R&S	ESK1	N/A	N/A	N/A
	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	Nov.8,2015	Nov.8,2016
\checkmark	Horn Antenna	ShwarzBeck	9120D	1011	Nov.8,2015	Nov.8,2016
\checkmark	Loop Antenna	R&S	HZ-9	838622\013	Nov.8,2015	Nov.8,2016
	Broadband Horn Antenna	ShwarzBeck	BBHA9170	BBHA9170 472	Nov.8,2015	Nov.8,2016
	Broadband Preamplifer	ShwarzBeck	BBV 9718	9718-247	Nov.2,2015	Nov.2,2016
	Broadband Preamplifer	ShwarzBeck	BBV 9721	9721-102	Nov.2,2015	Nov.2,2016
\checkmark	Turn Table	MATURO	TT2.0		N/A	N/A
\checkmark	Antenna Mast	MATURO	TAM-4.0-P		N/A	N/A
\checkmark	EMI Test Software	Audix	E3	N/A	N/A	N/A
\checkmark	Test cable	Siva Cables Italy	RG 58A/U	W14.02	Nov.5,2015	Nov.5,2016

5.10. MEASURING INSTRUMENT AND SOFTWARE USED

Page 13 of 86

.

6. MEASUREMENT METHODS

No.	Test Item	KDB Name
1	20 dB Bandwidth	FCC Public Notice DA 00-705
2	99% Bandwidth	ANSI C63.10-2013
3	Peak Output Power	FCC Public Notice DA 00-705
4	Power Spectral Density	FCC Public Notice DA 00-705
5	Out-of-band emissions in non-restricted bands	FCC Public Notice DA 00-705
6	Out-of-band emissions in restricted bands	FCC Public Notice DA 00-705
7	Band-edge	FCC Public Notice DA 00-705

Page 14 of 86

.

7. ANTENNA PORT TEST RESULTS

7.1. 20 dB BANDWIDTH

LIMITS

FCC Part15 (15.247) , Subpart C IC RSS-247 ISSUE 1				
Section	Test Item	Limit	Frequency Range (MHz)	
FCC 15.247 (a) (1) IC RSS-247 Clause 5.1 (1)	20dB Bandwidth	/	2400-2483.5	

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	≥ 1% of the 20 dB bandwidth
VBW	≥RBW
Trace	Max hold
Sweep	Auto couple

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

Page 15 of 86

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST CONDITIONS

Temperature: 21.0°C Relative Humidity: 63.0% Test Voltage: AC 120V/60Hz

RESULTS

7.1.1. GFSK MODE

Channel	Frequency 20dB bandwidth Lim (MHz) (kHz) (kH		Limit (kHz)	Result
Low	2402	916.1	500	Pass
Middle	2441	916.1	500	Pass
High	2480	916.1	500	Pass

Page 16 of 86

Page 17 of 86

7.1.2. 8-DPSK MODE

Channel	Frequency (MHz)	20dB bandwidth (MHz)	Limit (kHz)	Result
Low	2402	1.324	500	Pass
Middle	2441	1.324	500	Pass
High	2480	1.363	500	Pass

Page 18 of 86

Page 19 of 86

7.2. 99% **BANDWIDTH**

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	≥ 1% of the 20 dB bandwidth (e.g. 30K for BT)
VBW	≥RBW
Trace	Max hold
Sweep	Auto couple

Use the 99% bandwidth function in the spectrum analyser and allow the trace to stabilize, then recorded the measurement data.

TEST SETUP

TEST CONDITIONS

Temperature: 21.0°C Relative Humidity: 63.0% Test Voltage: AC 120V/60Hz

Page 20 of 86

RESULTS

7.2.1. GFSK MODE

Channel	Frequency 99% Bandwidth (MHz) (kHz)		Limit (kHz)	Result
Low	2402	929.088	500	Pass
Middle	2441	924.747	500	Pass
High	2480	924.747	500	Pass

Page 21 of 86

Page 22 of 86

7.2.2. 8-DQPSK MODE

Channel	Frequency (MHz)	99% Bandwidth (MHz)	Limit (kHz)	Result
Low	2402	1.224	500	Pass
Middle	2441	1.233	500	Pass
High	2480	1.233	500	Pass

Page 23 of 86

Page 24 of 86

7.3. PEAK CONDUCTED OUTPUT POWER

LIMITS

FCC Part15 (15.247), Subpart C IC RSS-247 ISSUE 1				
Section	Test Item	Limit	Frequency Range (MHz)	
FCC 15.247 (b) (1) IC RSS-247 Clause 5.4 (2)	Peak Conducted Output Power	1 watt or 30dBm	2400-2483.5	

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	> the 20 dB bandwidth of the emission being measured (e.g. 1 MHz for BT)
VBW	≥RBW
Span	approximately 5 times the 20 dB bandwidth, centered on a hopping channel
Trace	Max hold
Sweep time	Auto couple

Allow trace to fully stabilize and use peak marker function to determine the peak amplitude level.

TEST SETUP

TEST CONDITIONS

Temperature: 21.0°C Relative Humidity: 63.0% Test Voltage: AC 120V/60Hz

RESULTS

7.3.1. GFSK MODE

Page 25 of 86

Channel	Frequency	Maximum Conducted Output Power(PK)	EIRP	Result	
	(MHz)	(dBm)	(dBm)		
Low	2402	2.34	-2.16	Pass	
Middle	2441	3.21	-1.29	Pass	
High	2480	3.66	-0.84	Pass	

Note: EIRP = Maximum Conducted Output Power (PK) + Antenna Gain

		OUTPU		VER LO	W CH	I		
Spectrum	Spectrum 2	×						
Ref Level 15.00 d	dBm	RBW	2 MHz					
Att 25	dB SWT 1	ms 🖷 VBW	2 MHZ MO	de Auto Swe	ер			
				M1[:	1]			2.24 dBm
10 dBm			M1		1		2.401	181190 GHz
0 dBm			-					
-10 dBm								
-20 dBm								
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
-80 dBm								
GF 2.402 GHz			691	ots			Spa	in 5.0 MHz
ate:26.AUG.2016 09:	14:04							

Page 26 of 86

.

Page 27 of 86

7.3.2. 8-DPSK MODE

Channel	Frequency	Maximum Conducted Output Power(PK)	EIRP	Result	
	(MHz)	(dBm)	(dBm)		
Low	2402	3.80	-0.70	Pass	
Middle	2441	4.65	0.15	Pass	
High	2480	5.09	0.59	Pass	

Note: EIRP = Maximum Conducted Output Power (PK) + Antenna Gain

Page 28 of 86

Page 29 of 86

7.4. CARRIER HOPPING CHANNEL SEPARATION

LIMITS

FCC Part15 (15.247) , Subpart C IC RSS-247 ISSUE 1				
Section	Test Item	Limit	Frequency Range (MHz)	
FCC 15.247 (a) (1) IC RSS-247 Clause 5.1 (2)	Carrier Hopping Channel Separation	25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.	2400-2483.5	

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test		
Span	wide enough to capture the peaks of two adjacent channels		
Detector	Peak		
RBW	≥ 1% of the span		
VBW	≥RBW		
Trace	Max hold		
Sweep time	Auto couple		

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section. Submit this plot.

TEST SETUP

Page 30 of 86

TEST CONDITIONS

Temperature: 21.0°C Relative Humidity: 63.0% Test Voltage: AC 120V/60Hz

RESULTS

7.4.1. GFSK MODE

Channel	Carrier Hopping Channel Separation (MHz)	Limit (MHz)	Result
Low	1.002	≥ two-thirds of the 20 dB Bandwidth Of The Hopping Channel	PASS
Middle	1.002	≥ two-thirds of the 20 dB Bandwidth Of The Hopping Channel	PASS
High	1.002	≥ two-thirds of the 20 dB Bandwidth Of The Hopping Channel	PASS

Page 31 of 86

Note: For 20 dB Bandwidth of The Hopping Channel, please refer to clause 7.1.1.

Page 32 of 86

7.4.2. 8-DPSK MODE

Channel	Carrier Hopping Channel Separation (MHz)	Limit (MHz)	Result
Low	1.002	≥ two-thirds of the 20 dB Bandwidth Of The Hopping Channel	PASS
Middle	1.002	≥ two-thirds of the 20 dB Bandwidth Of The Hopping Channel	PASS
High	1.002	≥ two-thirds of the 20 dB Bandwidth Of The Hopping Channel	PASS

Page 33 of 86

Note: For 20 dB Bandwidth of The Hopping Channel, please refer to clause 7.1.2.

Page 34 of 86

7.5. NUMBER OF HOPPING FREQUENCY

LIMITS

FCC Part15 (15.247), Subpart C IC RSS-247 ISSUE 1				
Section	Test Item	Limit		
15.247 (a) (1) III IC RSS-247 Clause 5.1 (4)	Number of Hopping Frequency	at least 15 hopping channels		

TEST PROCEDURE

Connect the EUT to the spectrum analyser and use the following settings:

Detector	Peak
RBW	1% of the span
VBW	≥RBW
Span	The frequency band of operation
Trace	Max hold
Sweep time	Auto couple

Set EUT to transmit maximum output power and switch on frequency hopping function. then set enough count time (larger than 5000 times) to get all the hopping frequency channel displayed on the screen of spectrum analyzer.

Count the quantity of peaks to get the number of hopping channels.

TEST SETUP

TEST CONDITIONS

Temperature: 21.0°C Relative Humidity: 63.0% Test Voltage: AC 120V/60Hz

Page 35 of 86

RESULTS

7.5.1. GFSK MODE

Hopping numbers	Limit	Results
79	>15	Pass

Page 36 of 86
7.5.2. 8-DPSK MODE

Hopping numbers	Limit	Results
79	>15	Pass

Att	25 dB	SWT 1	ms 🖷 VBW	100 kHz	Mode Auto	Sweep			
⊖1Pk View									
10 dBm									
opdatest	www.	hundry hundry		WWWWW	ntan har	orrhadene	M	+	ANNA
-10 dBm									
-20 dBm									
-30 dBm									H H
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
-80 dBm									
Start 2.4 G	Ηz			691	pts			Stop 2	.4835 GHz
	Л					Measuri	10 🛄		1

Page 37 of 86

.

7.6. TIME OF OCCUPANCY (DWELL TIME)

LIMITS

	FCC Part15 (IC RSS	15.247) , Subpart C -247 ISSUE 1
Section	Test Item	Limit
15.247 (a) (1) III IC RSS-247 Clause 5.1 (4)	Time of Occupancy (Dwell Time)	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed.

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	1 MHz
VBW	≥RBW
Span	zero span
Trace	Max hold
Sweep time	As necessary to capture the entire dwell time per hopping channel

a. The transmitter output (antenna port) was connected to the spectrum analyzer

- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse. A Period Time = (channel number)*0.4

DH1 Time Slot: Reading * (1600/2)*31.6/(channel number)

DH3 Time Slot: Reading * (1600/4)*31.6/(channel number) DH5 Time Slot: Reading * (1600/6)*31.6/(channel number)

TEST SETUP

Page 38 of 86

TEST CONDITIONS

Temperature: 21.0°C Relative Humidity: 63.0% Test Voltage: AC 120V/60Hz

RESULTS

7.6.1. GFSK MODE

nackat type	Time of Single Slot	Time of occupied in a period	Limit	Popult
раскет туре	[ms]	[s]	[s]	nesuii
DH1	0.365	0.117	≤ 0.4	Pass
DH3	1.623	0.260	≤ 0.4	Pass
DH5	2.884	0.308	≤ 0.4	Pass

Page 39 of 86

REPORT NO: 4787565288.3.1-2 FCC ID: UZZLPSAN0007

Page 40 of 86

7.6.2. 8-DPSK MODE

naakat tuna	Time of Single Slot	Time of occupied in a period	Limit	Popult
раскет туре	[ms]	[s]	[s]	nesuit
DH1	0.385	0.123	≤ 0.4	Pass
DH3	1.635	0.262	≤ 0.4	Pass
DH5	2.900	0.309	≤ 0.4	Pass

Page 41 of 86

Page 42 of 86

7.7. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

<u>LIMITS</u>

	FCC Part15 (15.247) , Subpart C IC RSS-247 ISSUE 1							
Section	Test Item	Limit						
FCC §15.247 (d) IC RSS-247 5.5	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power						

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	100K
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple

Use the peak marker function to determine the maximum PSD level.

Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100K
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Use the peak marker function to determine the maximum amplitude level.

Page 43 of 86

TEST SETUP

TEST CONDITIONS

Temperature: 21.0°C Relative Humidity: 63.0% Test Voltage: AC 120V/60Hz

RESULTS

7.7.1. GFSK MODE

Page 44 of 86

Spectrum Spectru		I BANDEDA	GE	
RefLevel 15.00 dBm	■ RBW 1	DO kHz DO kHz Mode Auto	FFT	
∋1Pk View				
10 dBm		M2[1	1	-45.44 dBm
		M1[1	1	2.399220 GHz
0 dBm			1	2.400000 GHz
o abiii				
-10 dBm				
-20 dBmD1 -18.780 dBm				
-30 dBm				
-40 dBm				M2
				M M
-50 dBm				
				pol ly
-60 dBm	and the state of t	a state V	L. L. L. L. L. LANK	when the
and my politic of the	suggestion brown when	manantana	our hander on have	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-70 dBm				
00 d0m				
-ou ubill				
Start 2.31 GHz		691 pts		Stop 2.41 GHz
			Measuring	
ate:26 AUG 2016 10:01:48				

Page 45 of 86

Spectrum	Spectrum 2	× s	pectrum 3	×	pectrum	4 🛛		[₩
Att	оавт 25 dB SWT 2	е кв 20 ms 👄 VB	W 100 kHz	Mode Aut	to Sweep			
∎1Pk Max								
10 dBm				M	1[1]	1	6.9	·58.63 dBn)18410 GH:
0 dBm								
-10 dBm								
-20 dBm	8.780 dBm							
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm	M1		and the selected	المراجع	a dia dia mandritra andre	and a state of the s	. and there is	ana, datte og blev
-70 dBm	and a state of the		ار بر ماند _{ان م} اند بر مند. ا	. John Statill	ali Annaith, in de	the state of the s	and the second	الديادي جامران وهيا
-80 dBm								
Start 3.0 GHz	1	1	3200	0 pts		1	Stop	0 25.0 GHz
					Measuri	ng 🔳		1

Page 46 of 86

Spectrur Rof Levr	n Sp	ectrum 2	Sp Sp	oectrum 3	× s	pectrum 4	t X		(🗟
Att	25 dE	5 SWT 32	ms e VBW	100 kHz 100 kHz	Mode Auto) Sweep			
1Pk Max 10 dBm					M	1[1]		- 2.57	54.42 dBr 09740 GH
I dBm									
10 dBm—									
20 dBm—	-D1 -17.840	dBm							
30 dBm—									
40 dBm—									
50 dBm—								MI	
60 dBm—			nil h. b. at same		. nation		المراجع الم		المعيدان ومع
-walling the	n in the second s	(hours provided and	in the second	ing (1996) (1996) (1996) Marine (1996) (1996) Marine (1996) (1996) (1996)	nder, einen sich der Berleichen der Aller einen sich der Berleichen der	and where the second	ali on an mont	Antonia and and a party	فالمعر إرغ طاهر عاملا سار
30 dBm									
tart 30.0) MHz			3200	0 pts			Sto	p 3.0 GHz
						Measuri			

Page 47 of 86

Page 48 of 86

Spectrum	Spectru	m 2 🛛 🛛	Spectr	um 3 🛛 🕅	Spectrum	14 🛛		
Ref Level 15.0	00 dBm	•	RBW 100	kHz				
Att	25 dB SV	/T 32 ms 🖷	VBW 100	kHz Mode A	uto Sweep			
10 dBm					M1[1]		2.60	56.05 dBm 99550 GHz
) dBm								
-10 dBm								
-20 dBm	17.840 dBm-							
-30 dBm								
-40 dBm								
-50 dBm							M1	
60 dBm	الريتين وبالمسيري وبالتو	te la plante de la fact	والمتعدين والمراط	الم المرور المراجع المراجع	والمنابق ومعالمة الم	L. H. Marine Lawrence III	al last he	المعر كال <mark>المعدول عل</mark> ول والحرو
berdBin	and the set of the set	<mark>naga kan dispeks</mark> tikan kenderang pan		sun, hardi da ban and dalar	ten Maha, ya yanan tenda yanina pina ana anta	<mark>n kanalaspan k</mark> ang si dipanaka	alite and an and a second a s	dan selado a dada da
-80 dBm								
Start 30.0 MHz	·	•		32000 pts	Measu	ring	Sto	p 3.0 GHz

Page 49 of 86

7.7.2. 8-DPSK MODE

Page 50 of 86

Spectrum Sp	ectrum 2	X S	pectrum 3	×s	pectrum	4 X		
Ref Level 15.00 dBr Att 25 d	n 3 SWT 32	e RBW ms e VBW	/ 100 kHz / 100 kHz	Mode Auto) Sweep			
1Pk Max								
LO dBm				M	1[1]	I	2.53	17150 GHz
) dBm								
10 dBm								
20.dBm-01 -20.770)_dBm							
30 dBm								
40 dBm								
50 dBm							541	
60 dBm								
والمستقدل العصار المدراء أحذوال والالدار والرواني	فأسأفه ويقاريه وبالحيدوان	adalah salaring dar Milandarah salaring dar	alimiter and the	a su ana su durta	halenskontaaten	ulu la publication	13946 and a state of the	harman a state a state A state a state
vu dBm	and the state of the state of the state	h.sp	an a b _a artin matikinin (Dat	A Salitan	ويتعقب المليقاتين		1.000	
80 dBm								
Start 30.0 MHz	1	1	3200	l O pts		1	Sto	p 3.0 GHz
					Measuri			1

Page 51 of 86

Page 52 of 86

Spectrum	Spectrum 2	× S	pectrum 3	x s	pectrum	4 🛛		U N
Att 2	ubm 5dB SWT 22	0 ms 🖷 VB	W 100 kHz W 100 kHz	Mode Au	to Sweep			
1Pk Max 10 dBm				м	1[1]		6.3	57.65 dBn 03090 GH:
0 dBm								
-10 dBm								
-20 d8mD1 -19	.700 dBm							
-30 dBm								
40 dBm								
-50 dBm1								
60 dBm	and a second as	a and a state of the second	and prove diverse	a Jangka Araka Ma	a Mating Land		a plant and a strate of	n an air an an an an an air
70 dBm	- Constant of the last	and the second	and the second	in sufficiently distantion	a an anna an an an an an	and a state	and the state of the	in Heritan in State of
-80 dBm								
Start 3.0 GHz			3200	0 pts	Measur		Stop	25.0 GHz

Page 53 of 86

REPORT NO: 4787565288.3.1-2 FCC ID: UZZLPSAN0007

Page 54 of 86

Ref Level 15.	00 dBm	e RB	W 100 kHz	<u> </u>				(v
Att	25 dB SWT	220 ms 👄 VB	₩ 100 kHz	Mode Au	to Sweep			
10 dBm				M	1[1]		6.9	57.51 dBn 21840 GH:
) dBm								
-10 dBm								
20 dBm D1 ·	-19.350 dBm====							
-30 dBm								
40 dBm								
50 dBm	M1							
60 dBm			ta shi ke i	هالدوالي دادر ا	os das des estes	un a stati da	ر. مەن اللەر سال	المربقة المراجعة الم
70 dBm	the and the address of the state of the stat	alaala dan bibila di ba Yuun yuun ahaan ina	and a star ways	ne saka sa Akawat	A. American Inc	un distanta	an da si su si	inter annals a thail ai
80 dBm								
CF 14.0 GHz		•	3200	0 pts)		Span	22.0 GHz

Page 55 of 86

.

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

Please refer to FCC §15.205 and §15.209

Please refer to IC RSS-GEN Clause 8.9 (Transmitter)

Radiation Disturbance Test Limit for FCC (Class B)(9KHz-1GHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Radiation Disturbance Test Limit for FCC (Above 1G)

Frequency (MHz)	dB(uV/m) (at 3 meters)		
	Peak	Average	
Above 1000	74	54	

TEST CONDITIONS

Temperature: 22.2°C Relative Humidity: 61.2% Test Voltage: AC 120V/60Hz

Page 56 of 86

TEST SETUP AND PROCEDURE

Below 30MHz

The setting of the spectrum analyser

RBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
Sweep	Auto
Detector	Peak/QP/ Average
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 0.8 meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

7. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

Page 57 of 86

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Below 1G

The setting of the spectrum analyser

RBW	120K
VBW	300K
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 0.8 meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

7. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration)

Page 58 of 86

ABOVE 1G

The setting of the spectrum analyser

RBW	1M
VBW	3M
Sweep	Auto
Detector	Peak and CISPR Average
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (1.5 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5 meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

6. For measurement above 1GHz, the emission measurement will be measured by the peak detector and the AV detector.

7. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration)

TEST CONDITIONS

Temperature: 22.2°C Relative Humidity: 61% Test Voltage: AC 120V/60Hz

Page 59 of 86

8.2. RESTRICTED BANDEDGE

8.2.1. GFSK MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Page 60 of 86

Page 61 of 86

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Page 62 of 86

Note: EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Page 63 of 86

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

8.2.2. 8-DPSK MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Page 64 of 86

Page 65 of 86

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

Page 66 of 86

Note: EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Page 67 of 86

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

8.3. SPURIOUS EMISSIONS (1~25GHz)

8.3.1. GFSK MODE

HARMONICS AND SPURIOUS EMISSIONS

Page 68 of 86

Page 69 of 86

Page 70 of 86

 Page 71 of 86

 UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch
 FORM NO: 10-SL-F0035

 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou)

 Co., Ltd, Song Shan Lake Branch.

Note: EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Page 73 of 86

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

8.3.2. 8DPSK MODE

HARMONICS AND SPURIOUS EMISSIONS

Page 74 of 86

Page 76 of 86

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Note: EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Page 79 of 86

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

8.4. SPURIOUS EMISSIONS 30M ~ 1 GHz

8.4.1. GFSK MODE

Page 80 of 86

Note: EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Page 81 of 86

8.5. SPURIOUS EMISSIONS BELOW 30M

Note 1: The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

Note 2: EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Page 82 of 86

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

Please refer to FCC §15.207 (a) and RSS-Gen Clause 8.8

FREQUENCY (MHz)	Class A (dBuV)		Class B (dBuV)	
	Quasi-peak	Average	Quasi-peak	Average
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *
0.50 -5.0	73.00	60.00	56.00	46.00
5.0 -30.0	73.00	60.00	60.00	50.00

TEST SETUP AND PROCEDURE

The EUT is put on a table of non-conducting material that is 80cm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 7 and 13 of ANSI C63.4-2014.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

Page 83 of 86

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST RESULTS (WORST-CASE CONFIGURATION)

EUT:	LIFEPROOF AQ10	Model Name:	LPSAN-0006-A
Temperature:	24.3°C	Relative Humidity:	47.0 %
Pressure:	1012 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	GFSK Mode	Phase :	L1

Page 84 of 86

EUT:	LIFEPROOF AQ10	Model Name:	LPSAN-0006-A
Temperature:	24.3°C	Relative Humidity:	47.0 %
Pressure:	1012 hPa	Test Voltage:	AC 120V/60Hz
Test Mode:	GFSK Mode	Phase :	N

10. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

ANTENNA CONNECTOR

EUT has a PCB antenna without antenna connector.

ANTENNA GAIN

The antenna gain of EUT is less than 6 dBi.

END OF REPORT

Page 86 of 86