

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to

Industry Canada RSS-Gen Issue 1 / RSS 210 Issue 6 FCC Part 15 Subpart C

on the Meshdynamics **Transmitter** Model: MD4000

UPN: 6935A-MD2 FCC ID: UZU-MD2

GRANTEE: Meshdynamics

2953 Bunker Hill Ln Suite 400

Santa Clara, CA 95054

TEST SITE: Elliott Laboratories, Inc.

> 684 W. Maude Ave Sunnyvale, CA 94086

REPORT DATE: January 9, 2007

FINAL TEST DATE: September 13, September 25, October 18,

October 23, October 25 and October 27, 2006

AUTHORIZED SIGNATORY:

Juan Martinez

Senior EMC Engineer

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

Test Report Report Date: January 9, 2007

REVISION HISTORY

Revision #	Date	Comments	Modified By
1	March 26, 2007	Initial Release	David Guidotti
2	May 2, 2007	Changing Report to be a LMA so adding new FCC ID	Juan Martinez
5	June 21, 2007	Correct error on table of contents	Juan Martinez

File: R66621 Rev 5 Page 2 of 25 pages

TABLE OF CONTENTS

COVER PAGE	1
REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	5
OBJECTIVE	6
STATEMENT OF COMPLIANCE	7
TEST RESULTS SUMMARY	8
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHZ)	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	11
GENERAL	
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	11
SUPPORT EQUIPMENT	12
EUT INTERFACE PORTS	
EUT OPERATION	13
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	14
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLEINSTRUMENT CALIBRATION	16
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
RADIATED EMISSIONSBANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	24

Test Report Report Date: January 9, 2007

EXHIBIT 1: Test Equipment Calibration Data	1
EXHIBIT 2: Test Measurement Data	2
EXHIBIT 3: Photographs of Test Configurations	3
EXHIBIT 4: Proposed FCC ID Label & Label Location	4
EXHIBIT 5: Detailed Photographs	5
EXHIBIT 6: Operator's Manual	6
EXHIBIT 7: Block Diagram	
EXHIBIT 8: Schematic Diagrams	
EXHIBIT 9: Theory of Operation	
EXHIBIT 10: RF Exposure Information	

SCOPE

An electromagnetic emissions test has been performed on the Meshdynamics model MD4000 pursuant to the following rules:

Industry Canada RSS-Gen Issue 1 RSS 210 Issue 6 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 RSS-212 Issue 1 Test Facilities and Test Methods for Radio Equipment

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Meshdynamics model MD4000 and therefore apply only to the tested sample. The sample was selected and prepared by Sriram Dayanandan of Meshdynamics

File: R66621 Rev 5 Page 5 of 25 pages

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

File: R66621 Rev 5 Page 6 of 25 pages

STATEMENT OF COMPLIANCE

The tested sample of Meshdynamics model MD4000 complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 1 RSS 210 Issue 6 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

File: R66621 Rev 5 Page 7 of 25 pages

TEST RESULTS SUMMARY

DIGITAL TRANSMISSION SYSTEMS (2400 - 2483.5MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM / DSSS techniques	-	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	802.11g = 16.6 MHz 802.11b = 11.1 MHz	>500kHz	Complies
	RSP100	99% Bandwidth	802.11g = 17.5 MHz 802.11b = 16.1 MHz	Information only	Complies
15.247 (b) (3)	RSS 210 A8.2 (4)	Output Power (multipoint systems)	25 dBm (.326 Watts) EIRP = 2.06 W Note 1	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	802.11g = 3 dBm / kHz 802.11b = -5.5 dBm / kHz	8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	Refer to plots	802.11b < -20dBc 802.11g <-30dBc Note 2	Complies
15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 30MHz – 25 GHz	73.5dBµV/m (4731.5µV/m) @ 7309.9MHz (- 0.5dB)	15.207 in restricted bands, all others 802.11b < -20dBc 802.11g <-30dBc Note 2	Complies

Note 1: EIRP calculated using antenna gain of 8 dBi for the highest EIRP multi-point system.

Note 2: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst) / RMS averaging over a time interval, as permitted under RSS 210 section A8.4(4).

File: R66621 Rev 5 Page 8 of 25 pages

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	N-Type device is professionally installed		Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	47.1dBμV/m (225.9μV/m) @ 7053.4MHz		Complies (- 6.9 dB)
15.207	RSS GEN Table 2	AC Conducted Emissions	N/A – EUT is DC operated	Refer to standard	Complies
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
	RSP 100 RSS GEN 7.1.5	User Manual		Statement required regarding detachable antenna	

File: R66621 Rev 5 Page 9 of 25 pages

MEASUREMENT UNCERTAINTIES

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions Radiated Emissions	0.015 to 30 30 to 1000	± 3.0 ± 3.6
Radiated Emissions	1000 to 40000	± 6.0

File: R66621 Rev 5 Page 10 of 25 pages

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Meshdynamics model MD4000 is a Mesh Router which is designed to wirelessly route client data into the network. Normally, the EUT would be placed on a table top during operation. The EUT was, therefore, treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 120/240 V, 50/60 Hz, 7.5 Amps.

The sample was received on September 13, 2006 and tested on September 13, September 25, October 18, October 23, October 25 and October 27, 2006. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number
Meshdynamics	MD4350-AA-G	Mesh Router	14456
Meshdynamics	MD2	2.4Ghz Module	-

ANTENNA SYSTEM

The EUT antenna has one 8dBi antenna for both 2.4 and 5Ghz.

The external antenna will be professionally installed.

The antennas connect to the EUT via a standard N Female, thereby professional installation will be required.

ENCLOSURE

The EUT enclosure is primarily constructed of fabricated sheet steel. It measures approximately 8 cm wide by 6 cm deep by 2 cm high.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with emissions specifications.

File: R66621 Rev 5 Page 11 of 25 pages

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Config 1

Manufacturer	Model	Description	Serial Number
Meshdynamics	MD4350-AA-G	Mesh Router	14446
	POE - 12i	Injector of Power over Ethernet	181
Airlink	AR504	4 port Switch Router	3EE04B01314
Dell	C840	PC Laptop	3J578 AJ1
Sony	PCG-883L	PC Laptop	n/a

Config 2

		Comig 2		
Manufacturer	Model	Description	Serial Number	FCC ID
Unknown	POE - 24i	Power over Ethernet	0560145	DoC
		Injector		
Unknown	EZ500-S	GigaFast Ethernet Hub	1338002375	DoC
Unknown	MW41-	AC/DC Adaptor for		-
	0751000	Hub		
Dell	Inspiron 600m	Laptop Computer	Service Tag	DoC
			90ZXC91	
Dell	PA-1650-05D2	AC Adapter for Laptop	CN-0F7970-	-
			71615-5CD-	
			225C	

No remote support equipment was used during emissions testing.

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Config 1

		Cable(s)		
Port	Connected To	Description	Shielded or Unshielded	Length(m)
POE	Injector	Cat. 5 Ethernet	ushielded cat 5	10

File: R66621 Rev 5 Page 12 of 25 pages

Config 2					
		Cable(s)			
Port	Connected To	Description	Shielded or	Length(m)	
		_	Unshielded	_	
EUT Connection	S				
RF Port	Antonno	Direct			
Under Test	Antenna	Connection	-	-	
Other RF	Unterminated				
Ports	Unterminated	-	-	-	
Ethernet Port	DOE Injector	Cots LITD	Unshielded	1.0	
#1	POE Injector	Cat5 UTP	Unsmeided	1.0	
Ethernet Port					
#2 (Bridge	Not Cabled	-	-	-	
Port)					
Serial Port	Dell Laptop	Ribbon Cable to	Unshielded and	1.0	
Serial I oft		Serial RS-232	Shielded	1.0	
Additional Conn	ections				
Dell Laptop, DC	External AC	DC Power Leads	Unshielded	1.0	
Input	Adapter	DC Tower Leads	Offshielded	1.0	
Dell External AC	120V/60Hz	AC Power Cord	Unshielded	1.0	
Adapter	120 V/0011Z	AC FOWEI COID	Ulisilicided	1.0	
Hub, DC Input	External AC	DC Power Leads	Unshielded	1.0	
	Adapter	DC I OWEI Leaus	Onsinciaca	1.0	
POE Injector,	120V/60Hz	AC Power Cord	Unshielded	1.0	
AC Input	120 170011Z	710 TOWER COID	Olisilicided	1.0	

Note: The Bridge port were not connected as the manufacturer stated that these are for peripheral devices purpose and therefore would not normally be connected.

Note 1: No Ethernet connection on the Injector of Power over Ethernet makes it Repeater mode.

EUT OPERATION

During emissions testing, the EUT was in Transmit or Receive Mode as noted in the test data.

File: R66621 Rev 5 Page 13 of 25 pages

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on September 13, September 25, October 18, October 23, October 25 and October 27, 2006at the Elliott Laboratories Open Area Test Site #1 located at 684 West Maude Avenue, Sunnyvale, California. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission.

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003 and RSS 212.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003 and RSS 212. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003 / RSS 212.

File: R66621 Rev 5 Page 14 of 25 pages

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

File: R66621 Rev 5 Page 15 of 25 pages

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

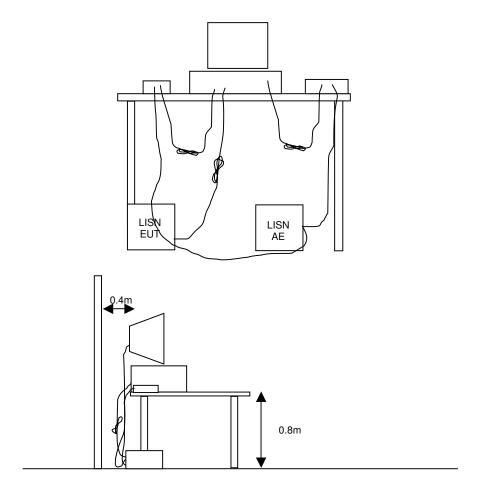
The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 and RSS 212 specify that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

File: R66621 Rev 5 Page 16 of 25 pages

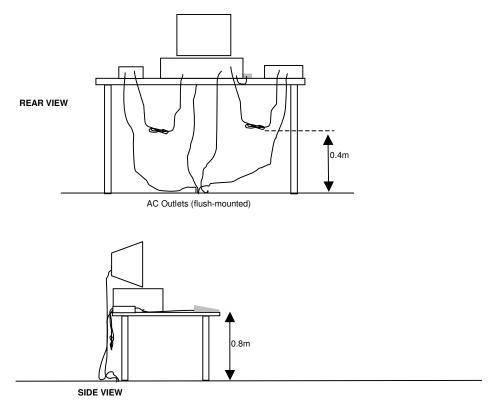

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

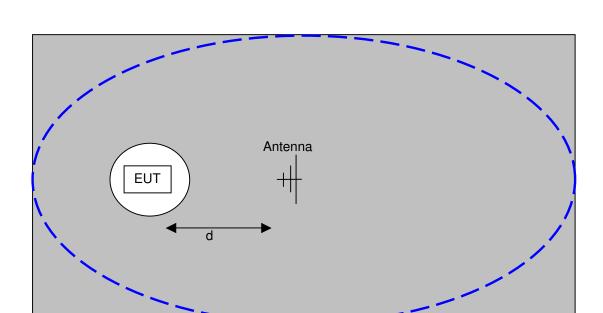
CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

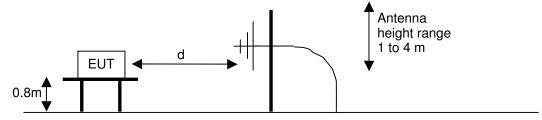

File: R66621 Rev 5 Page 17 of 25 pages

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is perfromed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.



Typical Test Configuration for Radiated Field Strength Measurements

File: R66621 Rev 5 Page 18 of 25 pages

The ground plane extends beyond the ellipse defined in CISPR 16 / CISPR 22 / ANSI C63.4 and is large enough to accommodate test distances (d) of 3m and 10m. Refer to the test data tables for the actual measurement distance.

<u>Test Configuration for Radiated Field Strength Measurements</u>
OATS- Plan and Side Views

File: R66621 Rev 5 Page 19 of 25 pages

Report Date: January 9, 2007

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

File: R66621 Rev 5 Page 20 of 25 pages

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

File: R66621 Rev 5 Page 21 of 25 pages

_

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

OUTPUT POWER LIMITS - DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 – 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 – 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 – 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

File: R66621 Rev 5 Page 22 of 25 pages

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

File: R66621 Rev 5 Page 23 of 25 pages

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_C - L_S$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_C = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

E =
$$\frac{1000000 \sqrt{30 P}}{3}$$
 microvolts per meter
3
where P is the eirp (Watts)

File: R66621 Rev 5 Page 24 of 25 pages

EXHIBIT 1: Test Equipment Calibration Data

1 Page

File: R66621 Rev 5 Exhibit Page 1 of 10

Radiated Emissions	, Band-Edge Measurements,	18-Oct-06
Engineer: Conrad Ch	NII	

Radiated Emissions, Band-Edge Measurements, 18-Oct-06				
Engineer: Conrad Chu	Description	NA1 - 1 - 4	A (# O - I D	
Manufacturer ENGO	<u>Description</u>	Model #	Asset # Cal Due	
EMCO	Antenna, Horn, 1-18GHz	3115	868 26-Apr-08	
Rohde & Schwarz	Power Meter, Dual Channel	NRVD	1539 19-Apr-07	
Rohde & Schwarz	Power Sensor 100 uW - 10 Watts	NRV-Z53	1555 28-Oct-06	
Rohde & Schwarz	Attenuator, 20 dB , 50 • , 10W, DC-18 GHz	20dB, 10W, Type N	1556 28-Oct-06	
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630 28-Dec-06	
RE, 1-18 GHz, 25-Oct-06				
Engineer: Conrad Chu				
<u>Manufacturer</u>	<u>Description</u>	Model #	Asset # Cal Due	
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870 13-Jan-07	
EMCO	Antenna, Horn, 1-18 GHz (SA40, 30 Hz)	3115	1142 07-Jun-08	
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148 19-May-07	
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	1681 14-Dec-06	
Radio Antenna Port (Powe	r and Spurious Emissions), 30-Oct-06			
Engineer: Juan Martinez				
<u>Manufacturer</u>	<u>Description</u>	Model #	Asset # Cal Due	
Hewlett Packard	SpecAn 9 kHz - 40 GHz, Purple (SA40)	8564E (84125C)	1771 04-Nov-06	
Radiated Emissions, 30 - 1	2,750 MHz, 27-Nov-06			
Engineer: Mehran Birgani	•			
<u>Manufacturer</u>	<u>Description</u>	Model #	Asset # Cal Due	
Elliott Laboratories	Log Periodic Antenna 300-1000 MHz	EL300.1000	55 28-Dec-06	
Hewlett Packard	EMC Spectrum Analyzer, 9 KHz - 22 GHz	8593EM	1319 17-Apr-07	
EMCO	Antenna, Horn, 1-18 GHz (SA40)	3115	1386 11-Jul-08	
EMCO	Biconical Antenna, 30-300 MHz	3110B	1498 03-Mar-07	
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	1780 15-Nov-07	
Hewlett Packard	Preamplifier	8447D OPT 010	1826 02-May-07	
Radio Antenna Port (Power	r and Spurious Emissions), 30-Nov-06			
Engineer: David Bare	, ,			
<u>Manufacturer</u>	<u>Description</u>	Model #	Asset # Cal Due	
Hewlett Packard	EMC Spectrum Analyzer, 9 kHz - `6.5 GHz	8595EM	780 05-Sep-07	
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FMT (SA40) Blue	8564E (84125C)	1393 04-Dec-06	
Tektronix	1 GHz Oscilloscope	TDS5104	1435 10-Apr-07	
Rohde & Schwarz	Power Meter, Dual Channel	NRVD	1787 31-Jan-07	
Rohde & Schwarz	Rohde & Schwarz Power Sensor, 1 nW-20 mW, 10 MHz-18 GHz,		1798 17-Apr-07	
50ohms Agilent Vector Signal Generator (250kHz - 20GHz) E8		E8267C	1877 23-Nov-07	
3	,			
Radiated Emissions, 30 - 1	,000 MHz, 04-Dec-06			
Engineer: Mehran Birgani				
<u>Manufacturer</u>	<u>Description</u>	Model #	Asset # Cal Due	
Elliott Laboratories Log Periodic Antenna 300-1000 MHz		EL300.1000	297 31-Jan-07	
Rohde & Schwarz Test Receiver, 9 kHz-2750 MHz		ESCS 30	1337 25-Jul-07	
EMCO	Biconical Antenna, 30-300 MHz	3110B	1497 26-Jun-07	

EXHIBIT 2: Test Measurement Data

39 Pages

File: R66621 Rev 5 Exhibit Page 2 of 10

Ellion	t	EMC Test Data		
Client:	Meshdynamics	Job Number:	J64662	
Model:	MD2 and MD5	T-Log Number:	T65034	
		Account Manager:	Sheareen Washington	
Contact:	Francis Da Costa			
Emissions Spec:	EN55022, FCC, 15.247, 15.407	Class:	Radio / A	
Immunity Spec:	EN301-489-1; EN301-489-17	Environment:	-	

EMC Test Data

For The

Meshdynamics

Model

MD2 and MD5

Date of Last Test: 3/26/2007

Elliot	t	EM	EMC Test Data		
Client:	Meshdynamics	Job Number:	J64662		
Model:	MD2 and MD5	T-Log Number:	T65034		
		Account Manager:	Sheareen Washington		
Contact:	Francis Da Costa				
Emissions Spect	EN55022 ECC 15 247 15 407	Class.	Radio / A		

EUT INFORMATION

Environment:

General Description

The EUT is a Mesh Router which is designed to wirelessly route client data into the network. Normally, the EUT would be placed on a table top during operation. The EUT was, therefore, treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 120/240 V, 50/60 Hz, 7.5 Amps.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Meshdynamics	MD4350-AA-G	Mesh Router	14456	-
Meshdynamics	MD2	2.4GHz module	-	UZU-MD2
Meshdynamics	MD5	5Ghz module	-	UZU-MD5

Other EUT Details

None

EUT Antenna

The EUT antenna has one 8dBi antenna for both 2.4 and 5Ghz.

Immunity Spec: EN301-489-1; EN301-489-17

The external antenna will be professionally installed.

The antennas connect to the EUT via a standard N Female, thereby professional installation will be required.

EUT Enclosure

The EUT enclosure is primarily constructed of fabricated sheet steel. It measures approximately 20cm wide by 15cm cm deep by 5 cm high.

Modification History

Mod.#	Test	Date	Modification
1	ESD	1/5/2006	Wrapped and attached to the enclosure of EUT the copper tape
			around the Ethernet connector to pass ESD test.
2			

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

$\mathbf{E}_{\mathbf{j}}$	lio	tt
	Ol: a sal	. 11.

EMC Test Data

Client:	Meshdynamics	Job Number:	J64662
Model:	MD2 and MD5	T-Log Number:	T65034
		Account Manager:	Sheareen Washington
Contact:	Francis Da Costa		
Emissions Spec:	EN55022, FCC, 15.247, 15.407	Class:	Radio / A
Immunity Spec:	EN301-489-1; EN301-489-17	Environment:	-

Test Configuration #1

Local Support Equipment

Manufacturer Model		Description	Serial Number	FCC ID	
Meshdynamics	Meshdynamics MD4350-AA-G Mesh Router		14446	DoC	
	POE - 12i	Injector of Power over	181	DoC	
	1 OL - 121	Ethernet	101	D00	
Airlink	AR504	4 port Switch Router	3EE04B01314	DoC	
Dell	C840	PC Laptop	3J578 AJ1	DoC	
Sony	PCG-883L	PC Laptop	n/a	DoC	

Remote Support Equipment

	Manufacturer	Model	Description	Serial Number	FCC ID
	None	-	-	-	-

Interface Cabling and Ports

Port	Connected To	Cable(s)		
FOIL	Connected To	Description	Shielded or Unshielded	Length(m)
POE	Injector	Cat. 5 Ethernet	unshielded cat 5	10

Note: The Bridge port were not connected as the manufacturer stated that these are for peripherial devices purpose and therefore would not normally be connected.

Note: 1 No Ethernet connection on the Injector of Power over Ethernet makes it Repeater mode.

EUT Operation During Emissions Tests

Elliot	t	EMC Test Data		
Client:	Meshdynamics	Job Number:	J64662	
Model:	MD2 and MD5	T-Log Number:	T65034	
		Account Manager:	Sheareen Washington	
Contact:	Francis Da Costa			
Emissions Spec:	EN55022, FCC, 15.247, 15.407	Class:	Radio / A	
Immunity Spec:	EN301-489-1; EN301-489-17	Environment:	-	

EUT Operation During Immunity Tests

The EUT was transmitting two frequencies one at 5.26GHz and one at 2.412GHz and receiving one frequency at 5.32GHz.

The transmitting frequencies were monitored by pinging the EUT thru laptop PC software. The receiving frequency was monitored by a spectrum analyzer at 5.32GHz for any receiving emissions that might occur.

Performance Criteria for Immunity Tests

Criterion A:

During and after the test the apparatus shall continue to operate as intended. No degradation or loss of function is allowed
below a permissible performance level specified by the manufacturer when the apparatus is used as intended. In some cases
this permissible performance level may be replaced by a permissible loss of performance. During the test the EUT shall not
unintentionally transmit or change its actual operating state and stored data.

Elliott

EMC Test Data

Client:	Meshdynamics	Job Number:	J64662
Model:	MD2 and MD5	T-Log Number:	T65034
		Account Manager:	Sheareen Washington
Contact:	Francis Da Costa		
Emissions Spec:	EN55022, FCC, 15.247, 15.407	Class:	Radio / A
Immunity Spec:	EN301-489-1; EN301-489-17	Environment:	-

Test Configuration #2

Local Support Equipment

	=				
Manufacturer	Model	Description	Serial Number	FCC ID	
Unknown	POE - 24i	Power over Ethernet 0560145		DoC	
		Injector			
Unknown	EZ500-S	GigaFast Ethernet Hub	1338002375	DoC	
Unknown	MW41-0751000	AC/DC Adaptor for Hub	-	-	
Dell	Inspiron 600m	Laptop Computer	Service Tag 90ZXC91	DoC	
Dell	PA-1650-05D2	AC Adapter for Laptop	CN-0F7970-71615-5CD-	-	
			225C		

Remote Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
None	-	=	-	-

Interface Cabling and Ports

Connected To		Cable(s)	
Connected 10	Description	Shielded or Unshielded	Length(m)
	•		-
Antenna	Direct Connection	-	-
Unterminated	-	-	-
POE Injector	Cat5 UTP	Unshielded	1.0
Not Cabled	-	-	-
Dell Laptop	Ribbon Cable to Serial	Unshielded and Shielded	1.0
External AC Adapter	DC Power Leads	Unshielded	1.0
120V/60Hz	AC Power Cord	Unshielded	1.0
External AC Adapter	DC Power Leads	Unshielded	1.0
120V/60Hz	AC Power Cord	Unshielded	1.0
	Unterminated POE Injector Not Cabled Dell Laptop External AC Adapter 120V/60Hz External AC Adapter	Antenna Direct Connection Unterminated - POE Injector Cat5 UTP Not Cabled - Dell Laptop Ribbon Cable to Serial External AC Adapter DC Power Leads 120V/60Hz AC Power Cord External AC Adapter DC Power Leads	Antenna Direct Connection - Unterminated POE Injector Cat5 UTP Unshielded Not Cabled Dell Laptop Ribbon Cable to Serial Unshielded and Shielded External AC Adapter DC Power Leads Unshielded External AC Adapter DC Power Leads Unshielded External AC Adapter DC Power Leads Unshielded External AC Adapter DC Power Leads Unshielded

Note: The Bridge port were not connected as the manufacturer stated that these are for peripherial devices purpose and therefore would not normally be connected.

Note: 1 No Ethernet connection on the Injector of Power over Ethernet makes it Repeater mode.

Elliot	t	EM	C Test Date
	Meshdynamics	Job Number:	
	MD2 and MD5	T-Log Number:	T65034
		Account Manager:	Sheareen Washingtor
	Francis Da Costa	01	D 1: / A
	EN55022, FCC, 15.247, 15.407 EN301-489-1; EN301-489-17	Class: Environment:	Radio / A -
During emissions testing	EUT Operation During Emisg, the EUT was in Transmit or Receive Mode as EUT Operation During Imn	noted in the test data.	
TBD riterion A: TBD	Performance Criteria for Im	-	
riterion B: TBD			
r iterion C: TBD			

Elliott		EMC Test Data	
Client:	Meshdynamics	Job Number:	J64662
Model:	MD2 and MD5	Job Number: J64662 T-Log Number: T65034 Account Manager: Sheareen Washington Class: N/A	T65034
	INDZ AIIU INDS		Sheareen Washington
Contact:	Francis Da Costa		
Standard:	EN55022, FCC, 15.247, 15.407	Class:	N/A

RSS 210 and FCC 15.247 Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 10/18/2006 Config. Used: 2

Test Engineer: Conrad Chu Config Change: None

Test Location: Fremont Chamber #3 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or routed in overhead in the GR-1089 test configuration.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 18 °C

Rel. Humidity: 45 %

Summary of Results

Run#	Test Performed	Limit	Pass / Fail	Result / Margin
1 and 2	Band Edge Measurements	FCC Part 15	Pass	53.3dBµV/m (462.4µV/m) @ 4824.0MHz (-0.7dB)

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Additional Test Notes:

Actual EUT tested was labelled with s/n 21204 on bottom of case

EMC Test Data

•			
Client:	Meshdynamics	Job Number:	J64662
Model:	MD2 and MD5	T-Log Number: T65034	
		Account Manager:	Sheareen Washington
Contact:	Francis Da Costa		
Standard:	EN55022, FCC, 15.247, 15.407	Class:	N/A

Run #1: Radiated Spurious Emissions, Operating Mode: 802.11b

Run #1a: Low Channel @ 2412 MHz (21 dBm AVG power output via power meter)

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209 / 15.247		Detector	Azimuth	Height	Comments
MHz	$dB\mu V/m$	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2412.000	121.4	٧	-	-	Pk	100	1.0	RB = VB = 1MHz
2412.000	97.3	٧	-	-	Avg	100	1.0	RB = 1MHz, VB = 10Hz
2412.000	106.5	h	-	-	Pk	66	1.0	RB = VB = 1MHz
2412.000	86.0	h	-	-	Avg	66	1.0	RB = 1MHz, VB = 10Hz

Band Edge Signal Field Strength

Frequency	Level	Pol	15.209 / 15.247		Detector	Azimuth	Height	Comments				
MHz	$dB\mu V/m$	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters					
2390.000	65.7	٧	74.0	-8.3	Pk	100	1.0					
2390.000	52.8	٧	54.0	-1.2	Avg	100	1.0					
2390.000	54.7	h	74.0	-19.3	Pk	66	1.0					
2390.000	42.9	h	54.0	-11.2	Avg	66	1.0					

EMC Test Data Job Number: J64662 Client: Meshdynamics T-Log Number: T65034 Model: MD2 and MD5 Account Manager: Sheareen Washington Contact: Francis Da Costa Standard: EN55022, FCC, 15.247, 15.407 Class: N/A (Continued) Run #1a: Low Channel @ 2412 MHz (21 dBm AVG power output via power meter) Vertical Max/Ref Lvl Marker 4 [T2] RBW 1 MHz RF Att 10 dB 158.2 dB**y**V 97.26 dB**y**V VBW 10 Hz 113.2 dB**y**V 2.41126754 GHz 19 s Unit db**y**v SWT 158 32.4 dB Offset ▼4 [T2] 97.26 dB**y** 150 $\mathbf{v}_1|_{[T1]}$ 65.66 dB 3900d000 CH: 140 [T1] 121.39 dB [T2] 52. 76 dB**y**1 IN1 39000000 GHz 120 1VIEW 1MA 2VIEW 2MA 110 100 P20 90 -D1 74 dB**y**v 70 Center 2.39 GHz 7.5 MHz/ Span 75 MHz Date: 18.OCT.2006 09:06:01

CI	ient: Mesh	dynamics						Job Nu	nber:	J6466	2	
Mc	odel: MD2	and MD5						T-Log Nur				
Λn	tact: Franc	is Da Costa					Acc	count Man	ager:	Shear	een Washin	igto
		022, FCC, 1		407				(class:	N/A		
#1	nued) a: Low C ntal	hannel @ 2	:412 MHz (21 dBm AV0	3 power ou	tput via po	wer meter)					
1	Max/Ref	Lvl	Marker	2 [T1]		RBW	1 M	Hz F	RF A	tt	10 dB	
>	146.2				51 dB y V	VBW	10	Hz				
6	101.2	dB y V		2.411868	374 GHz	SWT	19	s (Jnit		dB y '	V
0	32.4	dB Offs	et				▼ 2	[T1]		106		_
							\mathbf{v}_1	[T1]	2.		874 GHz	
0								[11]	2.3		000 GHz	
0							⊽ 3	[T2]			.85 dB y 7	
							∇_4	[T2]	2.3		000 GHz	
0				+	 		-		22.		/174 GHz	I
0	1VIEW 2VIEW								مسر	M		2
								ſ				
0							-		4		\	P
0								July	$\sqrt[4]{}$	1/4.		
Ŭ	_D1 74	dB y V					/			1 Vi		
0						,,,/V	~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				\(\)	
0						<i></i>					1	4
	<u>₩</u> ₽,2,	54,dB y X	7	anne Allem	i Marakan	w w	~					
0							<u> </u>				~~~	L.
0					خـــــــــــــــــــــــــــــــــــــ							
0					F	1						
_	Center	2.39 GH	[z	•	7.5	MHz/				Spar	n 75 MH2	z
		18.OCT.2	2006 0	9:15:51								

	Ellic	IIC						EM	C Test Dat
	Meshdyna						J	lob Number:	J64662
							T-L	og Number:	T65034
Model:	MD2 and	MD5						•	Sheareen Washington
Contact:	Francis Da	a Costa							-
Standard:	EN55022,	FCC, 15	5.247, 15.40)7				Class:	N/A
	rious Emis		15 200	/ 15.247	Datastas	مالد دمد نام	Haimbi	ICammanta	
Frequency MHz	Level	Pol V/H		T	Detector	Azimuth	Height	Comments	
4823.980	dBμV/m 53.3	V/П V	Limit 54.0	Margin -0.7	Pk/QP/Avg AVG	degrees 103	meters 1.9	Restricted	
4823.980	55.1	V	74.0	-0. <i>1</i> -18.9	PK	103	1.9	Restricted	
4824.010	44.2	H	54.0	-9.8	AVG	269	1.1	Restricted	
4824.010	47.6	H	74.0	-26.4	PK	269	1.1	Restricted	
7236.870	34.4	H	54.0	-19.6	AVG	284	1.2	Non-Restri	rted
7236.870	46.6	H	74.0	-27.4	PK	284	1.2	Non-Restri	
7236.700	36.4	V	54.0	-17.6	AVG	290	1.0	Non-Restri	
7236.700	46.3	V	74.0	-27.7	PK	290	1.0	Non-Restri	
		of the fun	damental ar	nd measure	d in 100kHz.	t restricted ba			e limit was set 20dB be
Note 2:	Signal is r	of the fun not in a re	damental ar	nd measure nd but the m	d in 100kHz.				e iiiiiit was set 2005 be
Note 2:	Signal is r	of the fun not in a re	damental ar estricted bar 2437 MHz,	nd measure nd but the m	d in 100kHz. nore stringen	t restricted ba			e iiiiiit was set 2005 be
Note 2:	Signal is r Center Cha	of the funnot in a rea	damental ar	nd measure and but the m (20dBm)	d in 100kHz. nore stringen		and limit wa	s used.	oower measurement)
Run #1b: (Fundame Limi	Signal is r Center Cha ntal emissi t for emissi Level	on level ons outs	2437 MHz, @ 3m in 10 ide of restricted	(20dBm) OkHz RBW: cted bands:	d in 100kHz. nore stringent 111.1 91.1 Detector	dBμV/m dBμV/m	and limit wa Limit is -20 Height	s used.	oower measurement)
Run #1b: (Fundame Limi Frequency MHz	Signal is r Center Chantal emissing the for emissing the Level dBµV/m	annel @ on level ons outs Pol V/H	2437 MHz, @ 3m in 10 ide of restricted bare	d measure nd but the m (20dBm) 0kHz RBW: cted bands: / 15.247 Margin	d in 100kHz. nore stringent 111.1 91.1 Detector Pk/QP/Avg	dBμV/m dBμV/m Azimuth degrees	Limit is -20 Height meters	s used. dBc (Peak p	oower measurement)
Run #1b: (Fundame Limi Frequency MHz 4873.920	Center Chantal emissint for emissint deput/m 51.4	annel @ on level ons outs Pol V/H V	2437 MHz, @ 3m in 10 ide of restriction 15.209 Limit 54.0	(20dBm) OkHz RBW: cted bands: / 15.247 Margin -2.6	d in 100kHz. nore stringent 111.1 91.1 Detector Pk/QP/Avg AVG	dBμV/m dBμV/m Azimuth degrees	Limit is -20 Height meters 1.9	dBc (Peak p	oower measurement)
Run #1b: (Fundame Limi Frequency MHz 4873.920	Center Chantal emissist for emisside BµV/m 51.4 53.9	annel @ on level ons outs Pol V/H V	2437 MHz, @ 3m in 10 ide of restriction 15.209 Limit 54.0 74.0	(20dBm) OkHz RBW: cted bands: / 15.247 Margin -2.6 -20.1	111.1 91.1 Detector Pk/QP/Avg AVG PK	dBμV/m dBμV/m Azimuth degrees 102 102	Limit is -20 Height meters 1.9 1.9	dBc (Peak p	oower measurement)
Fundame Limi -requency MHz 4873.920 7310.710	Center Chantal emissing to for emissing the depth of the	annel @ on level ons outs Pol V/H V V V	2437 MHz, @ 3m in 10 ide of restriction 15.209 Limit 54.0 74.0 54.0	(20dBm) OkHz RBW: cted bands: / 15.247 Margin -2.6 -20.1 -18.9	d in 100kHz. nore stringen 111.1 91.1 Detector Pk/QP/Avg AVG PK AVG	dBμV/m dBμV/m Azimuth degrees 102 102 200	Limit is -20 Height meters 1.9 1.0	dBc (Peak p Comments Restricted Restricted Restricted	nower measurement)
Fundame Limi -requency MHz 4873.920 7310.710	Center Chantal emissist for emissist dBμV/m 51.4 53.9 35.1 45.7	annel @ on level ons outs Pol V/H V V V	2437 MHz, @ 3m in 10 ide of restriction 15.209 Limit 54.0 74.0 74.0 74.0	(20dBm) OkHz RBW: cted bands: / 15.247 Margin -2.6 -20.1 -18.9 -28.3	111.1 91.1 Detector Pk/QP/Avg AVG PK AVG PK	dBμV/m dBμV/m Azimuth degrees 102 102 200 200	Limit is -20 Height meters 1.9 1.0 1.0	dBc (Peak p Comments Restricted Restricted Restricted Restricted	nower measurement)
Fundame Limi -requency MHz 4873.920 4873.920 7310.710 7310.710 4873.960	Center Chantal emissist for emissist dBμV/m 51.4 53.9 35.1 45.7 44.2	annel @ on level ons outs Pol V/H V V V H	2437 MHz, @ 3m in 10 ide of restriction 15.209 Limit 54.0 74.0 54.0 54.0	(20dBm) (20dBm) (20dBm) (30dBm) (40dBm) (40dBm) (40dBm) (50dBm) (40dBm) (40	111.1 91.1 Detector Pk/QP/Avg AVG PK AVG PK AVG	dBμV/m dBμV/m Azimuth degrees 102 102 200 200 249	Limit is -20 Height meters 1.9 1.0 1.0 1.3	dBc (Peak page 1) Comments Restricted Restricted Restricted Restricted Restricted Restricted	nower measurement)
Fundame Limi Frequency MHz 4873.920 7310.710 7310.710 4873.960	Center Chantal emissist for emissist MBμV/m 51.4 53.9 35.1 45.7 44.2 47.7	annel @ on level ons outs Pol V/H V V V V H H H	2437 MHz, @ 3m in 10 ide of restri 15.209 Limit 54.0 74.0 54.0 74.0 74.0	(20dBm) (20dBm) OkHz RBW: cted bands: / 15.247 Margin -2.6 -20.1 -18.9 -28.3 -9.8 -26.3	111.1 91.1 Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK	dBμV/m dBμV/m dBμV/m Azimuth degrees 102 102 200 200 249 249	Limit is -20 Height meters 1.9 1.0 1.0 1.3 1.3	s used. dBc (Peak p Comments Restricted Restricted Restricted Restricted Restricted Restricted	nower measurement)
Fundame Limi -requency MHz 4873.920 7310.710 7310.710 4873.960 4873.960 7310.130	Center Chantal emissist for emissist MBµV/m 51.4 53.9 35.1 45.7 44.2 47.7 34.1	annel @ on level ons outs Pol V/H V V V V H H H H H	2437 MHz, @ 3m in 10 ide of restricted 54.0 74.0 54.0 74.0 54.0 74.0 54.0	(20dBm) (20dBm) OkHz RBW: cted bands: / 15.247 Margin -2.6 -20.1 -18.9 -28.3 -9.8 -26.3 -19.9	111.1 91.1 Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG	dBμV/m dBμV/m dBμV/m Azimuth degrees 102 102 200 200 249 249 266	Height meters 1.9 1.0 1.0 1.3 1.3	s used. dBc (Peak p Comments Restricted Restricted Restricted Restricted Restricted Restricted Restricted Restricted	oower measurement)
Fundame Limi -requency MHz 4873.920 7310.710 7310.710 4873.960 4873.960 7310.130	Center Chantal emissist for emissist MBμV/m 51.4 53.9 35.1 45.7 44.2 47.7	annel @ on level ons outs Pol V/H V V V V H H H	2437 MHz, @ 3m in 10 ide of restri 15.209 Limit 54.0 74.0 54.0 74.0 74.0	(20dBm) (20dBm) OkHz RBW: cted bands: / 15.247 Margin -2.6 -20.1 -18.9 -28.3 -9.8 -26.3	111.1 91.1 Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK	dBμV/m dBμV/m dBμV/m Azimuth degrees 102 102 200 200 249 249	Limit is -20 Height meters 1.9 1.0 1.0 1.3 1.3	s used. dBc (Peak p Comments Restricted Restricted Restricted Restricted Restricted Restricted	oower measurement)
Fundame Limi Frequency MHz 4873.920 7310.710 7310.710 4873.960 7310.130 7310.130	Center Chantal emissist for emissist for emissist 45.7 44.2 47.7 34.1 45.4	annel @ on level ons outs Pol V/H V V V H H H H H H H H H H H H H H H	2437 MHz, @ 3m in 10 ide of restricted 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0	(20dBm) (20dBm) (20dBm) (00dBm) (00dBm) (00dBm) (15.247	111.1 91.1 Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG	dBµV/m dBµV/m Azimuth degrees 102 102 200 200 249 249 266 266 ras used. Fo	Height meters 1.9 1.0 1.3 1.3 1.3	s used. dBc (Peak p Comments Restricted Restricted Restricted Restricted Restricted Restricted Restricted Restricted Restricted	oower measurement)
Fundame Limi Frequency	Center Chantal emissist for emissist for emissist 45.7 44.2 47.7 34.1 45.4 For emiss the level of VBW = 1k	annel @ on level ons outs Pol V/H V V V H H H H H H H H H H H H H H And R	2437 MHz, @ 3m in 10 ide of restricted bare 15.209 Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 stricted bare adamental are BW = 1MHz	(20dBm) (20dBm) OkHz RBW: cted bands: / 15.247 Margin -2.6 -20.1 -18.9 -28.3 -9.8 -26.3 -19.9 -28.6 adds, the limited measure of or average	d in 100kHz. nore stringent 111.1 91.1 Detector Pk/QP/Avg AVG PK	dBµV/m dBµV/m Azimuth degrees 102 102 200 249 249 249 266 266 ras used. Fo	Limit is -20 Height meters 1.9 1.0 1.0 1.3 1.3 1.3 1.3	dBc (Peak page 1) Comments Restricted	oower measurement)

		iott dynamics						Job Nu	ımber:	J6466	2	
		and MD5						T-Log Nu				_
		is Da Costa					Ac	count Ma	nager:	Sheare	een Washir	ıgto
		022, FCC, 1		07					Class:	N/A		
#1c: H	ligh C	hannel @ 2	2462 MHz (2	21 dBm AV	'G output po	ower via po	wer meter)				
Max	/Ref	Lvl	Marker	2 [T1]		RBW	1 M	Hz	RF A	tt	10 dB	
>		dB y V			62 dB y V	VBW	10					
	4.4	dB y V	2	2.46178	156 GHz	SWT	19	s	Unit		dВ У	V
3	2.4	dB Offs	et				▼ 2	[T1]	2.		.62 dB y v	
							\mathbf{v}_1	[T1]			13 dB	
10							⊽ 3	[T2]			.86 db	_
3 0								. ,	2.		000 GH2	
, 0							∇_4	[T2]		98.	ע dB 17	V
20 101	MENTO.		2						2.	46343	487 GH2	z
2V1		مسلمهم	word									
. 0		/										-
		ſ										
0 0			4 1/M/4	\								- 1
90	/	White the same of	- Cary									
, 0		N										
80				٩								
/\ _ —D1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	db y V										
7 0	-			1	, <u>, , , , , , , , , , , , , , , , , , </u>							-
m	\sim				Μ, :							
0				h		W/W	<u> </u>	.M				1
	<u>—</u> D2	54 dB y V			V.,	z		May	1.0	MM L M	. ^	-
50					F	1	~~~~~		*****	المريخ المرابا	Way Com	- ∧
4					F	±			<u> </u>	~~~	~~~	
	ter	2.4835	GHz		7.5	MHz/				Spar	n 75 MH2	z
٠.		18 OCT 1	2006 00	.33.40						-		
e:		18.OCT.2	2006 09	:33:40								

EMC Test Data Job Number: J64662 Client: Meshdynamics T-Log Number: T65034 Model: MD2 and MD5 Account Manager: Sheareen Washington Contact: Francis Da Costa Standard: EN55022, FCC, 15.247, 15.407 Class: N/A (continued) Run #1b: High Channel @ 2462 MHz (21 dBm AVG output power via power meter) Horizontal Max/Ref Lvl Marker 4 [T2] RBW 1 MHz RF Att 10 dB 143.8 dB**y**V 85.67 dB**y**V VBW 10 Hz 98.8 dB**y**V 2.46253307 GHz SWT 19 s Unit dB**y**V 32.4 dB Offset V4 [T2] 140 2.46253307 GHz $\nabla_1|_{[T1]}$ 106.36 dB**y**Y 130 2.46193186 GHz **∇**₂ [T1] 120 2.49161623 GHz **∇**₃|_[T2] 41.51 dB 110 ⊽ IN1 2.48350000 GHz 1MA 100 2MA P20 80 -D1 54 dB**y**1 4 (30 Center 2.4835 GHz 7.5 MHz/ Span 75 MHz 18.OCT.2006 09:43:18 Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz $dB\mu V/m$ v/h Limit Margin Pk/QP/Avg degrees meters 1.1 RB = VB = 1MHz 2462.000 118.6 Pk 101 ٧ -Avg 1.1 RB = 1MHz, VB = 10Hz 2462.000 98.2 ٧ 101 2462.000 106.4 Pk 256 1.4 RB = VB = 1MHz h 1.4 RB = 1MHz, VB = 10Hz 2462.000 85.7 256 h -Avg

	Ellic Meshdyna						I.	ob Number:	164662
Cileriti	wiesiluyila	111105							
Model:	MD2 and	MD5						og Number:	Sheareen Washington
01-1	From siz D	- C1-					ACCOU	it ivianager:	Sheareen washington
	Francis Da		- 0.1 - 1 - 10						
Standard:	EN55022,	FCC, 18	5.247, 15.40	17	•			Class:	N/A
Band Edge	Signal Fi	eld Strei	ngth						
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2483.500	60.1	٧	74.0	-13.9	Pk	101	1.1		
2483.500		٧	54.0	-3.1	Avg	101	1.1		
2483.500		h	74.0	-18.1	Pk	256	1.4		
2483.500	41.5	h	54.0	-12.5	Avg	256	1.4		
ther Snur	ious Emis	sions							
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
4923.870	33.5	Н	54.0	-20.5	AVG	243	1.7	Restricted	
4923.870	49.3	Н	74.0	-24.7	PK	243	1.7	Restricted	
7394.200	35.3	Н	54.0	-18.7	AVG	190	1.0	Restricted	
7394.200	47.0	Н	74.0	-27.0	PK	190	1.0	Restricted	
4924.070	40.7	V	54.0	-13.3	AVG	228	1.9	Restricted	
4924.070	58.6	V	74.0	-15.4	PK	228	1.9	Restricted	
7394.770	34.6	V	54.0	-19.4	AVG	186	1.2	Restricted	
7394.770	46.0	V	74.0	-28.0	PK	186	1.2	Restricted	
	For emiss	ions in re	estricted har	nds the limi	t of 15 209 w	as used. For	all other er	nissions the	e limit was set 20dB belo
lote 1:					d in 100kHz.	ao aooa. 1 oi	an other or	riiooiorio, are	S III III WAO OOL ZOAD DOI
lote 2:						t restricted ba	ind limit was	s used.	
010 2.	olgilai lo i	101 111 4 11	Journal Dar	14 541 110 11	ioro ourrigori	TOOLITOLOG DO	aria ilirili wa	o dood.	

C	Elliott	EM	C Test Data
Client:	Meshdynamics	Job Number:	J64662
Madal	MD2 and MD5	T-Log Number:	T65034
wodei.		Account Manager:	Sheareen Washington
Contact:	Francis Da Costa		
Standard:	EN55022, FCC, 15.247, 15.407	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, Bandwidth and Spurious Emissions (802.11g)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 9/13/2006 Config. Used: 1
Test Engineer: Juan Martinez Config Change: None
Test Location: SVOATS #1 EUT Voltage: 12Vdc

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 18 °C

Rel. Humidity: 35 %

Summary of Results

Run#	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power	15.247(b)	Pass	25 dBm
2	Power spectral Density (PSD)	15.247(d)	Pass	3dBm/3kHz
3	6dB Bandwidth	15.247(a)	Pass	16.6 MHz
3	99% Bandwidth	RSS GEN	-	17.5 MHz
4	Spurious emissions	15.247(b)	Pass	Refer to plots

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

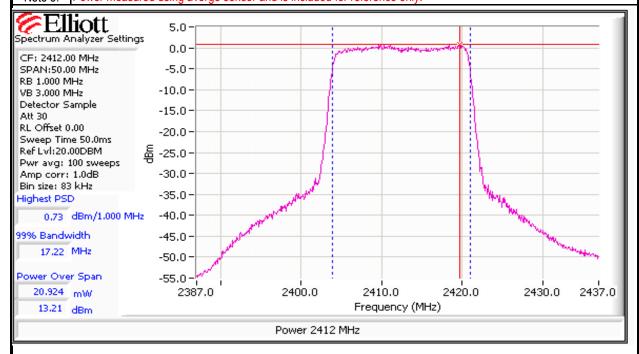
Elliott Client: Meshdynamics

EMC Test Data

Client:	Meshdynamics	Job Number:	J64662
Model	MD2 and MD5	T-Log Number:	T65034
wodei.	INDZ and INDS	Account Manager:	Sheareen Washington
Contact:	Francis Da Costa		
Standard:	EN55022, FCC, 15.247, 15.407	Class:	N/A

Run #1: Output Power

Power	Frequency (MHz)	Output	Power	Antenna	Result	EIRF	Note 2	Output	Power
Setting ²	Frequency (MHZ)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
	2412	13.2	20.9	8.0	Pass	21.2	0.132	14.0	25.0
	2437	25.1	326.6	8.0	Pass	33.1	2.061	28.6	724.4
	2462	13.0	20.0	8.0	Pass	21.0	0.126	13.8	23.9

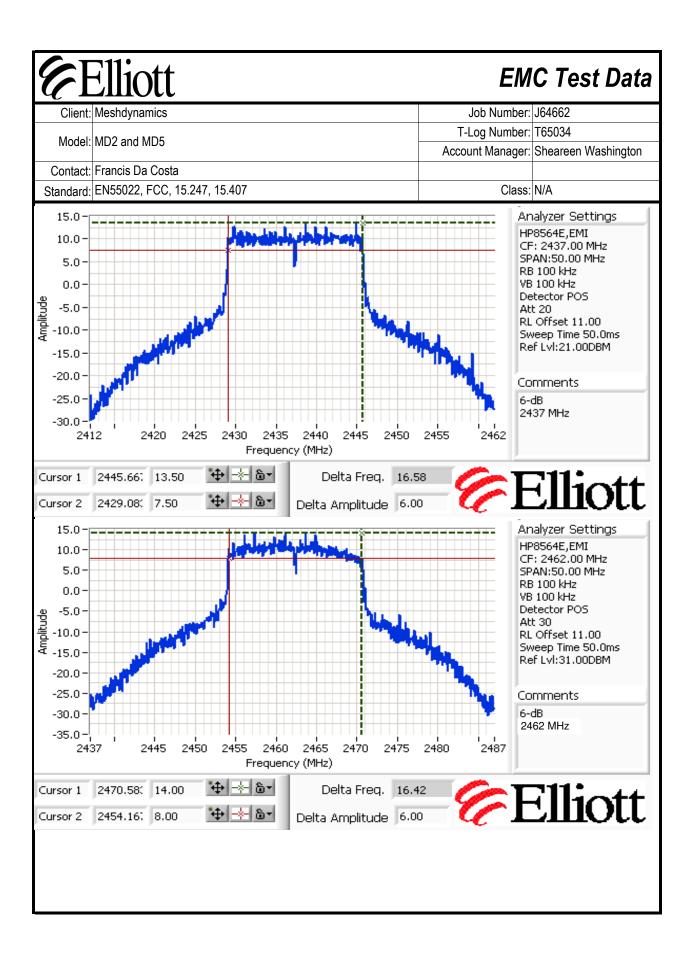

Output power measured using a spectrum analyzer (see plots below):

Note 1: RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 50 MHz

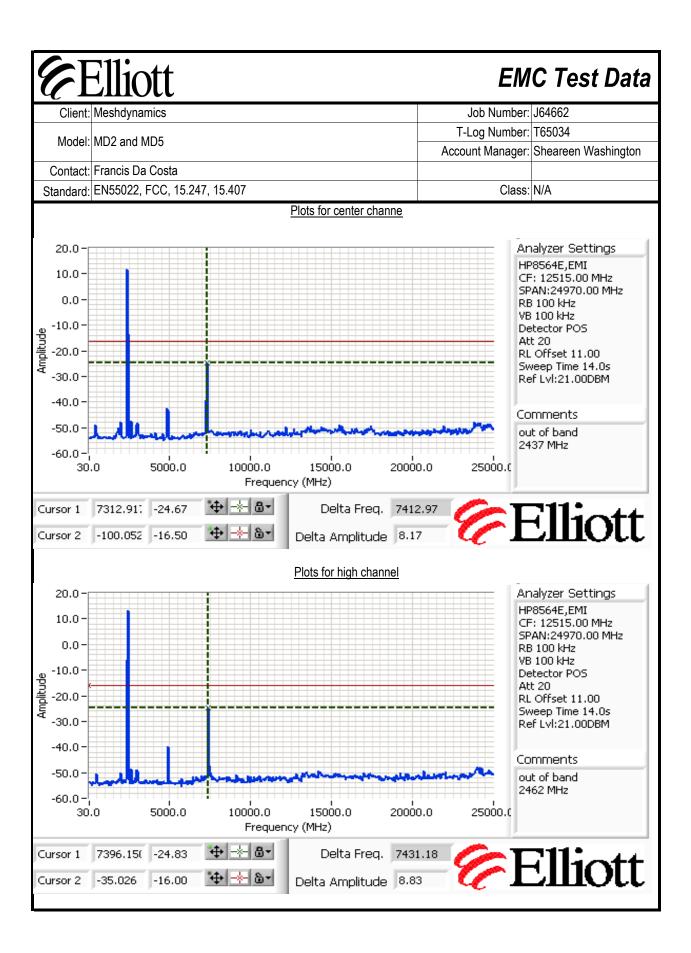
The output power limit is 30dBm

Power setting - the software power setting used during testing, included for reference only.

Note 2: Power setting - the software power setting used during testing, included Note 3: Power measured using averge sensor and is included for reference only



Elliott EMC Test Data Client: Meshdynamics Job Number: J64662 T-Log Number: T65034 Model: MD2 and MD5 Account Manager: Sheareen Washington Contact: Francis Da Costa Standard: EN55022, FCC, 15.247, 15.407 Class: N/A **Elliott** 15.0 ectrum Analyzer Settings 10.0-CF: 2437.00 MHz SPAN:50,00 MHz RB 1.000 MHz 5.0-VB 3,000 MHz Detector Sample 0.0 Att 30 RL Offset 11.00 Sweep Time 50.0ms -5.0 Ref Lvl:31.00DBM Pwr avg: 100 sweeps -10.0 Amp corr: 0.0dB Bin size: 83 kHz -15.0Highest PSD 12.29 dBm/1.000 MHz -20.0 99% Bandwidth -25.0 17.47 MHz Power Over Span -30.0 2450.0 2462.0 326,640 mW/ 2412.0 2420.0 2430.0 2440.0 Frequency (MHz) 25.14 dBm Power (Option 2, Method# 2) 2437 MHz 5.0 Spectrum Analyzer Settings 0.0 CF: 2462,00 MHz -5.0 SPAN:50,00 MHz RB 1.000 MHz -10.0 VB 3,000 MHz Detector Sample -15.0-Att 30 RL Offset 0.00 -20.0 Sweep Time 50.0ms Ref Lvl:20.00DBM -25.0 Pwr avg: 100 sweeps Amp corr: 1.0dB -30.0Bin size: 83 kHz -35.0 Highest PSD -40.0 0.68 dBm/1.000 MHz 99% Bandwidth -45.0 16.89 MHz -50.0 Power Over Span -55.0 ⁻¹ 18.129 mW 2437.0 2450.0 2460.0 2470.0 2480.0 2487.0 Frequency (MHz) 12.58 dBm Power 2462 MHz


EMC Test Data Client: Meshdynamics J64662 Job Number: T-Log Number: T65034 Model: MD2 and MD5 Account Manager: Sheareen Washington Contact: Francis Da Costa Standard: EN55022, FCC, 15.247, 15.407 Class: N/A Run #2: Power spectral Density Power **PSD** Limit Result Frequency (MHz) Setting (dBm/3kHz) dBm/3kHz 2412 Pass 8.0 2437 2.3 8.0 Pass 2462 3.0 8.0 Pass Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD Note 1: determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal. 8.0 Analyzer Settings HP8564E,EMI 6.0 CF: 2419.48 MHz SPAN:300 kHz RB 3 kHz 4.0 VB 10 kHz Detector POS 2.0 Att 30 RL Offset 11.00 0.0 Sweep Time 100.0s Ref Lvl:31.00DBM Comments PSD 2412 MHz -6.0 2419.40 2419.45 2419.50 2419.55 2419.33 Frequency (MHz) -*- 6-2419.47: 1.33 Cursor 1 0.000 0.00

Elliott EMC Test Data Client: Meshdynamics Job Number: J64662 T-Log Number: T65034 Model: MD2 and MD5 Account Manager: Sheareen Washington Contact: Francis Da Costa Standard: EN55022, FCC, 15.247, 15.407 Class: N/A Run #3: Signal Bandwidth Bandwidth (MHz) Power Resolution Frequency (MHz) Setting Bandwidth 6dB 99% 2412 100 kHz 16.5 17.3 2437 100 kHz 16.6 17.5 2462 16.4 100 kHz 17.5 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB Note 1: Analyzer Settings 15.0 HP8564E,EMI 10.0 CF: 2412,00 MHz 5.0 SPAN:50.00 MHz RB 100 kHz 0.0 VB 100 kHz Detector POS -5.0· -5.0--10.0 --15.0-Att 30 RL Offset 11.00 Sweep Time 50.0ms Ref Lvl:31.00DBM -20.0° -25.0 Comments 6-dB BW 2412 MHz -35.0 2405 2410 2415 2425 2400 2420 2387 Frequency (MHz) **♦** -×- 6-2420.580 13.17 Cursor 1 Delta Freq. 16.50 **Elliott** Cursor 2 2404.08: 7.17 Delta Amplitude 6.00

Elliott EMC Test Data Client: Meshdynamics Job Number: J64662 T-Log Number: T65034 Model: MD2 and MD5 Account Manager: Sheareen Washington Contact: Francis Da Costa Standard: EN55022, FCC, 15.247, 15.407 Class: N/A Run #4: Out of Band Spurious Emissions Frequency (MHz) Limit Result 2412 -30dBc Refer to plots 2437 -30dBc Refer to plots 2462 -30dBc Refer to plots Plots for low channel 15.0 Analyzer Settings HP8564E,EMI 10.0 CF: 12515.00 MHz 5.0 SPAN:24970.00 MHz 0.0-RB 100 kHz VB 100 kHz -5.0 Detector POS 9 -10.0 --15.0 --20.0 -Att 30 RL Offset 11.00 Sweep Time 14.0s Ref Lvl:31.00DBM -25.0 -30.0 Comments -35.0 Out of Band -40.0 2412 MHz -45.0 -¦ 5000.0 10000.0 15000.0 20000.0 25000.0 30.0 Frequency (MHz) **◆** ->- 8-Cursor 1 7229.68: -23.33 Delta Freq. 7264.71 Elliott Cursor 2 -35.026 -16.83 Delta Amplitude 6.50

E	Elliott	El	MC Test Data
Client:	Meshdynamics	Job Number:	J64662
Model	MD2 and MD5	T-Log Number:	T65034
Model.	INDZ and INDS	Account Manager:	Sheareen Washington
Contact:	Francis Da Costa		
Standard:	EN55022, FCC, 15.247, 15.407	Class:	N/A

RSS 210 and FCC 15.247 Radiated Spurious Emissions

Test standard(s)ifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 8/18/2006 Config. Used: 1

Test Engineer: Mehran Birgani Config Change: None

Test Location: Fremont Chamber #4 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or routed in overhead in the GR-1089 test configuration.

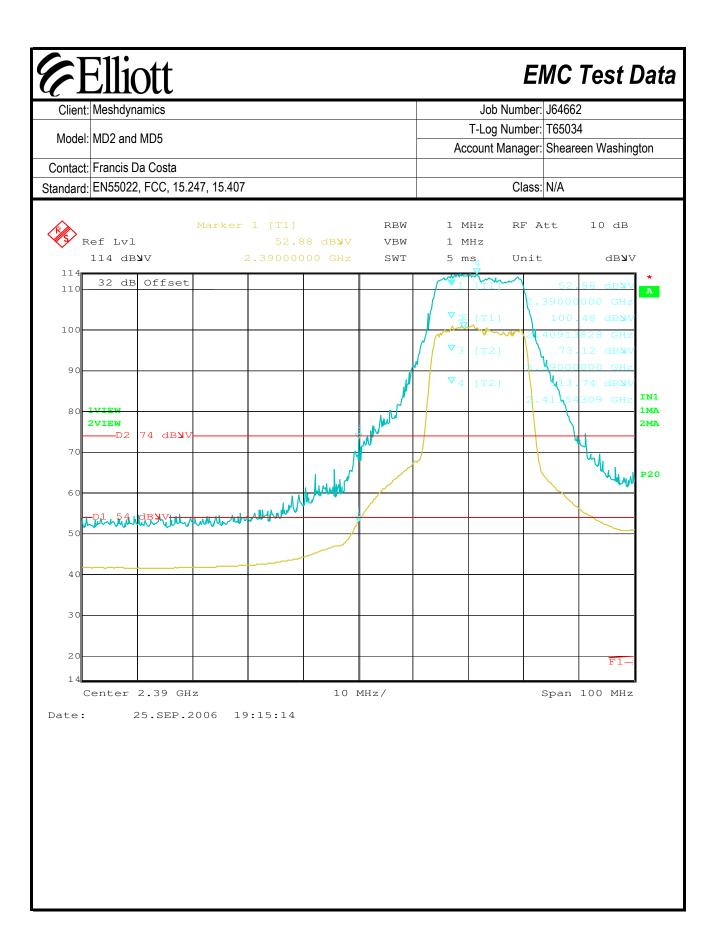
For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 20 °C

Rel. Humidity: 49 %

Summary of Results

Run#	Test Performed	Limit	Pass / Fail	Result / Margin
1 (902 11a Mada)	RE, 30 - 26,500 MHz	FCC Part 15.209 /	Doos	73.5dBµV/m (4731.5µV/m)
1 (802.11g Mode)	Spurious Emissions	15.247(c)	Pass	@ 7309.9MHz (-0.5dB)


Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Model: M Contact: F Standard: E								Job Number: J64662	
Contact: F Standard: E	rancis Da	/IU5						T-Log Number: T65034	
Standard: E								ount Manager: Sheareen Wash	ington
	N55022	Costa							
	1100022,	FCC, 15	.247, 15.40	7				Class: N/A	
Run #1a: Lo	w Chann I Signal I	el @ 24 [,] Field Str	12 MHz wit ength: Pea	h 8.0 dBi O ak and avera	age values m	a (14 dBm a easured in 1	nd setting MHz, and	peak value measured in 100kHz	2
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	DD 4441 \/D 4441	
	100.2	V	-	-	AVG	138	1.1	RB = 1MHz, VB = 1KHz	
	113.7	V	-	-	PK	138	1.1	RB = VB = 1MHz	
2410.341	86.8	Н	-	-	AVG	240	1.1	RB = 1MHz, VB = 1KHz	
2409.539	99.7	Н		-	PK	240	1.1	RB = VB = 1MHz	
Frequency	Level	Pol	1	/ 15.247	Detector	Azimuth	Height	dBc (Peak power measurement	
	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	DD - VD - 4MU-	
2390.000 2390.000	73.1 52.9	V	74.0 54.0	-0.9 -1.1	PK AVG	138 138	1.1 1.1	RB = VB = 1MHz RB = 1MHz, VB = 10KHz	
2390.000	52.9	V	34.0	-1.1	AVG	130	1.1	RD - IIVINZ, VD - IUNNZ	
Note 1: C	Calculated	•	racting the r	narker delta				rength measurements.	
Other Spurio			15 209	/ 15 247	Detector	Azimuth	Height	IComments	
Frequency	Level	Pol		/ 15.247 Margin	Detector Pk/QP/Ava	Azimuth degrees	Height meters	Comments	
Frequency	Level dBµV/m		Limit	/ 15.247 Margin -4.4	Pk/QP/Avg	degrees	meters	Comments	
Frequency MHz county 4823.670	Level dBµV/m 49.6	Pol V/H	Limit 54.0	Margin -4.4	Pk/QP/Avg AVG	degrees 97	meters 1.0	Comments	
Frequency MHz d	Level dBµV/m	Pol V/H V	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments	

Client:	Meshdyna	amics						Job Number:	J64662
							-	Γ-Log Number:	T65034
Model:	MD2 and	MD5					Acc	ount Manager:	Sheareen Washington
Contact:	Francis Da	a Costa						_	
Standard:	EN55022,	FCC, 15	5.247, 15.40	7				Class:	N/A
			2437 MHz, @ 3m in 100			dΒμV/m	1		
Limi	t for emissi	ons outs	ide of restric	ted bands:		dBμV/m	Limit is -20	dBc (Peak pow	ver measurement)
							_	1	
requency	Level	Pol		15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg		meters	Dootsistad	
7309.850	73.5	V	74.0	-0.5 5.0	PK AVG	251	1.0	Restricted	
7309.850	49.0 34.0	<u>V</u>	54.0 54.0	-5.0 -20.0	AVG AVG	251	1.0 1.4	Restricted	
4874.250 4874.250	50.3	<u>п</u> Н	74.0	-20.0	PK	208 208	1.4	Restricted Restricted	
7314.670	41.8	<u>п</u> Н	54.0	-23. <i>1</i> -12.2	AVG	15	1.4	Restricted	
7314.670	65.5	 H	74.0	-8.5	PK	15	1.0	Restricted	
1873.110	42.7	V	54.0	-11.3	AVG	251	1.9	Restricted	
4873.110	60.5	V	74.0	-13.5	PK	251	1.9	Restricted	
lote 1:							i dii otiloi di		mit was set 20dB below
Note 1: Note 3: Note 2:	level of the VBW = 1k	e fundan H and R	nental and m BW = 1MHz	neasured in for average	100kHz. e measurme				THE Was Set ZOUD DEIOW

~ -	Ellic	ott						EMC Test Da	
	Meshdyna							Job Number: J64662	
							T-Log Number: T65034		
Model	MD2 and	MD5						count Manager: Sheareen Washington	
Contact	Francis Da	a Costa							
Standard	EN55022, FCC, 15.247, 15.407							Class: N/A	
	tal Signal	_	ength: Pea		Detector	neasured in 1 Azimuth	_	2) peak value measured in 100kHz Comments	
MHz	$dB\mu V/m$	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
2461.130	103.5	V	-	-	AVG	245	1.0	RB = 1MHz, VB = 3kHz	
2462.730	117.0	V	-	-	PK	245	1.0	RB = VB = 1MHz	
2467.230	108.0	V	-	-	Pk	245	1.0	RB = VB = 100kHz	
2461.370	90.3	Н	-	-	AVG	307	1.2	RB = 1MHz, VB = 3kHz	
2460.100	100.5	Н	-	-	PK	307	1.2	RB = VB = 1MHz	
2464.970	91.3	Н	-	-	Pk	307	1.2	RB = VB = 100kHz	
requency		ons outs Pol	ide of restric	/ 15.247	Detector	dBμV/m Azimuth	Height	dBc (Peak power measurement) Comments	
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
2483.530	52.9	V	54.0	-1.1	AVG	245	1.0	RB = 1MHz, VB = 1kHz	
2483.530	68.2	V	74.0	-5.8	PK	245	1.0	RB = VB = 1MHz	
2403.330									
lote 1: Other Spu	rious Emis	sions						trength measurements.	
lote 1: Other Spure	rious Emis Level	sions Pol	15.209	/ 15.247	Detector	Azimuth	Height	crength measurements. Comments	
Note 1: Other Spure Frequency MHz	rious Emis	sions							
Other Spure Trequency MHz 4924.520	rious Emis Level dBµV/m	Pol V/H	15.209 Limit	/ 15.247 Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments	
Other Spure Frequency MHz 4924.520 4924.520	rious Emis Level dBµV/m 36.3	Pol V/H V	15.209 Limit 54.0	/ 15.247 Margin -17.7	Detector Pk/QP/Avg AVG	Azimuth degrees 279	Height meters	Comments Restricted	
Other Spur Frequency MHz 4924.520 4924.520 7395.830 7395.830	rious Emis Level dBμV/m 36.3 49.7 34.1 45.2	sions Pol V/H V V V V	15.209 Limit 54.0 74.0 54.0 74.0	/ 15.247 Margin -17.7 -24.3 -19.9 -28.8	Detector Pk/QP/Avg AVG PK AVG PK	Azimuth degrees 279 279 360 360	Height meters 1.0 1.0 1.0 1.0	Comments Restricted Restricted	
Other Spure Frequency MHz 4924.520 4924.520 7395.830 4926.400	rious Emis Level dBμV/m 36.3 49.7 34.1 45.2 30.8	sions Pol V/H V V V V H	15.209 Limit 54.0 74.0 54.0 74.0 54.0	/ 15.247 Margin -17.7 -24.3 -19.9 -28.8 -23.2	Detector Pk/QP/Avg AVG PK AVG PK AVG	Azimuth degrees 279 279 360 360 264	Height meters 1.0 1.0 1.0 1.0 1.0 1.0	Comments Restricted Restricted Restricted Restricted Restricted Restricted	
Note 1: Prequency MHz 4924.520 4924.520 7395.830 7395.830 4926.400 4926.400	rious Emis Level dBμV/m 36.3 49.7 34.1 45.2 30.8 42.2	sions Pol V/H V V V V H H	15.209 Limit 54.0 74.0 54.0 74.0 54.0 74.0	/ 15.247 Margin -17.7 -24.3 -19.9 -28.8 -23.2 -31.8	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG	Azimuth degrees 279 279 360 360 264 264	Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Comments Restricted Restricted Restricted Restricted Restricted Restricted Restricted Restricted	
Other Spurification (Control of Control of C	rious Emis Level dBμV/m 36.3 49.7 34.1 45.2 30.8 42.2 33.9	Sions Pol V/H V V V V H H H H H	15.209 Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0	/ 15.247 Margin -17.7 -24.3 -19.9 -28.8 -23.2 -31.8 -20.1	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG AVG AVG AVG AVG AVG	Azimuth degrees 279 279 360 360 264 264 279	Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Comments Restricted	
ther Spur requency MHz 4924.520 7395.830 7395.830 4926.400 4926.400 7390.370	rious Emis Level dBμV/m 36.3 49.7 34.1 45.2 30.8 42.2	sions Pol V/H V V V V H H	15.209 Limit 54.0 74.0 54.0 74.0 54.0 74.0	/ 15.247 Margin -17.7 -24.3 -19.9 -28.8 -23.2 -31.8	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG	Azimuth degrees 279 279 360 360 264 264	Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Comments Restricted Restricted Restricted Restricted Restricted Restricted Restricted Restricted	
Note 1: Other Spure Frequency	rious Emis Level dBμV/m 36.3 49.7 34.1 45.2 30.8 42.2 33.9 45.8 For emiss level of the Signal is r For average	sions Pol V/H V V V H H H H cions in ree	15.209 Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 setricted bar ental and nestricted bar urment RBV	/ 15.247 Margin -17.7 -24.3 -19.9 -28.8 -23.2 -31.8 -20.1 -28.2 ands, the limit neasured in the but the neasured in the limit of the	Detector Pk/QP/Avg AVG PK	Azimuth degrees 279 279 360 360 264 264 279 279 279 trestricted b	Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Comments Restricted	

6	Elliott	EMC Test Data		
Client:	Meshdynamics	Job Number:	J64662	
Model	MD2 and MD5	T-Log Number:	T65034	
wodei.	INDZ ANU INDS	Account Manager:	Sheareen Washington	
Contact:	Francis Da Costa			
Standard:	EN55022, FCC, 15.247, 15.407	Class:	N/A	

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, Bandwidth and Spurious Emissions (802.11b)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 9/13/2006 Config. Used: 2 Test Engineer: Juan Martinez Config Change: None Test Location: SVOATS #1 EUT Voltage: 12Vdc

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 18 °C

> Rel. Humidity: 35 %

Summary of Results

Run#	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power	15.247(b)	Pass	23.4 dBm
2	Power spectral Density (PSD)	15.247(d)	Pass	-5.5 dBm/3kHz
3	6dB Bandwidth	15.247(a)	Pass	11.167 MHz
3	99% Bandwidth	RSS GEN	-	16.14 MHz
4	Spurious emissions	15.247(b)	Pass	Refer to plots

Modifications Made During Testing:

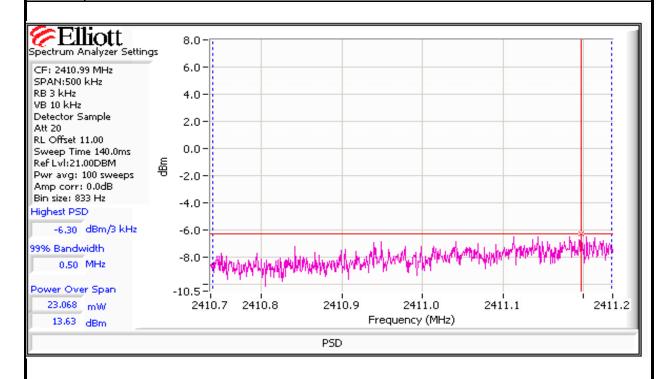
No modifications were made to the EUT during testing

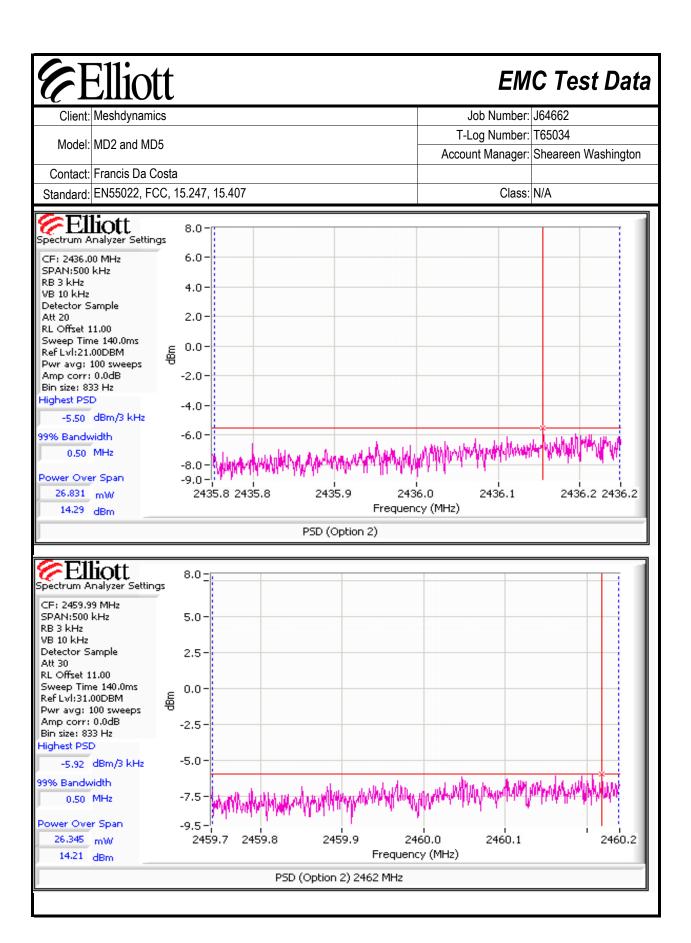
Deviations From The Standard

No deviations were made from the requirements of the standard.

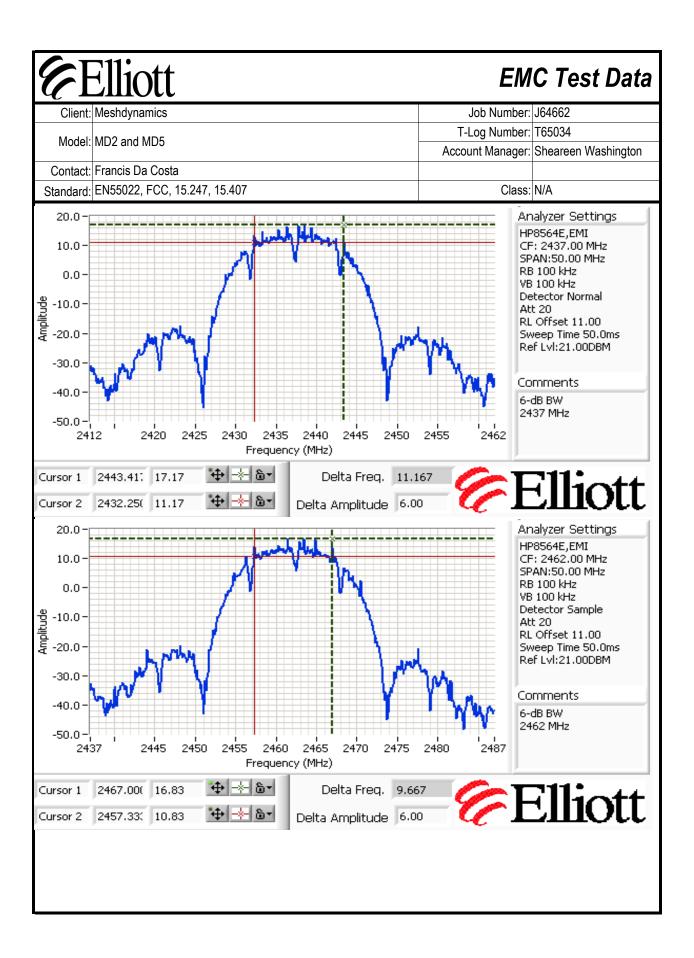
F	Elliott						EM	C Test L	Data
	Meshdynamics					Jo	ob Number:	J64662	
								T65034	
Model:	MD2 and MD5					Accour	nt Manager:	Sheareen Wash	ington
Contact:	Francis Da Costa								
tandard:	EN55022, FCC, 15	5.247, 15.40)7				Class:	N/A	
n #1: O	utput Power								
Power	Output Power Antenna Du				EIRP	Note 2	Output Po	wer	
etting ²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
J	2412	23.3			Pass	31.3	1.355	21.2	13
	2437	23.2			Pass	31.2	1.318	21.1	12
	2462	23.4	218.8	8.0	Pass	31.4	1.380	21.4	13
ote 1: ote 2:	Used a Peak Power Power setting - the		ower setting	used during	testing, inclu	ided for refe	rence only.		
	Power setting - the Power measured u						rence only.		
lote 3:						y-			

EMC Test Data

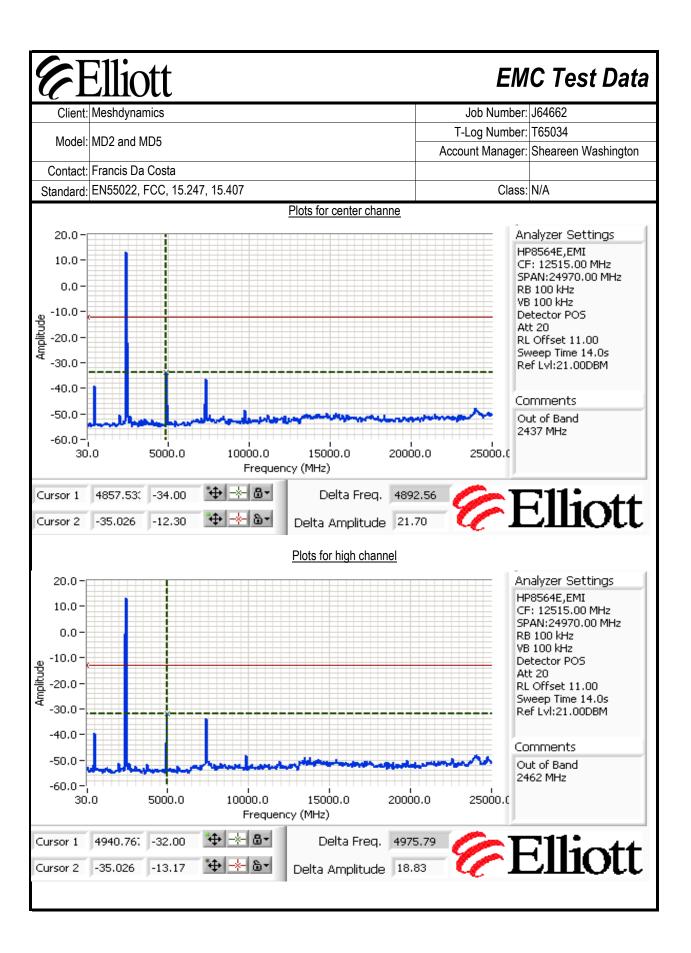

Client:	Meshdynamics	Job Number:	J64662
Model:	MD2 and MD5	T-Log Number:	T65034
wodei.	INDZ and INDS	Account Manager:	Sheareen Washington
Contact:	Francis Da Costa		
Standard:	EN55022, FCC, 15.247, 15.407	Class:	N/A


Run #2: Power spectral Density

Power	Frequency (MHz)	Frequency (MHz) PSD		Result
Setting	riequency (Miliz)	(dBm/3kHz) Note 1	dBm/3kHz	
	2412	-6.3	8.0	Pass
	2437	-5.5	8.0	Pass
	2462	-5.9	8.0	Pass


Note 1:

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with sample detector, power averaging enabled. The span is set to ensure there are at least two sample points per resolution bandwidth (with 601 points the span < 900kHz). The frequency with the highest PPSD is first determined using a peak detector with the same resolution and video bandwidth settings but over the 6dB bandwidth of the transmitted signal.



EMC Test Data Client: Meshdynamics Job Number: J64662 T-Log Number: T65034 Model: MD2 and MD5 Account Manager: Sheareen Washington Contact: Francis Da Costa Standard: EN55022, FCC, 15.247, 15.407 Class: N/A Run #3: Signal Bandwidth Bandwidth (MHz) Power Resolution Frequency (MHz) Setting Bandwidth 6dB 99% 2412 100 kHz 9.83 16.06 2437 100 kHz 11.167 16.14 2462 9.667 100 kHz 15.56 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB Note 1: Analyzer Settings 20.0 HP8564E,EMI CF: 2412,00 MHz 10.0 SPAN:50.00 MHz RB 100 kHz 0.0 VB 100 kHz Detector Sample -10.0 -20.0 Att 20 RL Offset 11.00 Sweep Time 50.0ms Ref Lvl:21.00DBM -30.0 Comments -40.0 6-dB BW 2412 MHz -50.0 2405 2410 2415 2425 2400 2420 2387 2395 Frequency (MHz) **♦** -≽- 6-2417.417 16.83 Delta Freq. 9.833 Cursor 1 Cursor 2 2407.58: 10.83 Delta Amplitude 6.00

EMC Test Data Client: Meshdynamics Job Number: J64662 T-Log Number: T65034 Model: MD2 and MD5 Account Manager: Sheareen Washington Contact: Francis Da Costa Standard: EN55022, FCC, 15.247, 15.407 Class: N/A Run #4: Out of Band Spurious Emissions Frequency (MHz) Limit Result 2412 -30dBc Refer to plots 2437 -30dBc Refer to plots 2462 -30dBc Refer to plots Plots for low channel 20.0 Analyzer Settings HP8564E,EMI 10.0 CF: 12515.00 MHz SPAN:24970.00 MHz 0.0-RB 100 kHz VB 100 kHz -10.0 Detector POS Amplitude Att 20 -20.0 RL Offset 11.00 Sweep Time 14.0s -30.0 Ref Lvl:21.00DBM -40.0 Comments -50.0 Out of Band 2412 MHz -60.0 -lT 10000.0 15000.0 -10Ö.1 5000.0 20000.0 24869.9 Frequency (MHz) **↔** -*- 8-Cursor 1 7229.68: -34.83 Delta Freq. 7394.76 **♣ 6** Cursor 2 -165.078 -14.67 Delta Amplitude 20.16

6	Elliott	EMC Test Data		
Client:	Meshdynamics	Job Number:	J64662	
Model:	MD2 and MD5	T-Log Number:	T65034	
wodei.		Account Manager:	Sheareen Washington	
Contact:	Francis Da Costa			
Standard:	EN55022, FCC, 15.247, 15.407	Class:	Radio / A	

Radiated Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 1/13/2007 9:07 Config. Used: 1
Test Engineer: Juan Martinez Config Change: None
Test Location: SVOATS #2 EUT Voltage: -48Vdc

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated emissions testing.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, <u>and</u> manipulation of the EUT's interface cables.

Ambient Conditions: Temperature: 18 °C

Rel. Humidity: 35 %

Summary of Results

Run#	Test Performed	Limit	Result	Margin
1	RE, 1000 - 10000 MHz, Maximized Emissions	RSS 210	Pass	47.1dBµV/m (225.9µV/m) @ 7053.4MHz (-6.9dB)

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

E	Elliott	EM	EMC Test Data		
Client:	Meshdynamics	Job Number:	J64662		
Model:	MD2 and MD5	T-Log Number:	T65034		
Model.		Account Manager:	Sheareen Washington		
Contact:	Francis Da Costa				
Standard:	EN55022, FCC, 15.247, 15.407	Class:	Radio / A		

Run #1: Radiated Spurious Emissions, 1000 - 10000 MHz (Receiver spurious)

All radios receiving continuously on channels 2437 and 5785

Note that all significant emissions below 1GHz were from the digital device (as demonstarted by preliminary scans with the transmitters operating, receivers operating and radios in stand-by) and are covered in a separate test session.

Frequency	Level	Pol	FCC C	lass B	Detector	Azimuth	Height	Comments
MHz	$dB\mu V/m$	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7053.367	47.1	V	54.0	-6.9	AVG	300	2.1	
7000.020	45.6	V	54.0	-8.5	AVG	140	1.3	
7053.366	43.8	Н	54.0	-10.2	AVG	0	1.0	
2309.998	43.6	Н	54.0	-10.4	AVG	300	1.6	
7000.022	43.5	Н	54.0	-10.5	AVG	180	1.0	
2309.998	39.5	V	54.0	-14.5	AVG	96	1.3	
7026.689	38.0	Н	54.0	-16.0	AVG	40	1.2	
7080.180	36.5	Н	54.0	-17.5	AVG	300	1.7	
2501.251	35.5	V	54.0	-18.5	AVG	20	1.3	
2500.095	35.4	Н	54.0	-18.6	AVG	350	1.6	
1253.183	33.2	V	54.0	-20.9	AVG	14	1.0	
1249.665	32.6	Н	54.0	-21.4	AVG	172	1.0	
7053.367	52.6	V	74.0	-21.4	PK	300	2.1	
7000.020	50.5	V	74.0	-23.5	PK	140	1.3	
7053.366	50.0	Н	74.0	-24.1	PK	0	1.0	
7000.022	49.3	Н	74.0	-24.7	PK	180	1.0	
2309.998	49.2	Н	74.0	-24.8	PK	300	1.6	
7026.689	47.5	Н	74.0	-26.5	PK	40	1.2	
2309.998	47.4	V	74.0	-26.6	PK	96	1.3	
2501.251	46.6	V	74.0	-27.4	PK	20	1.3	
7080.180	46.6	Н	74.0	-27.4	PK	300	1.7	
1253.183	44.3	V	74.0	-29.7	PK	14	1.0	
2500.095	44.2	Н	74.0	-29.8	PK	350	1.6	
1249.665	44.1	Н	74.0	-30.0	PK	172	1.0	

Report Date: January 9, 2007 **EXHIBIT 3: Photographs of Test Configurations**

Pages

File: R66621 Rev 5 Exhibit Page 3 of 10

EXHIBIT 4: Proposed FCC ID Label & Label Location

File: R66621 Rev 5 Exhibit Page 4 of 10

Report Date: January 9, 2007

EXHIBIT 5: Detailed Photographs of Meshdynamics Model MD4000Construction

Pages

File: R66621 Rev 5 Exhibit Page 5 of 10

EXHIBIT 6: Operator's Manual for Meshdynamics Model MD4000

Pages

File: R66621 Rev 5 Exhibit Page 6 of 10

EXHIBIT 7: Block Diagram of Meshdynamics Model MD4000

Pages

File: R66621 Rev 5 Exhibit Page 7 of 10

EXHIBIT 8: Schematic Diagrams for Meshdynamics Model MD4000

Pages

File: R66621 Rev 5 Exhibit Page 8 of 10

Report Date: January 9, 2007

EXHIBIT 9: Theory of Operation for Meshdynamics Model MD4000

Pages

File: R66621 Rev 5 Exhibit Page 9 of 10

EXHIBIT 10: RF Exposure Information

Pages

File: R66621 Rev 5 Exhibit Page 10 of 10