

Project Name: Customer: ODM: Ba

C250 BandRich

For GSM850/900/DCS/PCS/WCDMA

Antenna Tested by Ethertronics Taiwan Lab.

Test Date: May 22nd 2008 Report Date: May 22nd 2008

Contact Information:

Sales & Project Manager: Jason Hsu< jhsu@ethertronics.com>

Revision History

Revision	Date	Description of changes	
Rev. A	2008/03/20	Initial Release	
Rev. B	2008/04/01	Using the original method of connecting the USB connecter and DUT PCB	
Rev. C	2008/04/10	Fine tune the antenna under the test condition defined by BandRich	
Rev. D	2008/05/22	Fine tune the antenna under the test condition defined by BandRich C240_main_M23 C240_Div_Rev C & C240_Div_Rev D	

Project: C250	Date: 22-May, 2008
Author: Charles Lee, Tommy Lin	Check: CC Heng
Language: English	Rev. D

CONTENTS

1.	Technical Summary	4
2.	General Description	4
2.1.	. Test fixtures condition	5
2.2.	. Matching Network	6
3.	Test Setup	6
3.1.	. VNA Test Setup	6
3.2.	. Anechoic Chamber Test Setup	6
4.	Measurement results	9
5.	Conclusion	10

Page 3 of 10

Project: C250	Date: 22-May, 2008	
Author: Charles Lee, Tommy Lin	Check: CC Heng	
Language: English	Rev. D	

1. Technical Summary

This report summarizes the RF performance of the proposed penta-band antenna to support BandRich C250 program.

2. General Description

Figure 1 Location of antenna

Page 4 of 10

Confidentiality Statement All the information contained in this document is commercially confidential and must not be copied or Disclosed without the written consent of Ethertronics, Inc. Copyright © Ethertronics, Inc.

Project: C250	Date: 22-May, 2008	
Author: Charles Lee, Tommy Lin	Check: CC Heng	
Language: English	Rev. D	

2.1. Test fixtures condition

Figure 2-1 Test fixture condition used during testing

Figure 3-2 Test fixture condition used during testing

Confidentiality Statement All the information contained in this document is commercially confidential and must not be copied or Disclosed without the written consent of Ethertronics, Inc. Copyright © Ethertronics, Inc.

Page 5 of 10

Project: C250	Date: 22-May, 2008	
Author: Charles Lee, Tommy Lin	Check: CC Heng	
Language: English	Rev. D	

2.2. Matching Network

No matching network used.

3. Test Setup

3.1. VNA Test Setup

VSWR measurements (S_{11}) were performed using an Agilent E5071B Network Analyzer (Figure 4) and the test fixture shown in Figure 3. The testing was performed in free space.

Figure 4 Agilent E5071B Network Analyzer

3.2. Anechoic Chamber Test Setup

The antenna efficiency and gain were measured with Ethertronics 3D chamber (<u>www.ethertronics.com</u>). The configuration and the accuracy of the chamber are shown in **Figure 5** and **Figure 6**.

Page 6 of 10

	Project: C250	Date: 22-May, 2008
N ethertronics	Author: Charles Lee, Tommy Lin	Check: CC Heng
antenna technology"	Language: English	Rev. D
Airlink Co	mpact Anechoic Chamber	Communication Ant.
3D Motion Controller	Controller Computer	Base Station Simulator

Figure 5 Ethertronics compact 3D chamber setup

Page 7 of 10

Project: C250	Date: 22-May, 2008	
Author: Charles Lee, Tommy Lin	Check: CC Heng	
Language: English	Rev. D	

Frequency List	Ripple Value	Azimuth Condition	
800 MHz	+/- 0.2 dB	Rotate 360` , 2`Step	
900 MHz	+/- 0.25 dB	Rotate 360` , 2`Step	
1500 MHz	+/- 0.4dB	Rotate 360` , 2`Step	
1800 MHz	+/- 0.9 dB	Rotate 360` , 2`Step	
1900 Mhz	+/- 1 dB	Rotate 360` , 2`Step	
2100 MHz	+/- 1.2 dB	Rotate 360` , 2`Step	
2400 MHz	+/- 1.7 dB	Rotate 360` , 2`Step	

Figure 6 Azimuth ripple characteristics

Page 8 of 10

Project: C250	Date: 22-May, 2008	
Author: Charles Lee, Tommy Lin	Check: CC Heng	
Language: English	Rev. D	

4. Measurement results

All these measurements are based on the above test fixture (Figure 3) and equipments setup (Figure 4 and 錯誤! 找不到參照來源。). The numerical data are presented from Table 1.

*Antenna gain includes the connector and cable loss.

project	C250			
	Main antenna		Diversity	Diversity
			Rev.C	Rev.D
Frequency (MHz)	Eff. in %	Eff. in dBi	Eff. in %	Eff. in %
824	26	-5.84		
851.2	30	-5.22		
878.4	35	-4.59		
905.6	30	-5.30		
932.8	23	-6.41		
960	15	-8.37		
1710	59	-2.31		
1744	55	-2.61		
1778	63	-2.03		
1812	71	-1.46		
1846	75	-1.25		
1880	93	-0.31		
1930	96	-0.17	55	59
1990	83	-0.83	54	48
2020	69	-1.64		
2070	60	-2.25		
2110	52	-2.82	57	20
2170	44	-3.53	43	25

Table 1 3D gain

Page 9 of 10

Confidentiality Statement

All the information contained in this document is commercially confidential and must not be copied or Disclosed without the written consent of Ethertronics, Inc. Copyright © Ethertronics, Inc.

5. Conclusion

The active performance of main antenna is confirmed by Bandrich for hard tooling in SGS.

The passive data and pattern of diversity antenna are shown in Figure 1 and Table 1 including Rev C and Rev D. The pattern for hard tooling will be decides by Bandrich on May 23.

Should you have any questions, please do not hesitate to contact us.

Page 10 of 10