	FCC Test Report
Report No.:	RF160128E09-5
FCC ID:	UZ7WT6000
Test Model:	WT6000
Received Date:	Jan. 28, 2016
Test Date:	Feb. 17 to Apr. 12, 2016
Issued Date:	Apr. 26, 2016
Applicant:	Zebra Technologies Corporation
Address:	1 Zebra Plaza, Holtsville, NY 11742
Manufacturer:	Zebra Technologies Corporation
Address:	1 Zebra Plaza, Holtsville, NY 11742
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
Lab Address:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.
Test Location (1):	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.
Test Location (2):	No. 49, Ln. 206, Wende Rd., Shangshan Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan R.O.C.
	, ulu ulu
	Testing Laboratory
	2022
This report is for your exclusive use. Any only with our prior written permission. Th report are not indicative or representativ unless specifically and expressly noted. provided to us. You have 60 days from however, that such notice shall be in writ shall constitute your unqualified acceptar mention, the uncertainty of measuremen must not be used by the client to claim of	copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted is report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this e of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product Our report includes all of the tests requested by you and the results thereof based upon the information that you date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, ing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time ce of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific thas been explicitly taken into account to declare the compliance or non-compliance to the specification. The report oduct certification, approval, or endorsement by TAF or any government agencies.

AU VER

Table of Contents

Release Control Record 3		
Certificate of Conformity 4		
2 Summary of Test Results	5	
2.1 Measurement Uncertainty	5 5	
3 General Information		
2.1 Concret Description of EUT (DEID)	6	
3.2 Description of Test Modes	0 Q	
3.2.1 Test Mode Applicability and Tested Channel Detail		
3.3 Description of Support Units	10	
3.3.1 Configuration of System under Test	13	
3.4 General Description of Applied Standards	14	
4 Test Types and Results	15	
4 Cost Types and Resources	15	
4.1 Radiated Emission Measurement	15	
4.1.1 LIMIS OF Radiated Emission Measurement	15	
4.1.2 Test Institutients	10	
4.1.5 TEST FIDEBULES	17	
4.1.4 Deviation nom rest Standard	17 18	
4.1.6 FUT Operating Conditions	10	
4 1 7 Test Results	10	
4.2 Conducted Emission Measurement	23	
4.2.1 Limits of Conducted Emission Measurement	23	
4.2.2 Test Instruments	23	
4.2.3 Test Procedures	24	
4.2.4 Deviation from Test Standard	24	
4.2.5 TEST SETUP	24	
4.2.6 EUT Operating Conditions	24	
4.2.7 Test Results (Mode 1)	25	
4.2.8 Test Results (Mode 2)	27	
4.3 Frequency Stability	29	
4.3.1 Limits of Frequency Stability Measurement	29	
4.3.2 Test Setup	29	
4.3.3 Test Instruments	29	
4.3.4 Test Procedure	30	
4.3.5 Deviation nonnest Standard	30 20	
4.3.7 Teet Result	30	
4.4 20dB bandwidth	31	
4 4 1 Limits Of 20dB bandwidth Measurement	32	
4.4.2 Test Setup	32	
4.4.3 Test Instruments	32	
4.4.4 Test Procedures	32	
4.4.5 Deviation from Test Standard	32	
4.4.6 EUT Operating Conditions	32	
4.4.7 Test Results	33	
5 Pictures of Test Arrangements	34	
Appendix – Information on the Testing Laboratories	35	

Release Control Record			
Issue No.	Description		Date Issued
RF160128E09-5	Original release.		Apr. 26, 2016
Issue No. RF160128E09-5	Description Original release.		Date Issued Apr. 26, 2016

1 Certificate of Conformity

Product:	Wearable Terminal		
Brand:	Zebra		
Test Model:	WT6000		
Sample Status:	ENGINEERING SAMPLE		
Applicant:	Zebra Technologies Corporation		
Test Date:	Feb. 17 to Apr. 12, 2016		
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.225)		
	47 CFR FCC Part 15, Subpart C (Section 15.215)		
	ANSI C63.10:2013		

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	Wendy Wh	, Date:	Apr. 26, 2016	
	Wendy Wu / Specialist			
Approved by :	May Chen / Manager	, Date:	Apr. 26, 2016	

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.225, 15.215)				
FCC Clause	Test Item	Result	Remarks	
15.207	Conducted emission test	PASS	Meet the requirement of limit. Minimum passing margin is -12.89dB at 0.41563MHz.	
15.225 (a)	The field strength of any emissions within the band 13.553-13.567 MHz	PASS	Meet the requirement of limit. Minimum passing margin is -70.37dB at 13.560MHz.	
15.225 (b)	The field strength of any emissions within the bands 13.410-13.553 MHz and 13.567-13.710 MHz	PASS	Meet the requirement of limit.	
15.225 (c)	The field strength of any emissions within the bands 13.110-13.410 MHz and 13.710-14.010 MHz	PASS	Meet the requirement of limit.	
15.225 (d)	The field strength of any emissions appearing outside of the 13.110-14.010 MHz band	PASS	Meet the requirement of limit. Minimum passing margin is -4.76dB at 323.16MHz.	
15.225 (e)	The frequency tolerance	PASS	Meet the requirement of limit.	
15.215 (c)	20dB Bandwidth	PASS	Meet the requirement of limit.	

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.86 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.31 dB
	1GHz ~ 6GHz	3.40 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	3.73 dB
	18GHz ~ 40GHz	4.11 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (RFID)

Product	Wearable Terminal			
Brand	Zebra			
Test Model	WT6000			
Status of EUT	ENGINEERING SAMPLE			
	DC 3.6V from Battery or			
Power Supply Rating	DC 5.4V from Cradle or			
	DC 5.4V from Adapter			
Modulation Type	ASK			
Operating Frequency	13.56MHz			
Number of Channel	1			
Antenna Type	Refer to Note			
Antenna Connector	Refer to Note			
Accessory Device	Battery x1			
Data Cable Supplied	NA			

Note:

- 1. There are WLAN, BT, NFC technology used for the EUT.
- 2. For WLAN: 2.4GHz and 5GHz technology cannot transmit at same time.
- 3. WLAN <2.4GHz (1x2) or 5GHz (1x2)> + BT + NFC technology can transmit at same time.
- 4. The EUT could be supplied with a cradle, adapter or battery as below table:

Battery			
Brand:	ZEBRA TECHNOLOGIES CORPORATION		
Part No.:	BT000262A01		
	TYP: 3350mAh, 12.06WH		
Rating:	Min: 3200mAh, 11.52WH		
	Rechargeable, normal voltage: 3.6V, limit 4.2V		
Cradles- 1slot (not for sale	together)		
Brand:	Zebra		
Model No.:	SHARECRADLE-01		
Part No.:	SAC-TC8X-4SCHG-01		
Input Power	+12V 4.16A		
Output Power:	DC 5.4V(for EUT used)		
	DC 4.2V(for Battery used)		
I/O Port	DC Port x 1		
	USB Port x 2		
Associated Devices:	Adapter x 1		
	(Adapter: Part No.: PWRS-14000-148R)		
Gradie adapter (for Gradie-1slot used, not for sale together)			
Brand: HIPKO			
Model No.: HP-A0502R3D			
Part No.:: PWKS-14000-148K			
input power .	100-240 Vac, 2.4A, 50-60 HZ		
Output power :	+ 12 vuc 4.10A		
Adapter (not for sale toget	her)		
Brand:	Zebra		
Model No ·	PWBS-14000-249B		
Input Power	100-240V/ac 50-60Hz 0.6A		
	+5 4Vdc 3A		
	1 DC output cable (unshielded 1.8m)		
Output Power:	2 USB charging cable		
	(Brand: SINBON, Model: A9304774-005, shielded, 0.95m with one core)		

WLAN / BT antenna					
Transmitter	Antenna Gain(dBi)	Frequency	Antenna	Connecter	
Circuit	<including cable="" loss=""></including>	range	Туре	Туре	
	3.37	2.4~2.4835GHz	Patch	i-pex(MHF)	
	3.3	5.15~5.25GHz	Patch	i-pex(MHF)	
0	3.3	5.25~5.35GHz	Patch	i-pex(MHF)	
	3.2	5.47~5.725GHz	Patch	i-pex(MHF)	
	0.61	5.725~5.85GHz	Patch	i-pex(MHF)	
	3.86	2.4~2.4835GHz	Patch	i-pex(MHF)	
	3.66	5.15~5.25GHz	Patch	i-pex(MHF)	
1	3.66	5.25~5.35GHz	Patch	i-pex(MHF)	
	3.99	5.47~5.725GHz	Patch	i-pex(MHF)	
	3.99		Patch	i-pex(MHF)	
NFC antenna					
Frequency		Antenna	Con	Connecter	
rar	nge	Туре Туре		уре	
13.56	6MHz	Loop		NA	

5. The EUT antennas information:

6. The EUT was pre-tested under following test modes:

Mode	Terminal	Cradle	I/O (left)	I/O (right)	Polarity
Mode A	WT6000		USB charge cable	wired RS419 coil	X-Y
Mode B	WT6000		USB charge cable	wired RS419 coil	X-Z
Mode C	WT6000		USB charge cable	wired RS419 coil	Y-Z
Mode D	WT6000	1-slot	1-slot cradle	wired RS419 coil	NA

From the above modes, the spurious emission below 1GHz worst case was found in **Mode D**. Therefore only the test data of the modes were recorded in this report individually.

7. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

One channel was provided to this EUT:

Channel	FREQ. (MHz)
1	13.56

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure Mode	EUT Configure Mode					Description		
	RE	PLC	FS		EB			
1		\checkmark	\checkmark		\checkmark	With Adapter		
2	-	\checkmark	-		-	With Cradles		
Where	RE: Radiated Emis	sion below 1GHz bility	PLC: Powe	er Line Cor Bandwidth	nducted Em measureme	ission ent		
Pre-Scan has been between available architecture). Following channel	n conducted to a modulations, da (s) was (were) s	determine the vata rates and a elected for the	worst-case m antenna ports e final test as	ode from (if EUT v listed be	n all possi with anter low.	ble combinations ina diversity		
Available Channel Tested Channel Modulation Type								
Available Channel	Tested Cham	iei wouuia						
Pre-Scan has been between available	ed Emission Te n conducted to o modulations, da	est: determine the vata rates and a	ASK worst-case m	ode from (if EUT v	n all possi with anter	ble combinations ina diversity		
Pre-Scan has been between available architecture). Following channel	1 ed Emission Te n conducted to o modulations, da (s) was (were) s	est: determine the vata rates and a elected for the	ASK worst-case m intenna ports e final test as	ode from (if EUT v listed be	n all possi with anter low.	ble combinations ina diversity		
Available Channel 1 wer Line Conducte Pre-Scan has been between available architecture). Following channel Available Channel 1	1 2 4 Emission Temperature 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1	determine the vata rates and a velected for the module of	ASK worst-case m antenna ports e final test as ation Type ASK	ode from (if EUT v listed be	n all possi with anter low.	ble combinations ina diversity		
Available Channel 1 wer Line Conducte Pre-Scan has been between available architecture). Following channel 1 equency Stability: This item includes mode. Pre-Scan has been between available	1 2 4 2 2 2 2 2 2 2 2 3 <td< td=""><td>each mode, b determine the varian rates and a</td><td>ASK worst-case m antenna ports e final test as ation Type ASK ut only includ worst-case m antenna ports</td><td>ode from (if EUT v listed be es spect ode from (if EUT v</td><td>n all possi with anter low. rum plot c n all possi with anter</td><td>ble combinations ina diversity of worst value of ea ble combinations ina diversity</td></td<>	each mode, b determine the varian rates and a	ASK worst-case m antenna ports e final test as ation Type ASK ut only includ worst-case m antenna ports	ode from (if EUT v listed be es spect ode from (if EUT v	n all possi with anter low. rum plot c n all possi with anter	ble combinations ina diversity of worst value of ea ble combinations ina diversity		
Available Channel 1 wer Line Conducte Pre-Scan has been between available architecture). Following channel 1 equency Stability: This item includes mode. Pre-Scan has been between available architecture). Following channel	1 2 4 2 2 2 2 2 2 2 2 2 2 2 2 3 4 4 4 4 4 4 4 4 4 4 <td< th=""><th>each mode, b determine the vata rates and a elected for the Modula //</th><th>ASK worst-case m antenna ports e final test as ation Type ASK ut only includ worst-case m antenna ports e final test as</th><th>es spection (if EUT v listed being es spection (if EUT v listed being</th><th>n all possi with anter low. rum plot o n all possi with anter low.</th><th>ble combinations ina diversity of worst value of ea ble combinations ina diversity</th></td<>	each mode, b determine the vata rates and a elected for the Modula //	ASK worst-case m antenna ports e final test as ation Type ASK ut only includ worst-case m antenna ports e final test as	es spection (if EUT v listed being es spection (if EUT v listed being	n all possi with anter low. rum plot o n all possi with anter low.	ble combinations ina diversity of worst value of ea ble combinations ina diversity		
Available Channel 1 wer Line Conductor Pre-Scan has been between available architecture). Following channel 1 equency Stability: This item includes mode. Pre-Scan has been between available architecture). Following channel 1 equency Stability: This item includes mode. Pre-Scan has been between available architecture). Following channel Available Channel	1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 4 4 4 4 4 5 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 <td< td=""><td>each mode, b determine the mata rates and a elected for the mel Modula determine the mata rates and a elected for the mata rates and a elected for the mel Modula</td><td>ASK worst-case m antenna ports e final test as ation Type ASK ut only includ worst-case m antenna ports e final test as ation Type</td><td>es spect ode from listed be ode from (if EUT v listed be</td><td>n all possi with anter low. rum plot o n all possi with anter low.</td><td>ble combinations ina diversity of worst value of ea ble combinations ina diversity</td></td<>	each mode, b determine the mata rates and a elected for the mel Modula determine the mata rates and a elected for the mata rates and a elected for the mel Modula	ASK worst-case m antenna ports e final test as ation Type ASK ut only includ worst-case m antenna ports e final test as ation Type	es spect ode from listed be ode from (if EUT v listed be	n all possi with anter low. rum plot o n all possi with anter low.	ble combinations ina diversity of worst value of ea ble combinations ina diversity		

20dB Bandwidth:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

Available Channel	Tested Channel	Modulation Type
1	1	ASK

Test Condition:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY	TEST LOCATION
RE	20deg. C, 71%RH	120Vac, 60Hz	Tim Ho	1
PLC	24deg. C, 82%RH	120Vac, 60Hz	Wythe Lin	1
FS	16deg. C, 64%RH	120Vac, 60Hz	Anderson Chen	2
EB	16deg. C, 64%RH	120Vac, 60Hz	Anderson Chen	1

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand Model No.		Serial No.	FCC ID	Remarks
Α.	Cradle Adapter	HIPRO	HP-A0502R3D	NA	NA	Supplied by client
В.	Cradles-1slot	ZEBRA	SHARECRADLE-01	NA	NA	Supplied by client
C.	Notebook Computer	book Computer HP Pavilion 14-ab023TU		5CD5340WXZ	NA	Provided by Lab
D.	iPod shuffle	Apple MC749TA/A		CC4DMFJUDFDM	NA	Provided by Lab
E.	Wired Scanner	ZEBRA	RS419	NA	NA	Supplied by client
F.	Adapter	Motorola	PWRS-14000-249R	NA	NA	Supplied by client

Note:

1. All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	AC cable	1	1.8	No	0	Supplied by client
2.	DC cable	1	1.8	No	1	Supplied by client
3.	USB cable	1	1.4	Yes	0	Supplied by client
4.	Wired Scanner cable	1	0.5	No	0	Supplied by client
5.	USB cable	1	0.1	Yes	0	Provided by Lab
6.	USB cable	1	0.95	Yes	1	Supplied by client
7.	DC cable	1	1.8	No	0	Supplied by client

Note: The core(s) is(are) originally attached to the cable(s).

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.225)

FCC Part 15, Subpart C (15.215) ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

NOTE: The EUT has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

4 Test Types and Results

4.1 Radiated Emission Measurement

4.1.1 Limits of Radiated Emission Measurement

The field strength of any emission shall not exceed the following limits:

(a) 15.848 millivolts/m (84 dB μ V/m) at 30 m, within the band 13.553-13.567 MHz.

(b) 334 microvolts/m (50.5 dB μ V/m) at 30 m, within the bands 13.410-13.553 MHz and 13.567-13.710 MHz. (c) 106 microvolts/m (40.5 dB μ V/m) at 30 m, within the bands 13.110-13.410 MHz and 13.710-14.010 MHz.

The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in RSS-GEN 8.9.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver Agilent	N9038A	MY50010156	Aug. 12, 2015	Aug. 11, 2016
Pre-Amplifier ^(*) EMCI	EMC001340	980142	Jan. 20, 2016	Jan. 19, 2018
Loop Antenna ^(*) Electro-Metrics	EM-6879	264	Dec. 16, 2014	Dec. 15, 2016
RF Cable	NA	LOOPCAB-001 LOOPCAB-002	Jan. 18, 2016	Jan. 17, 2017
Pre-Amplifier Mini-Circuits	ZFL-1000VH2 B	AMP-ZFL-07	May 08, 2015	May 07, 2016
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-156	Jan. 04, 2016	Jan. 03, 2017
RF Cable	8D	966-3-1 966-3-2 966-3-3	Apr. 02, 2016	Apr. 01, 2017
Software	ADT_Radiated _V8.7.07	NA	NA	NA
Antenna Tower & Turn Table CT	NA	NA	NA	NA

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. *The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. The test was performed in 966 Chamber No. 3.
- 4. The FCC Site Registration No. is 147459
- 6. The CANADA Site Registration No. is 20331-1
- 7 Loop antenna was used for all emissions below 30 MHz.
- 8. Tested Date: Feb. 17 to Apr. 11, 2016

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Both X and Y axes of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission 30~1000MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency 30MHz ~ 1GHz.

4.1.4 Deviation from Test Standard

No deviation.

Frequency Range	13.110 ~ 14.010MHz	Detector Function	Quasi-Peak

	Antenna Polarity & Test Distance: Loop Antenna Open At 3m								
No. Freq.	Frog	Emission	Limit	Margin	Antenna	Table	Raw	Correction	
	Level	(dPu)//m)	(dP)	Height	Angle	Value	Factor		
	(10172)	(dBuV/m)	(ubuv/iii)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)	
1	13.35	36.44 QP	80.50	-44.06	1.00 H	360	39.70	-3.26	
2	13.45	40.03 QP	90.47	-50.44	1.00 H	16	43.30	-3.27	
3	13.56	53.63 QP	124.00	-70.37	1.00 H	346	56.92	-3.29	
4	13.66	42.38 QP	90.47	-48.09	1.00 H	360	45.68	-3.30	
5	13.77	38.66 QP	80.50	-41.84	1.00 H	360	41.98	-3.32	

1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

- Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.

5. Above limits have been translated by the formula

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)

Example: 13.56MHz

=	15848uV/m	30m
=	84dBuV/m	30m

 $= 84+20\log(30/3)^2$ 3m

= 124dBuV/m

Frequency Range			13.110 ~ 14.010MHz		Detector Function		Quasi-Peak		
Antenna Polarity & Test Distance: Loop Antenna Close At 3m									
No.	Freq. (MHz)	Emissio Level (dBuV/m	n Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	13.35	39.01 Q	P 80.50	-41.49	1.00 H	260	42.27	-3.26	
2	13.46	43.24 Q	P 90.47	-47.23	1.00 H	263	46.51	-3.27	
3	13.56	57.33 Q	P 124.00	-66.67	1.00 H	258	60.62	-3.29	
4	13.67	46.67 Q	P 90.47	-43.80	1.00 H	268	49.97	-3.30	
5	13.77	41.87 Q	P 80.50	-38.63	1.00 H	251	45.19	-3.32	

1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

– Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

- 4. Margin value = Emission level Limit value.
- 5. Above limits have been translated by the formula

30m

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)

Example: 13.56MF

Ηz	=	15848uV/m	
	=	84dBu\//m	

=	84dBuV/m	30m
=	84+20log(30/3) ²	3m

84+20log(30/3)² =

= 124dBuV/m

Freq	uency Rang	ge Be	low 30MHz	C	Detector Function Quasi-Peak				
		Antonno	Dolority 8 T	oot Distana	o: Loop Anto		\t 2m		
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit Margin (dBuV/m) (dB)		Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	0.01	45.44 QP	128.50	-83.06	1.00 H	360	7.04	38.40	
2	1.80	44.74 QP	69.50	-24.76	1.00 H	179	45.33	-0.59	
3	7.90	37.94 QP	69.50	-31.56	1.00 H	85	40.81	-2.87	
4	13.56	43.20 QP	69.50	-26.30	1.00 H	352	46.49	-3.29	
5	22.40	39.42 QP	69.50	-30.08	1.00 H	181	43.36	-3.94	
6	24.35	40.63 QP	69.50	-28.87	1.00 H	111	44.11	-3.48	
		Antenna	Polarity & T	est Distanc	e: Loop Anter	nna Close A	At 3m		
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	0.09	46.10 QP	108.91	-62.81	1.00 H	249	27.22	18.88	
2	3.00	46.30 QP	69.50	-23.20	1.00 H	35	49.03	-2.73	
3	6.00	40.10 QP	69.50	-29.40	1.00 H	6	43.07	-2.97	
4	14.21	40.90 QP	69.50	-28.60	1.00 H	14	44.29	-3.39	
5	22.39	42.98 QP	69.50	-26.52	1.00 H	42	46.92	-3.94	
6	24.35	42.56 QP	69.50	-26.94	1.00 H	343	46.04	-3.48	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)

- Pre-Amplifier Factor (dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

Free	quency Rang	ge B	elow 1000MH	lz [Detector Function Quasi-Peak				
				A. T. (D)					
Antenna Polarity & Test Distance: Horizontal At 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	43.12	31.4 QP	40.0	-8.6	1.50 H	237	30.59	0.78	
2	201.04	33.2 QP	43.5	-10.3	1.00 H	108	35.27	-2.04	
3	314.22 41.2 QP 46.0 -4.9		-4.9	1.00 H	210	38.99	2.16		
4	323.16	41.2 QP	46.0	-4.8	1.00 H	66	38.82	2.42	
5	497.39	35.1 QP	46.0	-10.9	1.50 H	28	28.70	6.41	
6	931.19	38.4 QP	46.0	-7.6	1.50 H	115	24.56	13.88	
		ANT	ENNA POLA	RITY & Tes	t Distance: V	ertical At 3	М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	36.25	34.5 QP	40.0	-5.5	1.00 V	112	34.72	-0.24	
2	58.05	29.3 QP	40.0	-10.8	1.50 V	77	28.50	0.75	
3	219.29	32.1 QP	46.0	-13.9	2.00 V	114	33.96	-1.84	
4	267.36	31.2 QP	46.0	-14.8	2.00 V	296	30.51	0.66	
5	319.25	39.1 QP	46.0	-6.9	1.00 V	103	36.80	2.29	
6	797.17	37.3 QP	46.0	-8.7	1.50 V	108	25.53	11.75	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)						
	Quasi-peak	Average					
0.15 - 0.5	66 - 56	56 - 46					
0.50 - 5.0	56	46					
5.0 - 30.0	60	50					

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.2.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	100375	May 06, 2015	May 05, 2016
Line-Impedance Stabilization Network (for EUT) SCHWARZBECK	NSLK-8127	8127-522	Sep. 01, 2015	Aug. 31, 2016
Line-Impedance Stabilization Network (for Peripheral) R&S	ENV216	100072	June 11, 2015	June 10, 2016
RF Cable	5D-FB	COCCAB-001	Mar. 08, 2016	Mar. 07, 2017
50 ohms Terminator	N/A	EMC-03	Sep. 23, 2015	Sep. 22, 2016
50 ohms Terminator	N/A	EMC-02	Oct. 01, 2015	Sep. 30, 2016
50 ohms Terminator	E1-011315	13	Dec. 11, 2015	Dec. 10, 2016
Software BVADT	BVADT_Cond_ V7.3.7.3	NA	NA	NA

Note:

- 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Shielded Room No. C.
- 3 The VCCI Con C Registration No. is C-3611.
- 4 Tested Date: Apr. 11, 2016

4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.
- 4.2.4 Deviation from Test Standard

No deviation.

4.2.5 TEST SETUP

Note: 1.Support units were connected to second LISN. For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

4.2.7	Test Result	s (Mode 1)										
Phase	e	Lir	Line (L)				Detector Function			Quasi-Peak (QP) / Average (AV)		
	Freq	Corr.	Readin	g Value	Emis	sion L	evel	Lin	nit	Mar	gin	
No	TTEQ.	Factor	[dB (uV)]		[d	[dB (uV)]		[dB (uV)]		(dB)		
	[MHz]	(dB)	Q.P.	AV.	Q.P.		AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15000	10.32	40.10	23.74	50.42	2 3	4.06	66.00	56.00	-15.58	-21.94	
2	0.17734	10.30	37.61	19.65	47.9 ⁻	1 2	9.95	64.61	54.61	-16.70	-24.66	
3	0.21250	10.28	31.84	17.10	42.12	2 2	27.38	63.11	53.11	-20.99	-25.73	
4	0.25547	10.29	28.13	14.95	38.42	2 2	25.24	61.58	51.58	-23.16	-26.34	
5	0.53281	10.28	23.86	20.06	34.14	4 3	80.34	56.00	46.00	-21.86	-15.66	
6	20.32031	10.95	23.02	16.06	33.97	7 2	27.01	60.00	50.00	-26.03	-22.99	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phase			eutral (N)			Detector Fu	nction	Quasi- Averag	Quasi-Peak (QP) / Average (AV)		
	Frog	Corr.	Readin	g Value	Emiss	sion Level	Lir	nit	Margin		
No	Fieq.	Factor	actor [dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)		
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15391	10.30	39.02	21.73	49.32	32.03	65.79	55.79	-16.46	-23.75	
2	0.20078	10.26	34.14	18.00	44.40	28.26	63.58	53.58	-19.18	-25.32	
3	0.22422	10.26	33.28	15.67	43.54	25.93	62.66	52.66	-19.12	-26.73	
4	0.25938	10.27	27.42	15.56	37.69	25.83	61.45	51.45	-23.77	-25.63	
5	0.56016 10.26 23.84		14.24	34.10	24.50	56.00	46.00	-21.90	-21.50		
6	20.07031	10.98	19.72	13.76	30.70	24.74	60.00	50.00	-29.30	-25.26	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phase			ie (L)		C	Detector Fu	nction	Quasi- Averag	Quasi-Peak (QP) / Average (AV)		
	Frog	Corr.	Readin	g Value	Emiss	ion Level	Lir	nit	Mar	gin	
No	Fieq.	Factor	[dB ((uV)]	[dE	8 (uV)]	[dB (uV)]	(dl	3)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15000	10.32	32.40	21.28	42.72	31.60	66.00	56.00	-23.28	-24.40	
2	0.17734	10.30	28.87	15.01	39.17	25.31	64.61	54.61	-25.44	-29.30	
3	0.19687	10.28	24.20	12.13	34.48	22.41	63.74	53.74	-29.26	-31.33	
4	0.22031	10.28	22.58	10.30	32.86	20.58	62.81	52.81	-29.95	-32.23	
5	0.41563	10.30	29.89	23.55	40.19	33.85	57.54	47.54	-17.35	-13.69	
6	0.54844	10.28	16.30	9.29	26.58	19.57	56.00	46.00	-29.42	-26.43	

4.2.8 Test Results (Mode 2)

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phase			eutral (N)			Detector Fu	nction	Quasi- Averag	Quasi-Peak (QP) / Average (AV)		
	Frog	Corr.	Readin	g Value	Emis	sion Level	Lir	nit	Margin		
No	Fieq.	Factor	r [dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)		
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15000	10.30	31.63	21.69	41.93	31.99	66.00	56.00	-24.07	-24.01	
2	0.16562	10.29	30.41	17.84	40.70	28.13	65.18	55.18	-24.48	-27.05	
3	0.19297	10.27	25.88	13.58	36.15	5 23.85	63.91	53.91	-27.76	-30.06	
4	0.22031	10.26	23.25	12.07	33.51	22.33	62.81	52.81	-29.30	-30.48	
5	5 0.41563 10.2		30.12	24.28	40.40	34.56	57.54	47.54	-17.14	-12.98	
6	0.48984	10.27	18.31	11.36	28.58	3 21.63	56.17	46.17	-27.59	-24.54	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

4.3 Frequency Stability

4.3.1 Limits of Frequency Stability Measurement

The frequency tolerance of the carrier signal shall be maintained within +/-0.01% of the operating frequency over a temperature variation of -20 degrees to 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

4.3.2 Test Setup

4.3.3 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
SPECTRUM ANALYZER R&S	FSP 40	100060	May 08, 2015	May 07, 2016
Temperature & Humidity				
Chamber	GTH-150-40-SP-	MAA0812-008	Jan. 15, 2016	Jan. 14, 2017
GIANTFORCE				

NOTE: 1. The test was performed in Oven room 2.

- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: Apr. 12, 2016

4.3.4 Test Procedure

- a. The EUT was placed inside the environmental test chamber and powered by nominal AC voltage.
- b. Turned the EUT on and coupled its output to a spectrum analyzer.
- c. Turned the EUT off and set the chamber to the highest temperature specified.
- d. Allowed sufficient time (approximately 30 min) for the temperature of the chamber to stabilize then turned the EUT on and measured the operating frequency after 2, 5, and 10 minutes.
- e. Repeated step 2 and 3 with the temperature chamber set to the lowest temperature.
- f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.

4.3.5 Deviation fromTest Standard

No deviation.

4.3.6 EUT Operating Conditions

Same as Item 4.1.6.

4.3.7 Test Result

	Frequency Stability Versus Temp.													
		0 Mi	nute	2 Mi	nute	5 Mi	nute	10 Minute						
TEMP. (℃)	Power Supply (Vdc)	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift					
		(MHz)	%	(MHz)	%	(MHz)	%	(MHz)	%					
50	3.6	13.55999	-0.00007	13.55999	-0.00007	13.55999	-0.00007	13.55998	-0.00015					
40	3.6	13.55999	-0.00007	13.55999	-0.00007	13.56	0.00000	13.55999	-0.00007					
30	3.6	13.56006	0.00044	13.56006	0.00044	13.56006	0.00044	13.56006	0.00044					
20	3.6	13.56	0.00000	13.56	0.00000	13.56	0.00000	13.56	0.00000					
10	3.6	13.55998	-0.00015	13.55998	-0.00015	13.55998	-0.00015	13.55998	-0.00015					
0	3.6	13.55999	-0.00007	13.56	0.00000	13.55998	-0.00015	13.55999	-0.00007					
-10	3.6	13.55995	-0.00037	13.55995	-0.00037	13.55996	-0.00029	13.55995	-0.00037					
-20	3.6	13.56002	0.00015	13.56001	0.00007	13.56002	0.00015	13.56003	0.00022					
-30	3.6	13.56006	0.00044	13.56006	0.00044	13.56007	0.00052	13.56005	0.00037					

	Frequency Stability Versus Voltage													
TEMP. (℃)	Power Supply (Vdc)	0 Mi	nute	2 Mi	nute	5 Mi	nute	10 Minute						
		Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift					
		(MHz)	%	(MHz)	%	(MHz)	%	(MHz)	%					
	4.14	13.56	0.00000	13.56	0.00000	13.56	0.00000	13.56	0.00000					
20	3.6	13.56	0.00000	13.56	0.00000	13.56	0.00000	13.56	0.00000					
	3.06	13.56	0.00000	13.56	0.00000	13.56	0.00000	13.56	0.00000					

4.4 20dB bandwidth

4.4.1 Limits Of 20dB BANDWIDTH Measurement

The 20dB bandwidth shall be specified in operating frequency band.

4.4.2 Test Setup

4.4.3 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
SPECTRUM ANALYZER R&S	FSP 40	100060	May 08, 2015	May 07, 2016

NOTE: 1. The test was performed in Oven room 2.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. Tested Date: Apr. 12, 2016

4.4.4 Test Procedures

The bandwidth of the fundamental frequency was measured by spectrum analyzer with 1kHz RBW and 3kHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

Same as Item 4.1.6.

4.4.7 Test Results

20dBc point (Low)	20dBc point (High)	Operating frequency band (MHz)	Pass/Fail
13.34	13.77707	13.11 – 14.01	Pass

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ----