

FCC RADIO TEST REPORT

FCC ID	:	UZ7WCMTB
Equipment	:	Touch Computer
Brand Name	:	Zebra
Model Name	:	WCMTB
Applicant	:	Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Manufacturer	:	Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Standard	:	FCC Part 15 Subpart C §15.247

The product was received on Feb. 08, 2023 and testing was performed from Feb. 10, 2023 to Mar. 24, 2023. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

TEL: 886-3-327-0868
FAX: 886-3-327-0855
Report Template No.: BU5-FR15CBT4.0 Version 2.4

Page Number: 1 of 38Issue Date: Apr. 03, 2023Report Version: 02

Table of Contents

His	tory o	f this test report	.3
Sur	nmary	of Test Result	.4
1	Gene	ral Description	.5
	1.1	Product Feature of Equipment Under Test	.5
	1.2	Product Specification of Equipment Under Test	.6
	1.3	Modification of EUT	.6
	1.4	Testing Location	.6
	1.5	Applicable Standards	.6
2	Test	Configuration of Equipment Under Test	.7
	2.1	Carrier Frequency Channel	.7
	2.2	Test Mode	.8
	2.3	Connection Diagram of Test System	10
	2.4	Support Unit used in test configuration and system	11
	2.5	EUT Operation Test Setup	11
	2.6	Measurement Results Explanation Example	11
3	Test I	Result	12
	3.1	6dB and 99% Bandwidth Measurement	
	3.2	Output Power Measurement	17
	3.3	Power Spectral Density Measurement	18
	3.4	Conducted Band Edges and Spurious Emission Measurement	23
	3.5	Radiated Band Edges and Spurious Emission Measurement	29
	3.6	AC Conducted Emission Measurement	33
	3.7	Antenna Requirements	35
4		f Measuring Equipment	
5	Unce	rtainty of Evaluation	38
Арр	pendix	A. Conducted Test Results	
Арр	pendix	B. AC Conducted Emission Test Result	
Арр	pendix	C. Radiated Spurious Emission	
Арр	pendix	D. Radiated Spurious Emission Plots	
A		E. Dutu Quela Blata	

Appendix E. Duty Cycle Plots

Appendix F. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR311909B	01	Initial issue of report	Mar. 31, 2023
FR311909B	02	Add Sample 2 information and data This report is an updated version, replacing the report issued on Mar. 31, 2023.	Apr. 03, 2023

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.247(b)(3) 15.247(b)(4)	Output Power	Pass	-
3.3	15.247(e)	Power Spectral Density	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	8.19 dB under the limit at 2483.520 MHz
3.6	15.207	AC Conducted Emission	Pass	15.38 dB under the limit at 0.190 MHz
3.7	15.203	Antenna Requirement	Pass	-

Conformity Assessment Condition:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to report "Uncertainty of Evaluation".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Keven Cheng

Report Producer: Clio Lo

1 General Description

1.1 Product Feature of Equipment Under Test

	Product Feature
Equipment	Touch Computer
Brand Name	Zebra
Model Name	WCMTB
Sample 1	Scanner(SE4710)
Sample 2	Scanner(SE5500)
FCC ID	UZ7WCMTB
EUT supports Radios application	GSM/EGPRS/WCDMA/HSPA/LTE/5G NR/NFC/GNSS WLAN 11a/b/g/n HT20/HT40 WLAN 11ac VHT20/VHT40/VHT80/VHT160 WLAN 11ax HE20/HE40/HE80/HE160 Bluetooth BR/EDR/LE
HW Version	DV
SW Version	13-09-16.00-TG-U00-STD-ATH-04
FW Version	FUSION_QA_4_1.0.0.017_T
MFD	16MAR23
EUT Stage	Identical Prototype

Remark: The EUT's information above is declared by manufacturer.

Specification of Accessories				
Battery 1 Standard Battery (3800mAh)	Brand Name	Zebra	Model Number	BT-000473

Supported Uni	Supported Unit Used in Test Configuration and System				
Battery 2 Standard BLE Beacon Battery (3800mAh)	Brand Name	Zebra	Model Number	BT-000473B	
Battery 3 Extended Battery (5200mAh)	Brand Name	Zebra	Model Number	BT-000473E	
Adapter USB Wall Charger	Brand Name	Zebra	Part Number	PWR-WUA5V12W0US	
Earphone 1 3.5mm PTT Headset	Brand Name	Zebra	Part Number	HDST-35MM-PTT1-01	
Earphone 2 USB-C Audio Headset	Brand Name	Zebra	Part Number	HDST-USBC-PTT1-01	
USB Cable (Type C to Type A)	Brand Name	Zebra	Part Number	CBL-TC5X-USBC2A-01	
Type C-Audio Cable (Type C to 3.5mm)	Brand Name	Zebra	Part Number	ADP-USBC-35MM1-01	
Trigger Handle	Brand Name	Zebra	Part Number	TRG-TC2L-SNP1-01	

1.2 Product Specification of Equipment Under Test

Product Specification is subject to this standard			
Tx/Rx Frequency Range2402 MHz ~ 2480 MHz			
Number of Channels	40		
Carrier Frequency of Each Channel	40 Channel (37 hopping + 3 advertising channel)		
Marine Ortent Damas to Antonno	Bluetooth – LE (1Mbps): 3.50 dBm / 0.0022 W		
Maximum Output Power to Antenna	Bluetooth – LE (2Mbps): 3.50 dBm / 0.0022 W		
99% Occupied Bandwidth	1.023 MHz for 1Mbps		
99% Occupied Bandwidth	2.014 MHz for 2Mbps		
Antenna Type / Gain	IFA Antenna type with gain -1.26dBi		
Type of Modulation Bluetooth LE : GFSK			

Remark: The above EUT's information was declared by manufacturer. Please refer to Disclaimer in report summary.

1.3 Modification of EUT

No modifications made to the EUT during the testing.

1.4 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory	
Test Site Location No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No. TH05-HY, CO07-HY, 03CH11-HY	

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.5 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

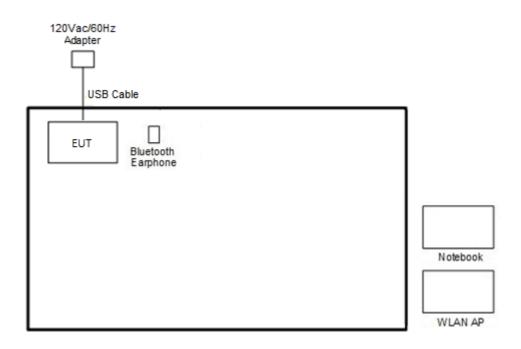
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
2400-2483.5 MHz	9	2420	30	2462
	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

2.2 Test Mode

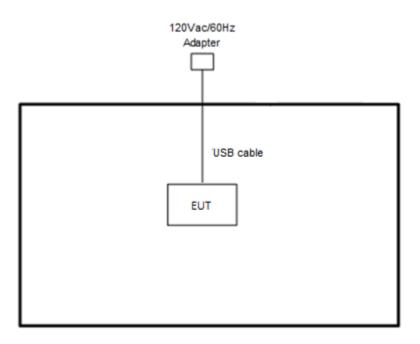
- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst case emissions were reported in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases				
Test Item	Data Rate / Modulation				
	Bluetooth – LE / GFSK				
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps				
Conducted	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps				
Test Cases	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps				
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps				
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps				
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps				



	Summary table of Test Cases					
Test Item	Data Rate / Modulation					
	Bluetooth – LE / GFSK					
	<sample 1="" battery="" with=""></sample>					
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps					
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps					
	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps					
	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps					
Radiated	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps					
Test Cases	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps					
	<sample 1="" 2="" battery="" with=""></sample>					
	Mode 1: Bluetooth Tx CH39_2480 MHz_2Mbps					
	<sample 1="" 3="" battery="" with=""></sample>					
	Mode 1: Bluetooth Tx CH39_2480 MHz_2Mbps					
	<sample 1="" 2="" battery="" with=""></sample>					
	Mode 2: Bluetooth Tx CH39_2480 MHz_2Mbps					
AC Conducted	Mode 1: Camera (Rear) + Bluetooth Link + Battery 1 + WLAN (2.4GHz) Link +					
Emission	USB Cable (Type C to Type A) (Charging with Adapter) for Sample 1					
	Remark: For radiation spurious emission, the modulation and the data rate picked for testing are determined by the Max. RF conducted power.					



2.3 Connection Diagram of Test System

<AC Conducted Emission Mode>

<Bluetooth – LE Tx Mode>

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	Kinyo	BTE-3622	N/A	N/A	N/A
2.	WLAN AP	ASUS	RT-AC52	N/A	N/A	Unshielded, 1.8 m
3.	Notebook	DELL	P79G	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT Version 4.0.00206.0" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$ = 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

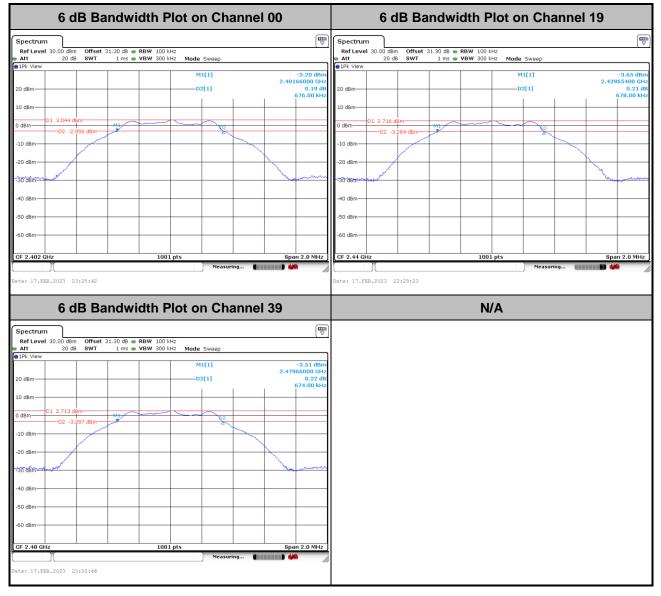
Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedures

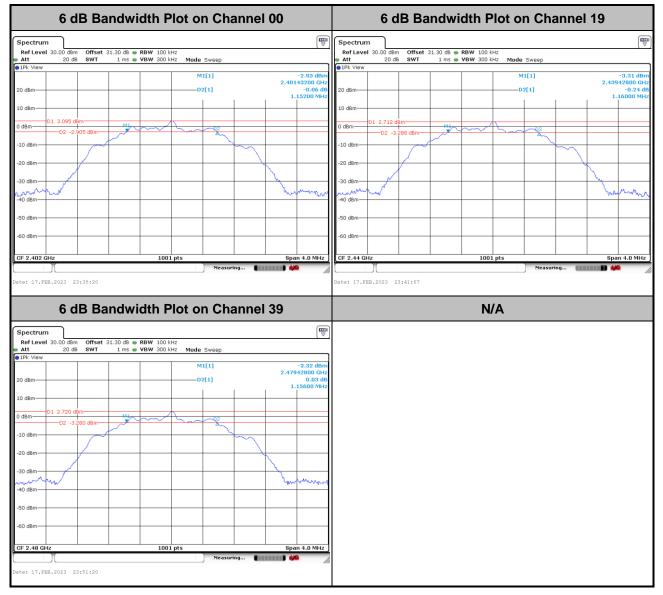
- 1. The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \ge 3 * RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

EUT

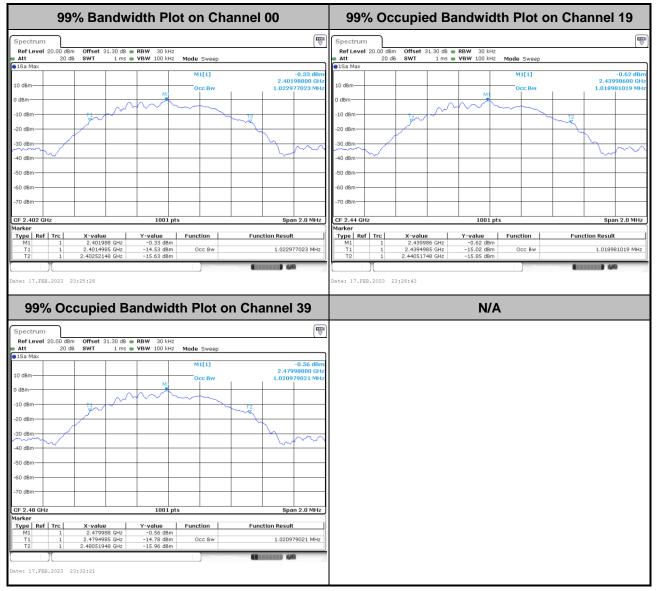

Spectrum Analyzer

3.1.5 Test Result of 6dB Bandwidth


Please refer to Appendix A.

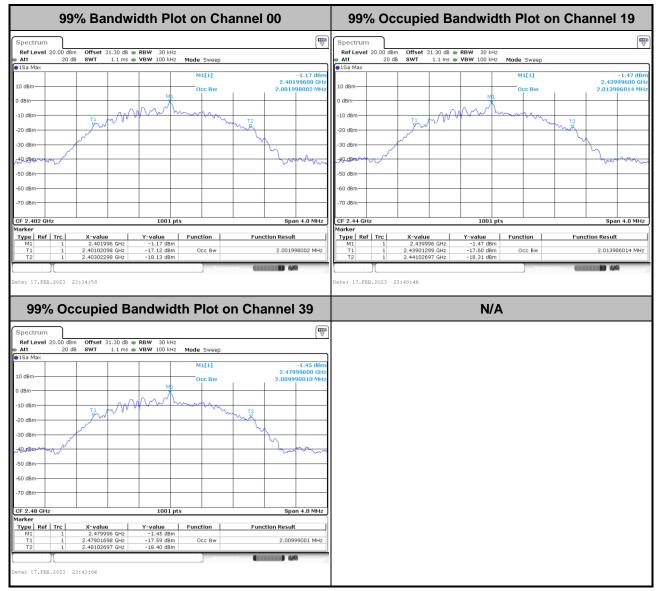
<1Mbps>

<2Mbps>



3.1.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.


<1Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

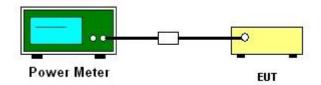
<2Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator.
- 3. The path loss is compensated to the results for each measurement.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

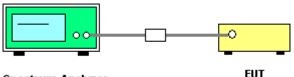
3.2.5 Test Result of Average Output Power

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

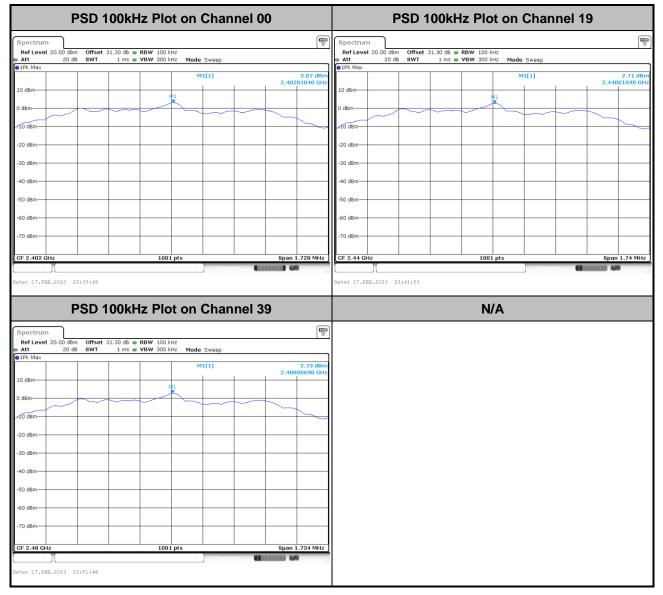
- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth (VBW) = 10 kHz. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6 dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- The Measured power density (dBm)/ 100 kHz is a reference level and is used as 20 dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

Spectrum Analyzer

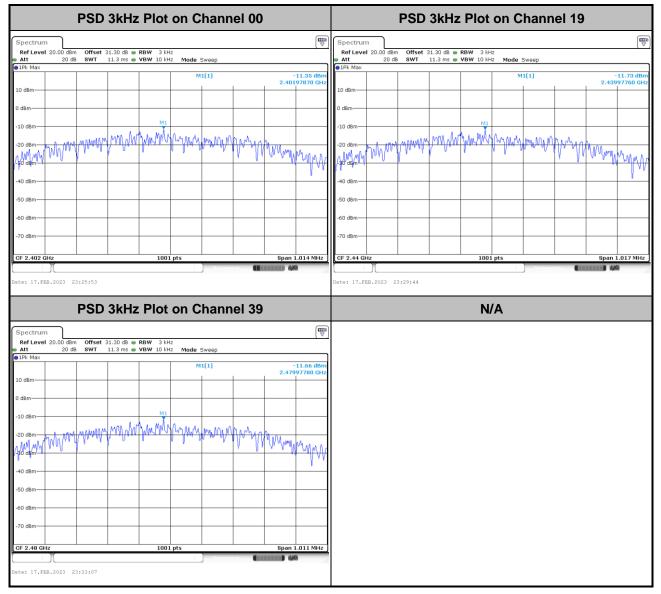
3.3.5 Test Result of Power Spectral Density

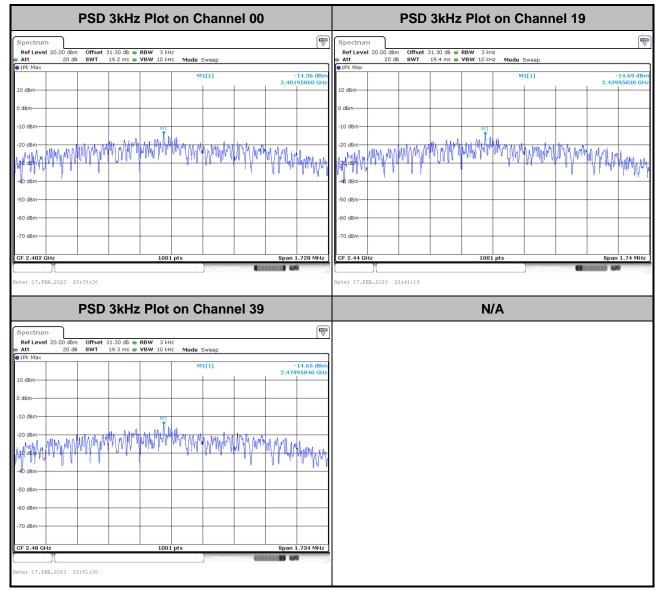
Please refer to Appendix A.


3.3.6 Test Result of Power Spectral Density Plots (100kHz)

<1Mbps>

PSD 1	PS	D 100kHz Pl	ot on Char	nnel 19		
Att 20 dB SWT	1.30 dB ● RBW 100 kHz 1 ms ● VBW 300 kHz Mode Sweep		Att 20 dB \$	Dffset 31.30 dB ● RBW 100 SWT 1 ms ● VBW 300) kHz) kHz Mode Sweep	(IIII) ▽
1Pk Max 10 dBm	M1[1]	3.07 dBm 2.40201010 GHz	0 1Pk Max		M1[1]	2.72 dBm 2.44000610 GHz
0 dBm	M1		0 dBm		M1	
-10 dBm			-10 dBm			
-20 dBm			-30 dBm			
-40 dBm			-40 dBm			
-50 dBm			-50 dBm			
-70 dBm			-70 dBm			
CF 2.402 GHz	1001 pts	Span 1.014 MHz	CF 2.44 GHz		01 pts	Span 1.017 MHz
	00kHz Plot on Chan	nel 39	Date: 17.120.2023 23.30		I/A	
Att 20 dB SWT	1.30 dB ● RBW 100 kHz 1 ms ● VBW 300 kHz Mode Sweep	(W)				
e 1Pk Max	M1[1]	2.73 dBm 2.48000910 GHz				
0 dBm	611 ¥					
-10 dBm						
-30 dBm						
-40 dBm						
-60 dBm						
-70 dBm						
CF 2.48 GHz	1001 pts	Span 1.011 MHz				
arrangement avioural						


<2Mbps>


3.3.7 Test Result of Power Spectral Density Plots (3kHz)

<1Mbps>

<2Mbps>

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

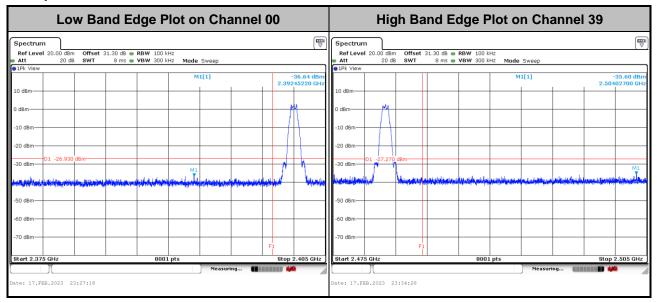
All harmonics/spurious must be at least 30 dB down from the highest emission level within the authorized band.

3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedure

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

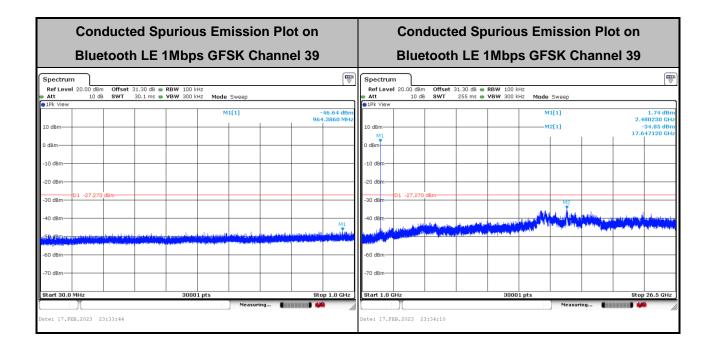

3.4.4 Test Setup

3.4.5 Test Result of Conducted Band Edges Plots

<1Mbps>

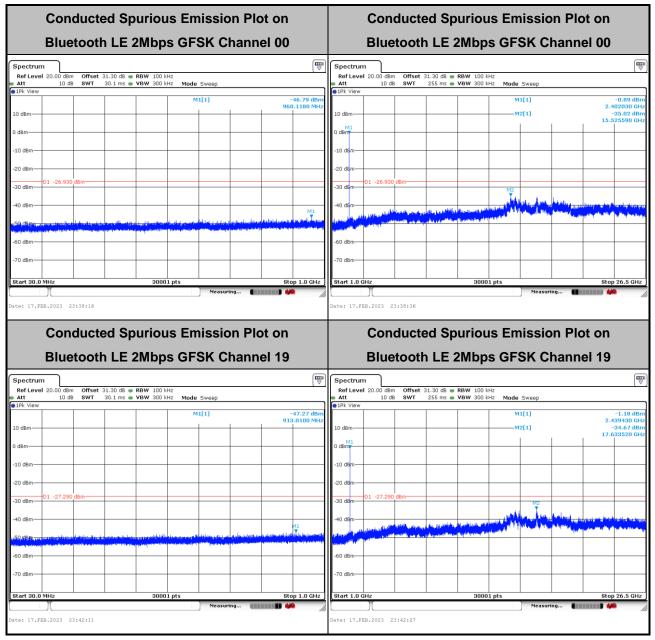
<2Mbps>

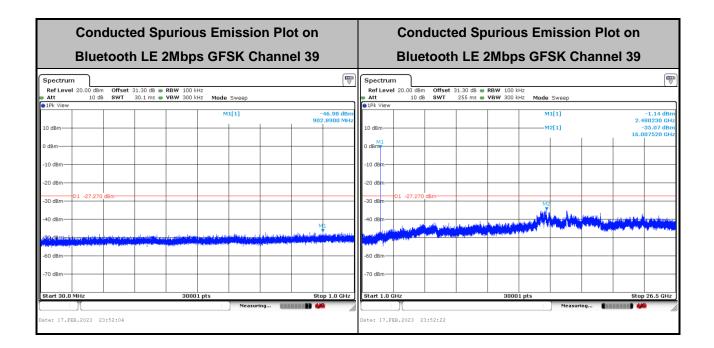
Low Band Edge Plot	on Channel 00	High Ba	nd Edge Plot on Chanr	nel 39
Spectrum Ref Level 20.00 dBm Offset 31.30 dB RBW 100 kHz		Spectrum Ref Level 20.00 dBm Offset 3	11.30 dB 👄 RBW 100 kHz	
	de Sweep	Att 20 dB SWT IPk View	8 ms - VBW 300 kHz Mode Sweep	
10 dBm	M1[1] -36.76 dBm 2.38819650 GHz	10 dBm	M1[1]	-35.74 dBm 2.49593550 GHz
0 dBm		0 dBm		
-10 dBm		-10 dBm		
-20 dBm		-20 dBm D1 -27.270 dBm		
M1 Beleficies (1) have a group of the station of the station of the state of the state of the state of the state of	internations with the second	Westerrand My Manuard	and a sample it is the second state of the second state of the second state of the second state of the second s	it in a stand and a standard
-50 dBm		-50 dBm		
-60 dBm		-60 dBm		
Start 2.375 GHz 8001 pts	F1 Stop 2.405 GHz	F1 Start 2.475 GHz	8001 pts	Stop 2.505 GHz
Date: 17.FEB.2023 23:39:30	Neasuring 🚺 🦀 🥼	Date: 17.FEB.2023 23:52:33	Measuring	



3.4.6 Test Result of Conducted Spurious Emission Plots

<1Mbps>


	d Spurious Emissio	Conducted Spurious Emission Plot on				
Bluetooth	LE 1Mbps GFSK C	hannel 00	Bluetoo	oth LE 1Mbps G	FSK Chann	nel 00
Spectrum Ref Level 20.00 dBm Offset 31	1.30 dB 👄 RBW 100 kHz		Spectrum Ref Level 20.00 dBm Offs	et 31.30 dB 👄 RBW 100 kHz		
Att 10 dB SWT 3	1.30 dB - RBW 100 kHz 30.1 ms - VBW 300 kHz Mode Sweep		Att 10 dB SW1		ode Sweep	
1Pk View	M1[1]	-47.08 dBm	1Pk View		M1[1]	0.72 dBr
LO dBm		791.8610 MHz	10 dBm		-M2[1]	2.402030 GH -35.40 dBr
) dBm			M1 0 dBm			15.896180 GF
dBm-			u asm			
10 dBm			-10 dBm			
20 dBm			-20 d6m			
01 -26.930 dBm			20 dBm 01 -26.930 dBm			
30 UBIII			-30 d6m		M2	
40 dBm		M1 -	-40 dBm	the structure from the second state	The Manual Provide State	
SR. HBROWN MICH. CONTRACTOR	and the second	and the second s	NAME OF TAXABLE PARTY AND ADDRESS OF TAXABLE PARTY.	A REAL PROPERTY AND A REAL		and the second second second
60 dBm			-60 dBm			
JO UBIN			-oo ubiii			
70 dBm			-70 dBm			
Start 30.0 MHz	30001 pts	Stop 1.0 GHz	Start 1.0 GHz	30001 pts		Stop 26.5 GH
Bluetooth	LE 1Mbps GFSK C		Bluetoo	oth LE 1Mbps G	FSK Chann	nel 19
Spectrum			Spectrum			Ę
Att 10 dB SWT 3	1.30 dB 🖷 RBW 100 kHz 30.1 ms 🖶 VBW 300 kHz 🛛 Mode Sweep	-	Ref Level 20.00 dBm Offs	et 31.30 dB 👄 RBW 100 kHz 7 255 ms 👄 VBW 300 kHz Mi	de Sweep	1
	SOLT IIS . YOW SOU KHZ MOUE SWEEP		Att 10 dB SW1	255 ms 🖶 VBW 300 kHz Mi	ue sweep	(1
1PK View	M1[1]	-46.73 dBm		255 ms - VBW 300 KHZ Mi	M1[1]	1.60 dB
10 dBm		-46.73 dBm 927.0750 MHz	Att 10 dB SW1	255 ms • VBW 300 kH2 Mi		1.60 dB 2.440280 G -34.77 dB
LO dBm-		-46.73 dBm 927.0750 MHz	Att 10 dB SW1 1Pk View 10 dBm 10 dBm M1 10 dBm 10 dBm	255 ms • VBW 300 kH2 Mi	M1[1]	1.60 dB 2.440280 G -34.77 dB 17.642020 GF
.0 dBm		-46.73 dBm 927.0750 MHz	Att 10 dB SW1 10 dB SW1 10 dBm		M1[1]	1.60 dB 2.440280 G -34.77 dB
0 dBm		-46.73 dBm 927.0750 MHz 1	Att 10 dB SW1 1Pk View 10 dBm 10 dBm M1 10 dBm 10 dBm	255 ms • VBW 300 kH2 Mi	M1[1]	1.60 dB 2.440280 G -34.77 dB
0 dBm			Att 10 dB SW1 DIPk View ID dBm M1 0 dBm		M1[1]	1.60 dB 2.440280 GI -34.77 dB
0 d8m			Att 10 dB SWT 1Pk View 0 dBm 0 dBm 0 dBm -10 dBm		M1[1]	1.60 dB 2.440280 GI -34.77 dB
0 dBm		46,73 dBm 927.0750 MHz 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Att 10 dB SWT D1Pk View D1Pk View D10 dBm M1 0 dBm		M1[1]	1.60 dB 2.440280 GI -34.77 dB
0 dBm		46,78 dBm 927,0750 MHz 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Att 10 dB SWT 1Pk View 0 dBm 0 dBm 0 dBm -10 dBm		M1[1]	1.60 dB 2.440280 G -34.77 dB
0 dBm			Att 10 dB SWT D1Pk View D1Pk View D10 dBm M1 0 dBm		M1[1]	1.60 dB 2.440280 G -34.77 dB
0 dBm- dBm- 10 dBm- 20 dBm- 30 dBm- 10 -27.280 dBm-			Att 10 dB SW1 1Pk View 10 dBm 10 dBm 10 dBm 00 dBm 10 dBm 10 dBm 10 dBm -20 dBm -30 dBm -40 dBm -40 dBm		M1[1]	1.60 dB 2.440280 G -34.77 dB
0 d8m			Att 10 dB SWT 1Pk View 0		M1[1]	1.60 dB 2.440280 GI -34.77 dB
0 d8m			Att 10 dB SW1 1Pk View 10 dBm 10 dBm 10 dBm 00 dBm 10 dBm 10 dBm 10 dBm -20 dBm -30 dBm -40 dBm -40 dBm		M1[1]	1.60 dB 2.440280 GF -34.77 dB
0 dBm			Att 10 dB SW1 1Pk View		M1[1]	1.60 dB 2.440280 G -34.77 dB 17.642020 G 17.642020 G
0 dBm			Att 10 dB SWT 1Pk View 0	255 ms VBW 300 kH2 Mi	M1[1]	1.60 dB 2.440280 G -34.77 dB



<2Mbps>

3.5 Radiated Band Edges and Spurious Emission Measurement

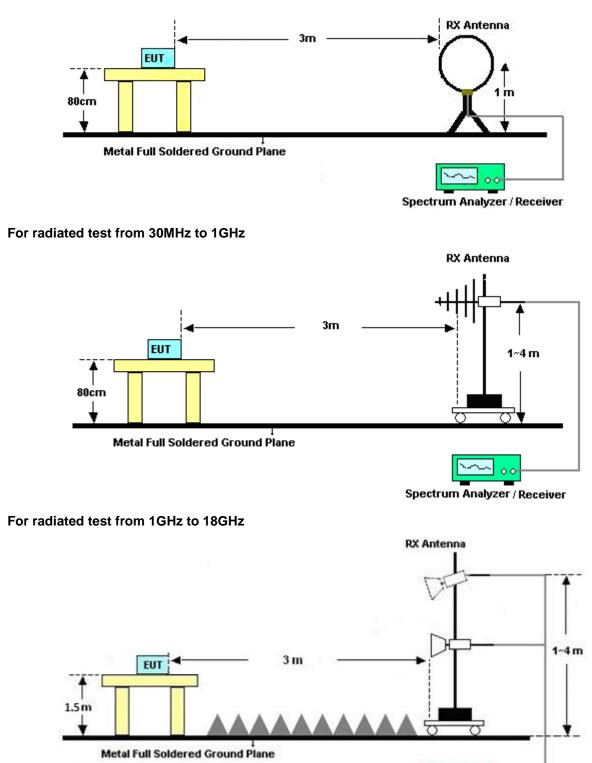
3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device is measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 – 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

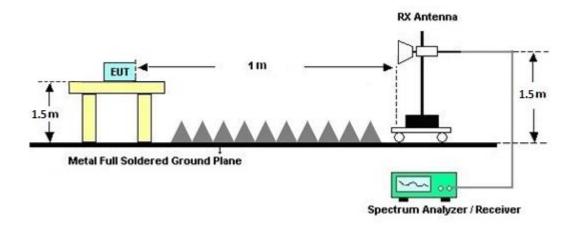
3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.


3.5.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT is arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 7. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW = 3 MHz for f \geq 1 GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.5.4 Test Setup


For radiated test below 30MHz

Spectrum Analyzer / Receiver

For radiated test above 18GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site -

semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.5.7 Duty Cycle

Please refer to Appendix E.

3.5.8 Test Result of Radiated Spurious Emission (30 MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.6 AC Conducted Emission Measurement

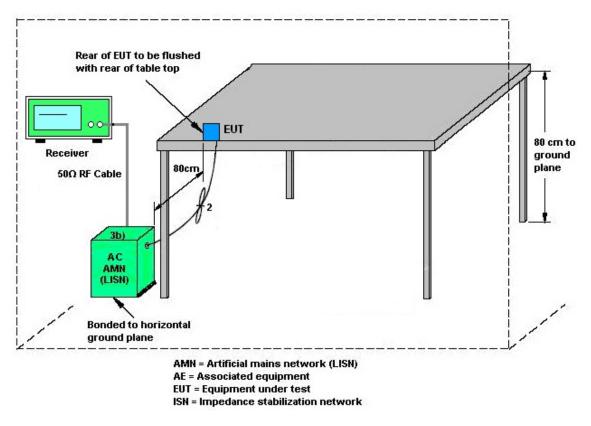
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Eroquency of omission (MHz)	Conducted limit (dBµV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.7 Antenna Requirements

3.7.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Sep. 20, 2022	Feb. 22, 2023~ Mar. 24, 2023	Sep. 19, 2023	Radiation (03CH11-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1212	1GHz~18GHz	Mar. 10, 2022	Feb. 22, 2023~ Mar. 06, 2023	Mar. 09, 2023	Radiation (03CH11-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-01620	1GHz~18GHz	Aug. 24, 2022	Mar. 07, 2023~ Mar. 24, 2023	Aug. 23, 2023	Radiation (03CH11-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA9170	00993	18GHz~40GHz	Nov. 24, 2022	Feb. 22, 2023~ Mar. 24, 2023	Nov. 23, 2023	Radiation (03CH11-HY)
Preamplifier	Keysight	83017A	MY53270080	1GHz~26.5GHz	Nov. 09, 2022	Feb. 22, 2023~ Mar. 24, 2023	Nov. 08, 2023	Radiation (03CH11-HY)
Preamplifier	Jet-Power	JPA0118-55-303	17100018000 55007	1GHz~18GHz	Jun. 15, 2022	Feb. 22, 2023~ Mar. 24, 2023	Jun. 14, 2023	Radiation (03CH11-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	Jun. 28, 2022	Feb. 22, 2023~ Mar. 24, 2023	Jun. 27, 2023	Radiation (03CH11-HY)
Spectrum Analyzer	Keysight	N9010A	MY54200486	10Hz~44GHz	Oct. 07, 2022	Feb. 22, 2023~ Mar. 24, 2023	Oct. 06, 2023	Radiation (03CH11-HY)
Controller	EMEC	EM 1000	N/A	Control Turn table & Ant Mast	N/A	Feb. 22, 2023~ Mar. 24, 2023	N/A	Radiation (03CH11-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1~4m	N/A	Feb. 22, 2023~ Mar. 24, 2023	N/A	Radiation (03CH11-HY)
Turn Table	EMEC	TT 2000	N/A	0~360 Degree	N/A	Feb. 22, 2023~ Mar. 24, 2023	N/A	Radiation (03CH11-HY)
Software	Audix	E3 6.2009-8-24	RK-001053	N/A	N/A	Feb. 22, 2023~ Mar. 24, 2023	N/A	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz-40GHz	Mar. 10, 2022	Feb. 22, 2023~ Mar. 06, 2023	Mar. 09, 2023	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz-40GHz	Mar. 07, 2023	Mar. 24, 2023	Mar. 06, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4PE	9kHz-30MHz	Mar. 10, 2022	Feb. 22, 2023~ Mar. 06, 2023	Mar. 09, 2023	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY28655/4	9kHz to18GHz	Feb. 22, 2023	Mar. 24, 2023	Feb. 21, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4PE	30MHz-18GHz	Mar. 10, 2022	Feb. 22, 2023~ Mar. 06, 2023	Mar. 09, 2023	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	UCOFLEX 126E	0058/126E	30MHz-18GHz	Dec. 20, 2022	Mar. 24, 2023	Dec. 19, 2023	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	801595/2	30MHz-18GHz	Nov. 23, 2022	Feb. 22, 2023~ Mar. 24, 2023	Nov. 22, 2023	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz-40GHz	Mar. 07, 2023	Mar. 07, 2023~ Mar. 24, 2023	Mar. 06, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	801595/2	30MHz-40GHz	Mar. 07, 2023	Mar. 07, 2023~ Mar. 24, 2023	Mar. 06, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	9K~30M	Mar. 07, 2023	Mar. 07, 2023~ Mar. 24, 2023	Mar. 06, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	30MHz-40GHz	Mar. 07, 2023	Mar. 07, 2023~ Mar. 24, 2023	Mar. 06, 2024	Radiation (03CH11-HY)
Filter	Wainwright	WLK4-1000-153 0-8000-40SS	SN11	1.53GHz Low Pass Filter	Sep. 12, 2022	Feb. 22, 2023~ Mar. 24, 2023	Sep. 11, 2023	Radiation (03CH11-HY)
Filter	Wainwright	WHKX12-2700-3 000-18000-60SS	SN3	3GHz High Pass Filter	Sep. 12, 2022	Feb. 22, 2023~ Mar. 24, 2023	Sep. 11, 2023	Radiation (03CH11-HY)
Hygrometer	TECPEL	DTM-303B	TP140325	N/A	Nov. 07, 2022	Feb. 22, 2023~ Mar. 24, 2023	Nov. 06, 2023	Radiation (03CH11-HY)

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ACPOWER	AFC-11003G	F317040033	N/A	N/A	Feb. 16, 2023	N/A	Conduction (CO07-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Feb. 16, 2023	N/A	Conduction (CO07-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	9561-F N00373	9kHz-200MHz	Nov. 01, 2022	Feb. 16, 2023	Oct. 31, 2023	Conduction (CO07-HY)
RF Cable	HUBER + SUHNER	RG 214/U	1358175	9kHz~30MHz	Mar. 16, 2022	Feb. 16, 2023	Mar. 15, 2023	Conduction (CO07-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Dec. 01, 2022	Feb. 16, 2023	Nov. 30, 2023	Conduction (CO07-HY)
Four-Line V-Network	TESEQ	NNB 52	36122	N/A	Mar. 04, 2022	Feb. 16, 2023	Mar. 03, 2023	Conduction (CO07-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI7	100724	9kHz~7GHz	Feb. 24, 2022	Feb. 16, 2023	Feb. 23, 2023	Conduction (CO07-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 17, 2022	Feb. 10, 2023~ Feb. 17, 2023	Nov. 16, 2023	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	16I00054SNO 12 (NO:113)	10MHz~6GHz	Dec. 13, 2022	Feb. 10, 2023~ Feb. 17, 2023	Dec. 12, 2023	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101905	10Hz - 40GHz(amp)	Aug. 03, 2022	Feb. 10, 2023~ Feb. 17, 2023	Aug. 02, 2023	Conducted (TH05-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	3.46 dB
of 95% (U = 2Uc(y))	5.40 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6.30 dB
of 95% (U = 2Uc(y))	0.30 08

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence	4.40 dB
of 95% (U = 2Uc(y))	4.40 dB

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4.80 dB
of 95% (U = 2Uc(y))	4.00 UB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.30 dB
of 95% (U = 2Uc(y))	5.30 GB

Report Number : FR311909B

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Hank Hsu	Temperature:	21~25	°C
Test Date:	2023/2/10~2023/2/17	Relative Humidity:	51~54	%

	<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail			
BLE	1Mbps	1	0	2402	1.023	0.676	0.50	Pass			
BLE	1Mbps	1	19	2440	1.019	0.678	0.50	Pass			
BLE	1Mbps	1	39	2480	1.021	0.674	0.50	Pass			

<u>TEST RESULTS DATA</u> <u>Average Power Table</u>											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail	
BLE	1Mbps	1	0	2402	3.50	30.00	-1.26	2.24	36.00	Pass	
BLE	1Mbps	1	19	2440	3.30	30.00	-1.26	2.04	36.00	Pass	
BLE	1Mbps	1	39	2480	3.50	30.00	-1.26	2.24	36.00	Pass	

<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>										
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail	
BLE	1Mbps	1	0	2402	3.07	-11.35	-1.26	8.00	Pass	
BLE	1Mbps	1	19	2440	2.72	-11.73	-1.26	8.00	Pass	
BLE	1Mbps	1	39	2480	2.73	-11.66	-1.26	8.00	Pass	

Report Number : FR311909B

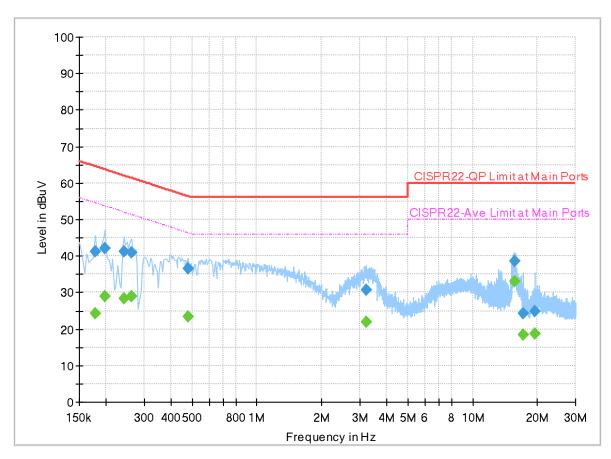
	<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth										
	Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail		
ļ	BLE	2Mbps	1	0	2402	2.002	1.152	0.50	Pass		
	BLE	2Mbps	1	19	2440	2.014	1.160	0.50	Pass		
ĺ	BLE	2Mbps	1	39	2480	2.010	1.156	0.50	Pass		

TEST RESULTS DATA Average Power Table

Γ											
	Mod.	Data Rate			Conducted Power	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail	
	BLE	2Mbps	1	0	2402	3.50	30.00	-1.26	2.24	36.00	Pass
	BLE	2Mbps	1	19	2440	3.30	30.00	-1.26	2.04	36.00	Pass
	BLE	2Mbps	1	39	2480	3.40	30.00	-1.26	2.14	36.00	Pass

<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail	
BLE	2Mbps	1	0	2402	3.07	-14.36	-1.26	8.00	Pass	
BLE	2Mbps	1	19	2440	2.71	-14.69	-1.26	8.00	Pass	
BLE	2Mbps	1	39	2480	2.73	-14.65	-1.26	8.00	Pass	

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.

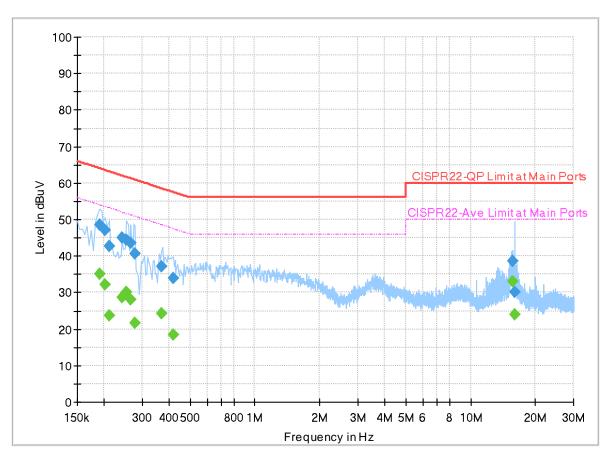


Appendix B. AC Conducted Emission Test Results

Toot Engineer		Temperature :	16.4~24.5 ℃
Test Engineer :		Relative Humidity :	38.6~44.7%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 311909 Mode 1 120Vac/60Hz Line


Full Spectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.178000	41.27		64.58	23.31	L1	OFF	19.7
0.178000		24.25	54.58	30.33	L1	OFF	19.7
0.198000	42.01		63.69	21.68	L1	OFF	19.7
0.198000		29.08	53.69	24.61	L1	OFF	19.7
0.242000	41.32		62.03	20.71	L1	OFF	19.7
0.242000		28.36	52.03	23.67	L1	OFF	19.7
0.262000	40.94		61.37	20.43	L1	OFF	19.7
0.262000		28.83	51.37	22.54	L1	OFF	19.7
0.482000	36.42		56.31	19.89	L1	OFF	19.7
0.482000		23.40	46.31	22.91	L1	OFF	19.7
3.226000	30.69		56.00	25.31	L1	OFF	19.8
3.226000		21.87	46.00	24.13	L1	OFF	19.8
15.670000	38.73		60.00	21.27	L1	OFF	19.9
15.670000		33.18	50.00	16.82	L1	OFF	19.9
17.150000	24.13		60.00	35.87	L1	OFF	19.9
17.150000		18.55	50.00	31.45	L1	OFF	19.9
19.434000	24.88		60.00	35.12	L1	OFF	19.9
19.434000		18.74	50.00	31.26	L1	OFF	19.9

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 311909 Mode 1 120Vac/60Hz Neutral

FullSpectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.190000		35.00	54.04	19.04	Ν	OFF	19.7
0.190000	48.66		64.04	15.38	Ν	OFF	19.7
0.202000		32.10	53.53	21.43	Ν	OFF	19.7
0.202000	47.10		63.53	16.43	Ν	OFF	19.7
0.210000		23.61	53.21	29.60	Ν	OFF	19.7
0.210000	42.75		63.21	20.46	Ν	OFF	19.7
0.242000		28.69	52.03	23.34	Ν	OFF	19.7
0.242000	45.14		62.03	16.89	Ν	OFF	19.7
0.254000		30.00	51.63	21.63	Ν	OFF	19.7
0.254000	44.50		61.63	17.13	Ν	OFF	19.7
0.266000		28.15	51.24	23.09	Ν	OFF	19.7
0.266000	43.55		61.24	17.69	Ν	OFF	19.7
0.278000		21.66	50.88	29.22	Ν	OFF	19.7
0.278000	40.71		60.88	20.17	Ν	OFF	19.7
0.370000		24.18	48.50	24.32	Ν	OFF	19.7
0.370000	37.06		58.50	21.44	Ν	OFF	19.7
0.418000		18.53	47.49	28.96	Ν	OFF	19.7
0.418000	34.04		57.49	23.45	Ν	OFF	19.7
15.670000		32.99	50.00	17.01	Ν	OFF	20.0

15.670000	38.49		60.00	21.51	Ν	OFF	20.0
16.002000		24.07	50.00	25.93	Ν	OFF	20.0
16.002000	30.21		60.00	29.79	Ν	OFF	20.0

Appendix C. Radiated Spurious Emission

Test Engineer :	Yuan Lee, Bank Lin, Fu Chen and Trove Hsieh	Temperature :	17.9~25.9°C
Test Engineer .		Relative Humidity :	35.1~63.6%

<1Mbps>

<Sample 1 with Battery 1>

2.4GHz 2400~2483.5MHz

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Ū	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2354.73	52.86	-21.14	74	42.71	27.32	17.05	34.22	127	142	Ρ	Н
		2388.12	43.34	-10.66	54	32.99	27.45	17.1	34.2	127	142	А	Н
	*	2402	102.93	-	-	92.51	27.51	17.11	34.2	127	142	Ρ	Н
	*	2402	102.46	-	-	92.04	27.51	17.11	34.2	127	142	А	Н
BLE													Н
CH 00													Н
2402MHz		2359.35	53.02	-20.98	74	42.83	27.34	17.06	34.21	284	97	Ρ	V
		2321.655	43.34	-10.66	54	33.2	27.36	17.01	34.23	284	97	А	V
	*	2402	100.75	-	-	90.33	27.51	17.11	34.2	284	97	Ρ	V
	*	2402	100.28	-	-	89.86	27.51	17.11	34.2	284	97	А	V
													V
													V
		2341.04	52.67	-21.33	74	42.53	27.32	17.04	34.22	123	141	Ρ	Н
		2387.28	43.36	-10.64	54	33.02	27.45	17.09	34.2	123	141	А	Н
	*	2440	103.19	-	-	92.46	27.74	17.17	34.18	123	141	Ρ	Н
	*	2440	102.75	-	-	92.02	27.74	17.17	34.18	123	141	А	Н
		2489.52	52.77	-21.23	74	41.81	27.88	17.24	34.16	123	141	Р	Н
BLE		2494.08	44	-10	54	33.02	27.89	17.25	34.16	123	141	А	Н
CH 19 2440MHz		2322.8	52.51	-21.49	74	42.38	27.35	17.01	34.23	337	93	Ρ	V
∠44VIVI⊓Z		2382	43.15	-10.85	54	32.83	27.43	17.09	34.2	337	93	А	V
	*	2440	102.09	-	-	91.36	27.74	17.17	34.18	337	93	Р	V
	*	2440	101.61	-	-	90.88	27.74	17.17	34.18	337	93	А	V
		2486.08	52.72	-21.28	74	41.79	27.87	17.23	34.17	337	93	Р	V
		2496.24	43.97	-10.03	54	32.99	27.89	17.25	34.16	337	93	А	V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	2480	102.76	-	-	91.84	27.86	17.23	34.17	118	141	Р	Н
	*	2480	102.29	-	-	91.37	27.86	17.23	34.17	118	141	А	Н
		2487.56	53.12	-20.88	74	42.16	27.88	17.24	34.16	118	141	Р	Н
		2493.52	44.08	-9.92	54	33.1	27.89	17.25	34.16	118	141	А	Н
D 1 E													Н
BLE													Н
CH 39 2480MHz	*	2480	101.35	-	-	90.43	27.86	17.23	34.17	294	108	Р	V
240010112	*	2480	100.83	-	-	89.91	27.86	17.23	34.17	294	108	А	V
		2493.16	53.11	-20.89	74	42.13	27.89	17.25	34.16	294	108	Р	V
		2495.84	43.98	-10.02	54	33	27.89	17.25	34.16	294	108	А	V
													V
													V
	1. No	o other spurious	s found.										
Remark		results are PA		Peak and	Average lim	it line							
	<u>د.</u> ۲۰۱۱				, werage iin	it into.							

2.4GHz 2400~2483.5MHz

BLE	Note	Frequency	Level	Margin		Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol
DLL	NOLE	riequency	Levei	wargin	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	P 01.
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)			(dB)	(dB)		(deg)		(H/V)
		4804	40.33	-33.67	74	54.09	32.42	11.76	57.94	-	-	Р	н
													Н
													Н
													Н
													н
													Н
													Н
													Н
													н
													Н
													Н
BLE													Н
CH 00		4804	39.69	-34.31	74	53.45	32.42	11.76	57.94	-	-	Р	V
2402MHz													V
													V
													V
													V
													V
													V
													V
													V
													V
													v V
													V

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4880	40.98	-33.02	74	54.35	32.76	11.87	58	-	-	P	Н
		7320	43.62	-30.38	74	51.08	36.82	14.45	58.73	-	-	Ρ	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 19													Н
2440MHz		4880	41.08	-32.92	74	54.45	32.76	11.87	58	-	-	Р	V
		7320	42.83	-31.17	74	50.29	36.82	14.45	58.73	-	-	Р	V
													V
													V
													V V
													V V
													V V
													v V
													V
													V
													V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4960	41.65	-32.35	74	54.66	33.06	11.99	58.06	-	-	Р	Н
		7440	42.35	-31.65	74	50.2	36.42	14.44	58.71	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
D 1 C													Н
BLE CH 39													Н
2480MHz		4960	41.61	-32.39	74	54.62	33.06	11.99	58.06	-	-	Р	V
24000012		7440	42.37	-31.63	74	50.22	36.42	14.44	58.71	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. N	o other spuriou	s found.										
Remark		Il results are PA											
		he emission pos	sition marked	l as "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	inst limit	line or	noise
	flo	oor only.											

<2Mbps>

<Sample 1 with Battery 1>

2.4GHz 2400~2483.5MHz

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		,			Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2384.34	52.62	-21.38	74	42.29	27.44	17.09	34.2	100	148	Ρ	Н
		2329.635	43.81	-10.19	54	33.67	27.34	17.02	34.22	100	148	А	Н
	*	2402	108.78	-	-	98.36	27.51	17.11	34.2	100	148	Ρ	Н
	*	2402	107.33	-	-	96.91	27.51	17.11	34.2	100	148	А	Н
													Н
BLE CH 00													Н
2402MHz		2385.915	52.62	-21.38	74	42.29	27.44	17.09	34.2	391	85	Ρ	V
240211112		2344.44	43.69	-10.31	54	33.56	27.31	17.04	34.22	391	85	А	V
	*	2402	106.57	-	-	96.15	27.51	17.11	34.2	391	85	Ρ	V
	*	2402	105.23	-	-	94.81	27.51	17.11	34.2	391	85	А	V
													V
													V
		2354	53.18	-20.82	74	43.03	27.32	17.05	34.22	100	130	Р	Н
		2378.48	43.75	-10.25	54	33.47	27.41	17.08	34.21	100	130	А	Н
	*	2440	111.16	-	-	100.43	27.74	17.17	34.18	100	130	Ρ	Н
	*	2440	109.77	-	-	99.04	27.74	17.17	34.18	100	130	А	Н
		2490.56	52.77	-21.23	74	41.81	27.88	17.24	34.16	100	130	Ρ	Н
BLE		2486.96	44.41	-9.59	54	33.46	27.87	17.24	34.16	100	130	А	Н
CH 19 2440MHz		2383.92	52.42	-21.58	74	42.09	27.44	17.09	34.2	337	94	Ρ	V
∠44∪IVI⊓Z		2373.2	43.63	-10.37	54	33.37	27.39	17.08	34.21	337	94	А	V
	*	2440	110.25	-	-	99.52	27.74	17.17	34.18	337	94	Р	V
	*	2440	108.87	-	-	98.14	27.74	17.17	34.18	337	94	А	V
		2486.8	52.29	-21.71	74	41.35	27.87	17.24	34.17	337	94	Р	V
		2499.36	44.53	-9.47	54	33.54	27.9	17.25	34.16	337	94	А	V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	2480	109.78	-	-	98.86	27.86	17.23	34.17	100	129	Р	Н
	*	2480	108.32	-	-	97.4	27.86	17.23	34.17	100	129	А	Н
		2483.76	55.45	-18.55	74	44.52	27.87	17.23	34.17	100	129	Р	Н
		2483.52	45.81	-8.19	54	34.88	27.87	17.23	34.17	100	129	А	Н
													Н
BLE CH 39													Н
2480MHz	*	2480	108.29	-	-	97.37	27.86	17.23	34.17	390	88	Р	V
240011112	*	2480	106.9	-	-	95.98	27.86	17.23	34.17	390	88	А	V
		2483.56	55.07	-18.93	74	44.14	27.87	17.23	34.17	390	88	Р	V
		2485.36	45.16	-8.84	54	34.23	27.87	17.23	34.17	390	88	А	V
													V
													V
	1. Nc	other spurious	s found.										
Remark		results are PA		Peak and	Average lim	it line.							

2.4GHz 2400~2483.5MHz

BLE	Note	Frequency	Level	Margin		Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol
DEL	Note	requeriey	Level	margin	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	1 01.
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)			(dB)	(dB)		(deg)		(H/V)
		4804	40.33	-33.67	74	54.09	32.42	11.76	57.94	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													н
BLE													Н
CH 00		4804	40.8	-33.2	74	54.56	32.42	11.76	57.94	-	-	Р	V
2402MHz													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4880	40.81	-33.19	74	54.18	32.76	11.87	58	-	-	Р	Н
		7320	44.02	-29.98	74	51.48	36.82	14.45	58.73	-	-	Ρ	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 19													Н
2440MHz		4880	45.38	-28.62	74	58.75	32.76	11.87	58	242	306	P	V
		4880	38.67	-15.33	54	52.04	32.76	11.87	58	242	306	A	V
		7320	44	-30	74	51.46	36.82	14.45	58.73	-	-	Р	V
													V
													V
													V
													V
												<u> </u>	V V
												<u> </u>	V V
												<u> </u>	V V
												<u> </u>	V V
													V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
	ļ				Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4960	41.63	-32.37	74	54.64	33.06	11.99	58.06	-	-	Р	Н
		7440	42.96	-31.04	74	50.81	36.42	14.44	58.71	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													н
													н
													н
													н
BLE													н
CH 39		4960	43.67	-30.33	74	56.68	33.06	11.99	58.06	-	-	Р	V
2480MHz		7440	42.86	-31.14	74	50.71	36.42	14.44	58.71	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. N	lo other spuriou	s found.									1	
		Il results are PA		Peak and	Average lim	it line.							
Remark		he emission pos	-		-		ission found	d with suf	ficient mar	gin agai	nst limit	line or	noise
		oor only.								-			

Emission below 1GHz

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	
		30	28.8	-11.2	40	36.19	23.92	0.84	32.15	-	-	Р	Н
		91.56	30.07	-13.43	43.5	45.8	14.83	1.57	32.13	-	-	Р	Н
		147.18	27.28	-16.22	43.5	40.54	16.95	1.92	32.13	-	-	Ρ	Н
		934.2	32.73	-13.27	46	29.72	29.37	4.58	30.94	-	-	Ρ	н
		946.1	33.25	-12.75	46	29.46	29.98	4.64	30.83	-	-	Р	Н
		953.1	33.7	-12.3	46	29.47	30.33	4.67	30.77	-	-	Р	Н
													Н
													H
													H H
													н
2.4GHz													н
BLE LF		41.61	31.36	-8.64	40	44.08	18.39	1.11	32.22	102	360	Q	V
LF		88.59	27.3	-16.2	43.5	43.47	14.4	1.57	32.14	-	-	Р	V
		174.72	24.37	-19.13	43.5	39.34	15.03	2.07	32.07	-	-	Р	V
		934.9	33.29	-12.71	46	30.23	29.41	4.58	30.93	-	-	Ρ	V
		959.4	34.71	-11.29	46	30.06	30.66	4.69	30.7	-	-	Ρ	V
		993	34.87	-19.13	54	30.44	30.01	4.78	30.36	-	-	Р	V
													V
													V
													V
													V
													V
													V
Remark	2. All 3. Th	o other spurious results are PA e emission pos ainst limit or er	SS against li sition marked	l as "-" m		pected err	nission foun	d and em	iission leve	el has a	t least 60	dB ma	rgin

2.4GHz BLE (LF)

<Sample 1 with Battery 2>

2.4GHz 2400~2483.5MHz

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	2480	109.23	-	-	98.31	27.86	17.23	34.17	120	147	Ρ	Н
	*	2480	107.77	-	-	96.85	27.86	17.23	34.17	120	147	А	Н
		2483.52	55.47	-18.53	74	44.54	27.87	17.23	34.17	120	147	Ρ	Н
		2484.16	45.24	-8.76	54	34.31	27.87	17.23	34.17	120	147	А	Н
DI E													Н
BLE													н
CH 39 2480MHz	*	2480	108.31	-	-	97.39	27.86	17.23	34.17	295	85	Р	V
240010112	*	2480	106.87	-	-	95.95	27.86	17.23	34.17	295	85	А	V
		2483.52	57.13	-16.87	74	46.2	27.87	17.23	34.17	295	85	Р	V
		2483.52	44.83	-9.17	54	33.9	27.87	17.23	34.17	295	85	А	V
													V
													V
Remark	1. No	o other spurious	s found.										
	2. All	results are PA	SS against F	Peak and	Average lim	it line.							

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos		Avg.	
			(dBµV/m)		(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4960	41.84	-32.16	74	54.85	33.06	11.99	58.06	-	-	Р	Н
		7440	42.81	-31.19	74	50.66	36.42	14.44	58.71	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 39 2480MHz		4960	41.47	-32.53	74	54.48	33.06	11.99	58.06	-	-	Р	V
2400111172		7440	42.64	-31.36	74	50.49	36.42	14.44	58.71	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. N	o other spurious	s found.	1	1	1	1		1	1	1	1	
Doment	2. AI	l results are PA	.SS against F	Peak and	l Average lim	it line.							
Remark	3. Tł	ne emission pos	sition marked	las "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	inst limit	line or	noise
	flo	oor only.											

2.4GHz 2400~2483.5MHz BLE (Harmonic @ 3m)

<Sample 1 with Battery 3>

2.4GHz 2400~2483.5MHz

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	2480	108.74	-	-	97.82	27.86	17.23	34.17	120	146	Ρ	Н
	*	2480	107.29	-	-	96.37	27.86	17.23	34.17	120	146	А	Н
		2483.68	56.03	-17.97	74	45.1	27.87	17.23	34.17	120	146	Ρ	н
		2486.68	44.87	-9.13	54	33.93	27.87	17.24	34.17	120	146	А	Н
													Н
BLE													Н
CH 39 2480MHz	*	2480	107.6	-	-	96.68	27.86	17.23	34.17	366	95	Р	V
240011112	*	2480	106.01	-	-	95.09	27.86	17.23	34.17	366	95	А	V
		2483.68	55.23	-18.77	74	44.3	27.87	17.23	34.17	366	95	Р	V
		2483.52	45.05	-8.95	54	34.12	27.87	17.23	34.17	366	95	А	V
													V
													V
Remark		o other spurious results are PA		Peak and	Average lim	it line.							

BLE Note Freque (MH: 496) 744	z) (dBμV/m) 0 42.07	Margin (dB) -31.93 -30.49	Line	Read Level (dBμV) 55.08 51.36	Antenna Factor (dB/m) 33.06 36.42	Path Loss (dB) 11.99	Preamp Factor (dB) 58.06	Ant Pos (cm)	Table Pos (deg)	Avg.	(H/V)
BLE CH 39 496 744 39 496	0 42.07	-31.93	(dBµV/m) 74	(dBμV) 55.08	(dB/m) 33.06	(dB) 11.99	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE CH 39 496 744 39 496	0 42.07	-31.93	74	55.08	33.06	11.99					
BLE CH 39 444 744							56.00	-	-		L Ц Ц
BLE CH 39 496	0 43.51	-30.49	74	51.36	36.42	1////					Н
CH 39 496						14.44	58.71	-	-	Р	Н
CH 39 496											Н
CH 39 496											Н
CH 39 496											Н
CH 39 496											н
CH 39 496											Н
CH 39 496											н
CH 39 496											
CH 39 496											Н
CH 39 496											Н
CH 39 496											Н
496											Н
0400N4U_	0 42.09	-31.91	74	55.1	33.06	11.99	58.06	-	-	Р	V
2480MHz 744	0 43.07	-30.93	74	50.92	36.42	14.44	58.71	-	-	Р	V
											V
											V
											V
											V
											V
											V
											V
											V
											V
											V
1. No other sp	ourious found.	1			<u> </u>			<u> </u>		<u> </u>	<u> </u>
2. All results a	are PASS against	Peak and	Averade lim	it line.							
Remark	on position marke		-		ission found	d with suf	ficient mar	ain agai	nst limit	line or	noise
floor only.		- uu II		- 55.54 011	.colori lound	2		gin agai			
											l.

2.4GHz 2400~2483.5MHz BLE (Harmonic @ 3m)

<Sample 2 with Battery 1>

2.4GHz 2400~2483.5MHz

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	2480	96.17	-	-	85.25	27.86	17.23	34.17	150	156	Ρ	Н
	*	2480	95.52	-	-	84.6	27.86	17.23	34.17	150	156	А	Н
		2489.24	53.37	-20.63	74	42.41	27.88	17.24	34.16	150	156	Ρ	н
		2497.2	43.92	-10.08	54	32.94	27.89	17.25	34.16	150	156	А	Н
													Н
BLE													н
CH 39 2480MHz	*	2480	93.29	-	-	82.37	27.86	17.23	34.17	400	113	Р	V
240010172	*	2480	92.68	-	-	81.76	27.86	17.23	34.17	400	113	А	V
		2490.28	53.7	-20.3	74	42.74	27.88	17.24	34.16	400	113	Р	V
		2491	43.97	-10.03	54	33.01	27.88	17.24	34.16	400	113	А	V
													V
													V
Remark		o other spurious results are PA		Peak and	Average lim	it line.							

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Poak	Pol
DEE	Note	Trequency	Lever	margin	Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4960	42.94	-31.06	74	55.95	33.06	11.99	58.06	-	-	Р	Н
		7440	43.83	-30.17	74	51.68	36.42	14.44	58.71	-	-	Р	н
													н
													н
													н
													Н
													н
													Н
													Н
													Н
													Н
BLE													н
CH 39 2480MHz		4960	43.19	-30.81	74	56.2	33.06	11.99	58.06	-	-	Р	V
2400111172		7440	43.42	-30.58	74	51.27	36.42	14.44	58.71	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. N	o other spurious	s found.			•				•	•	·	
Remark	2. Al	l results are PA	SS against F	Peak and	Average lim	it line.							
i vina k	3. Tł	ne emission pos	sition marked	l as "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	nst limit	line or	noise
	flo	oor only.											

2.4GHz 2400~2483.5MHz BLE (Harmonic @ 3m)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not
	exceed the level of the fundamental frequency.
!	Test result is Margin line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dBµV/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Margin(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Margin(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

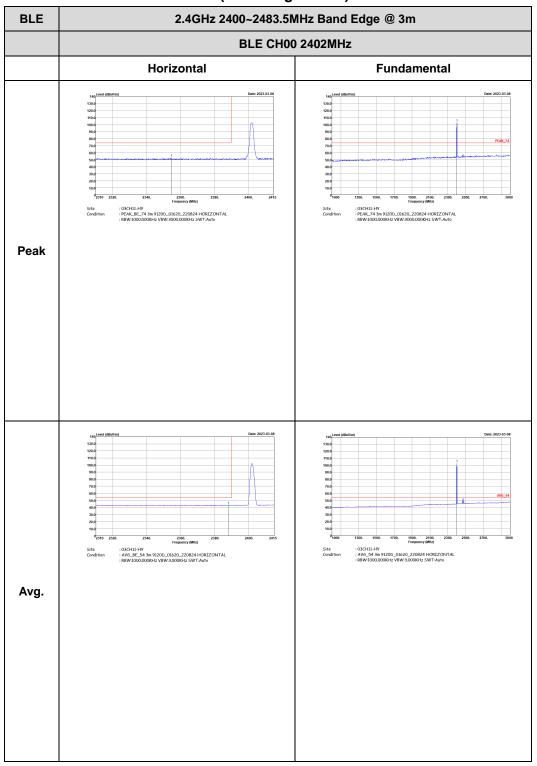
- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Margin(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

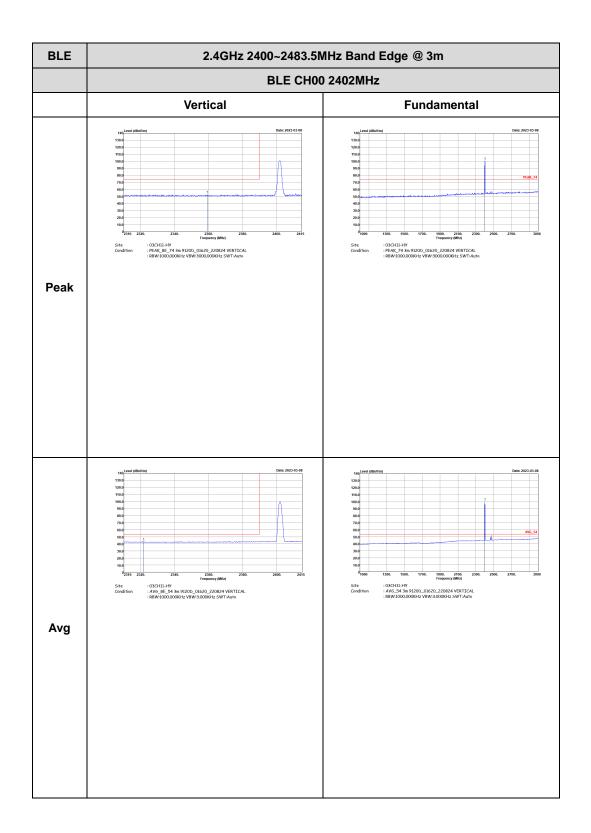
Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix D. Radiated Spurious Emission Plots

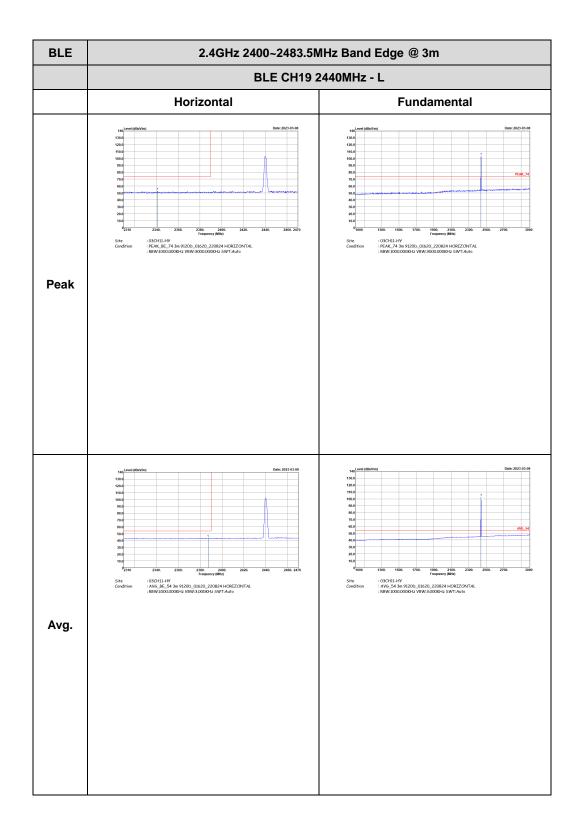
Test Engineer :	Yuan Lee, Bank Lin, Fu Chen and Troye Hsieh	Temperature :	17.9~25.9°C
rest Engineer .		Relative Humidity :	35.1~63.6%

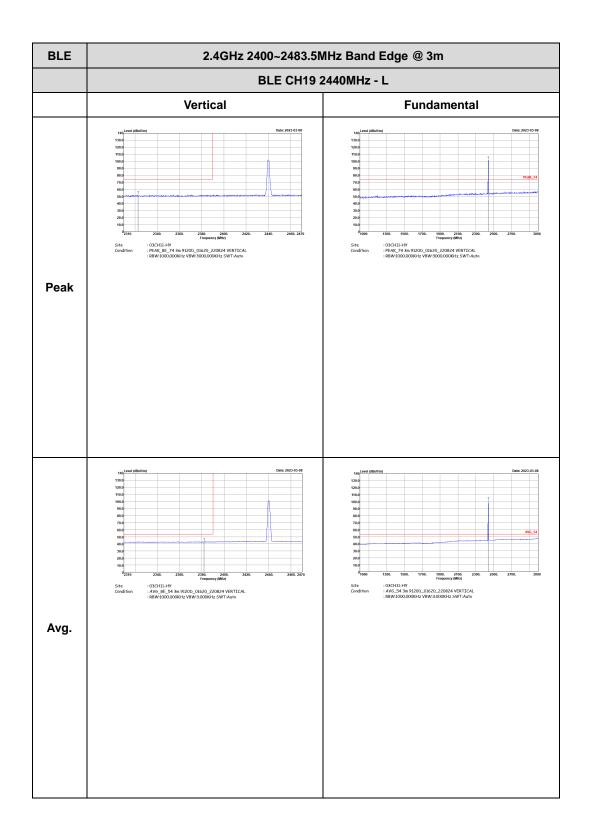
Note symbol


-L	Low channel location
-R	High channel location

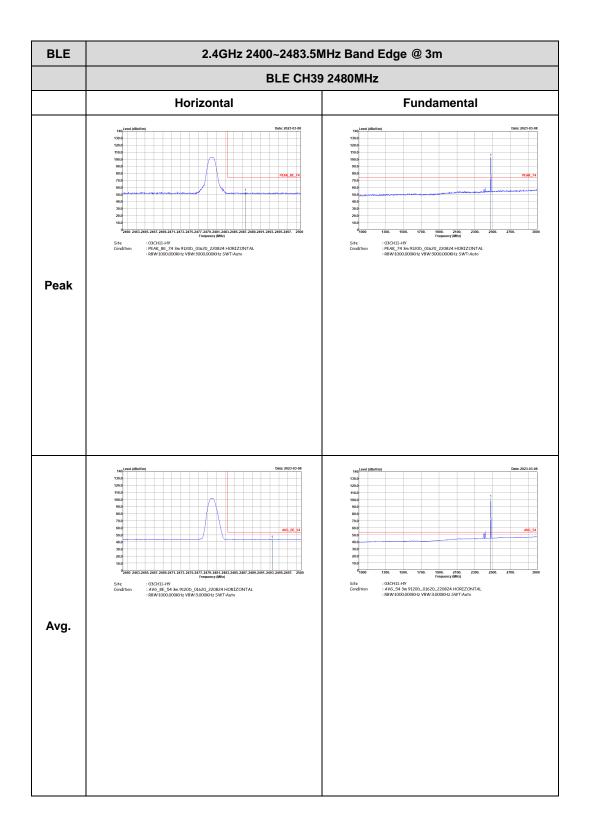

<1Mbps>

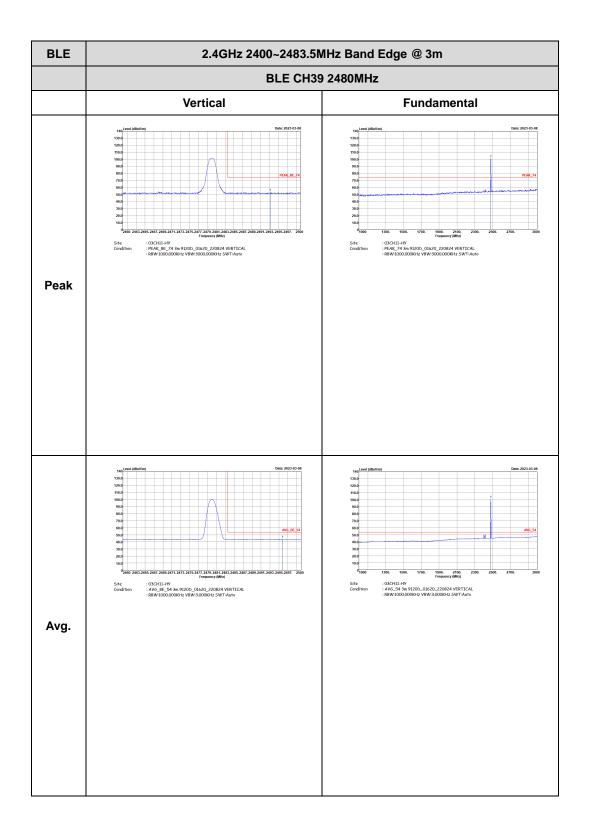
<Sample 1 with Battery 1>


2.4GHz 2400~2483.5MHz BLE (Band Edge @ 3m)

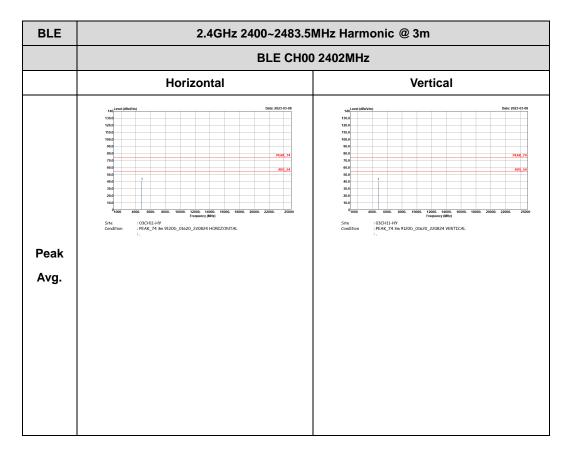


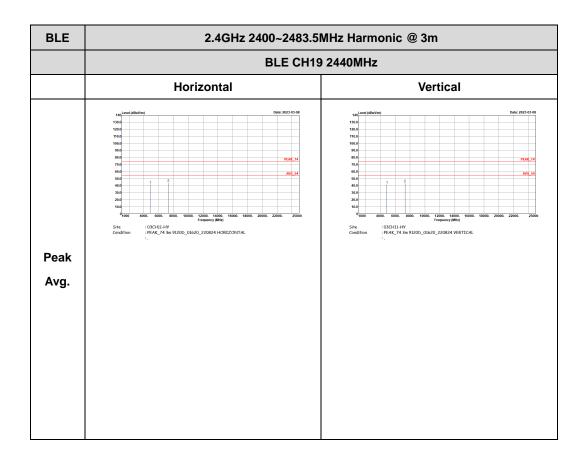
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m					
	BLE CH19 2	0MHz - R				
	Horizontal	Fundamental				
Peak	image: constraint of the second sec	Left blank				
Avg.	Image: constraint of the second of the sec	Left blank				

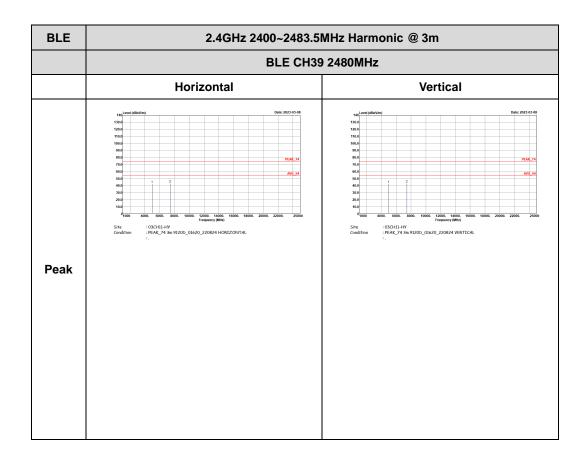


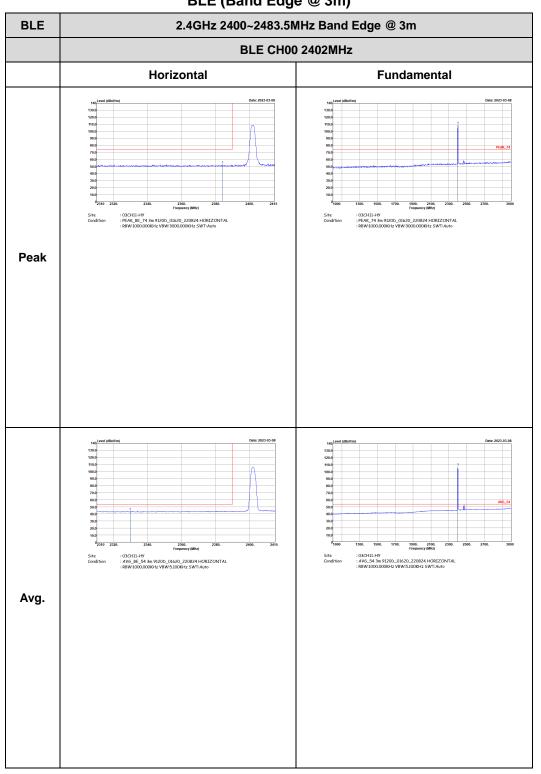


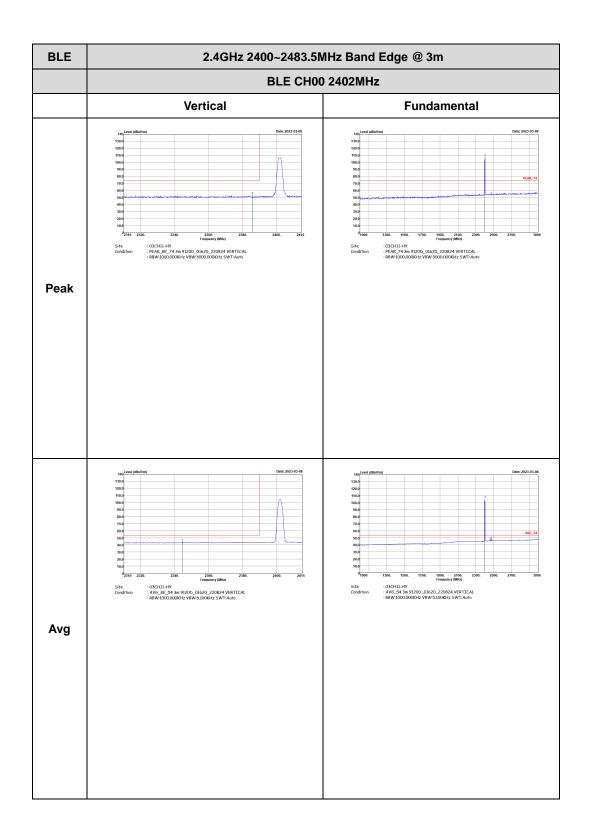
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m					
	BLE CH19 2440MHz - R					
	Vertical	Fundamental				
Peak	me de la de	Left blank				
Avg.	$M_{1} = \frac{1}{10000000000000000000000000000000000$	Left blank				



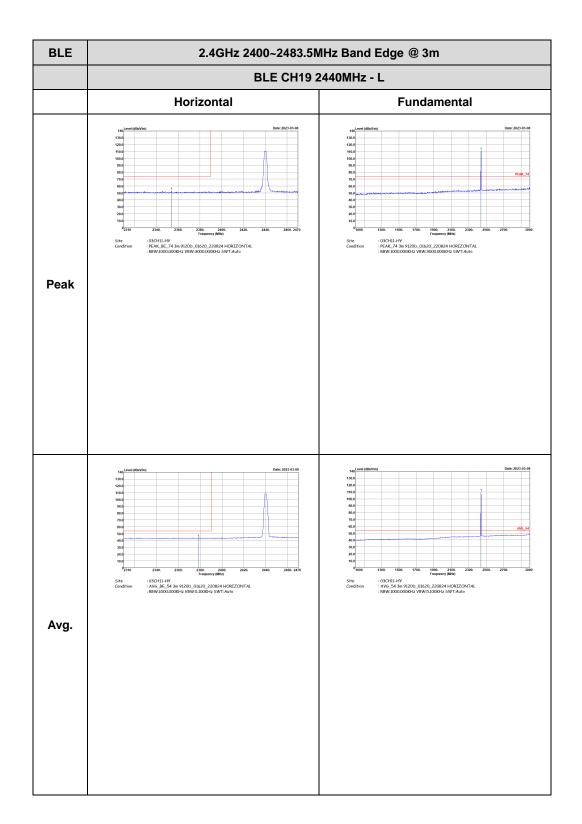




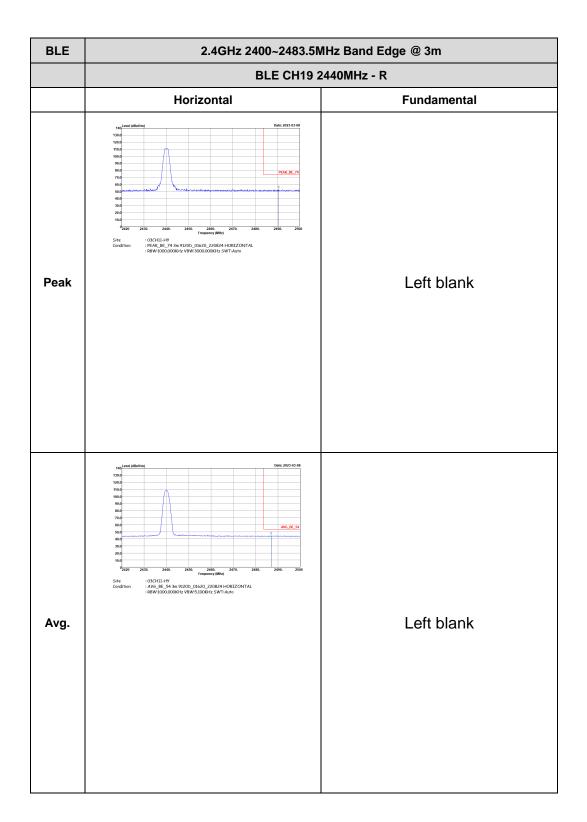


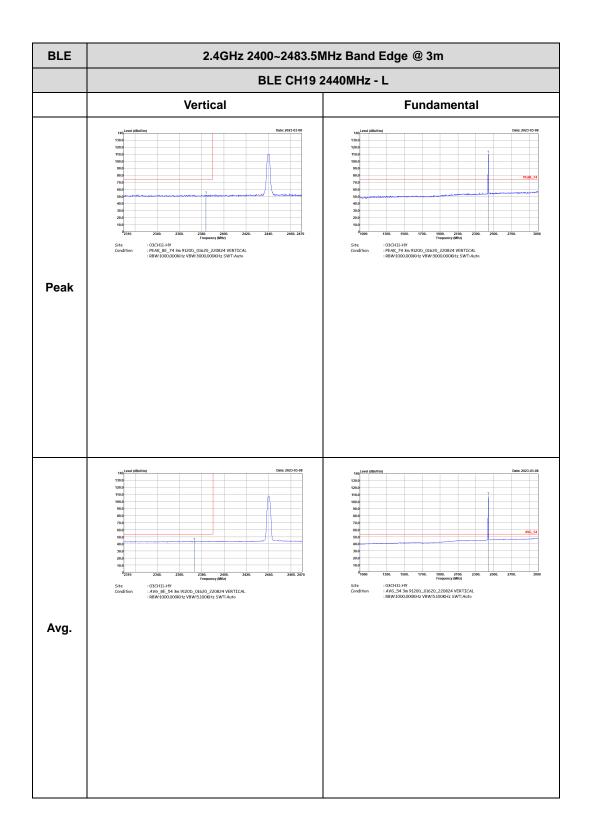


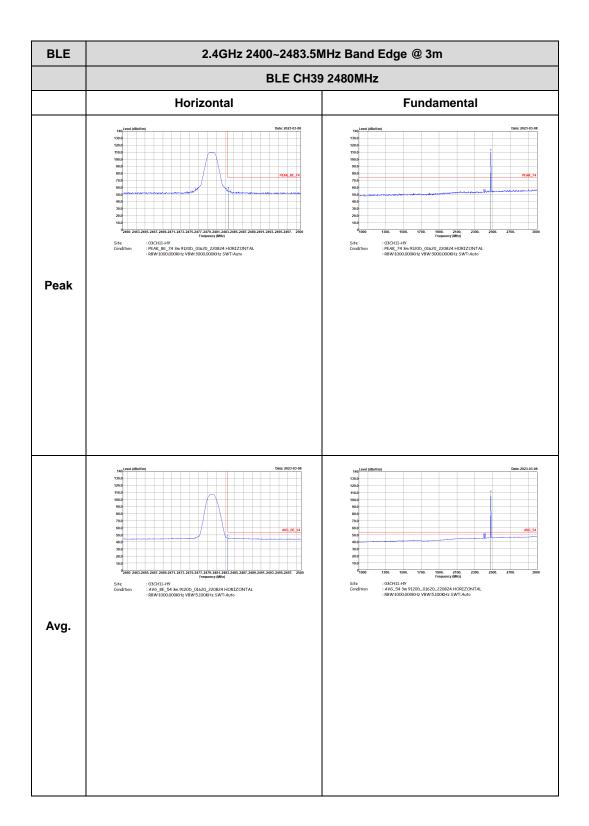
<2Mbps> <Sample 1 with Battery 1>

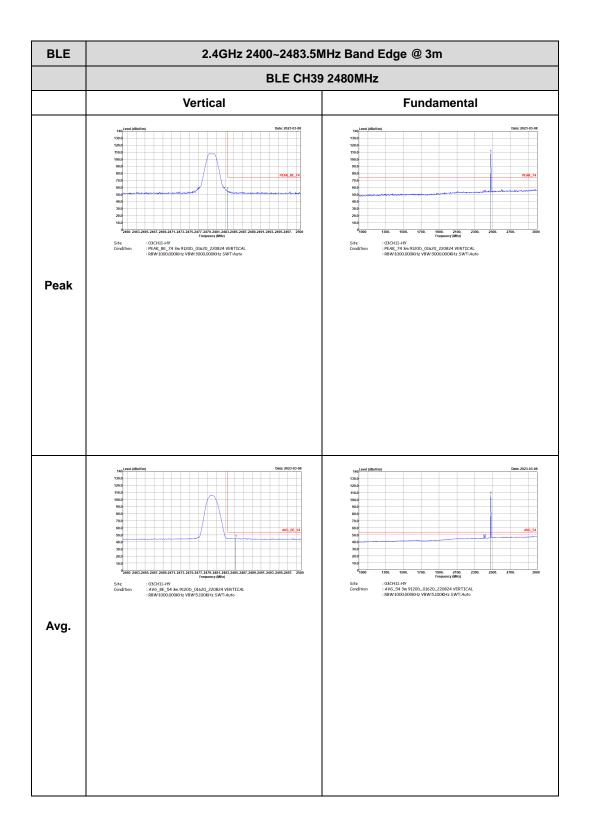


2.4GHz 2400~2483.5MHz BLE (Band Edge @ 3m)

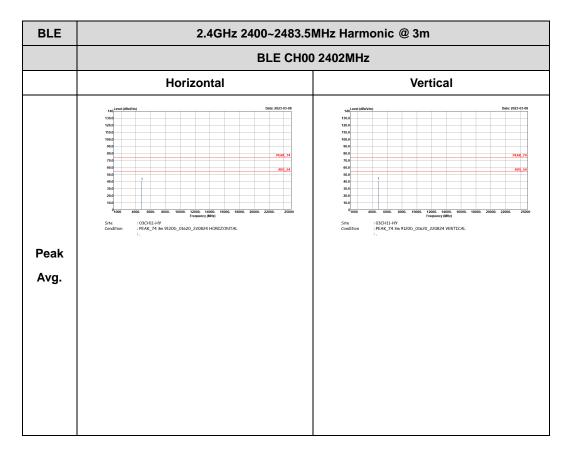


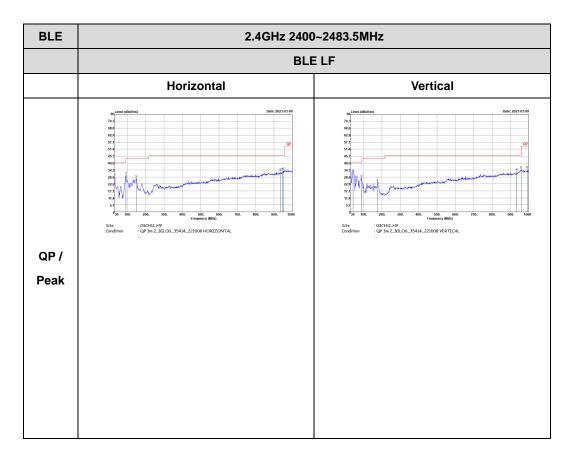


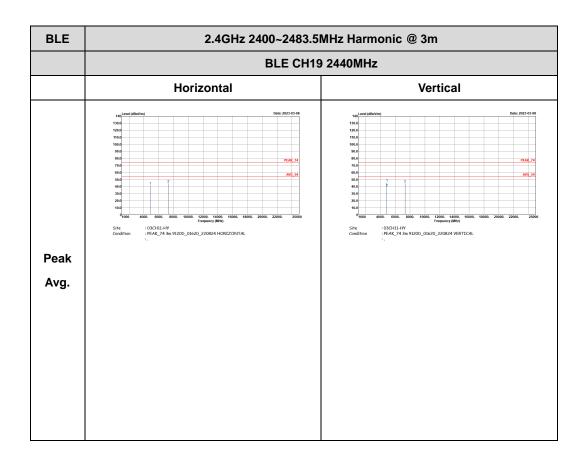




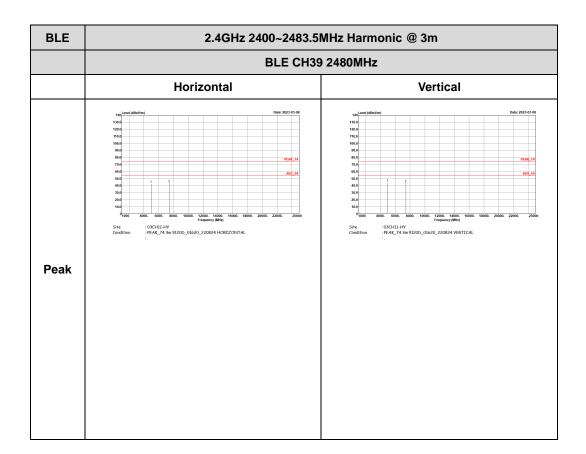
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m		
	BLE CH19 2440MHz - R		
	Vertical	Fundamental	
	the device (distribution of the distribution o		
Peak		Left blank	
Avg.	$\label{eq:constraints} \begin{split} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \bigg \\ \\ & \bigg \\ \\ & \bigg \\ \\ & \bigg \\ & \bigg \\ & \bigg \\ \\ & \bigg \\ \\ \\ & \bigg \\ \\ \\ \\$	Left blank	



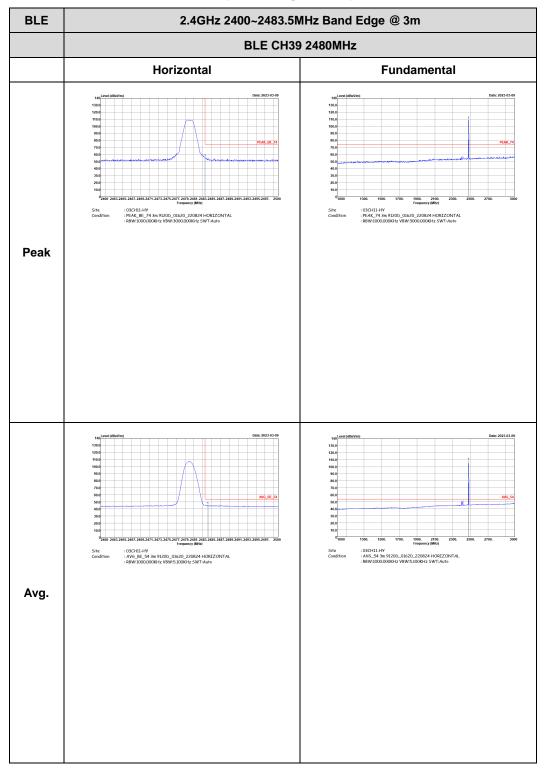


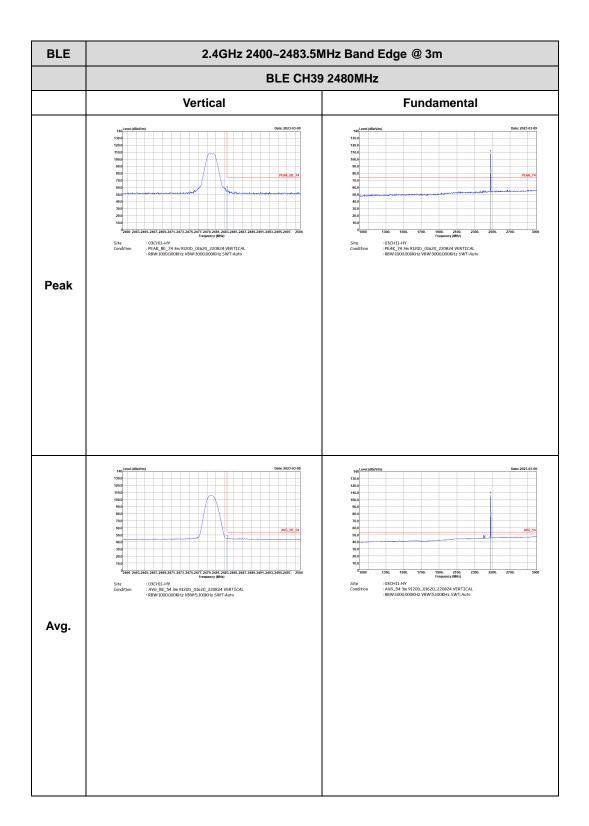


Emission below 1GHz

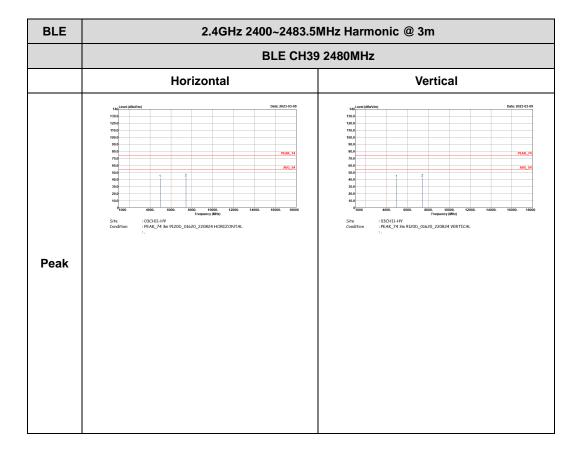


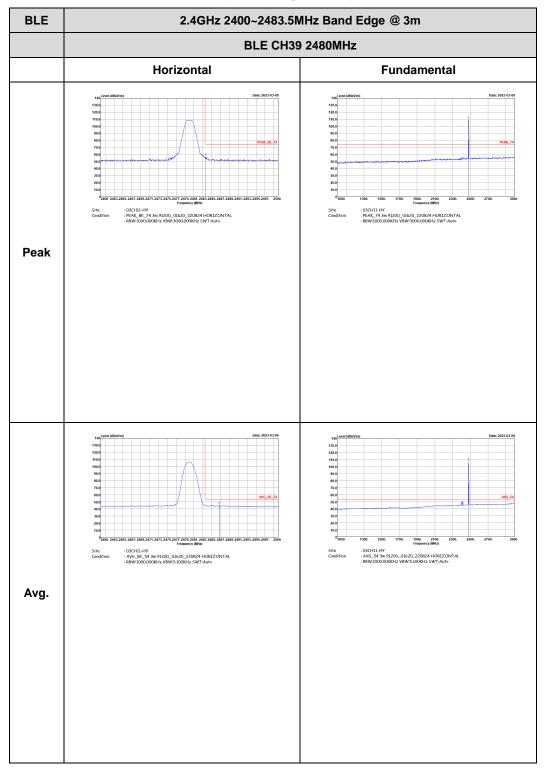
2.4GHz BLE (LF)

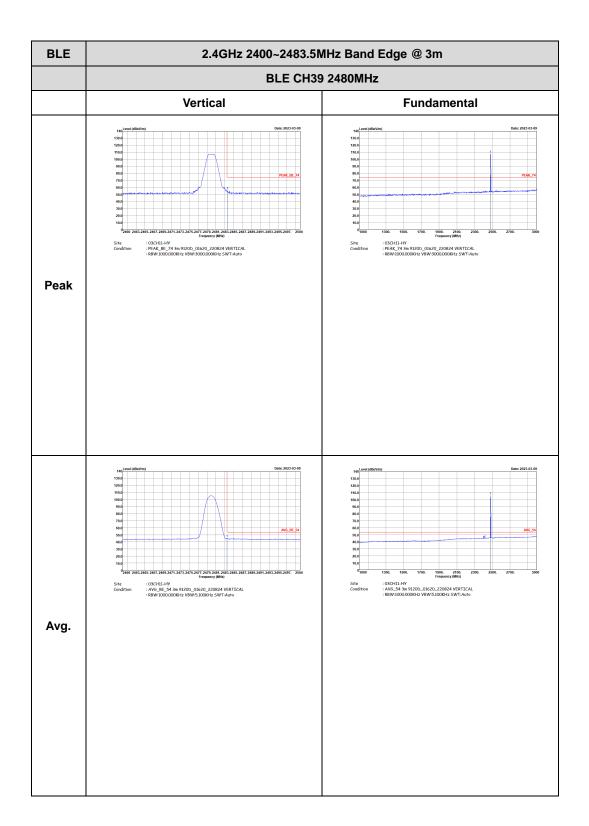



<Sample 1 with Battery 2>

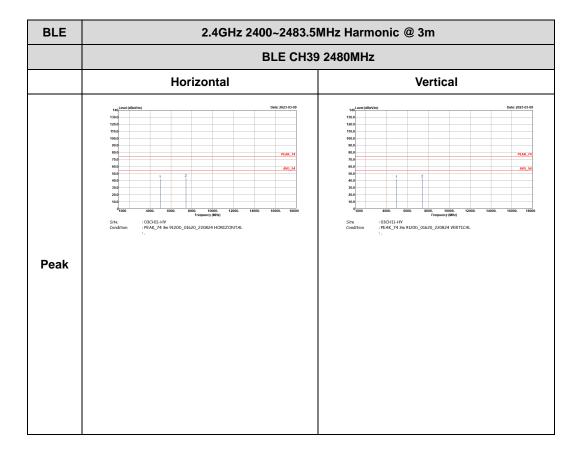
2.4GHz 2400~2483.5MHz

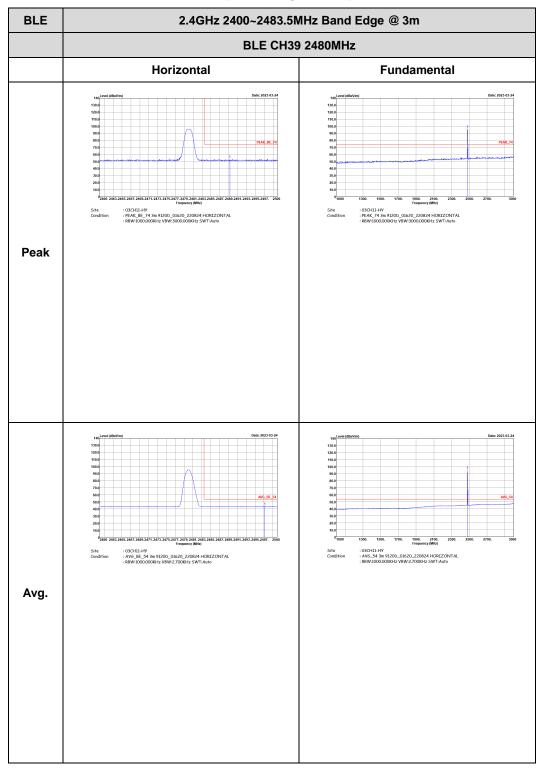

BLE (Band Edge @ 3m)

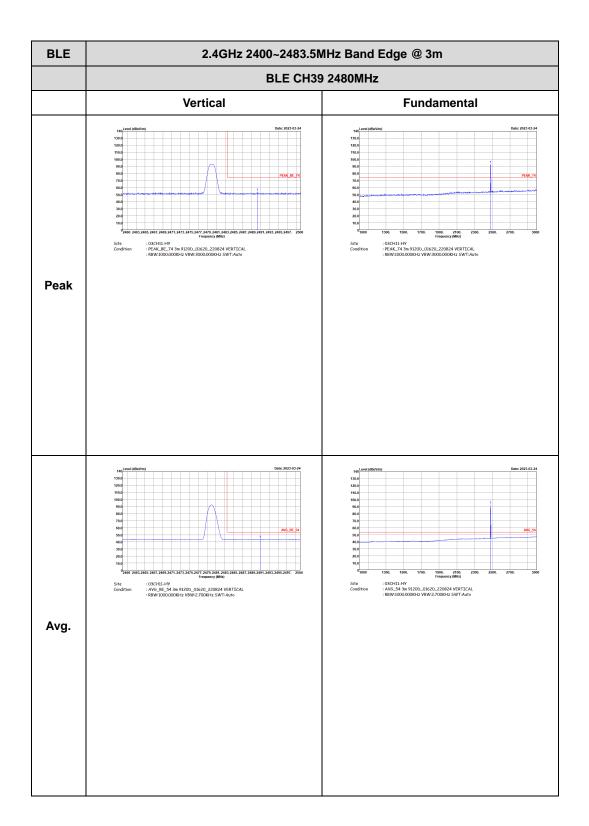



<Sample 1 with Battery 3>

2.4GHz 2400~2483.5MHz

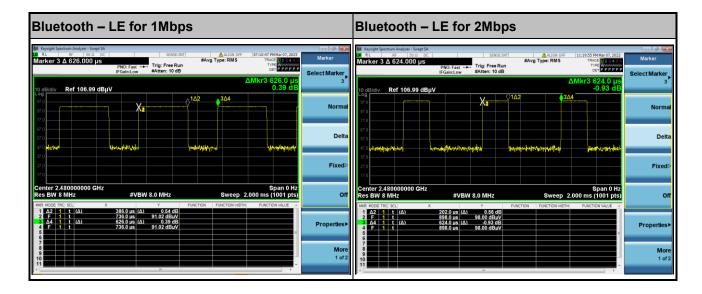

BLE (Band Edge @ 3m)




<Sample 2 with Battery 1>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)



BLE 2.4GHz 2400~2483.5MHz Harmonic @ 3m BLE CH39 2480MHz Horizontal Vertical Date: 2023-03-24 ate: 2023-03-2 140, 130,0 120,0 110,0 90,0 80,0 70,0 60,0 50,0 40,0 30,0 20,0 10,0 PEAK_ PEAK_ AVG_5 AVG_S 10000. 12000. 14000. 16000. Frequency (MHz) 000 : 03CH11-HV : PEAK_74 3m 9120D_01620_220824 VERTICAL Site Condition : 03CH11-HY : PEAK_74 3m 9120D_01620_220824 VERTICAL Site Condition Peak

Appendix E. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth - LE for 1Mbps	61.66	386	2.59	3kHz
Bluetooth - LE for 2Mbps	32.37	202	4.95	5.1kHz

