

Report No.: FR311909A

: 02

FCC RADIO TEST REPORT

FCC ID : UZ7WCMTB

Equipment : Touch Computer

Brand Name : Zebra Model Name : WCMTB

Applicant : Zebra Technologies Corporation

1 Zebra Plaza, Holtsville, NY 11742

Manufacturer : Zebra Technologies Corporation

1 Zebra Plaza, Holtsville, NY 11742

Standard : FCC Part 15 Subpart C §15.247

The product was received on Feb. 08, 2023 and testing was performed from Feb. 10, 2023 to Mar. 24, 2023. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Approved by: Louis Wu

Louis Win

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

TEL: 886-3-327-0868 Page Number : 1 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

Table of Contents

Report No.: FR311909A

: 2 of 49

: Apr. 03, 2023

His	tory o	f this test report	3
Sur	nmary	of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	6
	1.3	Modification of EUT	6
	1.4	Testing Location	6
	1.5	Applicable Standards	7
2	Test	Configuration of Equipment Under Test	
	2.1	Carrier Frequency Channel	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	10
	2.4	Support Unit used in test configuration and system	11
	2.5	EUT Operation Test Setup	11
	2.6	Measurement Results Explanation Example	11
3	Test	Result	12
	3.1	Number of Channel Measurement	12
	3.2	Hopping Channel Separation Measurement	14
	3.3	Dwell Time Measurement	18
	3.4	20dB and 99% Bandwidth Measurement	20
	3.5	Output Power Measurement	27
	3.6	Conducted Band Edges Measurement	28
	3.7	Conducted Spurious Emission Measurement	33
	3.8	Radiated Band Edges and Spurious Emission Measurement	40
	3.9	AC Conducted Emission Measurement	44
	3.10	Antenna Requirements	46
4	List o	of Measuring Equipment	47
5	Unce	rtainty of Evaluation	49
Арр	pendix	A. Conducted Test Results	
Арј	endix	B. AC Conducted Emission Test Result	
Арј	endix	c C. Radiated Spurious Emission	
Арр	endix	c D. Radiated Spurious Emission Plots	
App	endix	c E. Duty Cycle Plots	
App	endix	c F. Setup Photographs	

TEL: 886-3-327-0868 Page Number FAX: 886-3-327-0855 Issue Date

History of this test report

Report No.: FR311909A

Report No.	Version	Description	Issue Date
FR311909A	01	Initial issue of report	Mar. 31, 2023
FR311909A	02	Add Sample 2 information and data This report is an updated version, replacing the report issued on Mar. 31, 2023.	Apr. 03, 2023

TEL: 886-3-327-0868 Page Number : 3 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

Summary of Test Result

Report No.: FR311909A

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	Pass	-
3.4	2.1049	99% Occupied Bandwidth	Reporting only	-
3.5	15.247(b)(1) 15.247(b)(4)	Peak Output Power	Pass	-
3.6	15.247(d)	Conducted Band Edges	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	12.04 dB under the limit at 948.900 MHz
3.9	15.207	AC Conducted Emission	Pass	15.38 dB under the limit at 0.190 MHz
3.10	15.203	Antenna Requirement	Pass	-

Conformity Assessment Condition:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against
 the regulation limits or in accordance with the requirements stipulated by the
 applicant/manufacturer who shall bear all the risks of non-compliance that may potentially
 occur if measurement uncertainty is taken into account.
- The measurement uncertainty please refer to each test result in "Uncertainty of Evaluation".

Disclaimer

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Keven Cheng Report Producer: Rachel Hsieh

TEL: 886-3-327-0868 Page Number : 4 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

1 General Description

1.1 Product Feature of Equipment Under Test

	Product Information
Equipment	Touch Computer
Brand Name	Zebra
Model Name	WCMTB
Sample 1	Scanner(SE4710)
Sample 2	Scanner(SE5500)
FCC ID	UZ7WCMTB
EUT supports Radios application	GSM/EGPRS/WCDMA/HSPA/LTE/5G NR/NFC/GNSS WLAN 11a/b/g/n HT20/HT40 WLAN 11ac VHT20/VHT40/VHT80/VHT160 WLAN 11ax HE20/HE40/HE80/HE160 Bluetooth BR/EDR/LE
HW Version	DV
SW Version	13-09-16.00-TG-U00-STD-ATH-04
FW Version	FUSION_QA_4_1.0.0.017_T
MFD	16MAR23
EUT Stage	Identical Prototype

Report No.: FR311909A

Remark: The EUT's information above was declared by manufacturer.

Specification of Accessories						
Battery 1 Standard Battery (3800mAh)	Brand Name	Zebra	Model Number	BT-000473		

Support Unit used in test configuration and system						
Battery 2 Standard BLE Beacon Battery (3800mAh)	Brand Name	Zebra	Model Number	BT-000473B		
Battery 3 Extended Battery (5200mAh)	Brand Name	Zebra	Model Number	BT-000473E		
Adapter USB Wall Charger	Brand Name	Zebra	Part Number	PWR-WUA5V12W0US		
Earphone 1 3.5mm PTT Headset	Brand Name	Zebra	Part Number	HDST-35MM-PTT1-01		
Earphone 2 USB-C Audio Headset	Brand Name	Zebra	Part Number	HDST-USBC-PTT1-01		
USB Cable (Type C to Type A)	Brand Name	Zebra	Part Number	CBL-TC5X-USBC2A-01		
Type C-Audio Cable (Type C to 3.5mm)	Brand Name	Zebra	Part Number	ADP-USBC-35MM1-01		
Trigger Handle	Brand Name	Zebra	Part Number	TRG-TC2L-SNP1-01		

TEL: 886-3-327-0868 Page Number : 5 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

1.2 Product Specification of Equipment Under Test

Product Specification is subject to this standard				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	79			
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78			
Maximum Output Power to Antenna	Bluetooth BR (1Mbps): 4.12 dBm / 0.0026 W Bluetooth EDR (2Mbps): 3.56 dBm / 0.0023 W Bluetooth EDR (3Mbps): 3.88 dBm / 0.0024 W			
99% Occupied Bandwidth	Bluetooth BR (1Mbps): 0.837 MHz Bluetooth EDR (2Mbps): 1.173 MHz Bluetooth EDR (3Mbps): 1.155 MHz			
Antenna Type / Gain	IFA Antenna type with gain -1.26 dBi			
Type of Modulation	Bluetooth BR (1Mbps): GFSK Bluetooth EDR (2Mbps): π /4-DQPSK Bluetooth EDR (3Mbps): 8-DPSK			

Report No.: FR311909A

Remark: The above EUT's information was declared by manufacturer. Please refer to Disclaimer in report summary.

1.3 Modification of EUT

No modifications made to the EUT during the testing.

1.4 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855
Test Site No.	Sporton Site No.
Test one No.	TH05-HY, CO07-HY, 03CH11-HY

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

TEL: 886-3-327-0868 Page Number : 6 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

1.5 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR311909A

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL: 886-3-327-0868 Page Number : 7 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

2 Test Configuration of Equipment Under Test

Report No.: FR311909A

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

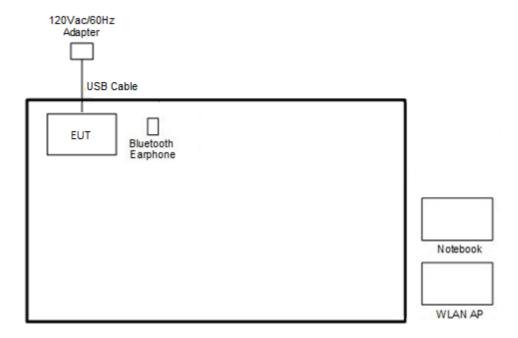
TEL: 886-3-327-0868 Page Number : 8 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

2.2 Test Mode

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst plane, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.

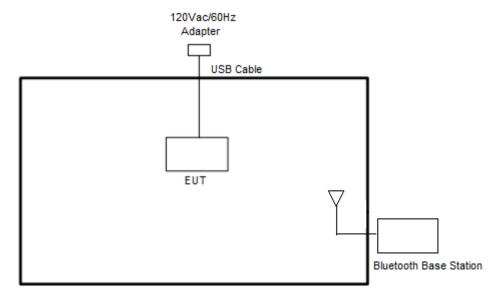
Report No.: FR311909A

b. AC power line Conducted Emission was tested under maximum output power.


The following summary table is showing all test modes to demonstrate in compliance with the standard.

he following summary table is showing all test modes to demonstrate in compliance with the standard.						
	Su	mmary table of Test Cases				
Test Item	Test Item Data Rate / Modulation					
	Bluetooth BR 1Mbps GFSK	Bluetooth EDR 2Mbps π /4-DQPSK	Bluetooth EDR 3Mbps 8-DPSK			
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz			
Test Cases	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz			
	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz			
		Bluetooth BR 1Mbps GFS	<u></u>			
	<sample 1="" 1<="" battery="" th="" with=""><th> ></th><th></th></sample>	 >				
	Mode 1: CH00_2402 MHz	Mode 1: CH00_2402 MHz				
	Mode 2: CH39_2441 MHz	Mode 2: CH39_2441 MHz				
Radiated	Mode 3: CH78_2480 MHz	Mode 3: CH78_2480 MHz				
Test Cases	<sample 1="" 2<="" battery="" td="" with=""><td colspan="5"><sample 1="" 2="" battery="" with=""></sample></td></sample>	<sample 1="" 2="" battery="" with=""></sample>				
lest cases	Mode 1: CH78_2480 MHz					
	<sample 1="" 3="" battery="" with=""></sample>					
	Mode 1: CH78_2480 MHz					
	<sample 1="" 2="" battery="" with=""></sample>					
	Mode 1: CH78_2480 MHz	Mode 1: CH78_2480 MHz				
AC Conducted Mode 1 : WLAN (2.4GHz) Link + Bluetooth Link + C			amera (Rear) + Battery 1 +			
Emission	USB Cable (Charging from Adapter) for Sample 1					
high cond	response to the highest RF output power in the preliminary tests. The conducted spurious emissions and conducted band edge measurement for other data rates were not worse than 1Mbps, and no other significantly frequencies found in conducted spurious emission.					

TEL: 886-3-327-0868 Page Number : 9 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023


2.3 Connection Diagram of Test System

<AC Conducted Emission Mode>

Report No.: FR311909A

<Bluetooth Tx Mode>

TEL: 886-3-327-0868 Page Number : 10 of 49 FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023 : 02

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	WLAN AP	ASUS	RT-AC52	N/A	N/A	Unshielded, 1.8 m
2.	Notebook	Dell	P79G	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
3.	Bluetooth Earphone	Kinyo	BTE-3622	N/A	N/A	N/A
4.	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8 m

Report No.: FR311909A

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT Version 4.0.00206.0" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to contact with base station to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB). = 4.2 + 10 = 14.2 (dB)

TEL: 886-3-327-0868 Page Number : 11 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

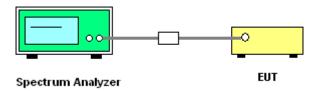
3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

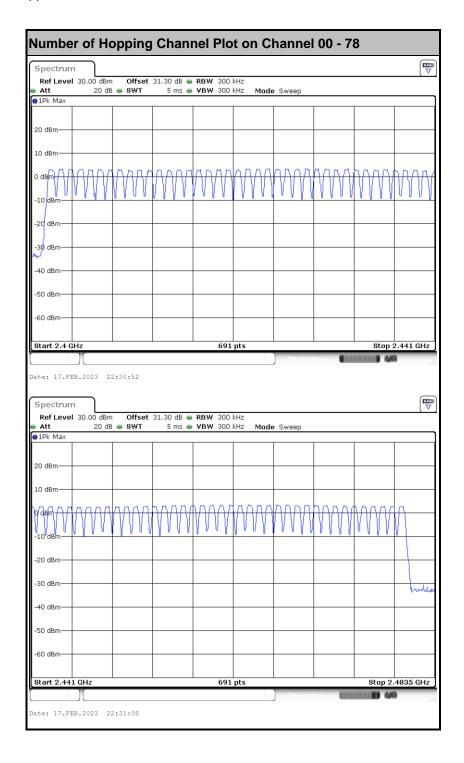
Report No.: FR311909A


3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.


3.1.4 Test Setup

TEL: 886-3-327-0868 Page Number : 12 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

Report No.: FR311909A

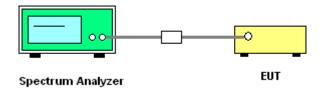
TEL: 886-3-327-0868 Page Number : 13 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Report No.: FR311909A

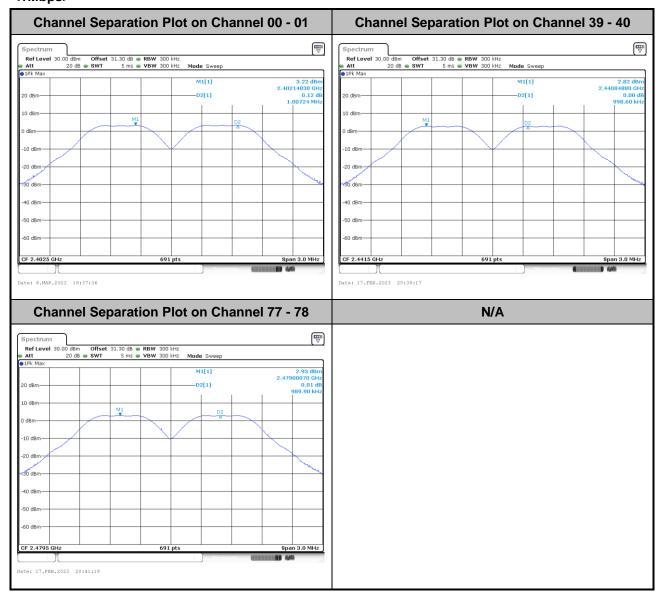

3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

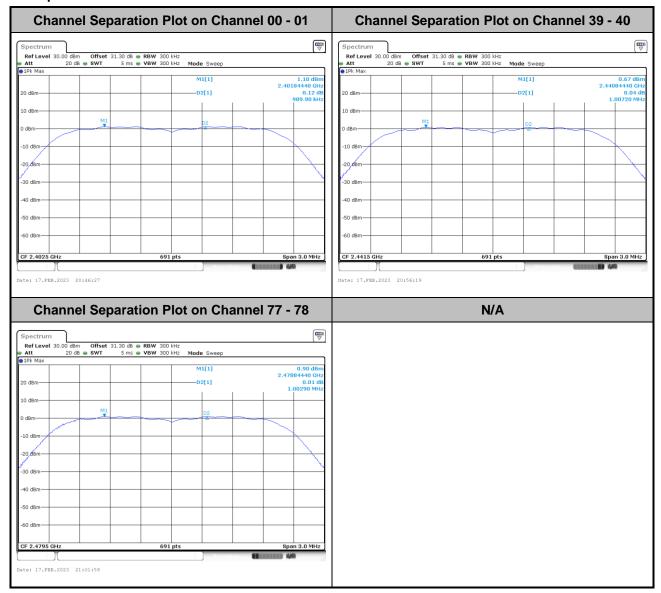
3.2.4 Test Setup



3.2.5 Test Result of Hopping Channel Separation

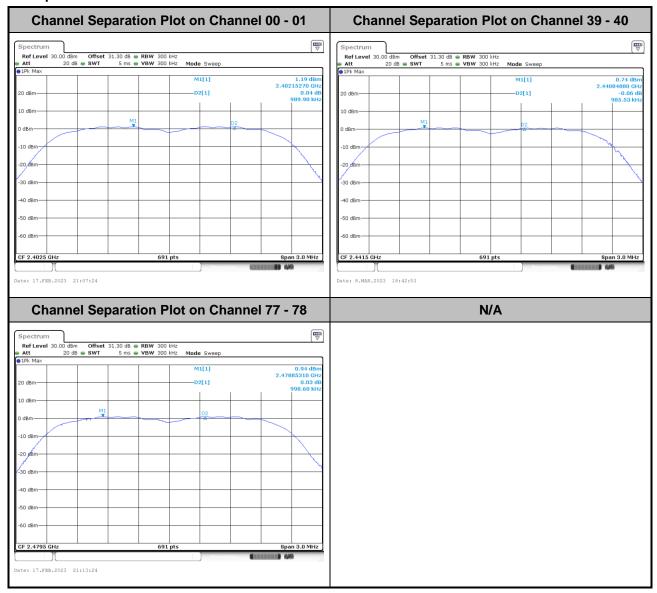
Please refer to Appendix A.

TEL: 886-3-327-0868 Page Number : 14 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023


<1Mbps>

Report No.: FR311909A

TEL: 886-3-327-0868 Page Number : 15 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023


<2Mbps>

Report No.: FR311909A

TEL: 886-3-327-0868 Page Number : 16 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

<3Mbps>

Report No.: FR311909A

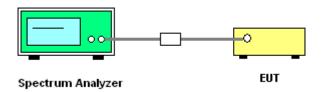
TEL: 886-3-327-0868 Page Number : 17 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

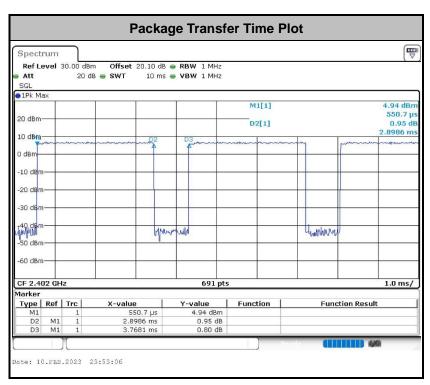
Report No.: FR311909A


3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.


3.3.4 Test Setup

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

TEL: 886-3-327-0868 Page Number : 18 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

Report No.: FR311909A

Remark:

- **1.** In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- **2.** In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

TEL: 886-3-327-0868 Page Number : 19 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

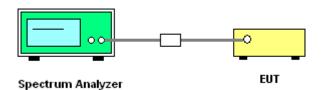
3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

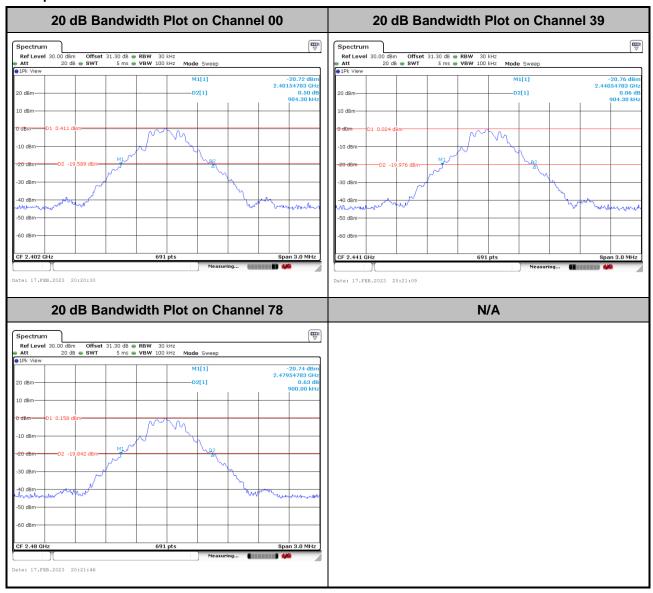

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.

Report No.: FR311909A

- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Use the following spectrum analyzer settings for 20 dB Bandwidth measurement.
 - Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 - RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 - Trace = \max hold.
- 5. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 - Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 - RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;
 - Trace = max hold.
- 6. Measure and record the results in the test report.

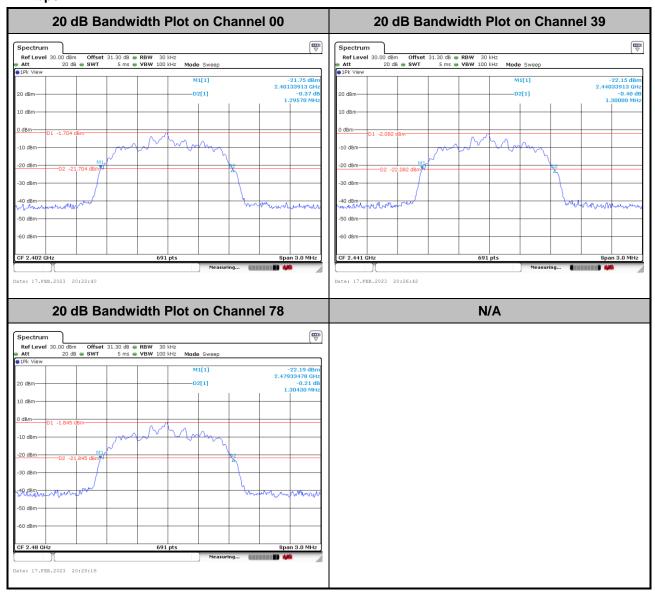
3.4.4 Test Setup



3.4.5 Test Result of 20dB Bandwidth

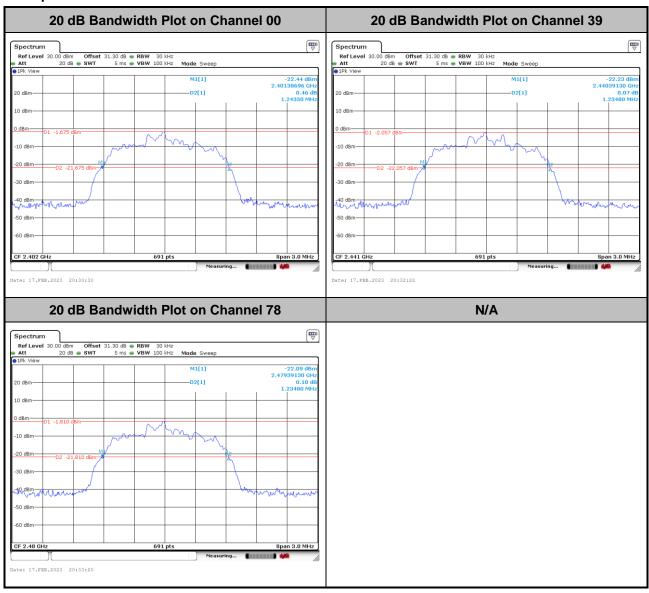
Please refer to Appendix A.

TEL: 886-3-327-0868 Page Number : 20 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023


<1Mbps>

Report No.: FR311909A

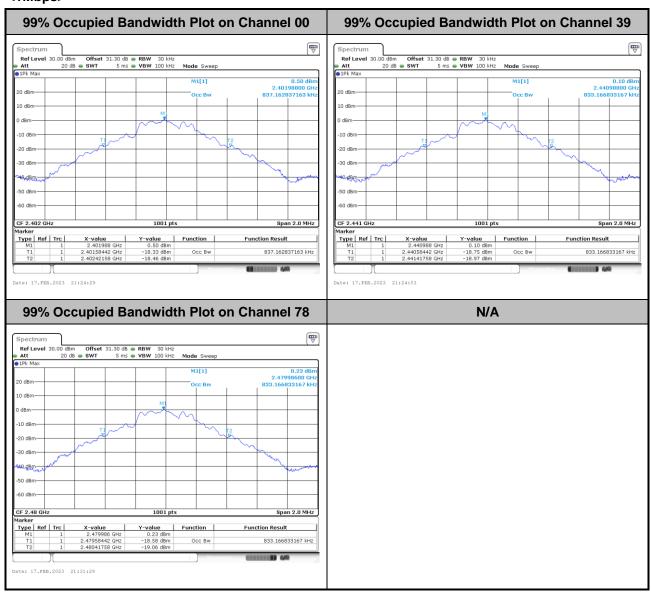
TEL: 886-3-327-0868 Page Number : 21 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023


<2Mbps>

Report No.: FR311909A

TEL: 886-3-327-0868 Page Number : 22 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

<3Mbps>

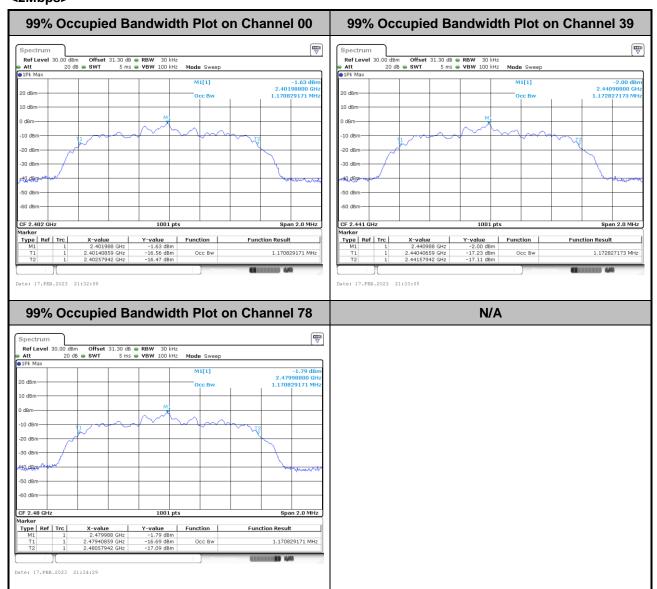

Report No.: FR311909A

TEL: 886-3-327-0868 Page Number : 23 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

<1Mbps>

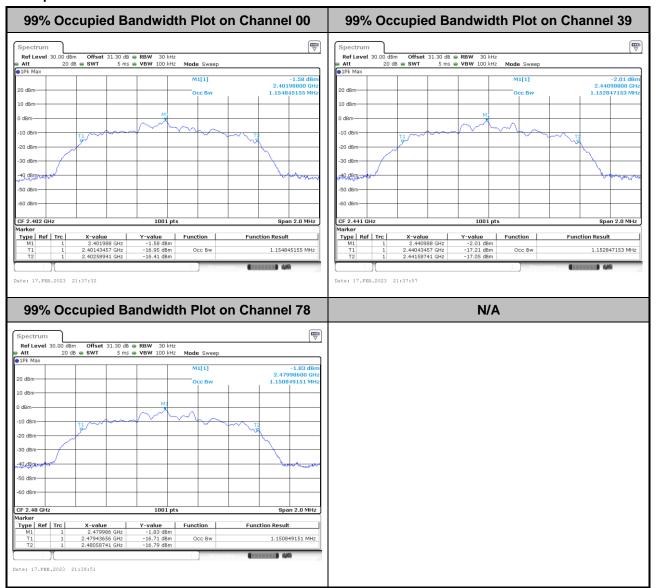


Report No.: FR311909A

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-0868 Page Number : 24 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

<2Mbps>



Report No.: FR311909A

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-0868 Page Number : 25 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

<3Mbps>

Report No.: FR311909A

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-0868 Page Number : 26 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

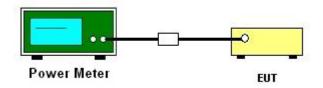
3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

Report No.: FR311909A

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi.


3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

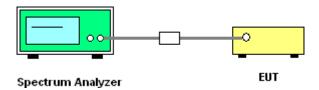
TEL: 886-3-327-0868 Page Number : 27 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

Report No.: FR311909A


3.6.2 Measuring Instruments

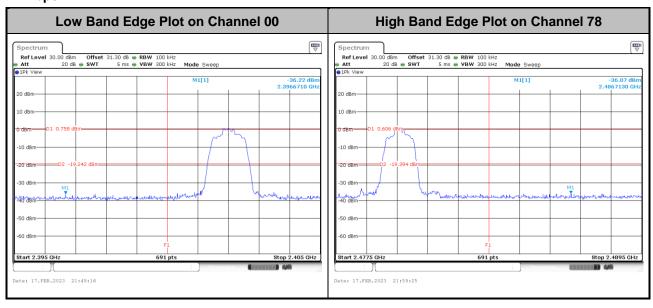
Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

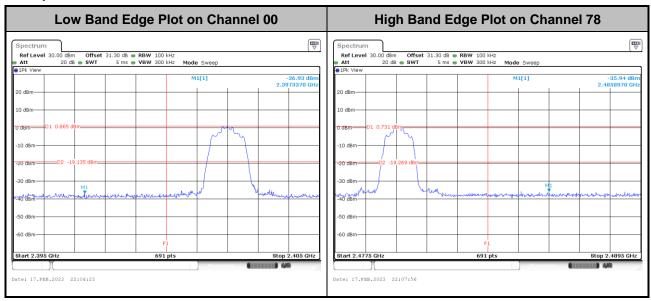
- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set the maximum power setting and enable the EUT to transmit continuously.
- 3. Set RBW = 100 kHz, VBW = 300 kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2 and 3.
- 5. Measure and record the results in the test report.


3.6.4 Test Setup

TEL: 886-3-327-0868 Page Number : 28 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023


3.6.5 Test Result of Conducted Band Edges

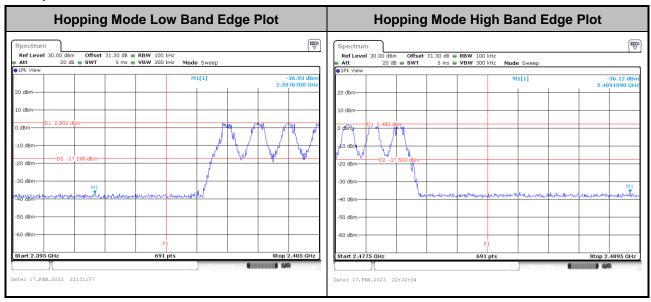
<1Mbps>


Report No.: FR311909A

<2Mbps>

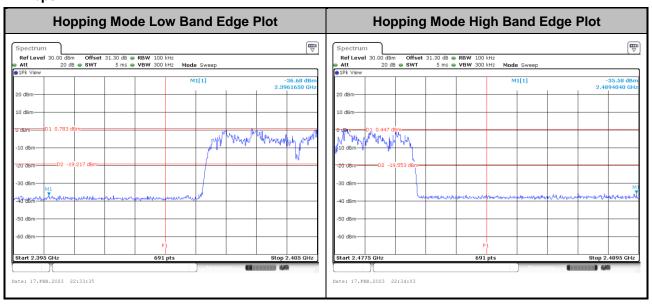
TEL: 886-3-327-0868 Page Number : 29 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

<3Mbps>

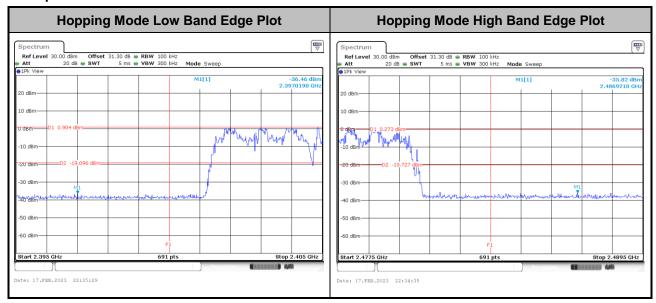


Report No.: FR311909A

TEL: 886-3-327-0868 Page Number : 30 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023


3.6.6 Test Result of Conducted Hopping Mode Band Edges

<1Mbps>


Report No.: FR311909A

<2Mbps>

TEL: 886-3-327-0868 Page Number : 31 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

<3Mbps>

Report No.: FR311909A

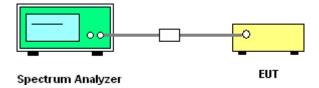
TEL: 886-3-327-0868 Page Number : 32 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

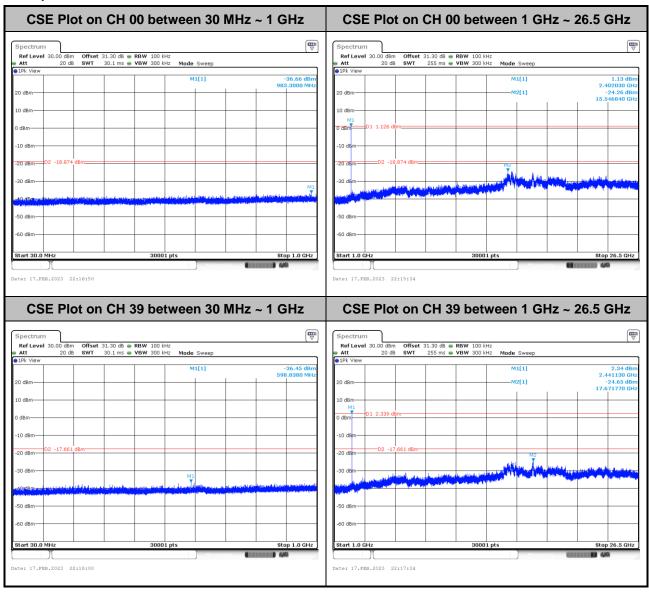
Report No.: FR311909A


3.7.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, scan up through 10th harmonic. All harmonics / spurious must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

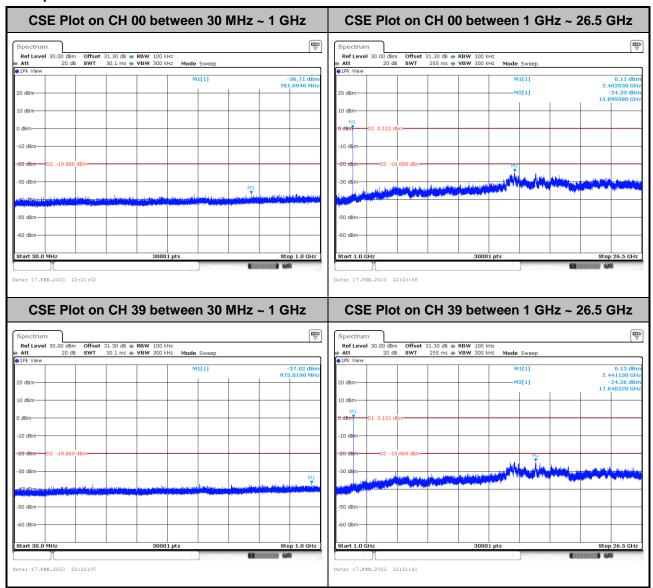

3.7.4 Test Setup

TEL: 886-3-327-0868 Page Number : 33 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

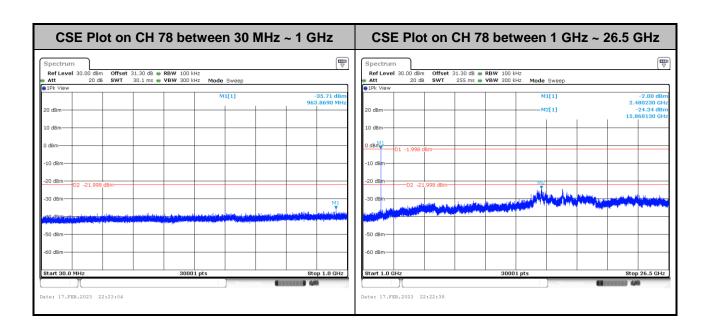
3.7.5 Test Result of Conducted Spurious Emission

<1Mbps>

Report No.: FR311909A

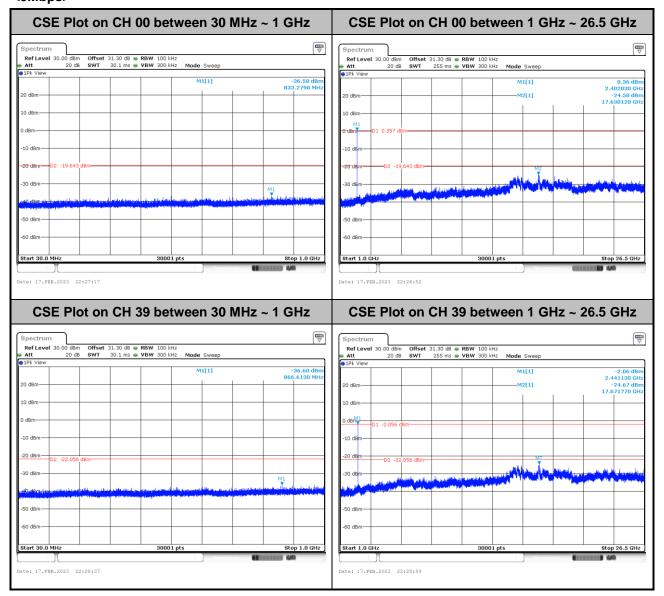

TEL: 886-3-327-0868 Page Number : 34 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

Report No.: FR311909A

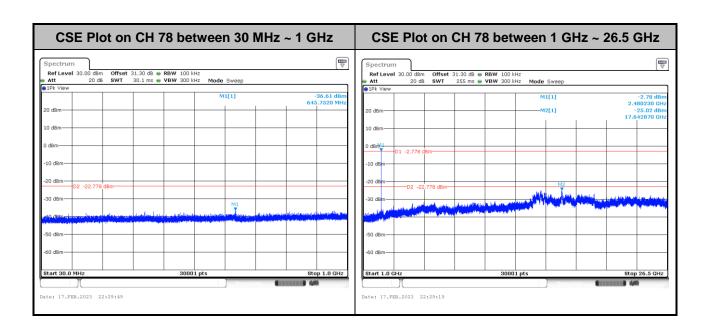

TEL: 886-3-327-0868 Page Number : 35 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

<2Mbps>

Report No.: FR311909A


TEL: 886-3-327-0868 Page Number : 36 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

Report No.: FR311909A


TEL: 886-3-327-0868 Page Number : 37 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

<3Mbps>

Report No.: FR311909A

TEL: 886-3-327-0868 Page Number : 38 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

Report No.: FR311909A

TEL: 886-3-327-0868 Page Number : 39 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics / spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Report No.: FR311909A

addition of the control of the contr								
Frequency	Field Strength	Measurement Distance						
(MHz)	(microvolts/meter)	(meters)						
0.009 - 0.490	2400/F(kHz)	300						
0.490 - 1.705	24000/F(kHz)	30						
1.705 – 30.0	30	30						
30 – 88	100	3						
88 – 216	150	3						
216 - 960	200	3						
Above 960	500	3						

3.8.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

TEL: 886-3-327-0868 Page Number : 40 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

3.8.3 Test Procedures

1. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.

Report No.: FR311909A

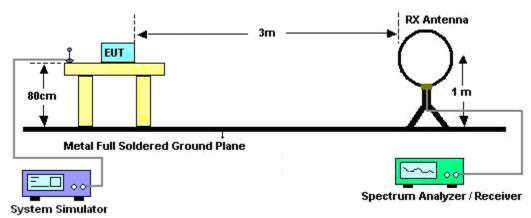
- 2. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT is arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz, RBW = 1 MHz for f>1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c).

Duty cycle = On time/100 milliseconds

On time = $N_1*L_1+N_2*L_2+...+N_{n-1}*LN_{n-1}+N_n*L_n$

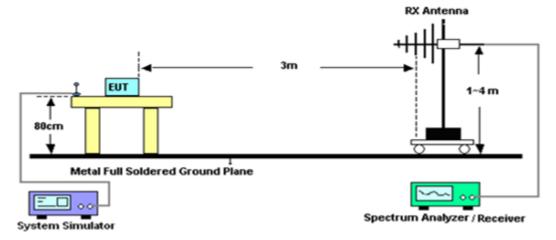
Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.

Average Emission Level = Peak Emission Level + 20*log (Duty cycle)

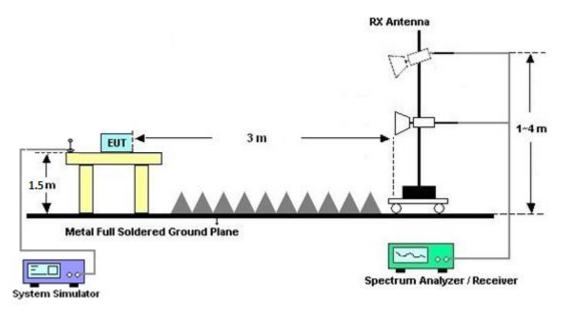

- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 8. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".

Note: The average levels are calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

TEL: 886-3-327-0868 Page Number : 41 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

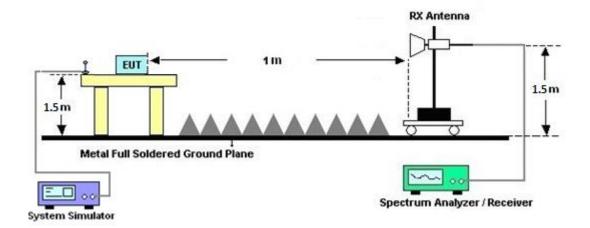

3.8.4 Test Setup

For radiated test below 30MHz



Report No.: FR311909A

For radiated test from 30MHz to 1GHz



For radiated test from 1GHz to 18GHz

TEL: 886-3-327-0868 Page Number : 42 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

For radiated test above 18GHz

Report No.: FR311909A

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.8.7 Duty Cycle

Please refer to Appendix E.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

TEL: 886-3-327-0868 Page Number : 43 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

3.9 AC Conducted Emission Measurement

3.9.1 Limit of AC Conducted Emission

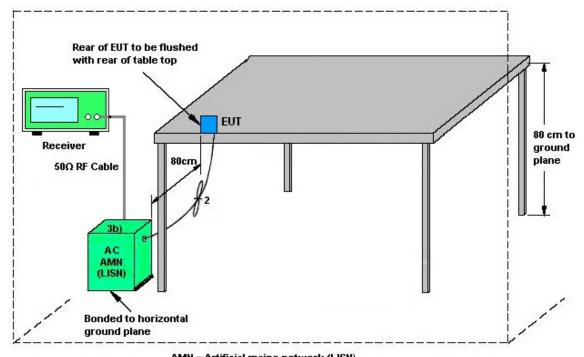
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR311909A

Eraguanay of amission (MUT)	Conducted limit (dBμV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*}Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.9.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

TEL: 886-3-327-0868 Page Number : 44 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

3.9.4 Test Setup

Report No.: FR311909A

AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

TEL: 886-3-327-0868 Page Number : 45 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

3.10 Antenna Requirements

3.10.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

Report No.: FR311909A

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

TEL: 886-3-327-0868 Page Number : 46 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Sep. 20, 2022	Feb. 22, 2023~ Mar. 24, 2023	Sep. 19, 2023	Radiation (03CH11-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1212	1GHz~18GHz	Mar. 10, 2022	Feb. 22, 2023~ Mar. 06, 2023	Mar. 09, 2023	Radiation (03CH11-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-01620	1GHz~18GHz	Aug. 24, 2022	Mar. 07, 2023~ Mar. 24, 2023	Aug. 23, 2023	Radiation (03CH11-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA9170	00993	18GHz~40GHz	Nov. 24, 2022	Feb. 22, 2023~ Mar. 24, 2023	Nov. 23, 2023	Radiation (03CH11-HY)
Preamplifier	Keysight	83017A	MY53270080	1GHz~26.5GHz	Nov. 09, 2022	Feb. 22, 2023~ Mar. 24, 2023	Nov. 08, 2023	Radiation (03CH11-HY)
Preamplifier	Jet-Power	JPA0118-55-30 3	17100018000 55007	1GHz~18GHz	Jun. 15, 2022	Feb. 22, 2023~ Mar. 24, 2023	Jun. 14, 2023	Radiation (03CH11-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	Jun. 28, 2022	Feb. 22, 2023~ Mar. 24, 2023	Jun. 27, 2023	Radiation (03CH11-HY)
Spectrum Analyzer	Keysight	N9010A	MY54200486	10Hz~44GHz	Oct. 07, 2022	Feb. 22, 2023~ Mar. 24, 2023	Oct. 06, 2023	Radiation (03CH11-HY)
Controller	EMEC	EM 1000	N/A	Control Turn table & Ant Mast	N/A	Feb. 22, 2023~ Mar. 24, 2023	N/A	Radiation (03CH11-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1~4m	N/A	Feb. 22, 2023~ Mar. 24, 2023	N/A	Radiation (03CH11-HY)
Turn Table	EMEC	TT 2000	N/A	0~360 Degree	N/A	Feb. 22, 2023~ Mar. 24, 2023	N/A	Radiation (03CH11-HY)
Software	Audix	E3 6.2009-8-24	RK-001053	N/A	N/A	Feb. 22, 2023~ Mar. 24, 2023	N/A	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz-40GHz	Mar. 10, 2022	Feb. 22, 2023~ Mar. 06, 2023	Mar. 09, 2023	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz-40GHz	Mar. 07, 2023	Mar. 24, 2023	Mar. 06, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4PE	9kHz-30MHz	Mar. 10, 2022	Feb. 22, 2023~ Mar. 06, 2023	Mar. 09, 2023	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY28655/4	9kHz to18GHz	Feb. 22, 2023	Mar. 24, 2023	Feb. 21, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4PE	30MHz-18GHz	Mar. 10, 2022	Feb. 22, 2023~ Mar. 06, 2023	Mar. 09, 2023	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	UCOFLEX 126E	0058/126E	30MHz-18GHz	Dec. 20, 2022	Mar. 24, 2023	Dec. 19, 2023	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	801595/2	30MHz-18GHz	Nov. 23, 2022	Feb. 22, 2023~ Mar. 24, 2023	Nov. 22, 2023	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz-40GHz	Mar. 07, 2023	Mar. 07, 2023~ Mar. 24, 2023	Mar. 06, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	801595/2	30MHz-40GHz	Mar. 07, 2023	Mar. 07, 2023~ Mar. 24, 2023	Mar. 06, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	9K~30M	Mar. 07, 2023	Mar. 07, 2023~ Mar. 24, 2023	Mar. 06, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	30MHz-40GHz	Mar. 07, 2023	Mar. 07, 2023~ Mar. 24, 2023	Mar. 06, 2024	Radiation (03CH11-HY)
Filter	Wainwright	WLK4-1000-15 30-8000-40SS	SN11	1.53GHz Low Pass Filter	Sep. 12, 2022	Feb. 22, 2023~ Mar. 24, 2023	Sep. 11, 2023	Radiation (03CH11-HY)
Filter	Wainwright	WHKX12-2700 -3000-18000-6 0SS	SN3	3GHz High Pass Filter	Sep. 12, 2022	Feb. 22, 2023~ Mar. 24, 2023	Sep. 11, 2023	Radiation (03CH11-HY)
Hygrometer	TECPEL	DTM-303B	TP140325	N/A	Nov. 07, 2022	Feb. 22, 2023~ Mar. 24, 2023	Nov. 06, 2023	Radiation (03CH11-HY)

Report No.: FR311909A

TEL: 886-3-327-0868 Page Number : 47 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ACPOWER	AFC-11003G	F317040033	N/A	N/A	Feb. 16, 2023	N/A	Conduction (CO07-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Feb. 16, 2023	N/A	Conduction (CO07-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	9561-F N00373	9kHz-200MHz	Nov. 01, 2022	Feb. 16, 2023	Oct. 31, 2023	Conduction (CO07-HY)
RF Cable	HUBER + SUHNER	RG 214/U	1358175	9kHz~30MHz	Mar. 16, 2022	Feb. 16, 2023	Mar. 15, 2023	Conduction (CO07-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Dec. 01, 2022	Feb. 16, 2023	Nov. 30, 2023	Conduction (CO07-HY)
Four-Line V-Network	TESEQ	NNB 52	36122	N/A	Mar. 04, 2022	Feb. 16, 2023	Mar. 03, 2023	Conduction (CO07-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI7	100724	9kHz~7GHz	Fed. 24, 2022	Feb. 16, 2023	Feb. 23, 2023	Conduction (CO07-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 17, 2022	Feb. 10, 2023~ Mar. 08, 2023	Nov. 16, 2023	Conducted (TH05-HY)
Power Meter	Anritsu	ML2495A	1036004	N/A	Aug. 08, 2022	Feb. 10, 2023~ Mar. 08, 2023	Aug. 07, 2023	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	1027253	300MHz~40GH z	Aug. 08, 2022	Feb. 10, 2023~ Mar. 08, 2023	Aug. 07, 2023	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101905	10Hz - 40GHz	Aug. 03, 2022	Feb. 10, 2023~ Mar. 08, 2023	Aug. 02, 2023	Conducted (TH05-HY)
BT Base Station(Measur e)	Rohde & Schwarz	CBT	101136	BT 3.0	Oct. 25, 2022	Feb. 10, 2023~ Mar. 08, 2023	Oct. 24, 2023	Conducted (TH05-HY)

Report No.: FR311909A

TEL: 886-3-327-0868 Page Number : 48 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	3 46 4B
of 95% (U = 2Uc(y))	3.46 dB

Report No.: FR311909A

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6 20 AB
of 95% (U = 2Uc(y))	6.30 dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence	4,40 dB
of 95% (U = 2Uc(y))	4.40 UB

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	
of 95% (U = 2Uc(y))	4.80 dB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.30 dB
of 95% (U = 2Uc(y))	3.30 dB

TEL: 886-3-327-0868 Page Number : 49 of 49
FAX: 886-3-327-0855 Issue Date : Apr. 03, 2023

Report Number : FR311909A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Hank Hsu	Temperature:	21~25	°C
Test Date:	2023/2/10~2023/3/8	Relative Humidity:	51~54	%

TEST RESULTS DATA 20dB and 99% Occupied Bandwidth and Hopping Channel Separation

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.904	0.837	1.007	0.6027	Pass
DH	1Mbps	1	39	2441	0.904	0.833	0.999	0.6027	Pass
DH	1Mbps	1	78	2480	0.900	0.833	0.990	0.6000	Pass
2DH	2Mbps	1	0	2402	1.296	1.171	0.990	0.8638	Pass
2DH	2Mbps	1	39	2441	1.300	1.173	1.007	0.8667	Pass
2DH	2Mbps	1	78	2480	1.304	1.171	1.003	0.8693	Pass
3DH	3Mbps	1	0	2402	1.244	1.155	0.990	0.8290	Pass
3DH	3Mbps	1	39	2441	1.235	1.153	0.986	0.8232	Pass
3DH	3Mbps	1	78	2480	1.235	1.151	0.999	0.8232	Pass

TEST RESULTS DATA

Dwell Time

Mod.	Hopping Channel Number Rate	Hops Over Occupanc Transfer y Time (hops) Package Transfer Time (msec)		Dwell Time (sec)	Limits (sec)	Pass/Fail
3DH5	79	106.670	2.90	0.31	0.4	Pass
3DH5 (AFH)	20	53.330	2.90	0.15	0.4	Pass

TEST RESULTS DATA

Peak Power Table

DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	4.03	30.00	Pass
DH1	39	1	4.07	30.00	Pass
	78	1	4.12	30.00	Pass
	0	1	3.48	20.97	Pass
2DH1	39	1	3.43	20.97	Pass
	78	1	3.56	20.97	Pass
	0	1	3.75	20.97	Pass
3DH3	39	1	3.72	20.97	Pass
	78	1	3.88	20.97	Pass

TEST RESULTS DATA

Average Power Table

(Reporting Only)

DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)
	0	1	3.42	5.22
DH1	39	1	3.55	5.22
	78	1	3.58	5.22
	0	1	1.24	5.12
2DH1	39	1	1.20	5.12
	78	1	1.50	5.12
	0	1	1.23	5.15
3DH1	39	1	1.24	5.15
	78	1	1.52	5.15

TEST RESULTS DATA

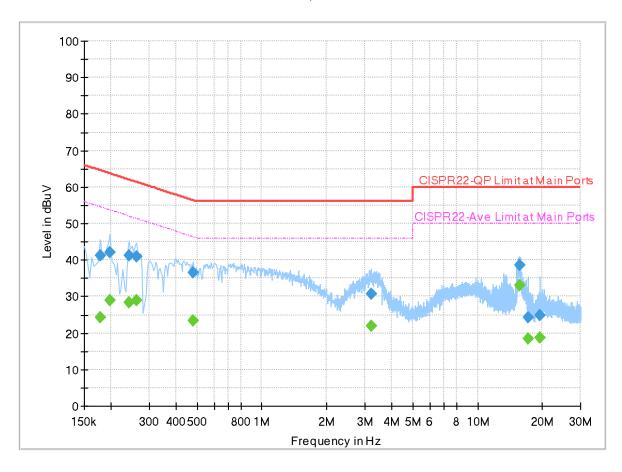
Number of Hopping Frequency

Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail
79	20	> 15	Pass

Appendix B. AC Conducted Emission Test Results

Tool Engineer	Lauia Chung	Temperature :	16.4~24.5°C
Test Engineer :	Louis Chung	Relative Humidity :	38.6~44.7%

Report No.: FR311909A

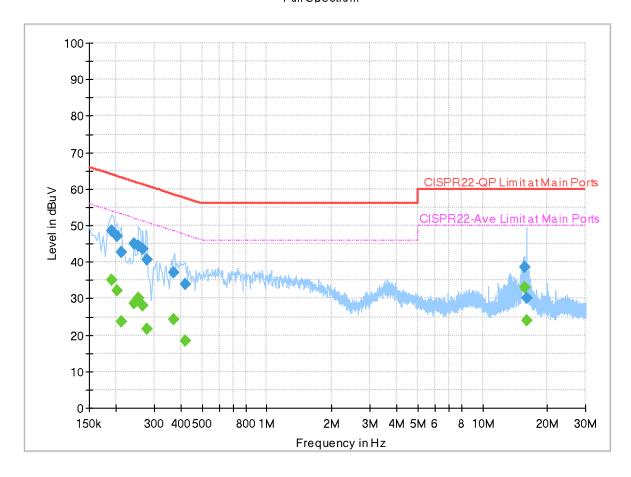

TEL: 886-3-327-0868 Page Number : B1 of B1

EUT Information

Report NO: 311909
Test Mode: Mode 1
Test Voltage: 120Vac/60Hz

Phase: Line

Full Spectrum


Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.178000	41.27	(4241)	64.58	23.31	L1	OFF	19.7
0.178000		24.25	54.58	30.33	L1	OFF	19.7
0.198000	42.01		63.69	21.68	L1	OFF	19.7
0.198000		29.08	53.69	24.61	L1	OFF	19.7
0.242000	41.32		62.03	20.71	L1	OFF	19.7
0.242000	-	28.36	52.03	23.67	L1	OFF	19.7
0.262000	40.94		61.37	20.43	L1	OFF	19.7
0.262000	-	28.83	51.37	22.54	L1	OFF	19.7
0.482000	36.42		56.31	19.89	L1	OFF	19.7
0.482000		23.40	46.31	22.91	L1	OFF	19.7
3.226000	30.69		56.00	25.31	L1	OFF	19.8
3.226000		21.87	46.00	24.13	L1	OFF	19.8
15.670000	38.73		60.00	21.27	L1	OFF	19.9
15.670000	-	33.18	50.00	16.82	L1	OFF	19.9
17.150000	24.13		60.00	35.87	L1	OFF	19.9
17.150000		18.55	50.00	31.45	L1	OFF	19.9
19.434000	24.88		60.00	35.12	L1	OFF	19.9
19.434000	-	18.74	50.00	31.26	L1	OFF	19.9

EUT Information

Report NO: 311909
Test Mode: Mode 1
Test Voltage: 120Vac/60Hz
Phase: Neutral

Full Spectrum

Final Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.190000		35.00	54.04	19.04	N	OFF	19.7
0.190000	48.66		64.04	15.38	N	OFF	19.7
0.202000		32.10	53.53	21.43	N	OFF	19.7
0.202000	47.10		63.53	16.43	N	OFF	19.7
0.210000		23.61	53.21	29.60	N	OFF	19.7
0.210000	42.75		63.21	20.46	N	OFF	19.7
0.242000		28.69	52.03	23.34	N	OFF	19.7
0.242000	45.14		62.03	16.89	N	OFF	19.7
0.254000		30.00	51.63	21.63	N	OFF	19.7
0.254000	44.50		61.63	17.13	N	OFF	19.7
0.266000		28.15	51.24	23.09	N	OFF	19.7
0.266000	43.55		61.24	17.69	N	OFF	19.7
0.278000		21.66	50.88	29.22	N	OFF	19.7
0.278000	40.71		60.88	20.17	N	OFF	19.7
0.370000		24.18	48.50	24.32	N	OFF	19.7
0.370000	37.06	-	58.50	21.44	N	OFF	19.7
0.418000		18.53	47.49	28.96	N	OFF	19.7
0.418000	34.04		57.49	23.45	N	OFF	19.7
15.670000		32.99	50.00	17.01	N	OFF	20.0

15.670000	38.49		60.00	21.51	N	OFF	20.0
16.002000		24.07	50.00	25.93	N	OFF	20.0
16.002000	30.21		60.00	29.79	N	OFF	20.0

Appendix C. Radiated Spurious Emission

Test Engineer :	Yuan Lee, Bank Lin, Fu Chen and Troye Hsieh	Temperature :	17.9~25.9°C
rest Engineer .		Relative Humidity :	35.1~63.6%

Report No.: FR311909A

<Sample 1 with Battery 1>

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

вт	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2322.495	47.96	-26.04	74	47.75	27.36	7.08	34.23	100	185	Р	Н
		2322.495	23.17	-30.83	54	-	-	-	-	-	-	Α	Н
	*	2402	103.65	-	-	103.16	27.51	7.18	34.2	100	185	Р	Н
вт	*	2402	78.86	-	-	-	-	-	-	-	-	Α	Н
CH00		2369.22	48.07	-25.93	74	47.76	27.38	7.14	34.21	200	72	Р	V
2402MHz		2369.22	23.28	-30.72	54	-	-	-	-	-	-	Α	V
	*	2402	107.82	-	-	107.33	27.51	7.18	34.2	200	72	Р	V
	*	2402	83.03	-	-	-	-	-	-	-	-	Α	V
													V
		2331.7	47.65	-26.35	74	47.44	27.34	7.09	34.22	121	118	Р	Н
		2331.7	22.86	-31.14	54	-	-	-	-	-	-	Α	Н
	*	2441	106.97	-	-	106.16	27.75	7.24	34.18	121	118	Р	Н
	*	2441	82.18	-	-	-	-	-	-	-	-	Α	Н
		2485.23	48.64	-25.36	74	47.64	27.87	7.3	34.17	121	118	Р	Н
BT		2485.23	23.85	-30.15	54	-	-	-	-	-	-	Α	Н
CH 39 2441MHz		2383.22	48.88	-25.12	74	48.49	27.43	7.16	34.2	296	168	Р	V
244 I WITIZ		2383.22	24.09	-29.91	54	-	-	-	-	-	-	Α	V
	*	2441	110.95	-	-	110.14	27.75	7.24	34.18	296	168	Р	V
	*	2441	86.16	-	-	-	-	-	-	-	-	Α	V
		2489.29	48.89	-25.11	74	47.86	27.88	7.31	34.16	296	168	Р	V
		2489.29	24.1	-29.9	54	-	-	-	-	-	-	Α	V

TEL: 886-3-327-0868 Page Number : C1 of C15

вт Antenna Table Peak Pol. Note Frequency Level Margin Limit Read Path Preamp Ant Line Level Factor Loss Factor Pos Pos Avg. (dBµV/m) (dB) (dB \(V/m \) (deg) (P/A) (H/V) (MHz) (dB_µV) (dB/m) (dB) (dB) (cm) * 107.03 2480 106.04 27.86 7.3 34.17 100 138 Н * 2480 82.24 -Α Н ------2483.64 Ρ 51.27 -22.73 74 50.27 27.87 7.3 34.17 100 138 Н 2483.64 26.48 -27.52 54 Α Η Н BT Н **CH 78** 2480 109.3 108.31 27.86 7.3 34.17 400 167 Р ٧ 2480MHz 2480 84.51 -Α ٧ 2483.8 53.09 ٧ -20.91 74 52.09 27.87 7.3 34.17 400 167 ٧ Α 2483.8 28.3 -25.7 54 ٧ ٧ No other spurious found. Remark All results are PASS against Peak and Average limit line.

Report No.: FR311909A

TEL: 886-3-327-0868 Page Number : C2 of C15

2.4GHz 2400~2483.5MHz

Report No.: FR311909A

BT (Harmonic @ 3m)

ВТ	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg.	
		4804	41.71	-32.29	74	55.47	32.42	11.76	57.94	-	(deg)	P	(г <i>і</i> / v)
		4004	41.71	-32.29	74	33.47	32.42	11.70	37.94	_	_	'	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
ВТ													Н
CH 00													Н
2402MHz		4804	40.94	-33.06	74	54.7	32.42	11.76	57.94	-	-	Р	V
2402111112													V
													٧
													V
													٧
													V
													V
													V
													V
													V
													V
													V

TEL: 886-3-327-0868 Page Number : C3 of C15

BT Antenna Table Peak Pol. Note Frequency Level Margin Limit Read Path Preamp Ant Line Level **Factor** Loss Factor Pos Pos Avg. (dBµV/m) (deg) (P/A) (H/V) (MHz) (dB) (dBµV/m) (dBµV) (dB/m) (dB) (dB) (cm) 41.44 4882 -32.56 74 54.81 32.76 11.87 Н 58 7323 43.56 -30.44 74 51.04 36.81 14.44 58.73 Ρ Н Н Η Н Н Н Н Н Η Н вт Н **CH 39** 4882 41.59 -32.41 74 54.96 32.76 11.87 58 Ρ V 2441MHz Ρ ٧ 7323 44.08 -29.92 74 51.56 14.44 58.73 36.81 ٧ ٧ ٧ ٧ ٧ ٧ ٧ ٧ ٧ ٧

Report No.: FR311909A

TEL: 886-3-327-0868 Page Number : C4 of C15

ВТ	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4960	42.78	-31.22	74	55.79	33.06	11.99	58.06	-	-	Р	Н
		7440	42.52	-31.48	74	50.37	36.42	14.44	58.71	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
ВТ													Н
CH 78													Н
2480MHz		4960	41.69	-32.31	74	54.7	33.06	11.99	58.06	-	-	Р	V
240011112		7440	43.6	-30.4	74	51.45	36.42	14.44	58.71	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. No	o other spurious	s found.										
Remark	2. All	results are PA	SS against F	Peak and	l Average lim	it line.							
	3. Th	e emission pos	ition marked	l as "-" m	eans no susp	pected em	ission found	d with suf	ficient mar	gin agai	inst limit	line or	noise
	flo	or only.											

Report No.: FR311909A

TEL: 886-3-327-0868 Page Number : C5 of C15

<Sample 1 with Battery 2>

2.4GHz 2400~2483.5MHz

Report No.: FR311909A

BT (Band Edge @ 3m)

ВТ	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	2480	106.96	-	-	105.97	27.86	7.3	34.17	109	119	Р	Н
	*	2480	82.17	-	-	-	-	-	-	-	-	Α	Н
		2483.52	51.94	-22.06	74	50.94	27.87	7.3	34.17	109	119	Р	Н
		2483.52	27.15	-26.85	54	-	-	-	-	-	-	Α	Н
D.T.													Н
BT CH 78													Н
2480MHz	*	2480	110.12	-	1	109.13	27.86	7.3	34.17	400	166	Р	V
2400WITIZ	*	2480	85.33	-	ı	-	-	-	-	-	-	Α	V
		2483.56	53.26	-20.74	74	52.26	27.87	7.3	34.17	400	166	Р	V
		2483.56	28.47	-25.53	54	-	-	-	-	-	-	Α	V
													V
													V
	1. No	other spurious	s found.										
Remark		results are PA		Peak and	Average lim	it line.							

TEL: 886-3-327-0868 Page Number : C6 of C15

2.4GHz 2400~2483.5MHz

Report No.: FR311909A

BT (Harmonic @ 3m)

ВТ	Note	Frequency	Level	Margin	Limit Line	Read Level	Antenna Factor	Path Loss	Preamp Factor	Ant Pos	Table Pos	Peak Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4960	43.01	-30.99	74	56.02	33.06	11.99	58.06	-	-	Р	F
		7440	43.67	-30.33	74	51.52	36.42	14.44	58.71	-	-	Р	F
												Р	F
												Р	ŀ
													ŀ
													ŀ
													F
													ŀ
													ŀ
													ŀ
ВТ													ŀ
CH 78													ŀ
2480MHz		4960	42.76	-31.24	74	55.77	33.06	11.99	58.06	-	-	Р	١
		7440	44.13	-29.87	74	51.98	36.42	14.44	58.71	-	-	Р	١
													١
													١
													١
													١
													١
													١
													١
													١
													١
													\

3. The emission position marked as "-" means no suspected emission found with sufficient margin against limit line or noise floor only.

: C7 of C15 TEL: 886-3-327-0868 Page Number

Emission below 1GHz

Report No.: FR311909A

2.4GHz BT (LF)

(MHz)											Pol.
(MHz)	1		Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
•	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	
30	27.95	-12.05	40	35.34	23.92	0.84	32.15	-	-	Р	Н
90.48	30.28	-13.22	43.5	46.16	14.67	1.58	32.13	-	-	Р	Н
147.18	27.11	-16.39	43.5	40.37	16.95	1.92	32.13	-	-	Р	Н
948.9	33.16	-12.84	46	29.2	30.11	4.66	30.81	-	-	Р	Н
958.7	34	-12	46	29.4	30.62	4.69	30.71	-	-	Р	Н
976.9	34.18	-19.82	54	29.54	30.44	4.73	30.53	-	-	Р	Н
											Н
											Н
											Н
											Н
											Н
											Н
41.88	27.92	-12.08	40	40.76	18.27	1.11	32.22	100	31	Q	V
89.4	29.93	-13.57	43.5	45.99	14.49	1.58	32.13	-	-	Р	V
174.45	24.32	-19.18	43.5	39.28	15.04	2.07	32.07	-	-	Р	V
924.4	32.9	-13.1	46	30.43	28.98	4.52	31.03	-	-	Р	V
948.9	33.96	-12.04	46	30	30.11	4.66	30.81	-	-	Р	V
969.9	34.31	-19.69	54	29.64	30.55	4.72	30.6	-	-	Р	V
											V
											V
											V
											V
											V
											V
	948.9 958.7 976.9 41.88 89.4 174.45 924.4 948.9	948.9 33.16 958.7 34 976.9 34.18 41.88 27.92 89.4 29.93 174.45 24.32 924.4 32.9 948.9 33.96	948.9 33.16 -12.84 958.7 34 -12 976.9 34.18 -19.82 41.88 27.92 -12.08 89.4 29.93 -13.57 174.45 24.32 -19.18 924.4 32.9 -13.1 948.9 33.96 -12.04	948.9 33.16 -12.84 46 958.7 34 -12 46 976.9 34.18 -19.82 54 41.88 27.92 -12.08 40 89.4 29.93 -13.57 43.5 174.45 24.32 -19.18 43.5 924.4 32.9 -13.1 46 948.9 33.96 -12.04 46	948.9 33.16 -12.84 46 29.2 958.7 34 -12 46 29.4 976.9 34.18 -19.82 54 29.54 41.88 27.92 -12.08 40 40.76 89.4 29.93 -13.57 43.5 45.99 174.45 24.32 -19.18 43.5 39.28 924.4 32.9 -13.1 46 30.43 948.9 33.96 -12.04 46 30	948.9 33.16 -12.84 46 29.2 30.11 958.7 34 -12 46 29.4 30.62 976.9 34.18 -19.82 54 29.54 30.44 41.88 27.92 -12.08 40 40.76 18.27 89.4 29.93 -13.57 43.5 45.99 14.49 174.45 24.32 -19.18 43.5 39.28 15.04 924.4 32.9 -13.1 46 30.43 28.98 948.9 33.96 -12.04 46 30 30.11	948.9 33.16 -12.84 46 29.2 30.11 4.66 958.7 34 -12 46 29.4 30.62 4.69 976.9 34.18 -19.82 54 29.54 30.44 4.73 41.88 27.92 -12.08 40 40.76 18.27 1.11 89.4 29.93 -13.57 43.5 45.99 14.49 1.58 174.45 24.32 -19.18 43.5 39.28 15.04 2.07 924.4 32.9 -13.1 46 30.43 28.98 4.52 948.9 33.96 -12.04 46 30 30.11 4.66	948.9 33.16 -12.84 46 29.2 30.11 4.66 30.81 958.7 34 -12 46 29.4 30.62 4.69 30.71 976.9 34.18 -19.82 54 29.54 30.44 4.73 30.53 41.88 27.92 -12.08 40 40.76 18.27 1.11 32.22 89.4 29.93 -13.57 43.5 45.99 14.49 1.58 32.13 174.45 24.32 -19.18 43.5 39.28 15.04 2.07 32.07 924.4 32.9 -13.1 46 30.43 28.98 4.52 31.03 948.9 33.96 -12.04 46 30 30.11 4.66 30.81	948.9 33.16 -12.84 46 29.2 30.11 4.66 30.81 - 958.7 34 -12 46 29.4 30.62 4.69 30.71 - 976.9 34.18 -19.82 54 29.54 30.44 4.73 30.53 - 41.88 27.92 -12.08 40 40.76 18.27 1.11 32.22 100 89.4 29.93 -13.57 43.5 45.99 14.49 1.58 32.13 - 174.45 24.32 -19.18 43.5 39.28 15.04 2.07 32.07 - 924.4 32.9 -13.1 46 30.43 28.98 4.52 31.03 - 948.9 33.96 -12.04 46 30 30.11 4.66 30.81 -	948.9 33.16 -12.84 46 29.2 30.11 4.66 30.81 - - 958.7 34 -12 46 29.4 30.62 4.69 30.71 - - 976.9 34.18 -19.82 54 29.54 30.44 4.73 30.53 - - 41.88 27.92 -12.08 40 40.76 18.27 1.11 32.22 100 31 89.4 29.93 -13.57 43.5 45.99 14.49 1.58 32.13 - - 174.45 24.32 -19.18 43.5 39.28 15.04 2.07 32.07 - - 924.4 32.9 -13.1 46 30.43 28.98 4.52 31.03 - - 948.9 33.96 -12.04 46 30 30.11 4.66 30.81 - -	948.9 33.16 -12.84 46 29.2 30.11 4.66 30.81 P 958.7 34 -12 46 29.4 30.62 4.69 30.71 P 976.9 34.18 -19.82 54 29.54 30.44 4.73 30.53 P 41.88 27.92 -12.08 40 40.76 18.27 1.11 32.22 100 31 Q 89.4 29.93 -13.57 43.5 45.99 14.49 1.58 32.13 P 174.45 24.32 -19.18 43.5 39.28 15.04 2.07 32.07 P 924.4 32.9 -13.1 46 30.43 28.98 4.52 31.03 P 948.9 33.96 -12.04 46 30 30.11 4.66 30.81 P

1. No other spurious found.

Remark

2. All results are PASS against limit line.

3. The emission position marked as "-" means no suspected emission found and emission level has at least 6dB margin against limit or emission is noise floor only.

TEL: 886-3-327-0868 Page Number: C8 of C15

<Sample 1 with Battery 3>

2.4GHz 2400~2483.5MHz

Report No.: FR311909A

BT (Band Edge @ 3m)

ВТ	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	$(dB\mu V/m)$	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	2480	106.48	-	-	105.49	27.86	7.3	34.17	108	118	Р	Н
	*	2480	81.69	-	-	-	-	ı	-	-	1	Α	Н
		2483.52	50.55	-23.45	74	49.55	27.87	7.3	34.17	108	118	Р	Н
		2483.52	25.76	-29.21	54	-	-	1	-	-	1	Α	Н
DT													Н
BT CH 78													Н
2480MHz	*	2480	110.16	-	-	109.17	27.86	7.3	34.17	353	163	Р	V
2400W112	*	2480	85.37	-	-	-	-	ı	-	-	1	Α	V
		2483.64	53.21	-20.79	74	52.21	27.87	7.3	34.17	353	163	Р	٧
		2483.64	28.42	-25.58	54	-	-	1	-	-	1	Α	V
													V
													V
	1. No	other spurious	s found.										
Remark		results are PA		Peak and	Average lim	it line.							

TEL: 886-3-327-0868 Page Number : C9 of C15

2.4GHz 2400~2483.5MHz

Report No.: FR311909A

BT (Harmonic @ 3m)

ВТ	Note	Frequency	Level	Margin	Limit Line	Read Level	Antenna Factor	Path Loss	Preamp Factor	Ant Pos	Table Pos	Peak Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4960	45.62	-28.38	74	58.63	33.06	11.99	58.06	-	-	Р	F
		7440	43.06	-30.94	74	50.91	36.42	14.44	58.71	-	-	Р	L
												Р	F
													F
												Р	F
													F
													F
													H
													F
													ŀ
вт													F
CH 78													H
2480MHz		4960	43.36	-30.64	74	56.37	33.06	11.99	58.06	-	-	Р	V
		7440	42.74	-31.26	74	50.59	36.42	14.44	58.71	-	-	Р	\
													٧
													٧
													٧
													٧
													٧
													٧
													٧
													V
													V
													V

3. The emission position marked as "-" means no suspected emission found with sufficient margin against limit line or noise floor only.

: C10 of C15 TEL: 886-3-327-0868 Page Number

Emission below 1GHz

Report No.: FR311909A

2.4GHz BT (LF)

ВТ	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	
		30	27.95	-12.05	40	35.34	23.92	0.84	32.15	-	-	Р	Н
		90.48	30.28	-13.22	43.5	46.16	14.67	1.58	32.13	-	-	Р	Н
		147.18	27.11	-16.39	43.5	40.37	16.95	1.92	32.13	-	-	Р	Н
		948.9	33.16	-12.84	46	29.2	30.11	4.66	30.81	-	-	Р	Н
		958.7	34	-12	46	29.4	30.62	4.69	30.71	-	-	Р	Н
		976.9	34.18	-19.82	54	29.54	30.44	4.73	30.53	-	-	Р	Н
													Н
													Н
													Н
													Н
2.4GHz													Н
ВТ													Н
LF		41.88	27.92	-12.08	40	40.76	18.27	1.11	32.22	100	31	Q	V
		89.4	29.93	-13.57	43.5	45.99	14.49	1.58	32.13	-	-	Р	V
		174.45	24.32	-19.18	43.5	39.28	15.04	2.07	32.07	-	-	Р	V
		924.4	32.9	-13.1	46	30.43	28.98	4.52	31.03	-	-	Р	V
		948.9	33.96	-12.04	46	30	30.11	4.66	30.81	-	-	Р	V
		969.9	34.31	-19.69	54	29.64	30.55	4.72	30.6	-	-	Р	V
													V
													V
													V
													V
													V
													٧

1. No other spurious found.

Remark

- 2. All results are PASS against limit line.
- 3. The emission position marked as "-" means no suspected emission found and emission level has at least 6dB margin against limit or emission is noise floor only.

TEL: 886-3-327-0868 Page Number : C11 of C15

<Sample 2 with Battery 1>

2.4GHz 2400~2483.5MHz

Report No.: FR311909A

BT (Band Edge @ 3m)

ВТ	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	2480	95.79	-	-	94.8	27.86	7.3	34.17	296	27	Р	Н
	*	2480	71	-	-	-	-	-	-	-	-	Α	Н
		2491.16	49.68	-24.32	74	48.65	27.88	7.31	34.16	296	27	Р	Н
		2491.16	24.89	-29.11	54	-	-	-	-	-	-	Α	Н
ВТ													Н
													Н
CH 78 2480MHz	*	2480	93.2	-	-	92.21	27.86	7.3	34.17	400	125	Р	V
2400141712	*	2480	68.41	-	-	-	-	-	-	-	-	Α	V
		2496.44	49.33	-24.67	74	48.28	27.89	7.32	34.16	400	125	Р	V
		2496.44	24.54	-29.46	54	-	-	-	-	-	-	Α	V
													V
													V
Remark		o other spurious		Peak and	l Average lim	it line.							

TEL: 886-3-327-0868 Page Number : C12 of C15

2.4GHz 2400~2483.5MHz BT (Harmonic @ 3m)

Report No.: FR311909A

ВТ	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	
		4960	42.77	-31.23	74	55.78	33.06	11.99	58.06	-	-	Р	Н
		7440	43.93	-30.07	74	51.78	36.42	14.44	58.71	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
ВТ													Н
CH 78													Н
2480MHz		4960	42.56	-31.44	74	55.57	33.06	11.99	58.06	-	-	Р	V
		7440	44.08	-29.92	74	51.93	36.42	14.44	58.71	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V

Remark

- 2. All results are PASS against Peak and Average limit line.
- The emission position marked as "-" means no suspected emission found with sufficient margin against limit line or noise floor only.

TEL: 886-3-327-0868 Page Number: C13 of C15

Note symbol

Report No.: FR311909A

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not
	exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: 886-3-327-0868 Page Number : C14 of C15

A calculation example for radiated spurious emission is shown as below:

Report No.: FR311909A

ВТ	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
ВТ		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Margin(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

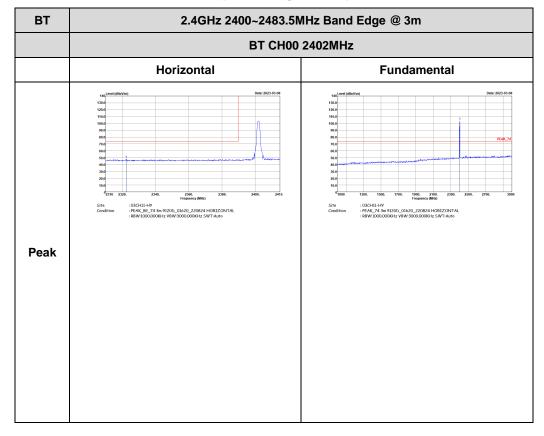
For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Margin(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

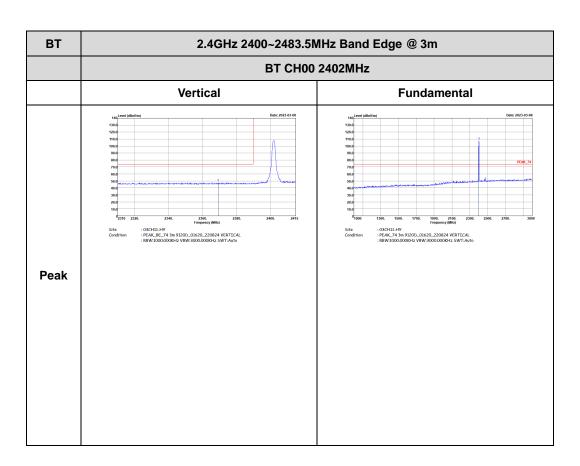
Peak measured complies with the limit line, so test result is "PASS".

TEL: 886-3-327-0868 Page Number : C15 of C15

Appendix D. Radiated Spurious Emission Plots

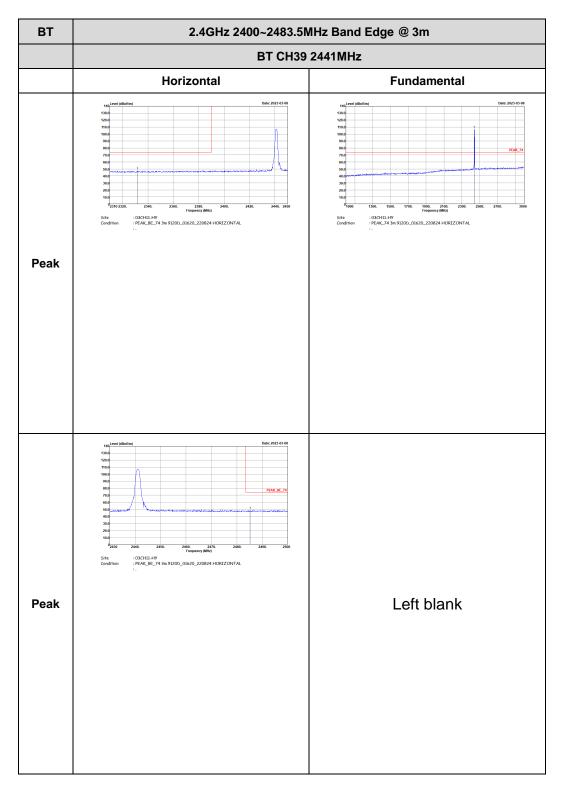

Test Engineer :	Vuon Loo Bank Lin Eu Chan and Trava Hainh	Temperature :	17.9~25.9°C
rest Engineer.	Yuan Lee, Bank Lin, Fu Chen and Troye Hsieh	Relative Humidity :	35.1~63.6%

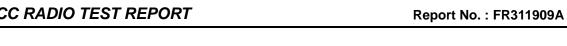
Report No.: FR311909A

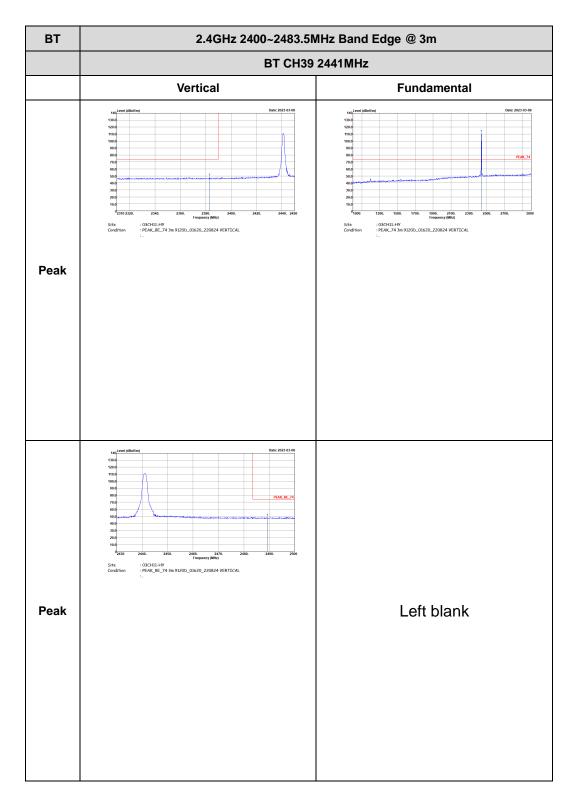

<Sample 1 with Battery 1>

2.4GHz 2400~2483.5MHz

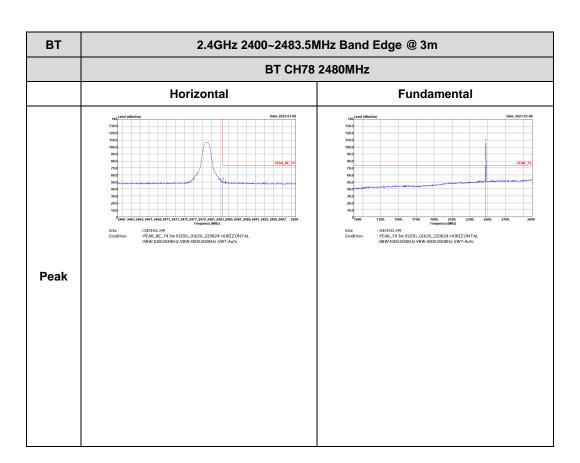
BT (Band Edge @ 3m)


TEL: 886-3-327-0868 Page Number : D1 of D19

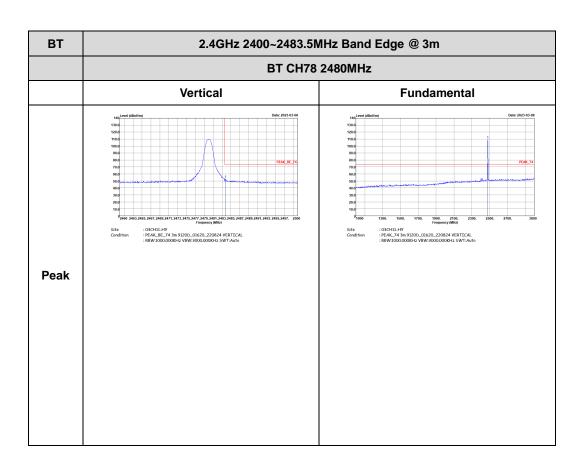

Report No.: FR311909A


TEL: 886-3-327-0868 Page Number : D2 of D19

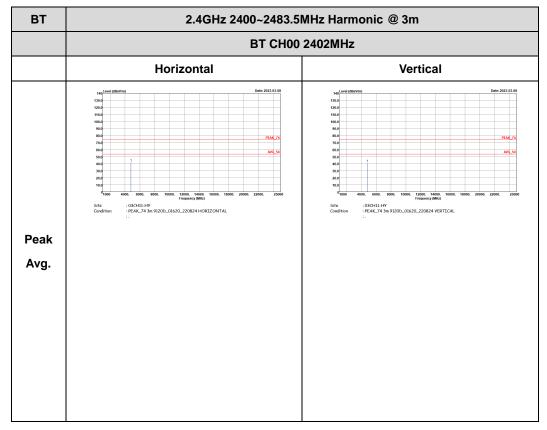
Report No.: FR311909A

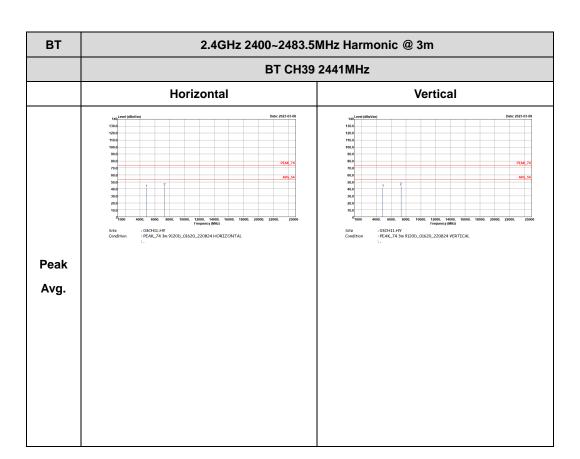


: D3 of D19 TEL: 886-3-327-0868 Page Number

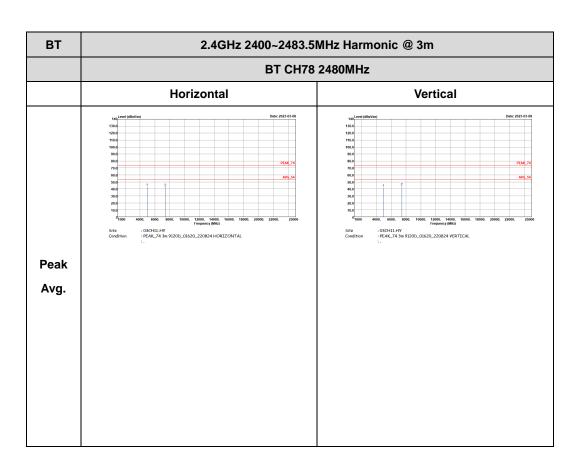


TEL: 886-3-327-0868 Page Number : D4 of D19


TEL: 886-3-327-0868 Page Number : D5 of D19

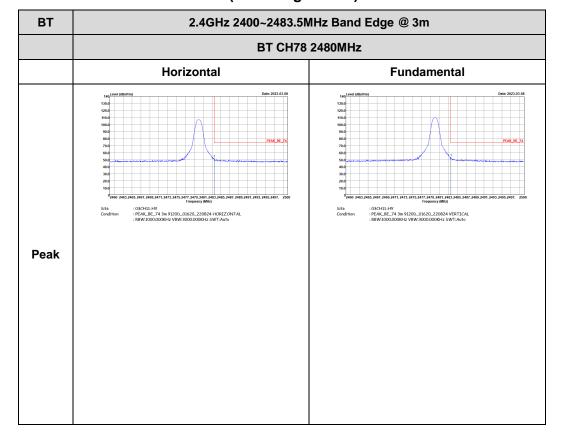

TEL: 886-3-327-0868 Page Number : D6 of D19

Report No.: FR311909A

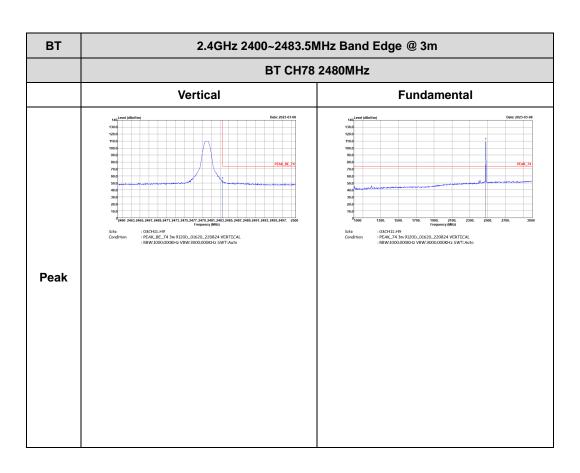

BT (Harmonic @ 3m)

TEL: 886-3-327-0868 Page Number : D7 of D19

TEL: 886-3-327-0868 Page Number : D8 of D19

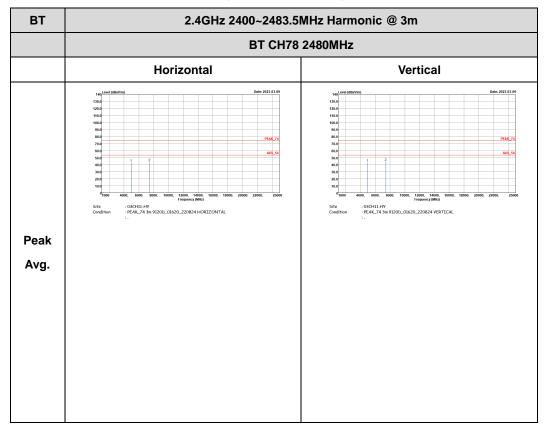

TEL: 886-3-327-0868 Page Number : D9 of D19

<Sample 1 with Battery 2>


2.4GHz 2400~2483.5MHz

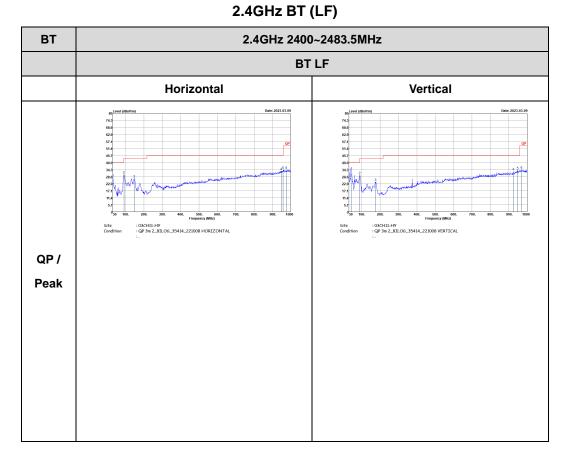
Report No.: FR311909A

BT (Band Edge @ 3m)


TEL: 886-3-327-0868 Page Number : D10 of D19

TEL: 886-3-327-0868 Page Number : D11 of D19

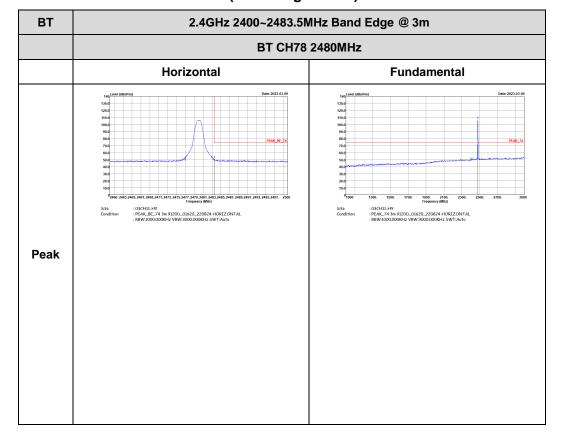
Report No.: FR311909A


BT (Harmonic @ 3m)

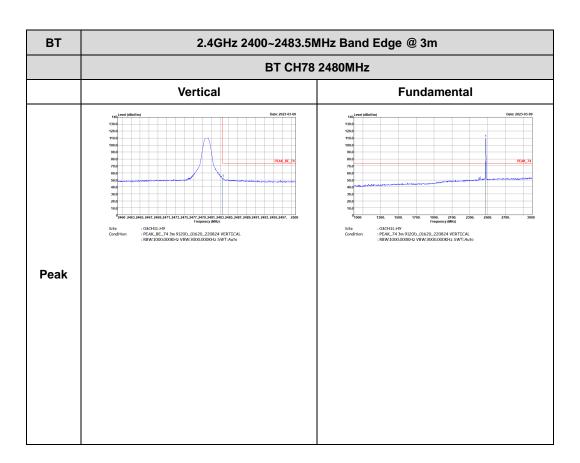
TEL: 886-3-327-0868 Page Number : D12 of D19

Emission below 1GHz

Report No.: FR311909A

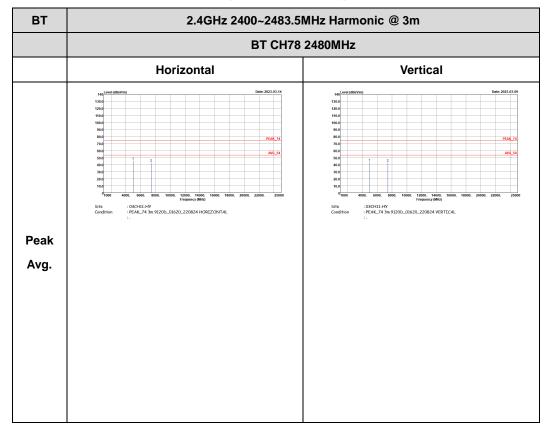

TEL: 886-3-327-0868 Page Number : D13 of D19

<Sample 1 with Battery 3>


2.4GHz 2400~2483.5MHz

Report No.: FR311909A

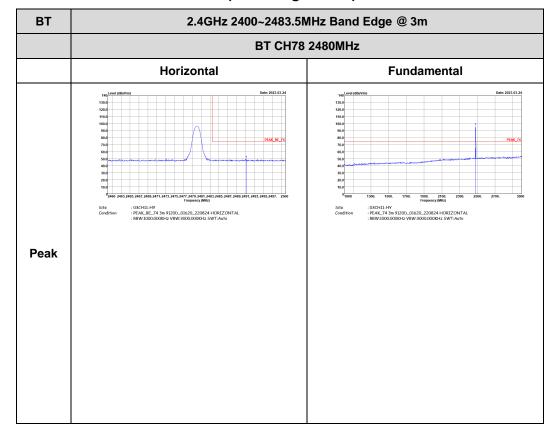
BT (Band Edge @ 3m)


TEL: 886-3-327-0868 Page Number : D14 of D19

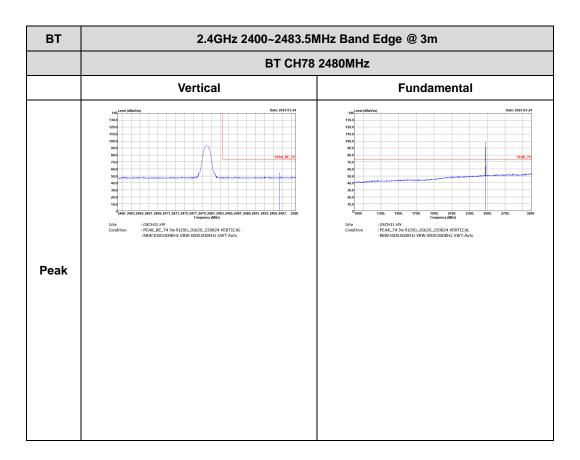
TEL: 886-3-327-0868 Page Number : D15 of D19

Report No.: FR311909A

BT (Harmonic @ 3m)

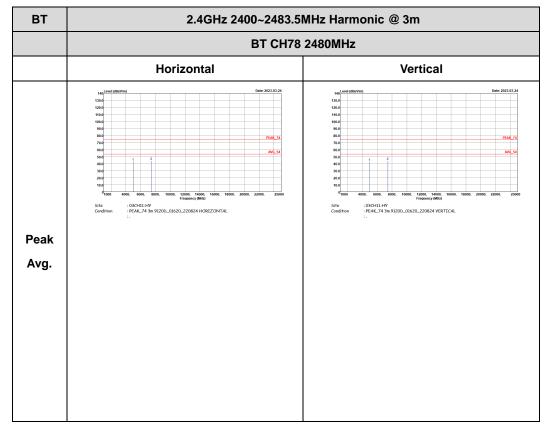

TEL: 886-3-327-0868 Page Number : D16 of D19

<Sample 2 with Battery 1>

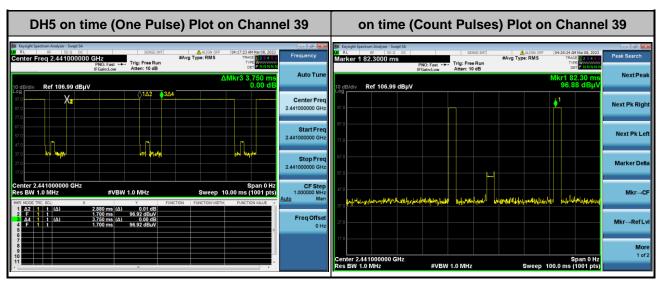

2.4GHz 2400~2483.5MHz

Report No.: FR311909A

BT (Band Edge @ 3m)


TEL: 886-3-327-0868 Page Number : D17 of D19

TEL: 886-3-327-0868 Page Number : D18 of D19


Report No.: FR311909A

BT (Harmonic @ 3m)

TEL: 886-3-327-0868 Page Number : D19 of D19

Appendix E. Duty Cycle Plots

Report No.: FR311909A

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.88 / 100 = 5.76 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. DH5 has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the on time period to have DH5 packet completing one hopping sequence is

$$2.88 \text{ ms x } 20 \text{ channels} = 57.6 \text{ ms}$$

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.6 ms] = 2 hops Thus, the maximum possible ON time:

$$2.88 \text{ ms } x 2 = 5.76 \text{ ms}$$

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

$$20 \times log(5.76 \text{ ms}/100 \text{ ms}) = -24.79 \text{ dB}$$

TEL: 886-3-327-0868 Page Number : E1 of E1