

Report No.: FR8N0132-01A

FCC RADIO TEST REPORT

FCC ID : UZ7TC83B0

Equipment: Mobile Computer

Brand Name : ZEBRA Model Name : TC83B0

Applicant : Zebra Technologies Corporation

1 Zebra Plaza, Holtsville, NY 11742

Manufacturer : Zebra Technologies Corporation

1 Zebra Plaza, Holtsville, NY 11742

Standard : FCC Part 15 Subpart C §15.247

The product was received on Nov. 01, 2018 and testing was started from Nov. 08, 2018 and completed on Mar. 22, 2019. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Reviewed by: Jones Tsai

TEL: 886-3-327-3456

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory

Page Number

: 1 of 62

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

Table of Contents

His	tory o	f this test report	3
Sur	nmary	y of Test Result	4
1	Gene	eral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	6
	1.3	Modification of EUT	6
	1.4	Testing Location	6
	1.5	Applicable Standards	7
2	Test	Configuration of Equipment Under Test	8
	2.1	Carrier Frequency Channel	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	12
	2.4	Support Unit used in test configuration and system	13
	2.5	EUT Operation Test Setup	13
	2.6	Measurement Results Explanation Example	13
3	Test	Result	14
	3.1	Number of Channel Measurement	14
	3.2	Hopping Channel Separation Measurement	16
	3.3	Dwell Time Measurement	22
	3.4	20dB and 99% Bandwidth Measurement	24
	3.5	Output Power Measurement	35
	3.6	Conducted Band Edges Measurement	37
	3.7	Conducted Spurious Emission Measurement	44
	3.8	Radiated Band Edges and Spurious Emission Measurement	54
	3.9	AC Conducted Emission Measurement	58
	3.10	Antenna Requirements	60
4	List	of Measuring Equipment	61
5	Unce	rtainty of Evaluation	62
Apı	pendi	x A. AC Conducted Emission Test Result	
Apı	pendi	x B. Radiated Spurious Emission	

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report Template No.: BU5-FR15CBT Version 2.4

Appendix C. Radiated Spurious Emission Plots

Appendix D. Duty Cycle Plots

Appendix E. Setup Photographs

Page Number Issued Date : 2 of 62 : Mar. 27, 2019

Report Version

: 01

Report No.: FR8N0132-01A

History of this test report

Report No.: FR8N0132-01A

Report No.	Version	Description	Issued Date
FR8N0132-01A	01	Initial issue of report	Mar. 27, 2019

TEL: 886-3-327-3456 Page Number : 3 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

Summary of Test Result

Report No.: FR8N0132-01A

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	Pass	-
3.4	2.1049	99% Occupied Bandwidth	Reporting only	-
3.5	15.247(b)(1)	Peak Output Power	Pass	-
3.6	15.247(d)	Conducted Band Edges	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	Under limit 7.44 dB at 69.420 MHz
3.9	15.207	AC Conducted Emission	Pass	Under limit 7.82 dB at 0.758 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang Report Producer: Polly Tsai

TEL: 886-3-327-3456 Page Number : 4 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

1 General Description

1.1 Product Feature of Equipment Under Test

F	Product Feature					
Equipment	Mobile Computer					
Brand Name	ZEBRA					
Model Name	TC83B0					
FCC ID	UZ7TC83B0					
Sample 1	EUT with Scanner 1 (SE4750SR)					
Sample 2	EUT with Scanner 2 (SE4750MR)					
Sample 3	EUT with Scanner 3 (SE4850)					
Sample 4	EUT with Scanner 4 (SE965)					
	WLAN 11a/b/g/n HT20/HT40					
EUT supports Radios application	WLAN 11ac VHT20/VHT40/VHT80					
	Bluetooth BR/EDR/LE					
HW Version	EV					
SW Version	01-12-13.00-OG-U00-PRD					
FW Version	FUSION_QA_2_1.1.0.003_O					
MFD	27-Jan-19					
EUT Stage	Engineering Sample					

Report No.: FR8N0132-01A

Remark: The above EUT's information was declared by manufacturer.

Specification of Accessories					
Battery 1	Brand Name	Zebra	Part Number	BT-000380	
Battery 2	Brand Name	Zebra	Part Number	82-176054-01	
Headset 1	Brand Name	Zebra	Part Number	HDST-35MM-PTVP-01	
Audio adapter cable 1	Brand Name	Zebra	Part Number	CBL-TC8X-AUDBJ-01	
Headset 2	Brand Name	Zebra	Part Number	HS2100-OTH	
HS2100 to Quick Disconnect Cable	Brand Name	Zebra	Part Number	CBL-HS2100-QDC1-01	
Audio adapter cable 2	Brand Name	Zebra	Part Number	CBL-TC8X-AUDQD-01	
Hand Strap	Brand Name	Zebra	Part Number	SG-TC8X-HDSTP-01	
USB Cable	Brand Name	Zebra	Part Number	CBL-TC8X-USBCHG-01	
Holster 1	Brand Name	Zebra	Part Number	SG-TC8X-QDHLST-01	
Holster 2	Brand Name	Zebra	Part Number	SG-TC8X-PMHLST-01	
Adapter	Brand Name	Zebra	Part Number	PWR-BUA5V16W0WW	
DC Line Cord	Brand Name	Zebra	Part Number	CBL-DC-383A1-01	

Remark: USB cable was modified, all test item with this modified cable.

TEL: 886-3-327-3456 Page Number : 5 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

1.2 Product Specification of Equipment Under Test

Standards-related Product Specification					
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz				
Number of Channels	79				
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78				
	Bluetooth BR(1Mbps) : 3.44 dBm (0.0022 W)				
Maximum Output Power to Antenna	Bluetooth EDR (2Mbps) : 2.63 dBm (0.0018 W)				
	Bluetooth EDR (3Mbps) : 2.75 dBm (0.0019 W)				
	Bluetooth BR(1Mbps) : 0.851MHz				
99% Occupied Bandwidth	Bluetooth EDR (2Mbps) : 1.166MHz				
	Bluetooth EDR (3Mbps) : 1.149MHz				
Antenna Type / Gain	Dipole Antenna type with gain 2.81 dBi				
	Bluetooth BR (1Mbps) : GFSK				
Type of Modulation	Bluetooth EDR (2Mbps) : π /4-DQPSK				
	Bluetooth EDR (3Mbps) : 8-DPSK				

Report No. : FR8N0132-01A

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Testing Location

Test Site	SPORTON INTERNATIONAL INC.			
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978			
Test Site No.	Sporton	Site No.		
rest site No.	TH05-HY	CO05-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC.				
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855				
Test Site No.	Sporton Site No.				
iest site NO.	03CH15-HY				

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC Designation No. TW1190 and TW0007

TEL: 886-3-327-3456 Page Number : 6 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

1.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR8N0132-01A

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r01
- FCC KDB 414788 D01 Radiated Test Site v01r01.
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL: 886-3-327-3456 Page Number : 7 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report Template No.: BU5-FR15CBT Version 2.4

Page Number : 8 of 62 Issued Date : Mar. 27, 2019

Report No.: FR8N0132-01A

Report Version : 01

2.2 Test Mode

		Blue	Bluetooth Average Output Power			
Channel	I Frequency		GFSK / 1Mbps			
			DH1	DH3	DH5	
Ch00	2402MHz	1.16 dBm	1.14 dBm	1.06 dBm		
Ch39	2441MHz	1.00 dBm	0.99 dBm	0.95 dBm		
Ch78	2480MHz	<mark>1.88</mark> dBm	1.79 dBm	1.79 dBm		

Report No.: FR8N0132-01A

	el Frequency	Blue	tooth Average Output Po	ower
Channel			π/4-DQPSK / 2Mbps	
		2DH1	2DH3	2DH5
Ch00	2402MHz	-2.33 dBm	-2.43 dBm	-2.45 dBm
Ch39	2441MHz	-2.59 dBm	-2.78 dBm	-2.81 dBm
Ch78	2480MHz	<mark>-1.18</mark> dBm	-1.40 dBm	-1.44 dBm

		Bluetooth Average Output Power			
Channel	Frequency		8-DPSK / 3Mbps	PSK / 3Mbps	
		3DH1	3DH3	3DH5	
Ch00	2402MHz	-2.28 dBm	-2.38 dBm	-2.42 dBm	
Ch39	2441MHz	-2.56 dBm	-2.65 dBm	-2.77 dBm	
Ch78	2480MHz	<mark>-1.15</mark> dBm	-1.32 dBm	-1.45 dBm	

TEL: 886-3-327-3456 Page Number : 9 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

		Bluetooth Peak Output Power GFSK / 1Mbps				
Channel	Frequency					
		DH1	DH3	DH5		
Ch00	2402MHz	2.90 dBm	2.88 dBm	2.89 dBm		
Ch39	2441MHz	2.85 dBm	2.83 dBm	2.83 dBm		
Ch78	2480MHz	<mark>3.44</mark> dBm	3.38 dBm	3.36 dBm		

Report No.: FR8N0132-01A

		Bluetooth Peak Output Power π/4-DQPSK / 2Mbps				
Channel	Frequency					
		2DH1	2DH3	2DH5		
Ch00	2402MHz	2.09 dBm	2.04 dBm	2.05 dBm		
Ch39	2441MHz	1.92 dBm	1.90 dBm	1.90 dBm		
Ch78	2480MHz	<mark>2.63</mark> dBm	2.61 dBm	2.62 dBm		

		Bluetooth Peak Output Power					
Channel	Frequency	8-DPSK / 3Mbps					
		3DH1	3DH3	3DH5			
Ch00	2402MHz	2.38 dBm	2.31 dBm	2.33 dBm			
Ch39	2441MHz	2.16 dBm	2.10 dBm	2.14 dBm			
Ch78	2480MHz	<mark>2.75</mark> dBm	2.75 dBm 2.71 dBm 2.72 dBm				

Remark: The data rate was set in 1Mbps for all the test items due to the highest RF output power.

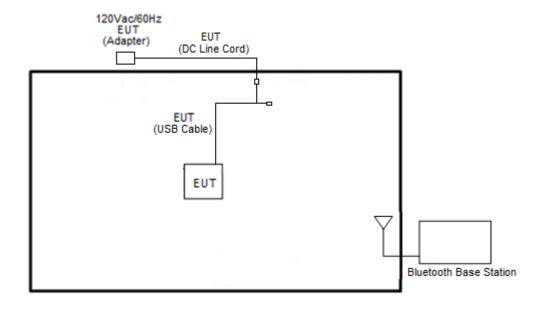
- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

TEL: 886-3-327-3456 Page Number : 10 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

The following summary table is showing all test modes to demonstrate in compliance with the standard.

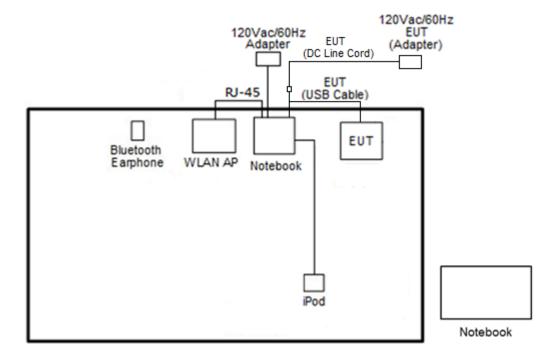
Report No.: FR8N0132-01A

	Summary table of Test Cases				
		Data Rate / Modulation			
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps		
	GFSK	π/4-DQPSK	8-DPSK		
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz		
Test Cases	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz		
rest cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz		
		Bluetooth BR 1Mbps GFSK			
Radiated		Mode 1: CH00_2402 MHz			
Test Cases		Mode 2: CH39_2441 MHz			
	Mode 3: CH78_2480 MHz				
AC	Mode 1: Bluetooth Link + WLAN (2.4GHz) Link + Scanner + USB Cable (Data Link				
Conducted	with Notebook) (eMMC to Notebook) + Battery 1 + DC Line Cord + AC				
Emission	Adapter for Sample	e 3			


Remark:

- For radiated test cases, the worst mode data rate 1Mbps was reported only since the highest RF
 output power in the preliminary tests. The conducted spurious emissions and conducted band edge
 measurement for other data rates were not worse than 1Mbps, and no other significantly
 frequencies found in conducted spurious emission.
- 2. Data Linking with Notebook means data application transferred mode between EUT and Notebook.
- 3. For Radiated Test Cases, the tests were performed with Battery 2 and Sample 1.

TEL: 886-3-327-3456 Page Number : 11 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019


2.3 Connection Diagram of Test System

<Bluetooth Tx Mode>

Report No.: FR8N0132-01A

<AC Conducted Emission Mode>

TEL: 886-3-327-3456 Page Number : 12 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
2.	WLAN AP	ASUS	RT-AC51U	MSQ-RTAC51U	N/A	Unshielded, 1.8 m
3.	Notebook	DELL	Latitude E6320	FCC DoC/ Contains FCC ID: QDS-BRCM1054	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	Notebook	Lenovo	L750	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
5.	iPod	Apple	A1285	FCC DoC	Shielded, 1.0 m	N/A
6.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A
7.	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8 m

Report No.: FR8N0132-01A

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to contact with base station to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB). = 4.2 + 10 = 14.2 (dB)

TEL: 886-3-327-3456 Page Number : 13 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

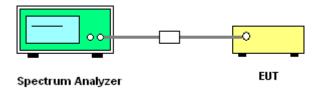
3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

Report No.: FR8N0132-01A


3.1.2 Measuring Instruments

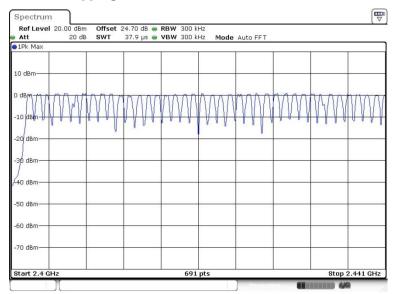
See list of measuring equipment of this test report.

3.1.3 Test Procedure

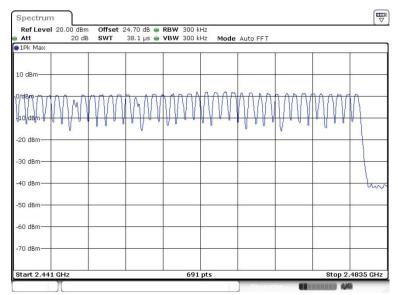
- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup

TEL: 886-3-327-3456 Page Number : 14 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019


3.1.5 Test Result of Number of Hopping Frequency

Tost Engineer :	Shiang Wang and Dorok Hau	Temperature :	21~25 ℃
Test Engineer :	Shiang Wang and Derek Hsu	Relative Humidity:	51~54%


Report No.: FR8N0132-01A

Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail
79	20	> 15	Pass

Number of Hopping Channel Plot on Channel 00 - 78

Date: 21.MAR.2019 16:00:57

Date: 21.MAR.2019 16:01:18

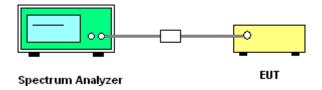
TEL: 886-3-327-3456 Page Number : 15 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Report No.: FR8N0132-01A


3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

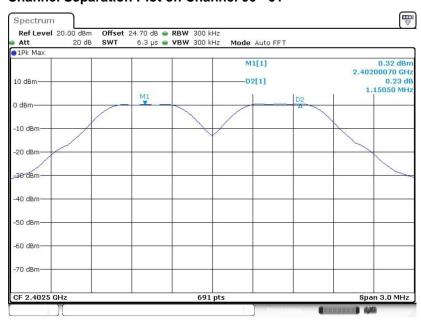
3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

TEL: 886-3-327-3456 Page Number : 16 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

3.2.5 Test Result of Hopping Channel Separation


Took Fusiness .	Chione Word and David Hou	Temperature :	21~25 ℃
Test Engineer :	Shiang Wang and Derek Hsu	Relative Humidity :	51~54%

Report No.: FR8N0132-01A

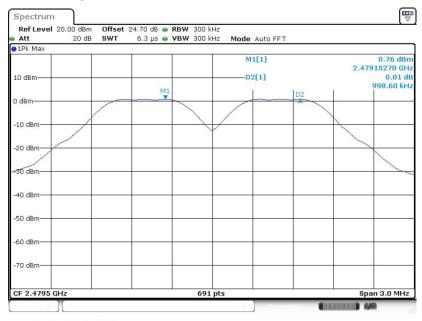
Mod.	Data Rate	N TX	CH.	Freq.	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	1.151	0.6155	Pass
DH	1Mbps	1	39	2441	0.994	0.6117	Pass
DH	1Mbps	1	78	2480	0.999	0.6117	Pass
2DH	2Mbps	1	0	2402	1.016	0.8423	Pass
2DH	2Mbps	1	39	2441	0.986	0.8423	Pass
2DH	2Mbps	1	78	2480	0.999	0.8423	Pass
3DH	3Mbps	1	0	2402	0.981	0.8191	Pass
3DH	3Mbps	1	39	2441	0.990	0.8191	Pass
3DH	3Mbps	1	78	2480	1.003	0.8191	Pass

<1Mbps>

Channel Separation Plot on Channel 00 - 01

Date: 21.MAR.2019 16:10:34

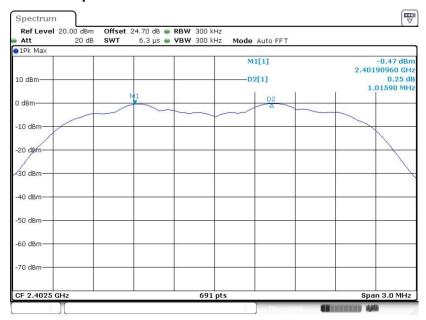
TEL: 886-3-327-3456 Page Number : 17 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019


Channel Separation Plot on Channel 39 - 40

Report No.: FR8N0132-01A

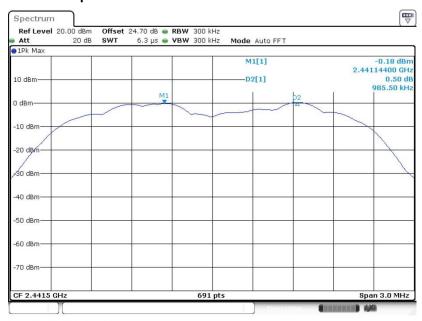
Date: 21.MAR.2019 16:18:50

Channel Separation Plot on Channel 77 - 78


Date: 21.MAR.2019 16:23:52

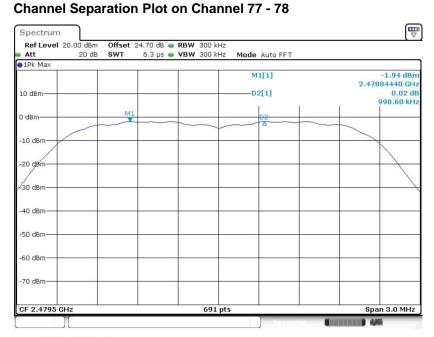
TEL: 886-3-327-3456 Page Number : 18 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

<2Mbps>


Channel Separation Plot on Channel 00 - 01

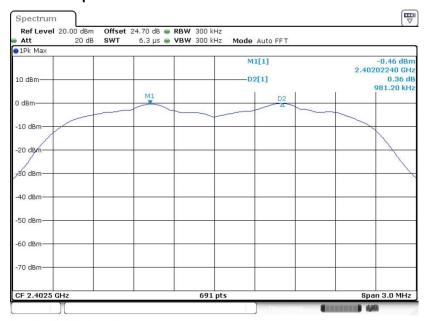
Report No.: FR8N0132-01A

Date: 21.MAR.2019 16:35:21


Channel Separation Plot on Channel 39 - 40

Date: 21.MAR.2019 16:40:53

TEL: 886-3-327-3456 Page Number : 19 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

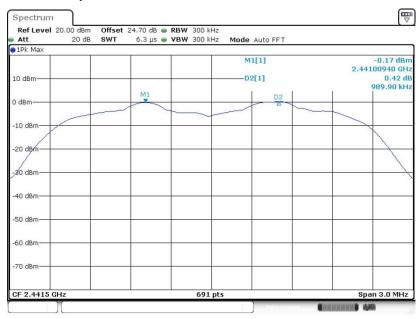


Report No.: FR8N0132-01A

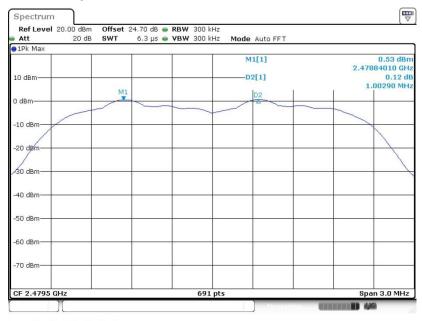
Date: 21.MAR.2019 16:45:12

<3Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 21.MAR.2019 16:52:19

TEL: 886-3-327-3456 Page Number : 20 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019


Report No. : FR8N0132-01A

Channel Separation Plot on Channel 39 - 40

Date: 21.MAR.2019 16:58:51

Channel Separation Plot on Channel 77 - 78

Date: 21.MAR.2019 17:06:26

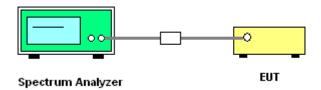
TEL: 886-3-327-3456 Page Number : 21 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Report No.: FR8N0132-01A


3.3.2 Measuring Instruments

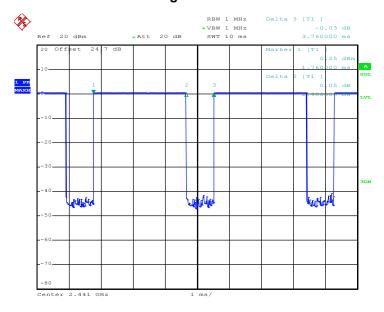
See list of measuring equipment of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.
 The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

TEL: 886-3-327-3456 Page Number : 22 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019


3.3.5 Test Result of Dwell Time

Toot Engineer	Chiene Wene and Devolation	Temperature :	21~25°C
Test Engineer :	Shiang Wang and Derek Hsu	Relative Humidity :	51~54%

Report No.: FR8N0132-01A

Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec) (MHz)	Dwell Time (sec)	Limits (sec)	Pass/Fail
Nomal	79	106.67	2.90	0.31	0.4	Pass
AFH	20	53.33	2.90	0.15	0.4	Pass

Package Transfer Time Plot

Date: 8.NOV.2018 06:13:00

Remark:

- **1.** In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- **2.** In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

TEL: 886-3-327-3456 Page Number : 23 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

3.4.2 Measuring Instruments

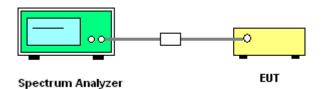
See list of measuring equipment of this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Report No.: FR8N0132-01A

- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 - Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 - RBW ≥ 1-5% of the OBW; VBW ≥ RBW; Sweep = auto; Detector function = peak;


Trace = max hold.

- 5. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 - Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 - RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;

Trace = max hold.

6. Measure and record the results in the test report.

3.4.4 Test Setup

TEL: 886-3-327-3456 Page Number : 24 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

3.4.5 Test Result of 20dB Bandwidth

Took Fundance .	Chiene Wene and Developing	Temperature :	21~25 ℃
Test Engineer :	Shiang Wang and Derek Hsu	Relative Humidity :	51~54%

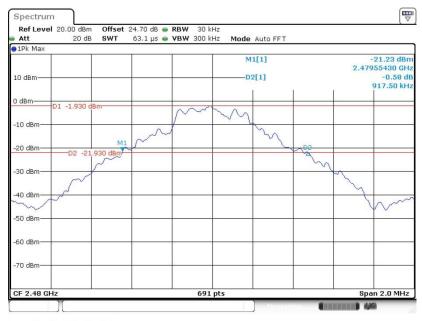
Report No.: FR8N0132-01A

Mod.	Data Rate	N тх	СН.	Freq. (MHz)	20db BW (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.923	Pass
DH	1Mbps	1	39	2441	0.918	Pass
DH	1Mbps	1	78	2480	0.918	Pass
2DH	2Mbps	1	0	2402	1.263	Pass
2DH	2Mbps	1	39	2441	1.263	Pass
2DH	2Mbps	1	78	2480	1.263	Pass
3DH	3Mbps	1	0	2402	1.229	Pass
3DH	3Mbps	1	39	2441	1.229	Pass
3DH	3Mbps	1	78	2480	1.229	Pass

<1Mbps>

20 dB Bandwidth Plot on Channel 00

TEL: 886-3-327-3456 Page Number : 25 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

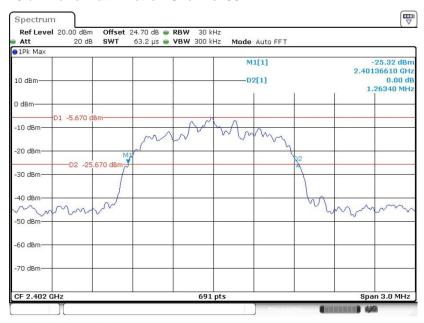

20 dB Bandwidth Plot on Channel 39

Report No.: FR8N0132-01A

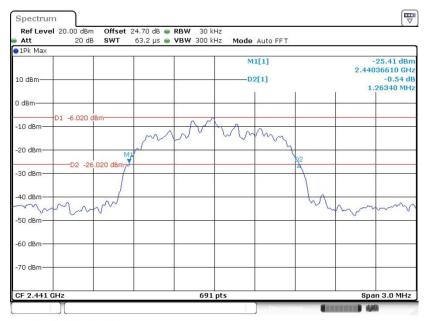
Date: 21.MAR.2019 16:16:04

20 dB Bandwidth Plot on Channel 78

Date: 21.MAR.2019 17:08:15


TEL: 886-3-327-3456 Page Number : 26 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

Report No.: FR8N0132-01A


<2Mbps>

20 dB Bandwidth Plot on Channel 00

Date: 21.MAR.2019 16:25:28

20 dB Bandwidth Plot on Channel 39

Date: 21.MAR.2019 17:14:18

TEL: 886-3-327-3456 Page Number : 27 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

Report No. : FR8N0132-01A

20 dB Bandwidth Plot on Channel 78

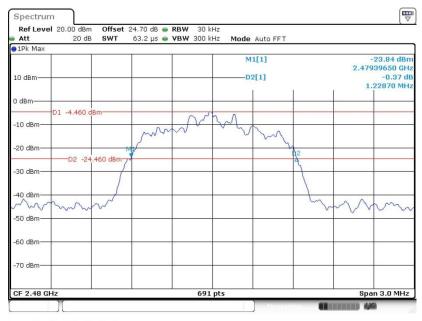
Date: 21.MAR.2019 17:15:20

<3Mbps>

20 dB Bandwidth Plot on Channel 00

Date: 21.MAR.2019 16:49:15

TEL: 886-3-327-3456 Page Number : 28 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019


Report No. : FR8N0132-01A

20 dB Bandwidth Plot on Channel 39

Date: 21.MAR.2019 17:24:37

20 dB Bandwidth Plot on Channel 78

Date: 21.MAR.2019 17:25:43

TEL: 886-3-327-3456 Page Number : 29 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

3.4.6 Test Result of 99% Occupied Bandwidth

Test Engineer :	Chiene Wene and Developing	Temperature :	21~25 ℃
	Shiang Wang and Derek Hsu	Relative Humidity :	51~54%

Report No.: FR8N0132-01A

Mod.	Data Rate	N тх	СН.	Freq. (MHz)	99% Bandwidth (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.848	Pass
DH	1Mbps	1	39	2441	0.851	Pass
DH	1Mbps	1	78	2480	0.851	Pass
2DH	2Mbps	1	0	2402	1.164	Pass
2DH	2Mbps	1	39	2441	1.166	Pass
2DH	2Mbps	1	78	2480	1.166	Pass
3DH	3Mbps	1	0	2402	1.149	Pass
3DH	3Mbps	1	39	2441	1.146	Pass
3DH	3Mbps	1	78	2480	1.146	Pass

<1Mbps>

99% Occupied Bandwidth Plot on Channel 00

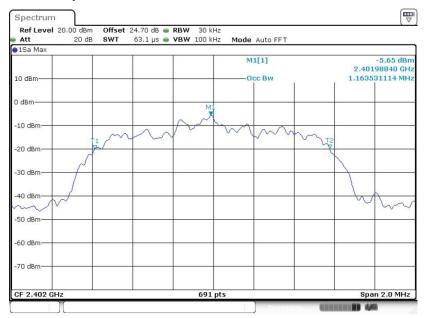
TEL: 886-3-327-3456 Page Number : 30 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

99% Occupied Bandwidth Plot on Channel 39

Report No.: FR8N0132-01A

Date: 21.MAR.2019 16:16:55

99% Occupied Bandwidth Plot on Channel 78


Date: 21.MAR.2019 16:21:23

TEL: 886-3-327-3456 Page Number : 31 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

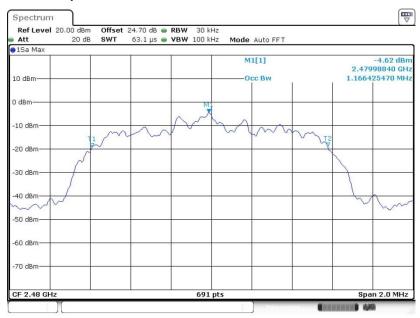
<2Mbps>

99% Occupied Bandwidth Plot on Channel 00

Report No.: FR8N0132-01A

Date: 21.MAR.2019 16:26:54

99% Occupied Bandwidth Plot on Channel 39


Date: 21.MAR.2019 16:37:20

TEL: 886-3-327-3456 Page Number : 32 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

Report No.: FR8N0132-01A

99% Occupied Bandwidth Plot on Channel 78

Date: 21.MAR.2019 16:43:01

<3Mbps>

99% Occupied Bandwidth Plot on Channel 00

Date: 21.MAR.2019 16:50:19

TEL: 886-3-327-3456 Page Number : 33 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

99% Occupied Bandwidth Plot on Channel 39

Report No.: FR8N0132-01A

Date: 21.MAR.2019 16:54:54

99% Occupied Bandwidth Plot on Channel 78

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

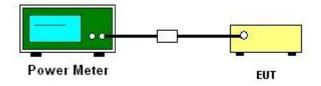
TEL: 886-3-327-3456 Page Number : 34 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts.

Report No.: FR8N0132-01A


3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

TEL: 886-3-327-3456 Page Number: 35 of 62 FAX: 886-3-328-4978 Issued Date: Mar. 27, 2019

3.5.5 Test Result of Peak Output Power

Test Engineer :	Chione Was and Darek Hay	Temperature :	21~25℃
	Shiang Wang and Derek Hsu	Relative Humidity :	51~54%

Report No.: FR8N0132-01A

DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	2.90	20.97	Pass
DH1	39	1	2.85	20.97	Pass
	78	1	3.44	20.97	Pass

2DH	CH.	Nтx	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	2.09	20.97	Pass
2DH1	39	1	1.92	20.97	Pass
	78	1	2.63	20.97	Pass

3DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	2.38	20.97	Pass
3DH1	39	1	2.16	20.97	Pass
	78	1	2.75	20.97	Pass

3.5.6 Test Result of Average Output Power (Reporting Only)

Test Engineer :	Chione Work and Dorok Hou	Temperature :	21~25℃
	Shiang Wang and Derek Hsu	Relative Humidity :	51~54%

DH	CH.	N TX	Average Power (dBm)	Duty Factor (dB)
	0	1	1.16	5.16
DH1	39	1	1.00	5.16
	78	1	1.88	5.16

2DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)
	0	1	-2.33	5.12
2DH1	39	1	-2.59	5.12
	78	1	-1.18	5.12

3DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)
	0	1	-2.28	5.12
3DH1	39	1	-2.56	5.12
	78	1	-1.15	5.12

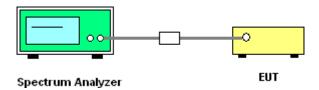
TEL: 886-3-327-3456 Page Number : 36 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

Report No.: FR8N0132-01A


3.6.2 Measuring Instruments

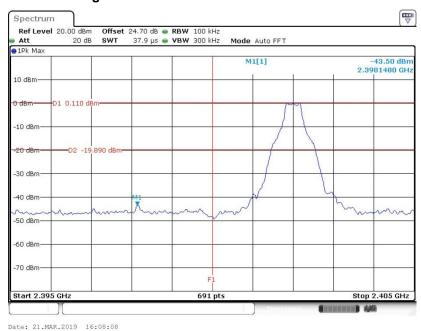
See list of measuring equipment of this test report.

3.6.3 Test Procedures

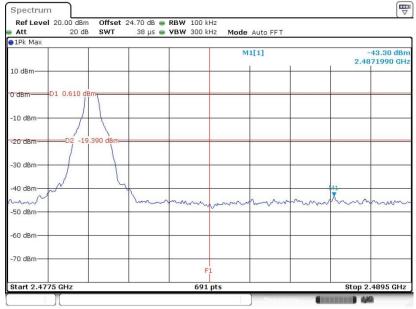
- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup

TEL: 886-3-327-3456 Page Number: 37 of 62 FAX: 886-3-328-4978 Issued Date: Mar. 27, 2019


3.6.5 Test Result of Conducted Band Edges

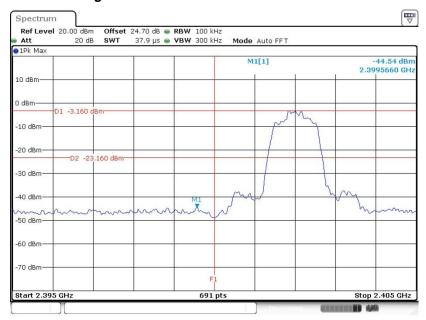
Test Engineer :	Chiene Wone and David Hay	Temperature :	21~25 ℃
	Shiang Wang and Derek Hsu	Relative Humidity :	51~54%


Report No.: FR8N0132-01A

<1Mbps>

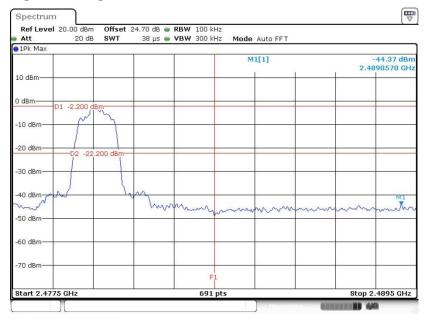
Low Band Edge Plot on Channel 00

High Band Edge Plot on Channel 78


Date: 21.MAR.2019 16:20:47

TEL: 886-3-327-3456 Page Number : 38 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

<2Mbps>

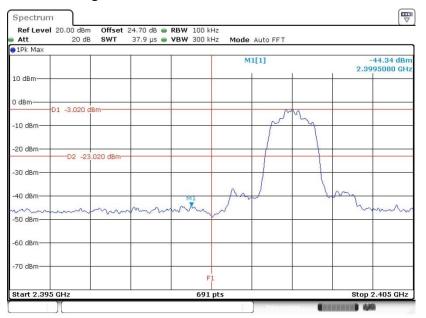

Low Band Edge Plot on Channel 00

Report No.: FR8N0132-01A

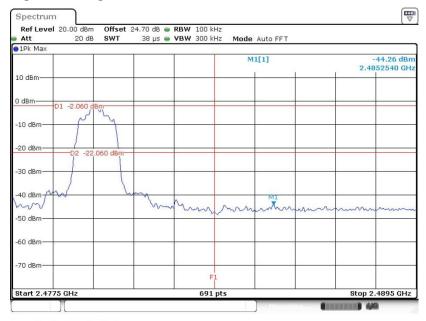
Date: 21.MAR.2019 16:25:57

High Band Edge Plot on Channel 78

Date: 21.MAR.2019 16:42:22


TEL: 886-3-327-3456 Page Number : 39 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

Report No.: FR8N0132-01A


<3Mbps>

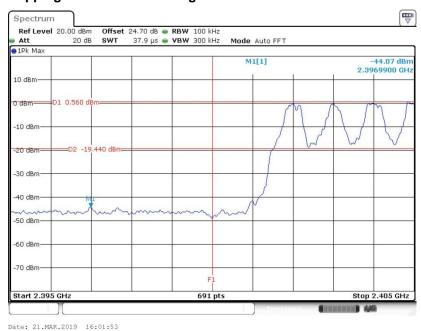
Low Band Edge Plot on Channel 00

Date: 21.MAR.2019 16:49:42

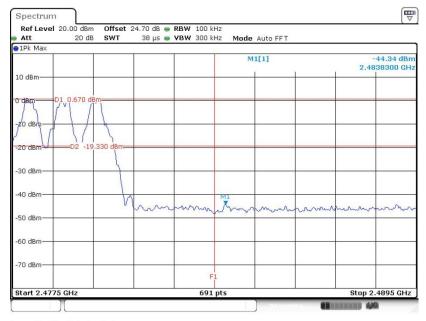
High Band Edge Plot on Channel 78

Date: 21.MAR.2019 17:00:22

TEL: 886-3-327-3456 Page Number : 40 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019


3.6.6 Test Result of Conducted Hopping Mode Band Edges

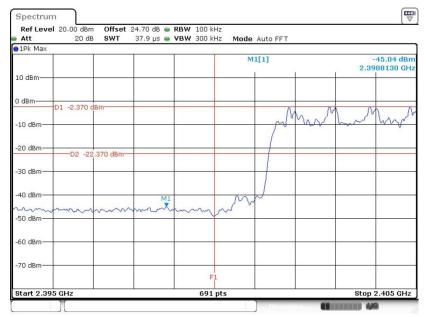
Test Engineer :	Shiang Wang and Derek Hsu	Temperature :	21~25°C
		Relative Humidity :	51~54%


Report No.: FR8N0132-01A

<1Mbps>

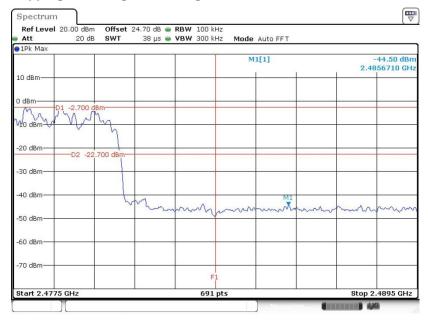
Hopping Mode Low Band Edge Plot

Hopping Mode High Band Edge Plot


Date: 21.MAR.2019 16:02:14

TEL: 886-3-327-3456 Page Number : 41 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

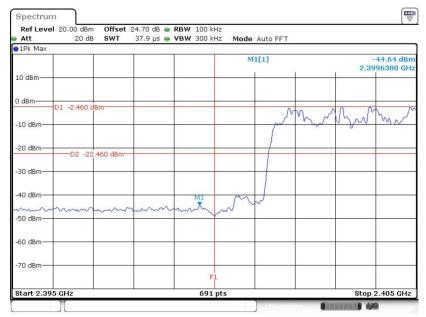
<2Mbps>


Hopping Mode Low Band Edge Plot

Report No.: FR8N0132-01A

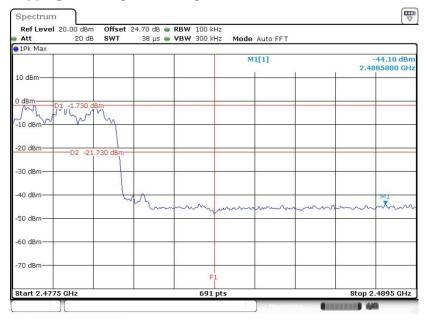
Date: 21.MAR.2019 16:03:19

Hopping Mode High Band Edge Plot


Date: 21.MAR.2019 16:03:49

TEL: 886-3-327-3456 Page Number : 42 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

<3Mbps>


Hopping Mode Low Band Edge Plot

Report No.: FR8N0132-01A

Date: 21.MAR.2019 16:04:40

Hopping Mode High Band Edge Plot

Date: 21.MAR.2019 16:05:39

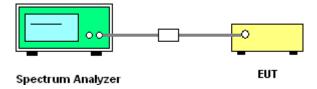
TEL: 886-3-327-3456 Page Number : 43 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

Report No.: FR8N0132-01A


3.7.2 Measuring Instruments

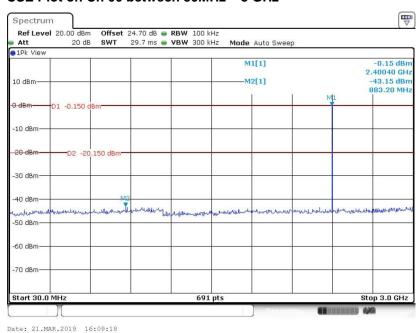
See list of measuring equipment of this test report.

3.7.3 Test Procedure

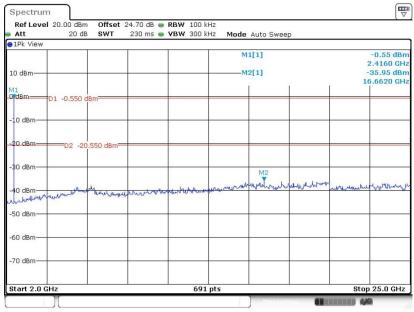
- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup

TEL: 886-3-327-3456 Page Number: 44 of 62 FAX: 886-3-328-4978 Issued Date: Mar. 27, 2019


3.7.5 Test Result of Conducted Spurious Emission

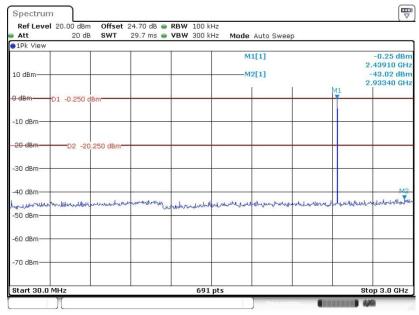
Test Engineer :	Shiang Wang and Derek Hsu	Temperature :	21~25℃
		Relative Humidity :	51~54%


Report No.: FR8N0132-01A

<1Mbps>

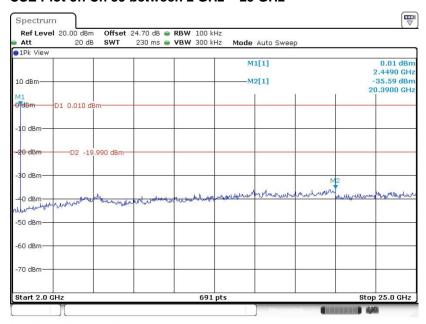
CSE Plot on Ch 00 between 30MHz ~ 3 GHz

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz



Date: 21.MAR.2019 16:09:45

TEL: 886-3-327-3456 Page Number : 45 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019


CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Report No.: FR8N0132-01A

Date: 21.MAR.2019 16:17:35

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Date: 21.MAR.2019 16:18:02

TEL: 886-3-327-3456 Page Number : 46 of 62 FAX: 886-3-328-4978 Issued Date : Mar. 27, 2019