Calibration Laboratory of

Schmid \& Partner

S
C
S
Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura Swiss Calibration Service

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accreditation No.: SCS 0108
Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Client
Sporton (Auden)

Certificate No: CD2450V3-1186_Jan18

CALIBRATION CERTIFICATE

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C. Service suisse d'étalonnage

5 Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

References

[1] ANSI-C63.19-2011

American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms, x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections.
It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70 cm away from any obstacles.
- E-field distribution: E field is measured in the x - y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20 mm wide, its length exceeds the dipole arm length (180 or 90 mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	$\mathrm{dx}, \mathrm{dy}=5 \mathrm{~mm}$	
Frequency	$2450 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
Input power drift	$<0.05 \mathrm{~dB}$	

Maximum Field values at $2450 \mathbf{~ M H z}$

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	$87.8 \mathrm{~V} / \mathrm{m}=38.86 \mathrm{dBV} / \mathrm{m}$
Maximum measured above low end	100 mW input power	$86.8 \mathrm{~V} / \mathrm{m}=38.77 \mathrm{dBV} / \mathrm{m}$
Averaged maximum above arm	100 mW input power	$\mathbf{8 7 . 3 \mathrm { V } / \mathrm { m } \pm 1 2 . 8 \% (\mathbf { k } = 2)}$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance
2250 MHz	16.3 dB	$65.7 \Omega+8.2 \mathrm{j} \Omega$
2350 MHz	26.1 dB	$54.2 \Omega-3.0 \mathrm{j} \Omega$
2450 MHz	31.6 dB	$52.4 \Omega-1.3 \mathrm{j} \Omega$
2550 MHz	39.2 dB	$50.9 \Omega+0.7 \mathrm{j} \Omega$
2650 MHz	16.6 dB	$67.1 \Omega-3.0 \mathrm{j} \Omega$

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.
The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.
Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Impedance Measurement Plot

CH1 Markers
$2:-16.317 \mathrm{~dB}$ 2.25000 GHz $3:-26.075 \mathrm{~dB}$ 2.35000 GHz $4:-39.167 \mathrm{~dB}$ 2.55060 GHz
$5:-16.581 \mathrm{~dB}$ 2.65000 GHz

DASY5 E-field Result

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 2450 MHz ; Type: CD2450V3; Serial: CD2450V3-SN: 1186
Communication System: UID 0 - CW ; Frequency: 2450 MHz
Medium parameters used: $\sigma=0 \mathrm{~S} / \mathrm{m}, \varepsilon_{\mathrm{r}}=1 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: RF Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EF3DV3 - SN4013; ConvF(1, 1, 1); Calibrated: 14.06.2017;
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 13.07.2017
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole E-Field measurement @ $2450 \mathrm{MHz} / \mathrm{E}-$ Scan $-2450 \mathrm{MHz} \mathrm{d}=15 \mathrm{~mm} /$ Hearing Aid Compatibility Test (41x181x1): Interpolated grid: $\mathrm{dx}=0.5000 \mathrm{~mm}, \mathrm{dy}=0.5000 \mathrm{~mm}$
Device Reference Point: $0,0,-6.3 \mathrm{~mm}$
Reference Value $=77.23 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.02 \mathrm{~dB}$
Applied MIF $=0.00 \mathrm{~dB}$
RF audio interference level $=38.86 \mathrm{dBV} / \mathrm{m}$
Emission category: M2
MIF scaled E-field

Grid $1 \mathrm{M2}$	Grid $2 \mathrm{M2}$	Grid $3 \mathrm{M2}$
$\mathbf{3 8 . 4 6 \mathrm { dBV } / \mathrm { m }}$	$\mathbf{3 8 . 7 7 \mathrm { dBV } / \mathrm { m }}$	$\mathbf{3 8 . 7 \mathrm { dBV } / \mathrm { m }}$
Grid $4 \mathrm{M2}$	Grid $5 \mathrm{M2}$	Grid $6 \mathrm{M2}$
$37.75 \mathrm{dBV} / \mathrm{m}$	$37.94 \mathrm{dBV} / \mathrm{m}$	$37.87 \mathrm{dBV} / \mathrm{m}$
Grid $7 \mathrm{M2}$	Grid $8 \mathrm{M2}$	Grid $9 \mathrm{M2}$
$\mathbf{3 8 . 6 ~ d B V / m}$	$38.86 \mathrm{dBV} / \mathrm{m}$	$38.76 \mathrm{dBV} / \mathrm{m}$

Calibration Laboratory of

Schmid \& Partner
 Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

CALIBRATION CERTIFICATE

Object	CD5500V3 - SN: 1009
Calibration procedure(s)	QA CAL-20.v6

alibration date: January 09, 2018			
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).			
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.			
All calibrations have been conducted in the closed laboratory facility: environment temperature ($22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.			
Calibration Equipment used (M\&TE critical for calibration)			
Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Probe EF3DV3	SN: 4013	14-Jun-17 (No. EF3-4013_Jun17)	Jun-18
DAE4	SN: 781	13-Jul-17 (No. DAE4-781_Jul17)	Jul-18
Secondary Standards	ID \#	Check Date (in house)	Scheduled Check
Power meter Agilent 4419B	SN: GB42420191	09-Oct-09 (in house check Oct-17)	In house check: Oct-20
Power sensor HP E4412A	SN: US38485102	05-Jan-10 (in house check Oct-17)	In house check: Oct-20
Power sensor HP 8482A	SN: US37295597	09-Oct-09 (in house check Oct-17)	In house check: Oct-20
RF generator R\&S SMT-06	SN: 832283/011	27-Aug-12 (in house check Oct-17)	In house check: Oct-20
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	¢
Approved by:	Katja Pokovic	Technical Manager	
(tssued: January 11, 2018			

Calibration Laboratory of

Schmid \& Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

References

[1] ANSI-C63.19-2011

American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70 cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20 mm wide, its length exceeds the dipole arm length (180 or 90 mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	$\mathrm{dx}, \mathrm{dy}=5 \mathrm{~mm}$	
Frequency	$5500 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
Input power drift	$<0.05 \mathrm{~dB}$	

Maximum Field values at 5500 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured	100 mW input power	$92.3 \mathrm{~V} / \mathrm{m}=39.30 \mathrm{dBV} / \mathrm{m}$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance
5000 MHz	21.0 dB	$43.2 \Omega-4.9 \mathrm{j} \Omega$
5200 MHz	29.2 dB	$47.1 \Omega+1.8 \mathrm{j} \Omega$
5500 MHz	22.7 dB	$57.9 \Omega+0.6 \mathrm{j} \Omega$
5800 MHz	20.1 dB	$41.8 \Omega+3.8 \mathrm{j} \Omega$
5900 MHz	20.1 dB	$47.2 \Omega+9.2 \mathrm{j} \Omega$

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.
The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.
Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Impedance Measurement Plot

CH1 Markers
1:-20. 971 dB 5.901000 GHz

2:-29.193 dB 5.29000 GHz 4:-20.116 dB 5.80060 GHz

5:-20.0083 dB 5.90000 GHz

Cor

Av9
16

Hld

START 4900.000000 MHz
STOP 6000.000000 MHz

CH 2 Markers
1: 43.215 -4.85745 5.00000 GHz 2: 47.139 5.20000 GHz

4: 41.768 5.80000 GHz

5: 47.152Ω 5.90000 GHz

DASY5 E-field Result

Date: 08.01.2018
Test Laboratory: SPEAG Lab2
DUT: HAC Dipole 5500 MHz ; Type: CD5500V3; Serial: CD5500V3 - SN: 1009

Communication System: UID 0 - CW ; Frequency: 5500 MHz
Medium parameters used: $\sigma=0 \mathrm{~S} / \mathrm{m}, \varepsilon_{\mathrm{r}}=1 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: RF Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EF3DV3 - SN4013 (5-6 GHz); ConvF(1, 1, 1); Calibrated: 14.06.2017;
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 13.07.2017
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole E-Field measurement @ $5500 \mathrm{MHz} / \mathrm{E}-$ Scan $-5500 \mathrm{MHz} \mathrm{d}=15 \mathrm{~mm} /$ Hearing Aid Compatibility Test (41x121x1):
Interpolated grid: $\mathrm{dx}=0.5000 \mathrm{~mm}, \mathrm{dy}=0.5000 \mathrm{~mm}$
Device Reference Point: $0,0,-6.3 \mathrm{~mm}$
Reference Value $=119.4 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.01 \mathrm{~dB}$
Applied MIF $=0.00 \mathrm{~dB}$
RF audio interference level $=39.30 \mathrm{dBV} / \mathrm{m}$
Emission category: M2
MIF scaled E-field

$\begin{aligned} & \text { Grid } 1 \mathrm{M2} \\ & 38.54 \mathrm{dBV} / \mathrm{m} \end{aligned}$	Grid 2 M2 $38.74 \mathrm{dBV} / \mathrm{m}$	$\begin{aligned} & \text { Grid } 3 \mathrm{M} 2 \\ & 38.62 \mathrm{dBV} / \mathrm{m} \end{aligned}$
Grid 4 M2	Grid 5 M2	Grid 6 M2
39.11 dBV/m	39.3 dBV/m	39.11 dBV/m
Grid 7 M2	Grid 8 M2	Grid 9 M2
$38.52 \mathrm{dBV} / \mathrm{m}$	$38.75 \mathrm{dBV} / \mathrm{m}$	$38.59 \mathrm{dBV} / \mathrm{m}$

$0 \mathrm{~dB}=92.27 \mathrm{~V} / \mathrm{m}=39.30 \mathrm{dBV} / \mathrm{m}$

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'etalonnage
S Servizio svizzero di taratura
Swiss Calibration Service
Accreditation No.: SCS 0108
Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton (Auden)
Certificate No: EF3-4053 Mar18

CALIBRATION CERTIFICATE

Object

EF3DV3-SN:4053

Calibration procedure(s)

Calibration date:

QA CAL-02.v8, QA CAL-25.v6 Calibration procedure for E-field probes optimized for close near field evaluations in air

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.

Calibration Equipment used (M\&TE critical for calibration)

		Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards	ID	Cal Date (Certificate No.)	Apr-18
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02525)	Apr-18
Power sensor NRP-Z91	SN: 103245	07-Apr-17 (No. 217-02528)	Apr-18
Reference 20 dB Attenuator	SN: S5277 (20x)	10-Oct-17 (No. ER3-2328 Oct17)	Oct-18
Reference Probe ER3DV6	SN: 2328	2-Aug-17 (No. DAE4-789 Aug17)	Aug-18
DAE4	SN: 789	2-Aug-17 (No. DAE4-78	
		Check Date (in house)	Scheduled Check
Secondary Standards	ID	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585		

Issued: March 19, 2018
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage

S Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z
DCP CF
A, B, C, D
Polarization φ
Polarization 9
Connector Angle
sensitivity in free space
diode compression point
crest factor (1/duty_cycle) of the RF signal
modulation dependent linearization parameters
φ rotation around probe axis
ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta=0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz ", December 2005
b) CTIA Test Plan for Hearing Aid Compatibility, Rev 3.0, November 2013

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization $\vartheta=0$ for $X Y$ sensors and $\vartheta=90$ for Z sensor (f $\leq 900 \mathrm{MHz}$ in TEM-cell; $\mathrm{f}>1800 \mathrm{MHz}$: R22 waveguide).
- $\operatorname{NORM}(f) x, y, z=\operatorname{NORMx}, y, z$ * frequency_response (see Frequency Response Chart).
- $D C P x, y, z$: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z;Bx,y,z;Cx,y,z;Dx,y,z;VRx,y,z:A,B,C,D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- Spherical isotropy ($3 D$ deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMX (no uncertainty required).

Probe EF3DV3

SN:4053

Manufactured:	May 24, 2016
Calibrated:	March 19, 2018

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EF3DV3 - SN:4053

Basic Calibration Parameters
Basic Calibration Parameters

	Sensor X	Sensor \mathbf{Y}	Sensor \mathbf{Z}	Unc (k=2)
Norm $\left(\mu \mathrm{V} /(\mathrm{V} / \mathrm{m})^{2}\right)$	0.74	0.72	1.30	$\pm 10.1 \%$
$\mathrm{DCP}(\mathrm{mV})^{\mathrm{B}}$	98.7	95.3	97.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

[^0]
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Receiving Pattern $(\phi), \boldsymbol{\vartheta}=0^{\circ}$

$\mathrm{f}=600 \mathrm{MHz}$, TEM, 0°

$\mathrm{f}=1800 \mathrm{MHz}, \mathrm{R} 22,0^{\circ}$

Receiving Pattern $(\phi), \vartheta=90^{\circ}$
$\mathrm{f}=600 \mathrm{MHz}, \mathrm{TEM}, 90^{\circ}$

$\mathrm{f}=1800 \mathrm{MHz}, \mathrm{R} 22,90^{\circ}$

Receiving Pattern $(\phi), \vartheta=0^{\circ}$

Uncertainty of Axial Isotropy Assessment: $\pm 0.5 \%$ ($k=2$)

Receiving Pattern $(\phi), \vartheta=90^{\circ}$

Uncertainty of Axial Isotropy Assessment: $\pm 0.5 \%$ (k=2)

Dynamic Range f(E-field) (TEM cell , $\mathrm{f}=900 \mathrm{MHz}$)

Uncertainty of Linearity Assessment: $\pm 0.6 \%(k=2)$

Deviation from Isotropy in Air

Error $(\phi, 9), \mathrm{f}=900 \mathrm{MHz}$

Uncertainty of Spherical Isotropy Assessment: $\pm \mathbf{2 . 6 \%}(\mathbf{k}=\mathbf{2})$

DASY/EASY - Parameters of Probe: EF3DV3 - SN:4053

Other Probe Parameters

Sensor Arrangement	Rectangular
Connector Angle $\left(^{\circ}\right.$)	70.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	335 mm
Probe Body Diameter	12 mm
Tip Length	25 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2.5 mm
Probe Tip to Sensor Y Calibration Point	2.5 mm
Probe Tip to Sensor Z Calibration Point	2.5 mm

Appendix (Additional assessments outside the scope of SCS 0108)

Calibration Parameters for 3-4 GHz
Calibration Parameters for 3-4 GHZ

	Sensor X	Sensor \mathbf{Y}	Sensor \mathbf{Z}	Unc (k=2)
Norm $\left(\mu \mathrm{V} /(\mathrm{V} / \mathrm{m})^{2}\right)^{X}$	0.77	0.76	1.32	$\pm 10.1 \%$
$\mathrm{DCP}(\mathrm{mV})^{\mathrm{B}}$	98.7	95.3	97.0	

Calibration Parameters for $5-6 \mathrm{GHz}$
Calibration Parameters for $5 \mathbf{- 6} \mathbf{~ G H Z}$

	Sensor X	Sensor Y	Sensor \mathbf{Z}	Unc (k=2)
Norm $\left(\mu \mathrm{V} /(\mathrm{V} / \mathrm{m})^{2}\right)^{\mathrm{X}}$	0.83	0.82	1.46	$\pm 10.1 \%$
$\mathrm{DCP}(\mathrm{mV})^{\mathrm{B}}$	98.7	95.3	97.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

[^1]

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Client Sporton (Auden)
Certificate No: DAE3-577_Sep17
CALIBRATION CERTIFICATE

Object	DAE3 - SD 000 D03 AA - SN: 577
Calibration procedure(s)	QA CAL-06.v29 Calibration procedure for the data acquisition electronics (DAE)
Calibration date:	September 25, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.

Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	31-Aug-17 (No:21092)	Aug-18
Secondary Standards	ID \#	Check Date (in house)	
Auto DAE Calibration Unit SE UWS 053 AA 1001 05-Jan-17 (in house check) Scheduled Check Calibrator Box V2.1 SE UMS 006 AA 1002 05-Jan-17 (in house check) In house check: Jan-18 In house check: Jan-18			

Calibrated by: \quad Eric Hainfeld

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE
Connector angle
data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
- DC Voltage Measurement Linearity: Verification of the Linearity at $+10 \%$ and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
- Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
- Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
- $A D$ Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
- Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
- Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
- Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
- Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
- Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal
High Range: $\quad 1 \mathrm{LSB}=\quad 6.1 \mu \mathrm{~V}, \quad$ full range $=-100 \ldots+300 \mathrm{mV}$
Low Range: $\quad 1 \mathrm{LSB}=\quad 61 \mathrm{nV}, \quad$ full range $=-1 \ldots \ldots+3 \mathrm{mV}$
DASY measurement parameters: Auto Zero Time: 3 sec ; Measuring time: 3 sec

Calibration Factors	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
High Range	$403.528 \pm 0.02 \%(k=2)$	$403.520 \pm 0.02 \%(k=2)$	$403.823 \pm 0.02 \%(k=2)$
Low Range	$3.92632 \pm 1.50 \%(k=2)$	$3.94176 \pm 1.50 \%(k=2)$	$3.96112 \pm 1.50 \%(k=2)$

Connector Angle

Connector Angle to be used in DASY system	$190.5^{\circ} \pm 1^{\circ}$

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading $(\mu \mathrm{V})$	Difference $(\mu \mathrm{V})$	Error (\%)	
Channel X + Input	200030.00	-3.88	-0.00	
Channel X	+ Input	20009.45	5.06	0.03
Channel X	- Input	-20001.99	3.69	-0.02
Channel Y	+ Input	200032.33	-1.67	-0.00
Channel Y	+ Input	20005.12	0.82	0.00
Channel Y	- Input	-20005.94	-0.22	0.00
Channel Z	+ Input	200032.19	-1.81	-0.00
Channel Z	+ Input	20005.51	1.15	0.01
Channel Z	- Input	-20007.62	-1.80	0.01

Low Range	Reading $(\mu \mathrm{V})$	Difference $(\mu \mathrm{V})$	Error (\%)	
Channel X	+ Input	2000.12	-0.46	-0.02
Channel X	+ Input	201.21	0.55	0.27
Channel X	- Input	-199.01	0.37	-0.19
Channel Y	+ Input	2000.29	-0.19	-0.01
Channel Y	+ Input	200.31	-0.21	-0.11
Channel Y	- Input	-200.54	-1.05	0.53
Channel Z	+ Input	2000.57	0.11	0.01
Channel Z	+ Input	199.15	-1.37	-0.68
Channel Z	- Input	-201.16	-1.65	0.83

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec ; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading $(\mu \mathrm{V})$	Low Range Average Reading $(\mu \mathrm{V})$
Channel X	200	-1.98	-4.35
	-200	6.48	3.92
Channel Y	200	-13.76	-14.18
	-200	12.65	12.84
Channel Z	200	2.61	2.67
	-200	-5.78	-5.78

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec ; Measuring time: 3 sec

	Input Voltage (mV)	Channel $\mathbf{X}(\mu \mathrm{V})$	Channel $\mathbf{Y}(\mu \mathrm{V})$	Channel $\mathbf{Z}(\mu \mathrm{V})$
Channel \mathbf{X}	200	-	-1.22	-3.39
Channel \mathbf{Y}	200	8.35	-	0.42
Channel \mathbf{Z}	200	5.01	5.16	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16132	16019
Channel Y	16099	16232
Channel Z	16112	14967

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec ; Measuring time: 3 sec Input 10MS

	Average $(\mu \mathrm{V})$	\min. Offset $(\mu \mathrm{V})$	max. Offset $(\mu \mathrm{V})$	Std. Deviation $(\mu \mathrm{V})$
Channel X	0.38	-0.58	1.36	0.35
Channel Y	0.09	-0.95	1.13	0.41
Channel Z	-1.50	-2.57	-0.74	0.40

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA
7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	
Supply (-Vcc)	+7.9

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (-Vcc)	-0.01	-8	-9

[^0]: ${ }^{B}$ Numerical linearization parameter: uncertainty not required.
 E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

[^1]: ${ }^{\text {B }}$ Numerical linearization parameter: uncertainty not required.
 \times Calibration procedure for frequencies above 3 GHz is pending accreditation.

