

Report No.: FR271537F

: 01

FCC RADIO TEST REPORT

FCC ID : UZ7TC7301

Equipment: Touch Computer

Brand Name : Zebra Model Name : TC7301

Applicant : Zebra Technologies Corporation

1 Zebra Plaza, Holtsville, NY 11742

Manufacturer : Zebra Technologies Corporation

1 Zebra Plaza, Holtsville, NY 11742

Standard : FCC Part 15 Subpart E §15.407

The product was received on Jul. 15, 2022 and testing was performed from Aug. 09, 2022 to Sep. 14, 2022. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Approved by: Louis Wu

Lunis Win

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

TEL: 886-3-327-0868 Page Number : 1 of 43
FAX: 886-3-327-0855 Issue Date : Oct. 04, 2022

Table of Contents

Report No.: FR271537F

His	tory c	of this test report	3
Su	mmar	y of Test Result	4
1	Gene	eral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	9
	1.3	Modification of EUT	10
	1.4	Testing Location	11
	1.5	Applicable Standards	11
2	Test	Configuration of Equipment Under Test	12
	2.1	Carrier Frequency and Channel	12
	2.2	Test Mode	13
	2.3	Connection Diagram of Test System	15
	2.4	Support Unit used in test configuration and system	16
	2.5	EUT Operation Test Setup	16
	2.6	Measurement Results Explanation Example	16
3	Test	Result	17
	3.1	6dB and 26dB and 99% Occupied Bandwidth Measurement	17
	3.2	Maximum Conducted Output Power Measurement	25
	3.3	Power Spectral Density Measurement	27
	3.4	Unwanted Emissions Measurement	32
	3.5	AC Conducted Emission Measurement	38
	3.6	Antenna Requirements	40
4	List	of Measuring Equipment	41
5	Unce	rtainty of Evaluation	43
Ар	pendi	x A. Conducted Test Results	
Аp	pendi	x B. AC Conducted Emission Test Result	
Аp	pendi	x C. Radiated Spurious Emission	
Аp	pendi	x D. Radiated Spurious Emission Plots	
Аp	pendi	x E. Duty Cycle Plots	
Δn	nendi [.]	x F. Setup Photographs	

TEL: 886-3-327-0868 Page Number : 2 of 43 FAX: 886-3-327-0855 Issue Date : Oct. 04, 2022 Report Version : 01

Report Template No.: BU5-FR15EWLB4 AC MA Version 2.4

History of this test report

Report No.: FR271537F

Report No.	Version	Description	Issue Date
FR271537F	01	Initial issue of report	Oct. 04, 2022

TEL: 886-3-327-0868 Page Number : 3 of 43 FAX: 886-3-327-0855 Issue Date : Oct. 04, 2022

Summary of Test Result

Report No.: FR271537F

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.403(i)	6dB & 26dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.407(a)	Maximum Conducted Output Power	Pass	-
3.3	15.407(a)	Power Spectral Density	Pass	-
3.4	15.407(b)	Unwanted Emissions	Pass	1.05 dB under the limit at 5644.800 MHz
3.5	15.207	AC Conducted Emission	Pass	15.36 dB under the limit at 0.184 MHz
3.6	15.203	Antenna Requirement	Pass	-

Declaration of Conformity:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.
 It's means measurement values may risk exceeding the limit of regulation standards, if measurement uncertainty is include in test results.
- 2. The measurement uncertainty please refer to report "Uncertainty of Evaluation".

Comments and Explanations:

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Wei Chen

Report Producer: Michelle Chen

TEL: 886-3-327-0868 Page Number : 4 of 43
FAX: 886-3-327-0855 Issue Date : Oct. 04, 2022

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature					
Equipment	Touch Computer				
Brand Name	Zebra				
Model Name	TC7301				
FCC ID	UZ7TC7301				
Sample 1	Lowell + Premium config				
Sample 2	SE4720 + Base config				
Sample 3	Lowell + Base config				
EUT supports Radios application	NFC WLAN 11a/b/g/n HT20/HT40 WLAN 11ac VHT20/VHT40/VHT80/VHT160 WLAN 11ax HE20/HE40/HE80/HE160 Bluetooth BR/EDR/LE				
HW Version	EV2				
SW Version	11-11-28.00-RG-U00-PRD-ATH-04 356 test-keys				
FW Version	FUSION_QA_4_1.2.0.001_R				
MFD	10Jun22				
EUT Stage	Identical Prototype				

Report No.: FR271537F

Remark: The above EUT's information was declared by manufacturer.

Specification of Accessories					
Adapter	Brand Name	Zebra	Part Number	PWR-WUA5V12W0US	
Battery 1X	Brand Name	Zebra	Part Number	BT-000442-0020	
Battery 1.5X	Brand Name	Zebra	Part Number	BT-000442-0820	
Wireless Battery	Brand Name	Zebra	Part Number	BT-000442-002A	
USB TYPE A to TYPE C cable	Brand Name	Zebra	Part Number	CBL-TC5X-USBC2A-01	
USB TYPE C to 3.5mm audio connector	Brand Name	Zebra	Part Number	ADP-USBC-35MM1-01	
3.5mm Earphone	Brand Name	Zebra	Part Number	HDST-35MM-PTVP-01	
USB TYPE C Earphone	Brand Name	Zebra	Part Number	HPST-USBC-PTT1-01	
Trigger Handle	Brand Name	Zebra	Part Number	TRG-NGTC5-ELEC-01	
Soft Holster	Brand Name	Zebra	Part Number	SG-NGTC5TC7-HLSTR-01	
TC53/TC58 RUGGED BOOT	Brand Name	Zebra	Part Number	SG-NGTC5EXO1-01	

TEL: 886-3-327-0868 Page Number : 5 of 43 FAX: 886-3-327-0855 Issue Date : Oct. 04, 2022

1.1.1 Antenna Gain

<For CDD Mode>

Follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01 F)2)f)ii)

Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows:

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for N_{ANT} ≤ 4.

GANT is set equal to the gain of the antenna having the highest gain.

For PSD measurements, the directional gain calculation.

$$Directional Gain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^{2}}{N_{ANT}} \right]$$

Report No.: FR271537F

where

Each antenna is driven by no more than one spatial stream;

 N_{SS} = the number of independent spatial streams of data;

 N_{ANT} = the total number of antennas

 $g_{j,k} = 10^{G_k/20}$ if the kth antenna is being fed by spatial stream j, or zero if it is not; G_k is the gain in dBi of the kth antenna.

As minimum N_{SS}=1 is supported by EUT, the formula can be simplified as:

Directional gain = $10*log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})^2/N_{ANT}] dBi$

Where G1, G2....GN denote single antenna gain.

TEL: 886-3-327-0868 Page Number : 6 of 43 FAX: 886-3-327-0855 Issue Date : Oct. 04, 2022

The directional gain "DG" is calculated as following table.

			DG	DG	Power	PSD
			for	for	Limit	Limit
	Ant 9	Ant 8	Power	PSD	Reduction	Reduction
	(dBi)	(dBi)	(dBi)	(dBi)	(dB)	(dB)
Band IV	0.38	1.76	1.76	4.11	0.00	0.00

Report No.: FR271537F

Calculation example:

If a device has two antenna, Gant1= 3.0dBi; Gant2=3.2dBi

Directional gain of power measurement = max(3.0, 3.2) + 0 = 3.2 dBi

Directional gain of PSD derived from formula which is

10 x log { { [10^ (0.38 dBi / 20) + 10^ (1.76 dBi / 20)] ^ 2 } / 2 }

= 4.11 dBi

Power and PSD limit reduction = Composite gain – 6dBi, (min = 0)

 TEL: 886-3-327-0868
 Page Number
 : 7 of 43

 FAX: 886-3-327-0855
 Issue Date
 : Oct. 04, 2022

<TXBF Modes>

The EUT supports beamforming modes , then

Follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01 F)2)e)ii)

$$Directional Gain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^{2}}{N_{ANT}} \right]$$

Report No.: FR271537F

where

Each antenna is driven by no more than one spatial stream;

 N_{SS} = the number of independent spatial streams of data;

 N_{ANT} = the total number of antennas

 $g_{j,k} = 10^{G_k/20}$ if the kth antenna is being fed by spatial stream j, or zero if it is not; G_k is the gain in dBi of the kth antenna.

The directional gain "DG" is calculated as following table.

			DG	DG	Power	PSD
			for	for	Limit	Limit
	Ant 9	Ant 8	Power	PSD	Reduction	Reduction
	(dBi)	(dBi)	(dBi)	(dBi)	(dB)	(dB)
Band IV	0.38	1.76	4.11	4.11	0.00	0.00

Calculation example:

Directional gain is derived from formula which is

 $10 \times \log \{ \{ [10^{\circ} (0.38 \text{ dBi} / 20) + 10^{\circ} (1.76 \text{ dBi} / 20)]^{\circ} 2 \} / 2 \}$

= 4.11 dBi

Power and PSD limit reduction = Composite gain – 6dBi, (min = 0)

 TEL: 886-3-327-0868
 Page Number
 : 8 of 43

 FAX: 886-3-327-0855
 Issue Date
 : Oct. 04, 2022

1.2 Product Specification of Equipment Under Test

Product Specification is subject to this standard				
Tx/Rx Frequency Range	5745 MHz ~ 5825 MHz			
	MIMO <ant. 9+8=""></ant.>			
	802.11a: 21.61 dBm / 0.1449 W			
	802.11n HT20: 21.07 dBm / 0.1279 W			
	802.11n HT40: 20.01 dBm / 0.1002 W			
Maximum Output Power to Antenna	802.11ac VHT20: 21.17 dBm / 0.1309 W			
<cdd mode=""></cdd>	802.11ac VHT40: 20.11 dBm / 0.1026 W			
	802.11ac VHT80: 18.31 dBm / 0.0678 W			
	802.11ax HE20: 21.27 dBm / 0.1340 W			
	802.11ax HE40: 20.21 dBm / 0.1050 W			
	802.11ax HE80: 18.41 dBm / 0.0693 W			
	MIMO <ant. 9+8=""></ant.>			
	802.11n HT20: 20.76 dBm / 0.1191 W			
	802.11n HT40: 19.96 dBm / 0.0991 W			
	802.11ac VHT20: 20.86 dBm / 0.1219 W			
Maximum Output Power to Antenna <txbf mode=""></txbf>	802.11ac VHT40: 20.06 dBm / 0.1014 W			
CIABL MIOGE	802.11ac VHT80: 18.26 dBm / 0.0670 W			
	802.11ax HE20: 20.96 dBm / 0.1247 W			
	802.11ax HE40: 20.16 dBm / 0.1038 W			
	802.11ax HE80: 18.36 dBm / 0.0685 W			
	MIMO <ant. 9=""></ant.>			
	802.11a: 25.13 MHz			
	802.11ax HE20: 19.58 MHz			
	802.11ax HE40: 38.16 MHz			
99% Occupied Bandwidth	802.11ax HE80: 77.32 MHz			
<cdd mode=""></cdd>	MIMO <ant. 8=""></ant.>			
	802.11a: 27.12 MHz			
	802.11ax HE20: 20.18 MHz			
	802.11ax HE40: 38.76 MHz			
	802.11ax HE80: 77.32 MHz			

Report No.: FR271537F

TEL: 886-3-327-0868 Page Number : 9 of 43 FAX: 886-3-327-0855 Issue Date : Oct. 04, 2022

Product Specification is subject to this standard						
	MIMO <ant. 9=""></ant.>					
	802.11ax HE20: 19.2	3 MHz				
	802.11ax HE40: 39.1	6 MHz				
99% Occupied Bandwidth	802.11ax HE80: 77.9	2 MHz				
<txbf mode=""></txbf>	MIMO <ant. 8=""></ant.>					
	802.11ax HE20: 20.2	3 MHz				
	802.11ax HE40: 51.45 MHz					
	802.11ax HE80: 77.92 MHz					
Antenna Type / Gain	<ahref="#">Ant. 9>: PIFA Antenna with gain 0.38 dBi</ahref="#">					
Antenna Type / Cum	<ant. 8="">: PIFA Antenna with gain 1.76 dBi</ant.>					
	802.11a/n: OFDM (BPSK/QPSK/16QAM/64QAM)					
Type of Modulation	802.11ac: OFDM (BPSK/QPSK/16QAM/64QAM/256QAM)					
,	802.11ax:OFDMA					
	(BPSK/QPSK/16QAM/64QAM/256QAM/1024QAM)					
	000 44 - /- /-	Ant. 9	Ant. 8			
Antonio Frantico Decembrio	802.11 a/n/ac/ax	V	V			
Antenna Function Description	MIMO					
	802.11 n/ac/ax	V	V			
	TXBF					

Report No.: FR271537F

Remark:

- 1. MIMO Ant. 9+8 Directional Gain is a calculated result from MIMO Ant. 9 and MIMO Ant. 8. The formula used in calculation is documented in section 1.1.1.
- 2. Power of MIMO Ant. 9 + Ant. 8 is a calculated result from sum of the power MIMO Ant. 9 and MIMO Ant. 8.
- The EUT's information above is declared by manufacturer. Please refer to Comments and Explanations in report summary.

1.3 Modification of EUT

No modifications made to the EUT during the testing.

TEL: 886-3-327-0868 Page Number : 10 of 43 FAX: 886-3-327-0855 Issue Date : Oct. 04, 2022

1.4 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory		
No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978			
Test Site No.	Sporton Site No.		
rest site No.	CO05-HY (TAF Code: 1190)		
Remark	The Conducted Emission test item subcontracted to Sporton International Inc. EMC & Wireless Communications Laboratory.		

Report No.: FR271537F

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	Sporton International Inc. Wensan Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No. TH05-HY, 03CH13-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW3786

1.5 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- FCC KDB 414788 D01 Radiated Test Site v01r01.
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- + ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL: 886-3-327-0868 Page Number : 11 of 43
FAX: 886-3-327-0855 Issue Date : Oct. 04, 2022

2 Test Configuration of Equipment Under Test

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst case emissions were reported in this report.

Report No.: FR271537F

b. AC power line Conducted Emission was tested under maximum output power.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	149	5745	157	5785
5725-5850 MHz	151*	5755	159*	5795
Band 4 (U-NII-3)	153	5765	161	5805
(3 .411 0)	155#	5775	165	5825

Note:

- 1. The above Frequency and Channel with "*" are 802.11n HT40 and 802.11ac VHT40 and 802.11ax HE40.
- 2. The above Frequency and Channel with "#" are 802.11ac VHT80 and 802.11ax HE80.

TEL: 886-3-327-0868 Page Number : 12 of 43 FAX: 886-3-327-0855 Issue Date : Oct. 04, 2022

2.2 Test Mode

This device support 26/52/106/242/484-tone RU but does not support 2x996-tone RU on 160MHz channel.

Report No.: FR271537F

The 996-tone RU is covered by 80MHz channel.

The SISO mode conducted power is covered by MIMO mode per chain, so only the MIMO mode is tested.

The power for 802.11n and 802.11ac mode is smaller than 802.11ax mode, so all other conducted and radiated test is covered by 802.11ax mode.

The final test modes include the worst data rates for each modulation shown in the table below.

CDD Mode

Modulation	Data Rate
802.11a	6 Mbps
802.11n HT20 (Covered by HE20)	MCS0
802.11n HT40 (Covered by HE40)	MCS0
802.11ac VHT20 (Covered by HE20)	MCS0
802.11ac VHT40 (Covered by HE40)	MCS0
802.11ac VHT80 (Covered by HE80)	MCS0
802.11ax HE20	MCS0
802.11ax HE40	MCS0
802.11ax HE80	MCS0

Remark: The conducted power level of each chain in MIMO mode is equal or higher than SISO mode.

TXBF Mode

Modulation	Data Rate
802.11n HT20 (Covered by HE20)	MCS0
802.11n HT40 (Covered by HE40)	MCS0
802.11ac VHT20 (Covered by HE20)	MCS0
802.11ac VHT40 (Covered by HE40)	MCS0
802.11ac VHT80 (Covered by HE80)	MCS0
802.11ax HE20	MCS0
802.11ax HE40	MCS0
802.11ax HE80	MCS0

Remark: The conducted power level of each chain in MIMO mode is equal or higher than SISO mode.

TEL: 886-3-327-0868 Page Number : 13 of 43 FAX: 886-3-327-0855 Issue Date : Oct. 04, 2022

Test Cases

AC
Conducted
Emission

Mode 1: WLAN (5GHz) Link + Bluetooth Link + NFC On + USB TYPE A to TYPE C
cable (Charging with Adapter) + Battery 1X for Sample 1

Remark: For Radiated Test Cases, the tests were performed with Battery 1X.

Report No.: FR271537F

<CDD Mode>

<Sample 1>

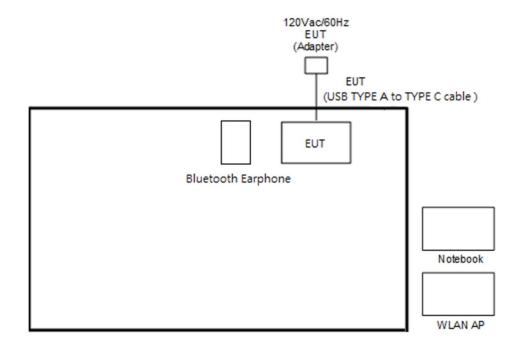
Ch. #		Band IV:5725-5850 MHz				
	CII.#	802.11a	802.11ax HE20	802.11ax HE40	802.11ax HE80	
L	Low	149	149	151	-	
М	Middle	157	157	-	155	
Н	High	165	165	159	-	

<Sample 2>

Ch. #		Band IV: 5725-5850 MHz
	CII. #	802.11ax HE20
L	Low	-
M	Middle	-
Н	High	165

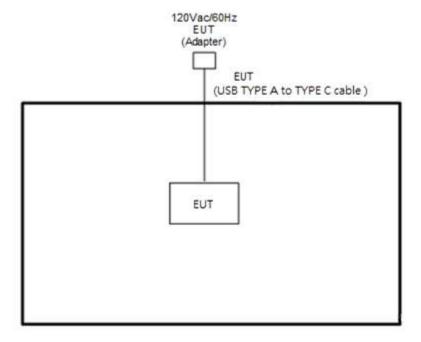
<TXBF Mode>

<Sample 1>


	Ch. #	Band IV:5725-5850 MHz			
	CII.#	802.11ax HE20	802.11ax HE40	802.11ax HE80	
L	Low	149	151	-	
М	Middle	157	-	155	
Н	High	165	159	-	

Remark: For radiation spurious emission, the modulation and the data rate picked for testing are determined by the Max. RF conducted power.

TEL: 886-3-327-0868 Page Number : 14 of 43 FAX: 886-3-327-0855 Issue Date : Oct. 04, 2022


2.3 Connection Diagram of Test System

<AC Conducted Emission Mode>

Report No.: FR271537F

<WLAN Tx Mode>

TEL: 886-3-327-0868 Page Number : 15 of 43 FAX: 886-3-327-0855 Issue Date : Oct. 04, 2022

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	Sony Ericsson	MW600	PY700A2029	N/A	N/A
2.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8m
3.	Notebook	Dell	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A

Report No.: FR271537F

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT v4.0.00194.0" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

For TXBF mode, the modulation modes and data rates manipulated by the command lines in the engineering program made the EUT link to another EUT by power under the normal operation. The "QRCT v4.0.00194.0" software tool was used to enable the EUT to transmit signals continuously.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB). = 4.2 + 10 = 14.2 (dB)

TEL: 886-3-327-0868 Page Number : 16 of 43 FAX: 886-3-327-0855 Issue Date : Oct. 04, 2022

3 Test Result

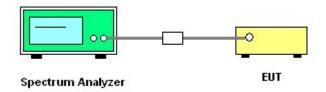
3.1 6dB and 26dB and 99% Occupied Bandwidth Measurement

3.1.1 Description of 6dB and 26dB and 99% Occupied Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz. 26dB and 99% Occupied bandwidth are reporting only.

3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.


3.1.3 Test Procedures

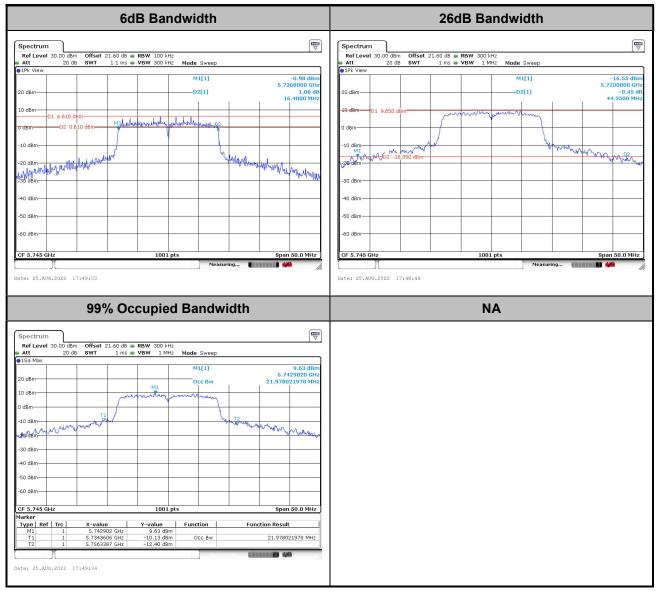
The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
 Section C) Emission bandwidth for the band 5.725-5.85 GHz

Report No.: FR271537F

- 2. Set RBW = 100 kHz.
- 3. Set the VBW \geq 3 x RBW.
- Detector = Peak.
- 5. Trace mode = max hold
- 6. Measure the maximum width of the emission that is 6 dB down from the peak of the emission.
- 7. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of 6dB and 26dB and 99% Occupied Bandwidth

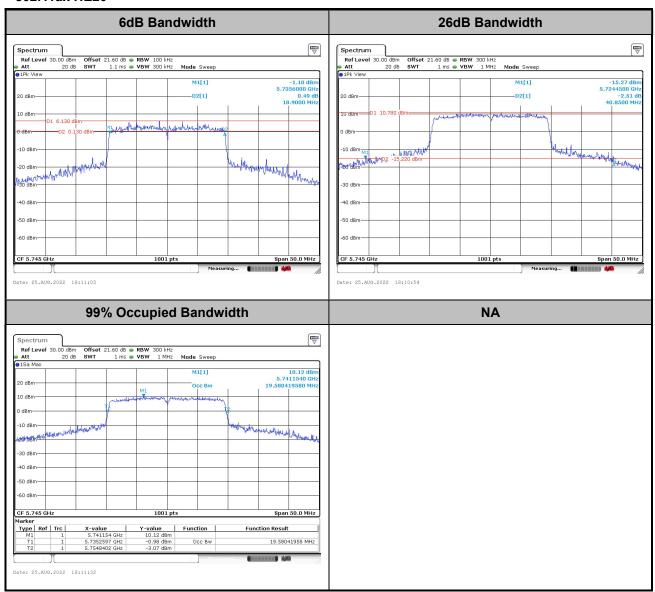

Please refer to Appendix A.

TEL: 886-3-327-0868 Page Number : 17 of 43
FAX: 886-3-327-0855 Issue Date : Oct. 04, 2022

<CDD Modes>

MIMO < Ant. 9+8>

<802.11a>

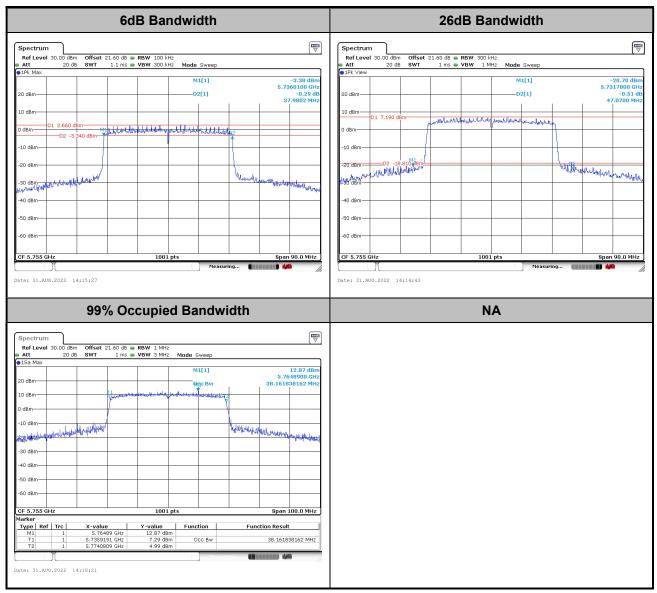


Report No.: FR271537F

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-0868 Page Number : 18 of 43 FAX: 886-3-327-0855 Issue Date : Oct. 04, 2022

<802.11ax HE20>

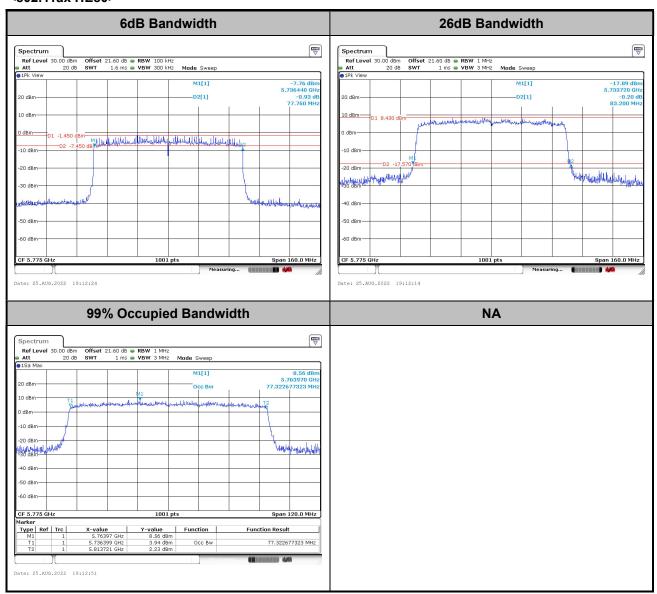


Report No.: FR271537F

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-0868 Page Number : 19 of 43 FAX: 886-3-327-0855 Issue Date : Oct. 04, 2022

<802.11ax HE40>

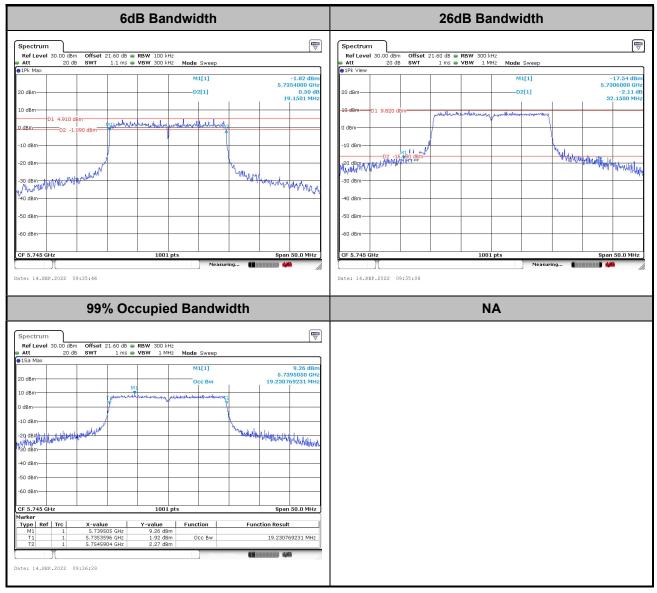


Report No.: FR271537F

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-0868 Page Number : 20 of 43 FAX: 886-3-327-0855 Issue Date : Oct. 04, 2022

<802.11ax HE80>

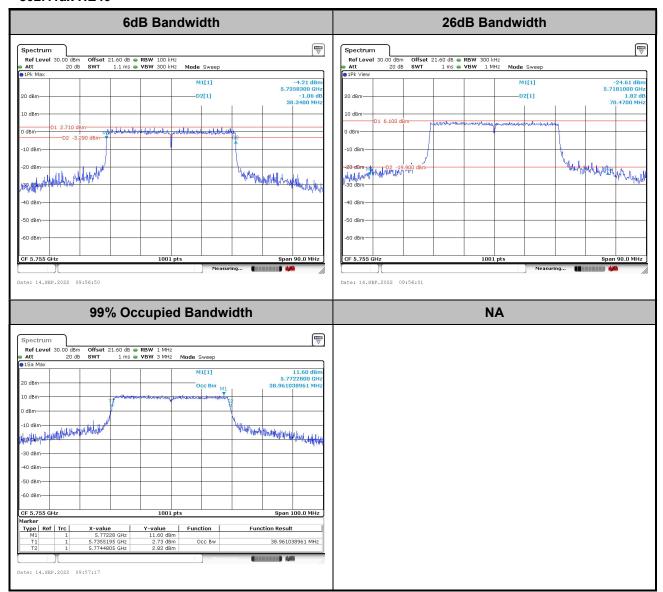

Report No.: FR271537F

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-0868 Page Number : 21 of 43 FAX: 886-3-327-0855 Issue Date : Oct. 04, 2022

<TXBF Modes>

MIMO <Ant. 9+8> <802.11ax HE20>

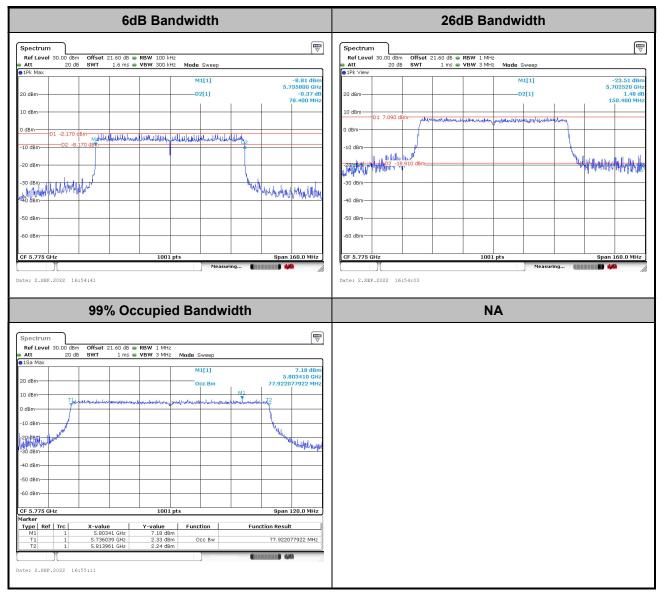


Report No.: FR271537F

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-0868 Page Number : 22 of 43 FAX: 886-3-327-0855 Issue Date : Oct. 04, 2022

<802.11ax HE40>



Report No.: FR271537F

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-0868 Page Number : 23 of 43 FAX: 886-3-327-0855 Issue Date : Oct. 04, 2022

<802.11ax HE80>

Report No.: FR271537F

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-0868 Page Number : 24 of 43 FAX: 886-3-327-0855 Issue Date : Oct. 04, 2022

3.2 Maximum Conducted Output Power Measurement

3.2.1 Limit of Maximum Conducted Output Power

For the band 5.725–5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

Report No.: FR271537F

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

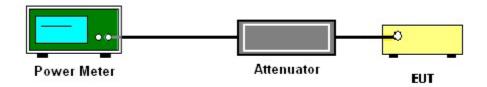
<CDD Modes>

The testing follows Method PM-G of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

Method PM-G (Measurement using a gated RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit at its maximum power control level.
- 3. Measure the average power of the transmitter.
- 4. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.
- 5. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01

<TXBF Modes>


The testing follows Method PM-G of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01 for TXBF modes.

Method PM-G (Measurement using a gated RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit at its maximum power control level.
- 3. Measure the average power of the transmitter
- 4. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.
- 5. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

TEL: 886-3-327-0868 Page Number : 25 of 43 FAX: 886-3-327-0855 Issue Date : Oct. 04, 2022

3.2.4 Test Setup

Report No.: FR271537F

3.2.5 Test Result of Maximum Conducted Output Power

Please refer to Appendix A.

TEL: 886-3-327-0868 Page Number : 26 of 43
FAX: 886-3-327-0855 Issue Date : Oct. 04, 2022

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

For the band 5.725–5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

Report No.: FR271537F

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section F) Maximum power spectral density.

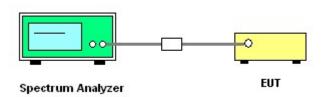
<CDD Modes>

Method SA-2

(trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

- ·Measure the duty cycle.
- ·Set span to encompass the entire emission bandwidth (EBW) of the signal.
- ·Set RBW = 300kHz.
- ·Set VBW ≥ 1 MHz.
- ·Add 10 log (500 kHz/RBW) to the measured result, whereas RBW (<500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement
- ·Number of points in sweep ≥ 2 Span / RBW.
- ·Sweep time = auto.
- ·Detector = RMS
- ·Trace average at least 100 traces in power averaging mode.
- ·Add 10 $\log(1/x)$, where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times. For example, add 10 $\log(1/0.25)$ = 6 dB if the duty cycle is 25 percent.
- 1. The RF output of EUT is connected to the spectrum analyzer by a low loss cable.
- 2. Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.

TEL: 886-3-327-0868 Page Number : 27 of 43
FAX: 886-3-327-0855 Issue Date : Oct. 04, 2022

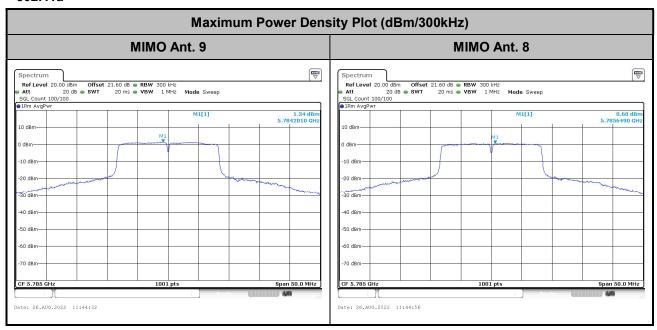

3. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

Report No.: FR271537F

Method (c): Measure and add 10 log(N_{ANT}) dB.

With this technique, spectrum measurements are performed at each output of the device, but rather than summing the spectra or the spectral peaks across the outputs, the quantity $10 \log(N_{ANT})$ dB is added to each spectrum value before comparing to the emission limit. The addition of $10 \log(N_{ANT})$ dB serves to apportion the emission limit among the N_{ANT} outputs so that each output is permitted to contribute no more than $1/N_{ANT}$ th of the PSD limit.

3.3.4 Test Setup



3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

<CDD Modes>

<802.11a>

TEL: 886-3-327-0868 Page Number : 28 of 43 FAX: 886-3-327-0855 Issue Date : Oct. 04, 2022