

Report No. : FR872508B

FCC RADIO TEST REPORT

FCC ID	:	UZ7TC720L
Equipment	:	Touch computer
Brand Name	:	Zebra
Model Name	:	TC720L
Applicant	:	Zebra Technologies Corporation
		1 Zebra Plaza Holtsville, NY 11742
Manufacturer	:	Zebra Technologies Corporation
		1 Zebra Plaza Holtsville, NY 11742
Standard	:	FCC Part 15 Subpart C §15.247

The product was received on Jul. 25, 2018 and testing was started from Aug. 22, 2018 and completed on Sep. 13, 2018. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Joseph Lin SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	3
Sur	nmary	v of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	5
	1.3	Modification of EUT	6
	1.4	Testing Location	6
	1.5	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System1	0
	2.4	Support Unit used in test configuration and system1	1
	2.5	EUT Operation Test Setup1	1
	2.6	Measurement Results Explanation Example1	1
3	Test	Result1	2
	3.1	6dB and 99% Bandwidth Measurement1	2
	3.2	Output Power Measurement2	!1
	3.3	Power Spectral Density Measurement	23
	3.4	Conducted Band Edges and Spurious Emission Measurement	51
	3.5	Radiated Band Edges and Spurious Emission Measurement4	0
	3.6	AC Conducted Emission Measurement4	4
	3.7	Antenna Requirements4	6
4	List o	of Measuring Equipment4	7
5	Unce	rtainty of Evaluation4	9
		A. AC Conducted Emission Test Result	
		B. Radiated Spurious Emission	
		C. Radiated Spurious Emission Plots	
App	pendix	a D. Duty Cycle Plots	

Appendix E. Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FR872508B	01	Initial issue of report	Sep. 20, 2018

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.247(b)(3)	Peak Output Power	Pass	-
3.3	15.247(e)	Power Spectral Density	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	Under limit 6.15 dB at 2496.990 MHz
3.6	15.207	AC Conducted Emission	Pass	Under limit 5.66 dB at 13.560 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Reviewed by: Wii Chang Report Producer: Nancy Yang

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature		
Equipment	Touch computer	
Brand Name	Zebra	
Model Name	TC720L	
FCC ID	UZ7TC720L	
	NFC	
EUT supports Radios application	WLAN 11a/b/g/n HT20/HT40	
Lot supports hadios application	WLAN 11ac VHT20/VHT40/VHT80	
	Bluetooth BR/EDR/LE	
HW Version	DV	
SW Version	Android version 8.1.0	
FW Version	91-09-14.00-OG-U00-STD	
MFD	03JUL18	
EUT Stage	Engineering Sample	

Remark: The above EUT's information was declared by manufacturer.

Specification of Accessories				
AC Adapter	Brand Name	Zebra	Part Number	PWR-BUA5V16W0WW
4 PIN DC power cable	Brand Name	Zebra	Part Number	CBL-DC-383A1-01
AC Power cable	Brand Name	Zebra	Part Number	50-16000-182R
Snap-On USB/Charge Cable	Brand Name	Zebra	Part Number	CBL-TC7X-USB1-01
Snap-On Charging Cable Cup	Brand Name	Zebra	Part Number	CHG-TC7X-CBL1-01
Battery 1	Brand Name	Zebra	Part Number	BT-000318-01
Battery 2 (Falcon 1S3P Battery Pack)	Brand Name	Zebra	Part Number	BT-000318-51
Battery 3	Brand Name	Symbol	Part Number	82-171249-02
Earphone 1	Brand Name	Zebra	Part Number	HDST-35MM-PTVP-01
Earphone 2	Brand Name	Zebra	Part Number	HS2100-OTH
Snap-on 3.5MM Audio Jack Adapter	Brand Name	Symbol	Part Number	ADP-TC7X-AUD35-01
3.5mm Jack 43"(1.1m) Standard Cable	Brand Name	Zebra	Part Number	CBL-HS2100-3MS1-01
Holster	Brand Name	Zebra	Part Number	SG-TC7X-HLSTR1-02
Rigid Holster	Brand Name	Zebra	Part Number	SG-TC7X-RHLSTR1-01

1.2 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz		
Number of Channels	40		
Carrier Frequency of Each Channel	40 Channel(37 hopping + 3 advertising channel)		
Maximum Output Power to Antenna	2.25 dBm (0.0017 W) for 1Mbps		
Maximum Output Power to Antenna	2.24 dBm (0.0017 W) for 2Mbps		
99% Occupied Bandwidth	1.030MHz for 1Mbps		
99% Occupied Balldwidth	2.048MHz for 2Mbps		
Antenna Type / Gain	PIFA Antenna type with gain 2.00 dBi		
Type of Modulation	Bluetooth LE : GFSK		

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW1190 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.		
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978		
Test Site No.	Sporton Site No.		
	TH05-HY	CO05-HY	03CH07-HY

Note: The test site complies with ANSI C63.4 2014 requirement.

1.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05
- FCC KDB 414788 D01 Radiated Test Site v01r01.
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
-	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

2.2 Test Mode

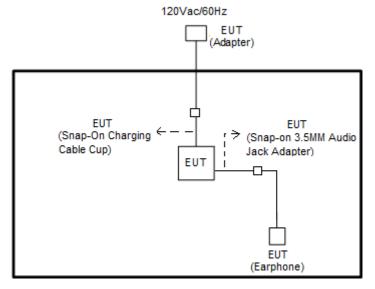
		Bluetooth – LE 1Mbps RF Average Output Power
Channel Francis	Fraguanay	Data Rate / Modulation
Channel	Channel Frequency	GFSK
		1Mbps
Ch00	2402MHz	<mark>1.55</mark> dBm
Ch19	2440MHz	1.00 dBm
Ch39	2480MHz	0.26 dBm

		Bluetooth – LE 1Mbps RF Peak Output Power
Channel	Fraguanau	Data Rate / Modulation
Channel	Channel Frequency	GFSK
		1Mbps
Ch00	2402MHz	<mark>2.25</mark> dBm
Ch19	2440MHz	1.88 dBm
Ch39	2480MHz	1.17 dBm

		Bluetooth – LE 2Mbps RF Average Output Power
Channel Frequency	Fraguanay	Data Rate / Modulation
	GFSK	
		1Mbps
Ch00	2402MHz	<mark>1.44</mark> dBm
Ch19	2440MHz	0.89 dBm
Ch39	2480MHz	0.01 dBm

Channel		Bluetooth – LE 2Mbps RF Peak Output Power
	Frequency	Data Rate / Modulation
	Frequency	GFSK
		1Mbps
Ch00	2402MHz	<mark>2.24</mark> dBm
Ch19	2440MHz	1.82 dBm
Ch39	2480MHz	1.16 dBm

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.


The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases							
Test Item	Data Rate / Modulation							
Test item	Bluetooth – LE / GFSK							
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps							
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps							
Conducted	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps							
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps							
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps							
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps							
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps							
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps							
Radiated	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps							
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps							
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps							
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps							
AC	Mode 1: NFC Link + WLAN (2.4GHz) Link + Bluetooth Link + Snap on USB Cable							
Conducted								
Emission	Data Link with Notebook + Copy Data from Notebook to EDA (eMMC) + AC Adapter							
Remark: For F	Radiated Test Cases, the tests were performed with Earphone 1.							

2.3 Connection Diagram of Test System

<Radiated Emission Mode>

<AC Conducted Emission for data link mode>

2.4	Support	Unit used	in test	configuration	and system
-----	---------	-----------	---------	---------------	------------

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
2.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
3.	iPod	Apple	A1285	FCC DoC	Shielded, 1.0 m	N/A
4.	Notebook	DELL	Latitude E6320	FCC DoC/ Contains FCC ID: QDS-BRCM1054	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
5.	Notebook	DELL	Latitude E3340	FCC DoC/ Contains FCC ID: PD97260NGU	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
6.	Notebook	DELL	P79G	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
7.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A
8.	NFC Card	Metro Taipei	Easy Card	N/A	N/A	N/A

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

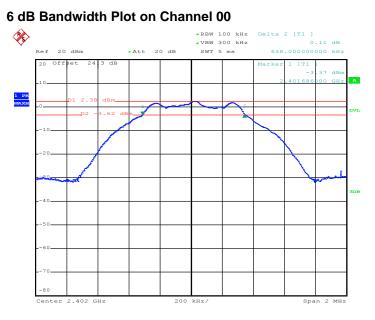
3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \ge 3 * RBW.
- 6. Measure and record the results in the test report.

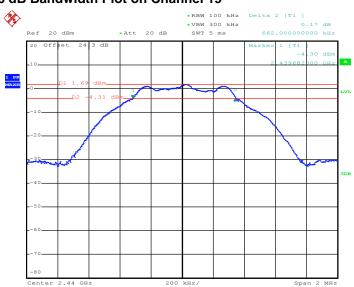
3.1.4 Test Setup


EUT

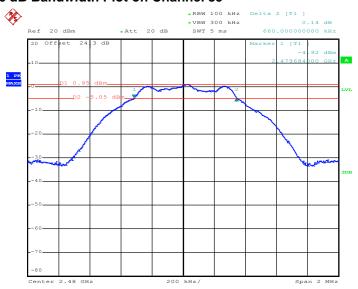
Spectrum Analyzer

3.1.5 Test Result of 6dB Bandwidth

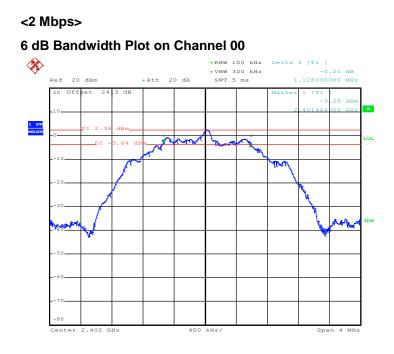
Mod.	Data Rate	Νтх	CH.	Freq. (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
BLE	1Mbps	1	0	2402	0.658	0.50	Pass
BLE	1Mbps	1	19	2440	0.662	0.50	Pass
BLE	1Mbps	1	39	2480	0.660	0.50	Pass
BLE	2Mbps	1	19	2440	1.128	0.50	Pass
BLE	2Mbps	1	39	2480	1.136	0.50	Pass
BLE	2Mbps	1	19	2440	1.120	0.50	Pass


<1 Mbps>

Date: 10.SEP.2018 19:40:03

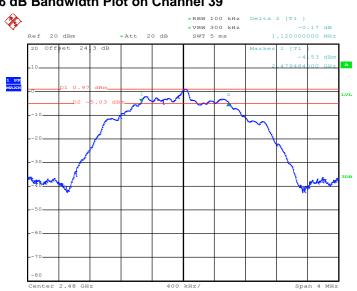

TEL : 886-3-327-3456	Page Number	: 13 of 49
FAX : 886-3-328-4978	Issued Date	: Sep. 20, 2018
Report Template No.: BU5-FR15CBT4.0 Version 2.1	Report Version	: 01

6 dB Bandwidth Plot on Channel 19


Date: 10.SEP.2018 19:44:25

6 dB Bandwidth Plot on Channel 39

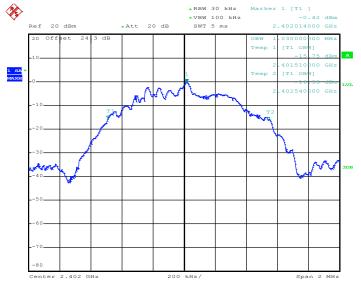
Date: 10.SEP.2018 19:47:06


Date: 10.SEP.2018 19:49:40

6 dB Bandwidth Plot on Channel 19

Date: 10.SEP.2018 19:53:20

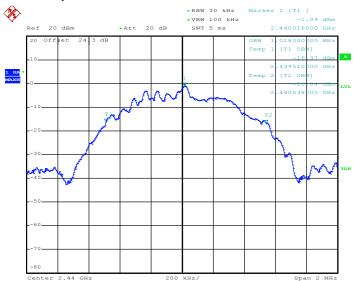
6 dB Bandwidth Plot on Channel 39


Date: 10.SEP.2018 19:56:06

3.1.6 Test Result of 99% Occupied Bandwidth

Mod.	Data Rate	Νтх	СН.	Freq. (MHz)	99% Occupied BW (MHz)	Pass/Fail
BLE	1Mbps	1	0	2402	1.030	Pass
BLE	1Mbps	1	19	2440	1.028	Pass
BLE	1Mbps	1	39	2480	1.030	Pass
BLE	2Mbps	1	0	2402	2.044	Pass
BLE	BLE 2Mbps		19	2440	2.044	Pass
BLE	2Mbps	1	39	2480	2.048	Pass

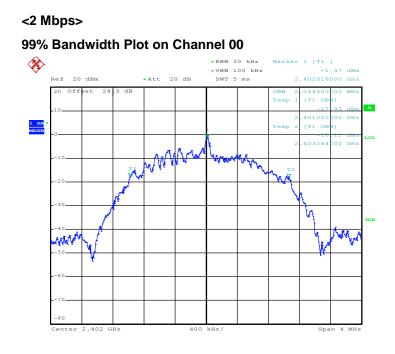
<1 Mbps>

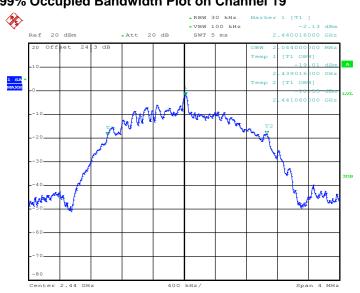

99% Bandwidth Plot on Channel 00

Date: 10.SEP.2018 19:42:41

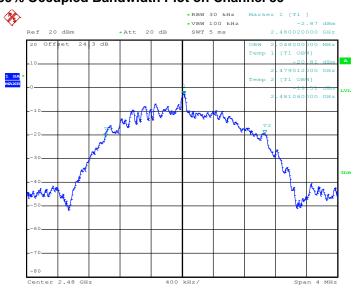
TEL : 886-3-327-3456	Page Number	: 17 of 49
FAX : 886-3-328-4978	Issued Date	: Sep. 20, 2018
Report Template No.: BU5-FR15CBT4.0 Version 2.1	Report Version	: 01

99% Occupied Bandwidth Plot on Channel 19


Date: 10.SEP.2018 19:46:17


99% Occupied Bandwidth Plot on Channel 39

Date: 10.SEP.2018 19:48:42


Date: 10.SEP.2018 19:51:11

99% Occupied Bandwidth Plot on Channel 19

Date: 10.SEP.2018 19:54:50

99% Occupied Bandwidth Plot on Channel 39

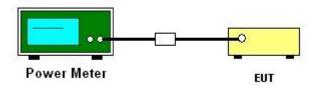
Date: 10.SEP.2018 19:57:51

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6 dBi.


3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

3.2.3 Test Procedures

- For Peak Power, the testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v05 section 9.1.3 PKPM1 Peak power meter method.
- For Average Power, the testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v05 section 9.2.3.1 Method AVGPM.
- 3. The RF output of EUT was connected to the power meter by RF cable and attenuator.
- 4. The path loss was compensated to the results for each measurement.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Peak Output Power

Mod.	Data Rate	Νтх	СН.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	2.25	30.00	2.00	4.25	36.00	Pass
BLE	1Mbps	1	19	2440	1.88	30.00	2.00	3.88	36.00	Pass
BLE	1Mbps	1	39	2480	1.17	30.00	2.00	3.17	36.00	Pass
BLE	2Mbps	1	0	2402	2.24	30.00	2.00	4.24	36.00	Pass
BLE	2Mbps	1	19	2440	1.82	30.00	2.00	3.82	36.00	Pass
BLE	2Mbps	1	39	2480	1.16	30.00	2.00	3.16	36.00	Pass

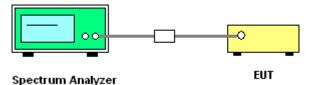
3.2.6 Test Result of Average Output Power (Reporting Only)

Mod.	Data Rate	Νтх	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)
BLE	1Mbps	1	0	2402	2.09	1.55
BLE	1Mbps	1	19	2440	2.09	1.00
BLE	1Mbps	1	39	2480	2.09	0.26
BLE	2Mbps	1	0	2402	4.86	1.44
BLE	2Mbps	1	19	2440	4.86	0.89
BLE	2Mbps	1	39	2480	4.86	0.01

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

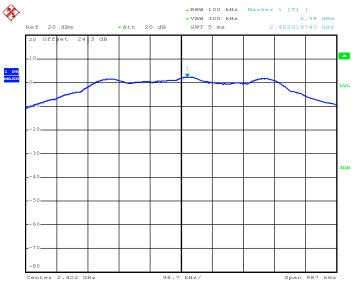

3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

3.3.3 Test Procedures

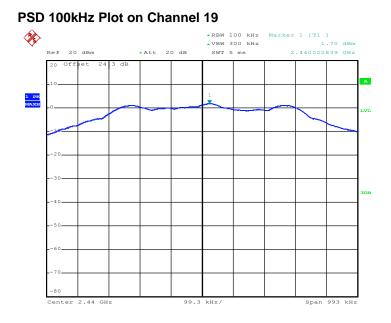
- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

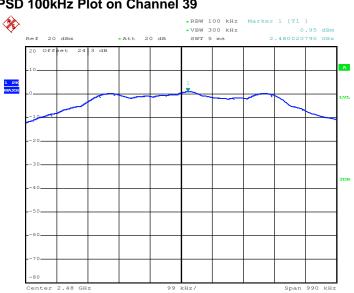

3.3.5 Test Result of Power Spectral Density

Mod.	Data Rate	Νтх	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BLE	1Mbps	1	0	2402	2.38	-12.50	2.00	8.00	Pass
BLE	1Mbps	1	19	2440	1.70	-13.14	2.00	8.00	Pass
BLE	1Mbps	1	39	2480	0.95	-13.88	2.00	8.00	Pass
BLE	2Mbps	1	0	2402	2.37	-16.02	2.00	8.00	Pass
BLE	2Mbps	1	19	2440	1.70	-16.58	2.00	8.00	Pass
BLE	2Mbps	1	39	2480	0.97	-17.32	2.00	8.00	Pass

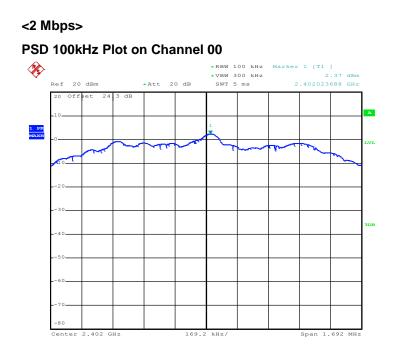
3.3.6 Test Result of Power Spectral Density Plots (100kHz)

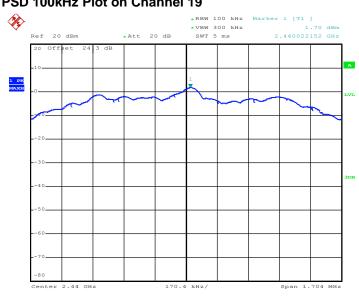

<1 Mbps>

PSD 100kHz Plot on Channel 00

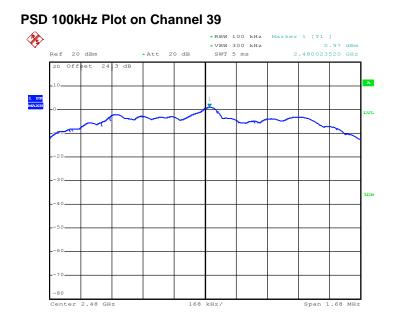


Date: 10.SEP.2018 19:40:51

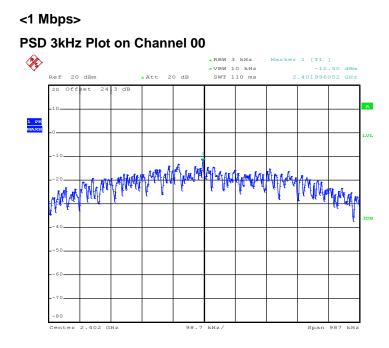

Date: 10.SEP.2018 19:44:54

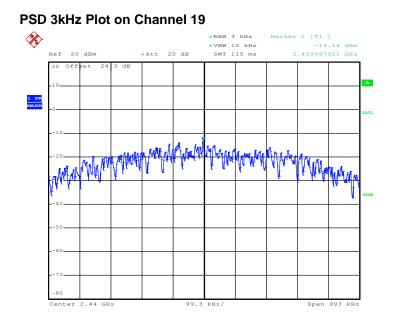

PSD 100kHz Plot on Channel 39

Date: 10.SEP.2018 19:47:39

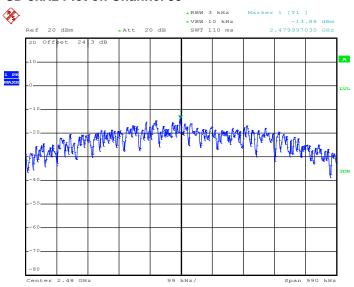

Date: 10.SEP.2018 19:50:09

PSD 100kHz Plot on Channel 19

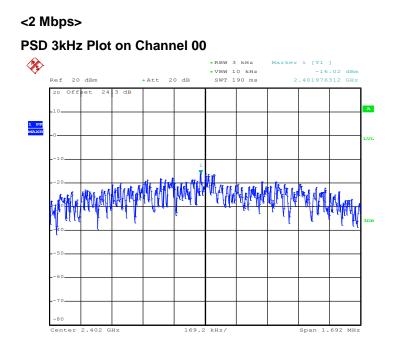

Date: 10.SEP.2018 19:53:52

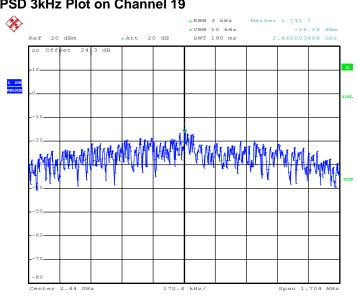

Date: 10.SEP.2018 19:56:48

3.3.7 Test Result of Power Spectral Density Plots (3kHz)

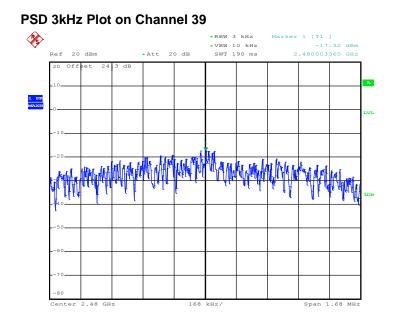


Date: 10.SEP.2018 19:40:28


Date: 10.SEP.2018 19:44:41


PSD 3kHz Plot on Channel 39

Date: 10.SEP.2018 19:47:26


Date: 10.SEP.2018 19:49:54

PSD 3kHz Plot on Channel 19

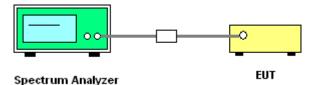
Date: 10.SEP.2018 19:53:38

Date: 10.SEP.2018 19:56:32

3.4 Conducted Band Edges and Spurious Emission Measurement

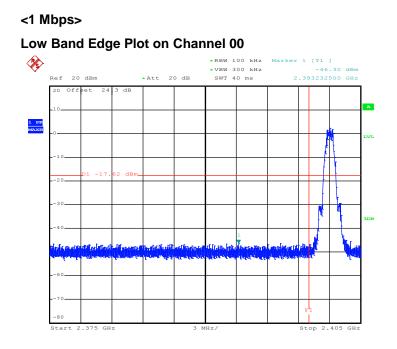
3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

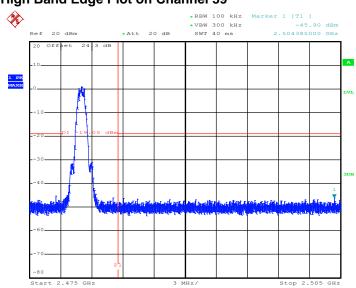

3.4.2 Measuring Instruments

See list of measuring equipment of this test report.

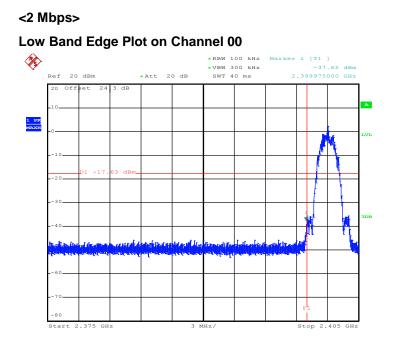
3.4.3 Test Procedure

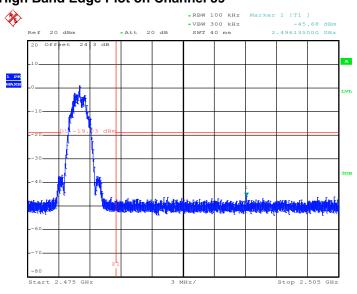

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup



3.4.5 Test Result of Conducted Band Edges Plots


Date: 10.SEP.2018 19:41:39

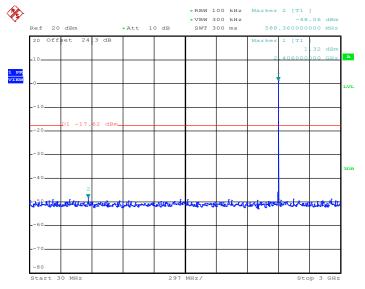

High Band Edge Plot on Channel 39

Date: 10.SEP.2018 19:47:53

Date: 10.SEP.2018 19:50:25

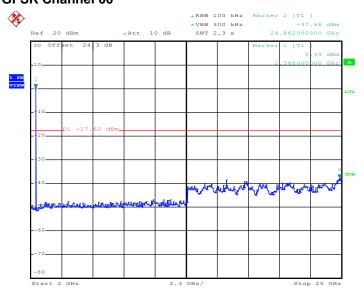
High Band Edge Plot on Channel 39

Date: 10.SEP.2018 19:57:02

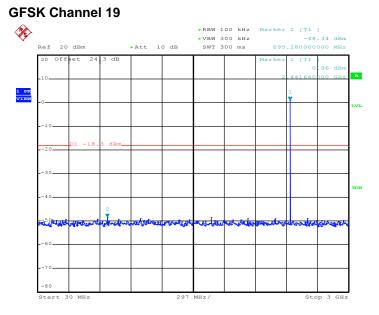


3.4.6 Test Result of Conducted Spurious Emission Plots

<1 Mbps>

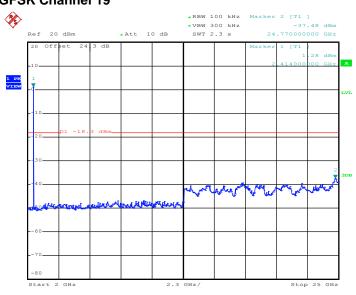

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

GFSK Channel 00

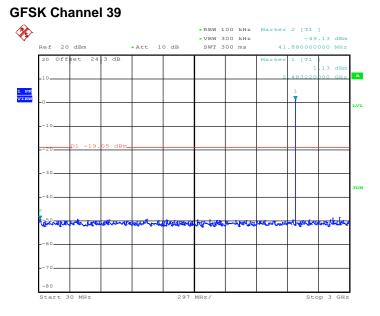

Date: 10.SEP.2018 19:42:13

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00

Date: 10.SEP.2018 19:42:28

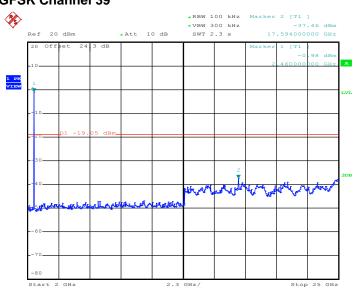


Conducted Spurious Emission Plot on Bluetooth LE 1Mbps


Date: 10.SEP.2018 19:45:40

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19

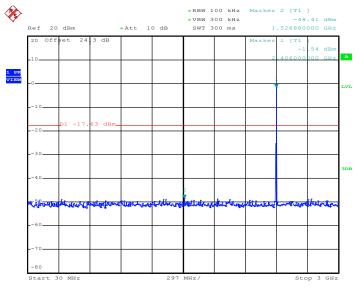
Date: 10.SEP.2018 19:45:55



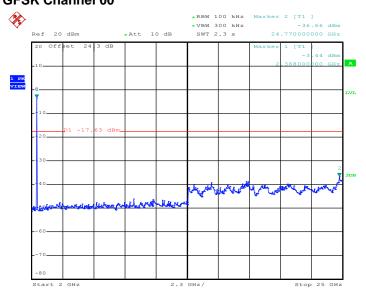
Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

Date: 10.SEP.2018 19:48:13

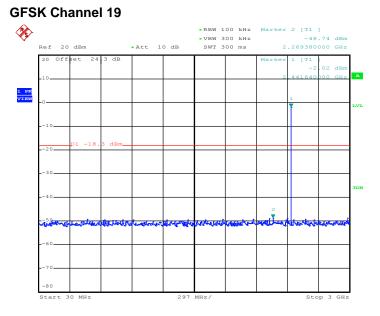
Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39


Date: 10.SEP.2018 19:48:29

<2 Mbps>

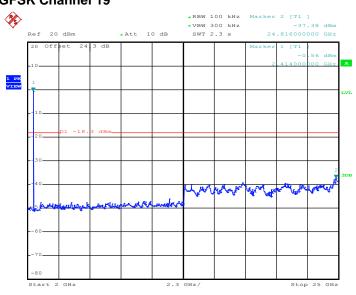

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

GFSK Channel 00

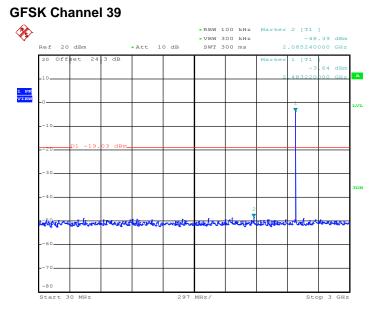

Date: 10.SEP.2018 19:50:43

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00

Date: 10.SEP.2018 19:50:58

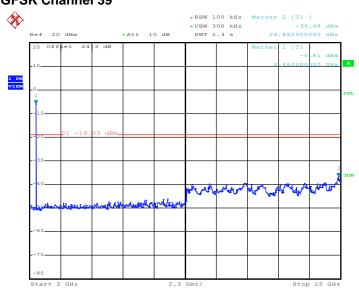


Conducted Spurious Emission Plot on Bluetooth LE 1Mbps


Date: 10.SEP.2018 19:54:12

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19

Date: 10.SEP.2018 19:54:27



Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

Date: 10.SEP.2018 19:57:19

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Date: 10.SEP.2018 19:57:32

3.5 Radiated Band Edges and Spurious Emission Measurement

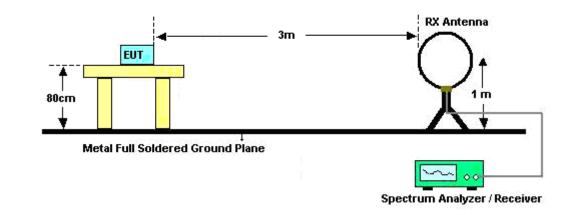
3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

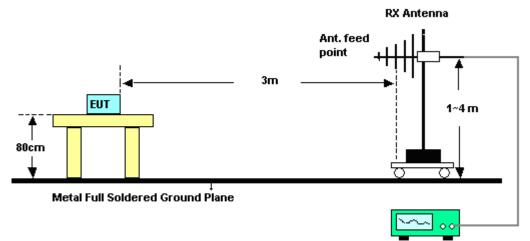
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

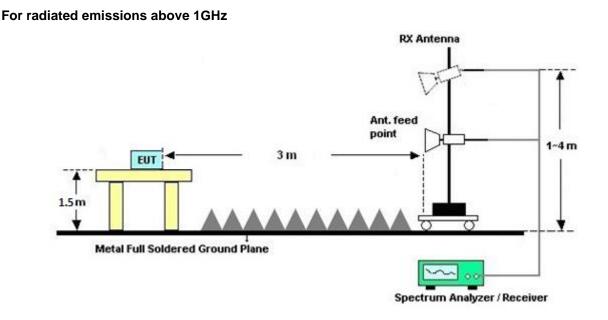

3.5.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.



3.5.4 Test Setup

For radiated emissions below 30MHz



For radiated emissions from 30MHz to 1GHz

Spectrum Analyzer / Receiver

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

3.5.7 Duty Cycle

Please refer to Appendix D.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B and C.

3.6 AC Conducted Emission Measurement

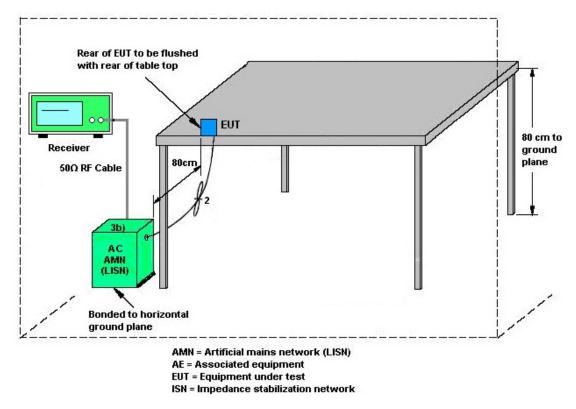
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted	limit (dBµV)
Frequency of emission (MHZ)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


See list of measuring equipment of this test report.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix A.

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark	
Power Meter	Agilent	E4416A	GB412923 44	N/A	Dec. 20, 2017	Aug. 22, 2018~ Sep. 10, 2018	Dec. 19, 2018	Conducted (TH05-HY)	
Power Sensor	Agilent	E9327A	US404415 48	50MHz~18GHz	Dec. 20, 2017	Aug. 22, 2018~ Sep. 10, 2018	Dec. 19, 2018	Conducted (TH05-HY)	
Spectrum Analyzer	Rohde & Schwarz	FSP40	100057	9kHz-40GHz	Nov. 21, 2017	Aug. 22, 2018~ Sep. 10, 2018	Nov. 20, 2018	Conducted (TH05-HY)	
Switch Box & RF Cable	Burgeon	ETF-058	EC130048 4	N/A	Mar. 01, 2018	Aug. 22, 2018~ Sep. 10, 2018	Feb. 28, 2019	Conducted (TH05-HY)	
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Aug. 23, 2018	N/A	Conduction (CO05-HY)	
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9KHz~3.6GHz	Dec. 08, 2017	Aug. 23, 2018	Dec. 07, 2018	Conduction (CO05-HY)	
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 30, 2017	Aug. 23, 2018	Nov. 29, 2018	Conduction (CO05-HY)	
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Aug. 23, 2018	N/A	Conduction (CO05-HY)	
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Jan. 03, 2018	Aug. 23, 2018	Jan. 02, 2019	Conduction (CO05-HY)	
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Jan. 03, 2018	Aug. 23, 2018	Jan. 02, 2019	Conduction (CO05-HY)	
Bilog Antenna	TESEQ	CBL 6111D&00800 N1D01N-06	35419&03	30MHz to 1GHz	Dec. 18, 2017	Aug. 22, 2018~ Sep. 13, 2018	Dec. 17, 2018	Radiation (03CH07-HY)	
Double Ridge Horn Antenna	EMCO	3117	00066583	1GHz~18GHz	Aug. 06, 2018	Aug. 22, 2018~ Sep. 13, 2018	Aug. 05, 2019	Radiation (03CH07-HY)	
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Nov. 10, 2017	Aug. 22, 2018~ Sep. 13, 2018	Nov. 09, 2018	Radiation (03CH07-HY)	
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590075	1GHz ~ 18GHz	Apr. 25, 2018	Aug. 22, 2018~ Sep. 13, 2018	Apr. 24, 2019	Radiation (03CH07-HY)	
Preamplifier	COM-POWER	PA-103A	161241	10MHz-1GHz	May 21, 2018	Aug. 22, 2018~ Sep. 13, 2018	May 20, 2019	Radiation (03CH07-HY)	
Preamplifier	Agilent	8449B	3008A023 62	1GHz~ 26.5GHz	Oct. 30, 2017	Aug. 22, 2018~ Sep. 13, 2018	Oct. 29, 2018	Radiation (03CH07-HY)	
Spectrum Analyzer	Agilent	N9010A	MY534701 18	10Hz~44GHz	Apr. 17, 2018	Aug. 22, 2018~ Sep. 13, 2018	Apr. 16, 2019	Radiation (03CH07-HY)	
Filter	Microwave	H1G013G1	SN477215	1.0G High Pass	Dec. 07, 2017	Aug. 22, 2018~ Sep. 13, 2018	Dec. 06, 2018	Radiation (03CH07-HY)	
Filter	Wainwright	WLKS1200-8 SS	SN3	1.2G Low Pass	Nov. 21, 2017	Aug. 22, 2018~ Sep. 13, 2018	Nov. 20, 2018	Radiation (03CH07-HY)	
Filter	Microwave	H3G018G1	SN477220	Aug. 22, 2018~		Nov. 20, 2018	Radiation (03CH07-HY)		
Filter	Microwave	WHKX7.0/26. 5G-6SS	SN4	7G High Pass	Nov. 21, 2017	Aug. 22, 2018~ Sep. 13, 2018	Nov. 20, 2018	Radiation (03CH07-HY)	

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark	
RF Cable	HUBER + SUHNER	SUCOFLE X 104	MY24971/4, MY28655/4	9KHz~30MHz	Jan. 02, 2018	Aug. 22, 2018~ Sep. 13, 2018	Jan. 01, 2019	Radiation (03CH07-HY)	
RF Cable	HUBER + SUHNER	SUCOFLE X 104	MY28655/4, MY24971/4, MY15682/4	30MHz~1GHz	Feb. 27, 2018	Aug. 22, 2018~ Sep. 13, 2018	Feb. 26, 2019	Radiation (03CH07-HY)	
RF Cable	HUBER + SUHNER	SUCOFLE X 104	MY28655/4, MY24971/4, MY15682/4	/4, 1GHz~18GHz Feb. 27, 20		Aug. 22, 2018~ Sep. 13, 2018	Feb. 26, 2019	Radiation (03CH07-HY)	
RF Cable	HUBER + SUHNER	SUCOFLE X 102	MY2858/2	18GHz~40GHz	18GHz~40GHz Feb. 27, 2018 Aug. 22, 2 Sep. 13,		Feb. 26, 2019	Radiation (03CH07-HY)	
Antenna Mast	Max-Full	MFA520BS	N/A	1m~4m	N/A	Aug. 22, 2018~ Sep. 13, 2018	N/A	Radiation (03CH07-HY)	
Turn Table	ChainTek	Chaintek 3000	N/A	0~360 Degree	N/A	Aug. 22, 2018~ Sep. 13, 2018	N/A	Radiation (03CH07-HY)	
Amplifier	MITEQ	TTA1840-3 5-HG	1871923	18GHz~40GHz, VSWR : 2.5:1 max	Jul. 16, 2018	Aug. 22, 2018~ Sep. 13, 2018	Jul. 15, 2019	Radiation (03CH07-HY)	
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA917025 1	18GHz- 40GHz	Nov. 10, 2017	Aug. 22, 2018~ Sep. 13, 2018	Nov. 09, 2018	Radiation (03CH07-HY)	
EMI Test Receiver	Agilent	N9038A(M XE)	MY53290053	20Hz to 26.5GHz	Jan. 16, 2018	Aug. 22, 2018~ Sep. 13, 2018	Jan. 15, 2019	Radiation (03CH07-HY)	
Software	Audix	E3 6.2009- 8-24	8050400465 6H	N/A	N/A	Aug. 22, 2018~ Sep. 13, 2018	N/A	Radiation (03CH07-HY)	

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	27
of 95% (U = 2Uc(y))	2.1

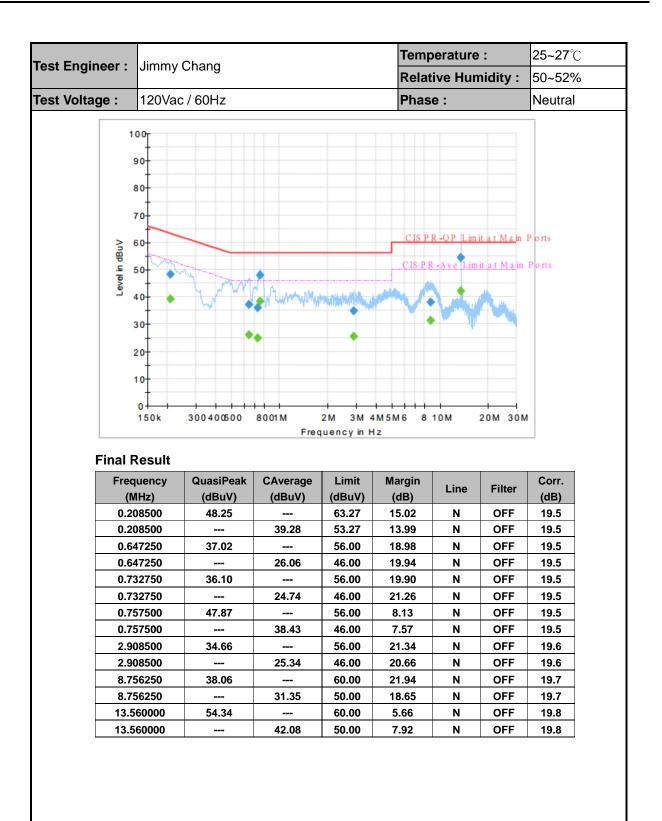
Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.7
of 95% (U = 2Uc(y))	5.7

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.5
of 95% (U = 2Uc(y))	5.5

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)


Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.2
--	-----

Appendix A. AC Conducted Emission Test Results

Engineer	limmu	Chang		Temp	Temperature :		25~27 ℃	
Engineer :	Jimmy	Relat	ive Hur	nidity :	50~52%			
Voltage :	120Vac	: / 60Hz			Phas	e :		Line
	100 90 80 70 60 50 40 30				CISI	PR-OP Li	mit at Maji mit at Maji	1 Ports
	20- 10- 0- 150k	300400500	8001M			10M	20M 30	м
	10- 0	300400500 QuasiPeak		2M 3M quency in				M Corr.
Fre	10 0 150k Result		Fre	quency in	Hz	10M	20M 30	
Fre (0.1	10 0 150k Result quency MHz) 152250	QuasiPeak	Free CAverage (dBuV)	Limit (dBuV) 65.88	Hz Margin (dB) 18.69	Line L1	Filter OFF	Corr. (dB) 19.5
Fre (0.1	10 0 150k Result quency MHz) 152250 152250	QuasiPeak (dBuV) 47.19 	Free CAverage (dBuV) 33.97	Limit (dBuV) 65.88 55.88	Hz Margin (dB) 18.69 21.91	Line L1 L1	Filter OFF OFF	Corr. (dB) 19.5 19.5
Fre (0.1 0.2	10 0 150k Result quency MHz) 152250 152250 152250	QuasiPeak (dBuV) 47.19 36.40	Free CAverage (dBuV) 33.97 	Limit (dBuV) 65.88 55.88 56.17	Hz Margin (dB) 18.69 21.91 19.77	Line L1 L1 L1	Filter OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5
Fre (0.1 0.4 0.4	10 0 150k Result quency MHz) 152250 152250 152250 152250 189750	QuasiPeak (dBuV) 47.19 36.40 	Free CAverage (dBuV) 33.97 27.56	Limit (dBuV) 65.88 55.88 56.17 46.17	Hz Margin (dB) 18.69 21.91 19.77 18.61	Line L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5
Fre (0.1 0.2 0.2 0.2	10 150k Result quency MHz) 152250 152250 152250 189750 759750	QuasiPeak (dBuV) 47.19 36.40 43.49	Free CAverage (dBuV) 33.97 27.56 	Limit (dBuV) 65.88 55.88 56.17 46.17 56.00	Hz Margin (dB) 18.69 21.91 19.77 18.61 12.51	Line L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5
Fre (0.1 0.2 0.2 0.7 0.7	10 150k Result quency MHz) 152250 152550 1555750 155575750 1555750 155575750 1555750 1555750 1555750 1555750 15	QuasiPeak (dBuV) 47.19 36.40 43.49 	Free (dBuV) 33.97 27.56 33.57	Limit (dBuV) 65.88 55.88 56.17 46.17 56.00 46.00	Hz Margin (dB) 18.69 21.91 19.77 18.61 12.51 12.43	Line L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5
Fre (0.1 0.2 0.4 0.4 0.7 0.7 2.5	10 150k Result quency MHz) 152250 152250 152250 152250 152250 159750 759750 759750 593500	QuasiPeak (dBuV) 47.19 36.40 43.49	Free CAverage (dBuV) 33.97 27.56 33.57 	Limit (dBuV) 65.88 55.88 56.17 46.17 56.00 46.00 56.00	Hz Margin (dB) 18.69 21.91 19.77 18.61 12.51 12.43 20.03	Line L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5
Fre (0.1 0.4 0.4 0.4 0.7 0.7 0.7 2.5	10 150k Result quency MHz) 152250 152550 1535500 1535500 1535500 1535500 1535500 1535500 1535500 1535500	QuasiPeak (dBuV) 47.19 36.40 43.49 35.97 	Free (dBuV) 33.97 27.56 33.57	Limit (dBuV) 65.88 55.88 56.17 46.17 56.00 46.00 56.00 46.00	Hz Margin (dB) 18.69 21.91 19.77 18.61 12.51 12.43 20.03 18.25	Line L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5
Fre (0.1 0.4 0.4 0.4 0.7 0.7 0.7 2.5 2.5	10 150k Result quency MHz) 152250 152250 152250 152250 152250 159750 759750 759750 593500	QuasiPeak (dBuV) 47.19 36.40 43.49 	Free (dBuV) 33.97 27.56 33.57 27.75	Limit (dBuV) 65.88 55.88 56.17 46.17 56.00 46.00 56.00 46.00 56.00	Hz Margin (dB) 18.69 21.91 19.77 18.61 12.51 12.43 20.03	Line L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5
Fre (0.1 0.2 0.2 0.2 0.7 0.7 0.7 2.5 2.5 2.5 2.5	10 150k Result quency MHz) 152250 15250 1	QuasiPeak (dBuV) 47.19 36.40 43.49 35.97 38.73 	Free CAverage (dBuV) 33.97 27.56 33.57 27.75 	Limit (dBuV) 65.88 55.88 55.88 56.17 46.17 56.00 46.00 56.00 46.00 56.00 46.00	Hz Margin (dB) 18.69 21.91 19.77 18.61 12.51 12.43 20.03 18.25 17.27 17.80	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5
Free (0.1 0.2 0.2 0.2 0.7 0.7 0.7 0.7 2.5 2.5 2.5 2.5 2.5 2.5 8.6	10 150k Result quency MHz) 152250 15250 150500 150500 150500 150500 150500 150500 150500 150500 15050	QuasiPeak (dBuV) 47.19 36.40 43.49 35.97 38.73	Free CAverage (dBuV) 33.97 27.56 33.57 27.75 28.20	Limit (dBuV) 65.88 55.88 56.17 46.17 56.00 46.00 56.00 46.00 56.00 46.00 60.00	Hz Margin (dB) 18.69 21.91 19.77 18.61 12.51 12.43 20.03 18.25 17.27 17.80 24.69	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5
Free (0.1 0.2 0.2 0.2 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	10 150k Result quency MHz) 152250 15250 1	QuasiPeak (dBuV) 47.19 36.40 43.49 35.97 38.73 35.31	Free (dBuV) 33.97 27.56 33.57 27.75 28.20 	Limit (dBuV) 65.88 55.88 55.88 56.17 46.17 56.00 46.00 56.00 46.00 56.00 46.00	Hz Margin (dB) 18.69 21.91 19.77 18.61 12.51 12.43 20.03 18.25 17.27 17.80	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5

Appendix B. Radiated Spurious Emission

Test Engineer		Jesse Wang, Stan Hsieh, and Nick Yu	Temperature :	24~26°C
	•	Jesse Wang, Stan Asien, and Nick Tu	Relative Humidity :	51~53%

2.4GHz 2400~2483.5MHz

BLE_1Mbps (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2378.565	55.82	-18.18	74	41.52	31.97	17.37	35.04	101	274	Р	Н
		2357.355	45.65	-8.35	54	31.38	31.93	17.37	35.03	101	274	А	Н
	*	2402	96.46	-	-	82.08	32	17.43	35.05	101	274	Ρ	Н
	*	2402	95.86	-	-	81.48	32	17.43	35.05	101	274	А	Н
BLE													Н
CH 00													Н
2402MHz		2359.56	55.35	-18.65	74	41.08	31.93	17.37	35.03	100	245	Р	V
240211112		2376.045	45.9	-8.1	54	31.6	31.97	17.37	35.04	100	245	А	V
	*	2402	94.83	-	-	80.45	32	17.43	35.05	100	245	Ρ	V
	*	2402	94.24	-	-	79.86	32	17.43	35.05	100	245	А	V
													V
													V
		2368.1	54.43	-19.57	74	40.17	31.93	17.37	35.04	100	273	Ρ	Н
		2369.36	45.74	-8.26	54	31.44	31.97	17.37	35.04	100	273	А	Н
	*	2440	94.98	-	-	80.35	32.2	17.49	35.06	100	273	Ρ	Н
	*	2440	94.47	-	-	79.84	32.2	17.49	35.06	100	273	А	н
51 5		2492.93	54.75	-19.25	74	39.98	32.3	17.55	35.08	100	273	Ρ	н
BLE CH 19		2497.41	45.9	-8.1	54	31.13	32.3	17.55	35.08	100	273	А	Н
2440MHz		2340.38	54.72	-19.28	74	40.48	31.9	17.37	35.03	114	243	Р	V
2440101112		2384.76	45.58	-8.42	54	31.22	31.97	17.43	35.04	114	243	А	V
	*	2440	94.58	-	-	79.95	32.2	17.49	35.06	114	243	Р	V
	*	2440	94.1	-	-	79.47	32.2	17.49	35.06	114	243	А	V
		2486.63	54.71	-19.29	74	39.96	32.27	17.55	35.07	114	243	Ρ	V
		2491.25	45.92	-8.08	54	31.14	32.3	17.55	35.07	114	243	А	V

Report No. : FR872508B

	*	2480	95.25	-	-	80.5	32.27	17.55	35.07	100	271	Р	Н
	*	2480	94.67	-	-	79.92	32.27	17.55	35.07	100	271	А	н
		2487.28	54.79	-19.21	74	40.04	32.27	17.55	35.07	100	271	Р	н
		2491.12	46.19	-7.81	54	31.41	32.3	17.55	35.07	100	271	А	н
BLE													Н
CH 39													Н
2480MHz	*	2480	93.29	-	-	78.54	32.27	17.55	35.07	110	230	Р	V
240010172	*	2480	92.74	-	-	77.99	32.27	17.55	35.07	110	230	А	V
		2491.52	55.16	-18.84	74	40.38	32.3	17.55	35.07	110	230	Ρ	V
		2488.28	45.95	-8.05	54	31.17	32.3	17.55	35.07	110	230	А	V
													V
													V
Remark		o other spurious I results are PA		Peak and a	Average lir	nit line.	<u>.</u>		<u>.</u>	<u>.</u>	·		

2.4GHz	2400~2483.5MHz	

BLE	Note	Frequency	Level	Over		Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol
DLL	NOLE	Frequency	Levei	Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)		(P/A)	
		4824	41.94	-32.06	74	56.35	33.95	10.98	59.34	100	0	Ρ	Н
													Н
													Н
BLE													Н
CH 00		4824	42.04	-31.96	74	56.45	33.95	10.98	59.34	100	0	Р	V
2402MHz													V
													V
													V
		4880	41.69	-32.31	74	55.9	34	11.03	59.24	100	0	Р	Н
		7320	43.13	-30.87	74	51.93	35.7	13.66	58.16	100	0	Р	Н
													Н
BLE													Н
CH 19 2440MHz		4880	41.58	-32.42	74	55.79	34	11.03	59.24	100	0	Р	V
2440111172		7320	44.88	-29.12	74	53.68	35.7	13.66	58.16	100	0	Р	V
													V
													V
		4960	42.59	-31.41	74	56.42	34.1	11.14	59.07	100	0	Р	Н
		7440	44.32	-29.68	74	53.16	35.7	13.79	58.33	100	0	Р	Н
51 5													Н
BLE													Н
CH 39 2480MHz		4960	42.57	-31.43	74	56.4	34.1	11.14	59.07	100	0	Ρ	V
240011112		7440	43.66	-30.34	74	52.5	35.7	13.79	58.33	100	0	Р	V
													V
													V
	1. No	other spurious	s found				I						
Remark		results are PA		Peak and	Average lim	it line.							
	/ \		ee agamot i	Juntanta	ago an								

BLE_1Mbps (Harmonic @ 3m)

Emission below 1GHz

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)		(P/A)	
		30	29.44	-10.56	40	34.86	24.6	1.33	31.35	100	0	Р	Н
		140.97	32	-11.5	43.5	43.88	17.4	2.24	31.52	-	-	Р	Н
		292.44	29.16	-16.84	46	38.6	19.01	2.86	31.31	-	-	Р	Н
		329.4	29.18	-16.82	46	37.76	19.71	2.96	31.25	-	-	Ρ	Н
		710.2	31.9	-14.1	46	31.72	26.49	4.36	30.67	-	-	Р	Н
		892.9	33.15	-12.85	46	29.99	28.78	4.9	30.52	-	-	Ρ	н
													н
													н
													н
													н
													н
2.4GHz													н
BLE LF		30	29.27	-10.73	40	34.69	24.6	1.33	31.35	100	0	Р	V
LF		92.37	29.98	-13.52	43.5	44.94	14.88	1.73	31.57	-	-	Р	V
		124.77	29.87	-13.63	43.5	41.7	17.69	2.01	31.53	-	-	Р	V
		559	26.09	-19.91	46	27.37	25.8	3.81	30.89	-	-	Р	V
		778.1	29.7	-16.3	46	27.88	27.97	4.46	30.61	-	-	Р	V
		961.5	32.84	-21.16	54	27.4	30.9	5.05	30.51	-	-	Р	V
													V
													V
													V
													V
													V
													V
				1			1			<u> </u>	1	I	1
Remark		o other spurious											
	2. All	results are PA	SS against li	imit line.									

2.4GHz BLE 1Mbps (LF)

2.4GHz 2400~2483.5MHz

BLE_2Mbps (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2357.985	54.87	-19.13	74	40.6	31.93	17.37	35.03	108	286	Ρ	Н
		2326.905	47.26	-6.74	54	33.17	31.8	17.31	35.02	108	286	А	Н
	*	2402	96.7	-	-	82.32	32	17.43	35.05	108	286	Ρ	Н
	*	2402	95.17	-	-	80.79	32	17.43	35.05	108	286	A	н
BLE													H H
CH 00		0007745		10.05		10.00		47.04	05.00	400	0.15	_	
2402MHz		2327.745	54.75	-19.25	74	40.66	31.8	17.31	35.02	100	245	P	V
		2376.99	47.2	-6.8	54	32.9	31.97	17.37	35.04	100	245	A	V
	*	2402	94.32	-	-	79.94	32	17.43	35.05	100	245	Р	V
	*	2402	92.96	-	-	78.58	32	17.43	35.05	100	245	А	V
													V
													V
		2380.56	54.93	-19.07	74	40.57	31.97	17.43	35.04	100	286	Р	Н
		2388.26	47.32	-6.68	54	32.93	32	17.43	35.04	100	286	А	Н
	*	2440	95.54	-	-	80.91	32.2	17.49	35.06	100	286	Ρ	н
	*	2440	94.18	-	-	79.55	32.2	17.49	35.06	100	286	А	Н
		2498.04	55.16	-18.84	74	40.39	32.3	17.55	35.08	100	286	Ρ	Н
BLE		2496.99	47.85	-6.15	54	33.08	32.3	17.55	35.08	100	286	А	Н
CH 19		2383.5	54.5	-19.5	74	40.14	31.97	17.43	35.04	111	232	Ρ	V
2440MHz		2385.04	47.29	-6.71	54	32.93	31.97	17.43	35.04	111	232	А	V
	*	2440	93.84	-	-	79.21	32.2	17.49	35.06	111	232	Р	V
	*	2440	92.64	-	-	78.01	32.2	17.49	35.06	111	232	А	V
		2491.46	55.15	-18.85	74	40.37	32.3	17.55	35.07	111	232	Р	V
		2495.8	47.4	-6.6	54	32.63	32.3	17.55	35.08	111	232	А	V

Report No. : FR872508B

	*	2480	95.22	-	-	80.47	32.27	17.55	35.07	100	275	Р	Н
	*	2480	93.79	-	-	79.04	32.27	17.55	35.07	100	275	А	Н
		2486.12	55.76	-18.24	74	41.01	32.27	17.55	35.07	100	275	Р	Н
		2489.84	47.64	-6.36	54	32.86	32.3	17.55	35.07	100	275	А	Н
BLE													Н
CH 39													Н
2480MHz	*	2480	93.37	-	-	78.62	32.27	17.55	35.07	108	242	Ρ	V
240011112	*	2480	91.96	-	-	77.21	32.27	17.55	35.07	108	242	А	V
		2499.68	55.36	-18.64	74	40.59	32.3	17.55	35.08	108	242	Ρ	V
		2497.68	47.44	-6.56	54	32.67	32.3	17.55	35.08	108	242	А	V
													V
													V
Remark		o other spurious I results are PA		Peak and	Average lir	nit line.							

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
			(dBµV/m)	(dB)	(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)		(P/A)	
		4804	42.36	-31.64	74	56.91	33.9	10.93	59.38	100	0	Р	Н
													Н
													н
BLE													н
CH 00		4804	43.86	-30.14	74	58.41	33.9	10.93	59.38	100	0	Р	V
2402MHz													V
													V
												_	V
		4880	42.7	-31.3	74	56.91	34	11.03	59.24	100	0	Р	Н
		7320	44.33	-29.67	74	53.13	35.7	13.66	58.16	100	0	Р	Н
BLE													Н
													н
CH 19 2440MHz		4880	41.8	-32.2	74	56.01	34	11.03	59.24	100	0	Р	V
		7320	43.34	-30.66	74	52.14	35.7	13.66	58.16	100	0	Р	V
													V
													V
		4960	42.13	-31.87	74	55.96	34.1	11.14	59.07	100	0	Р	Н
		7440	44.58	-29.42	74	53.42	35.7	13.79	58.33	100	0	Р	Н
													Н
BLE													н
CH 39 2480MHz		4960	42.74	-31.26	74	56.57	34.1	11.14	59.07	100	0	Р	V
2400101712		7440	44.09	-29.91	74	52.93	35.7	13.79	58.33	100	0	Р	V
													V
													V
Remark		other spurious results are PA		eak and	l Average lim	it line.							

BLE_2Mbps (Harmonic @ 3m)

Emission	below	1GHz
----------	-------	------

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		68.61	19.83	-20.17	40	37.48	12.24	1.7	31.59	-	-	Р	Н
		135.3	35.23	-8.27	43.5	47.33	17.41	2.01	31.52	100	0	Р	Н
		263.55	26.78	-19.22	46	35.87	19.39	2.87	31.35	-	-	Ρ	Н
		302.8	26.59	-19.41	46	35.72	19.2	2.96	31.29	-	-	Ρ	Н
		690.6	28.18	-17.82	46	28.36	26.25	4.26	30.69	-	-	Ρ	Н
		960.1	32.27	-21.73	54	26.83	30.9	5.05	30.51	-	-	Ρ	н
													н
													Н
													Н
													Н
													н
2.4GHz													Н
BLE LF		97.77	34.4	-9.1	43.5	48.63	15.58	1.75	31.56	100	0	Р	V
LF		196.59	24.68	-18.82	43.5	38.89	14.86	2.38	31.45	-	-	Ρ	V
		293.79	24.11	-21.89	46	33.53	19.03	2.86	31.31	-	-	Ρ	V
		349.7	25.8	-20.2	46	33.63	20.34	3.05	31.22	-	-	Ρ	V
		661.9	27.09	-18.91	46	27.41	26.18	4.24	30.74	-	-	Ρ	V
		864.2	31.61	-14.39	46	28.27	29	4.88	30.54	-	-	Ρ	V
													V
													V
													V
													V
													V
													V
Remark		o other spurious results are PA		mit line.			1		1		1	1	1

2.4GHz BLE 2Mbps (LF)

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not
	exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

Note symbol

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

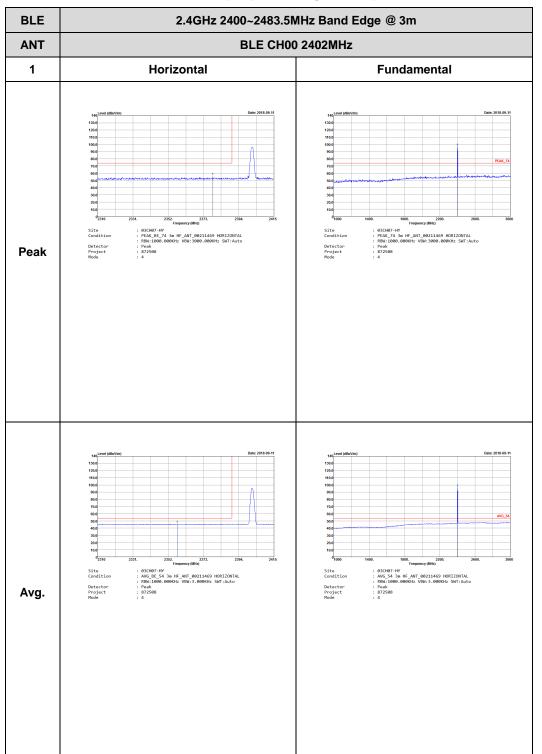
For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

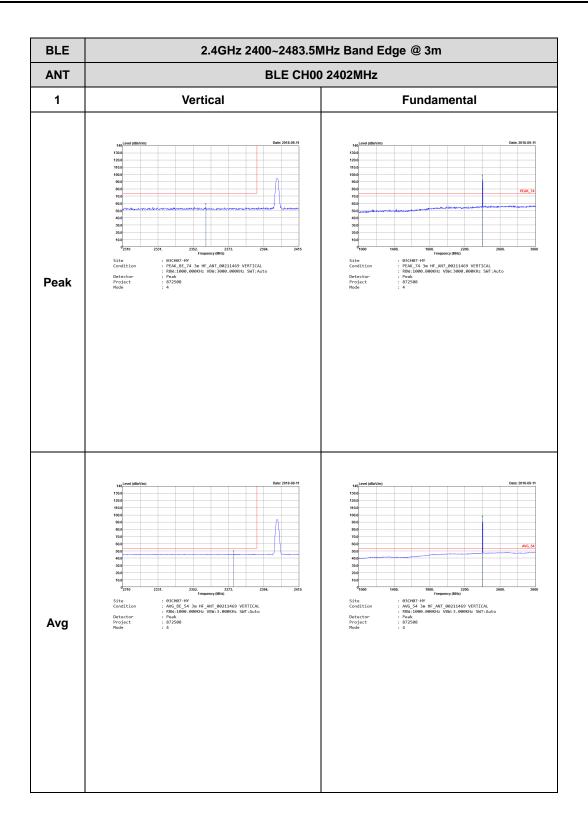
- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

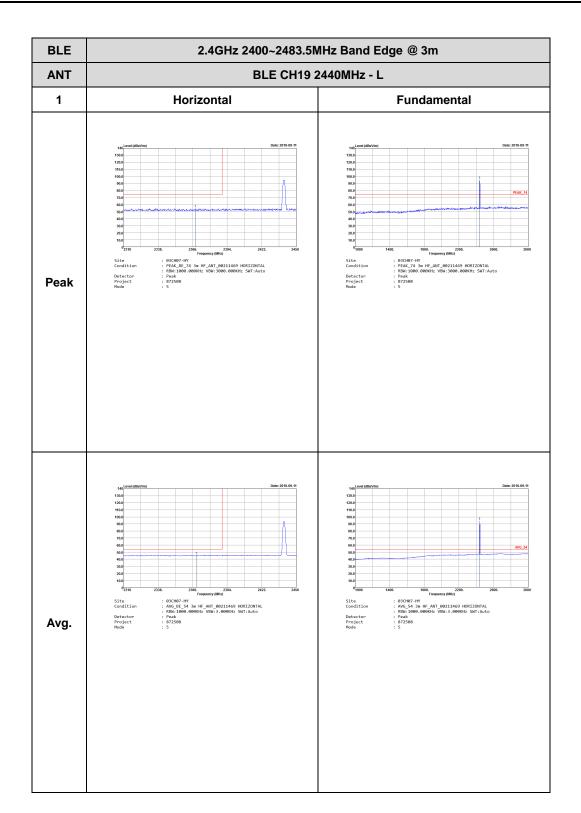

Appendix C. Radiated Spurious Emission Plots

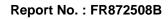
Toot Engineer		Temperature :	24~26°C
Test Engineer :	Jesse Wang, Stan Hsieh, and Nick Yu	Relative Humidity :	51~53%

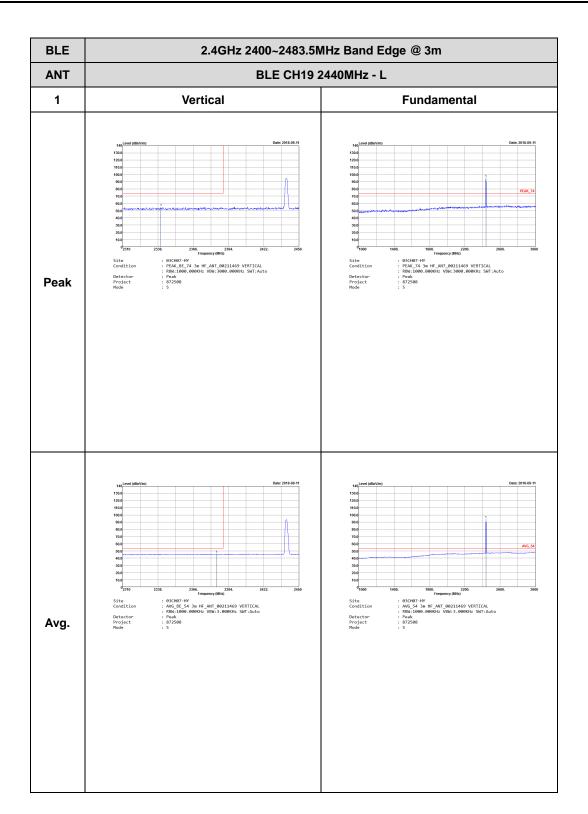
Note symbol

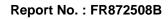

-L	Low channel location
-R	High channel location

2.4GHz 2400~2483.5MHz

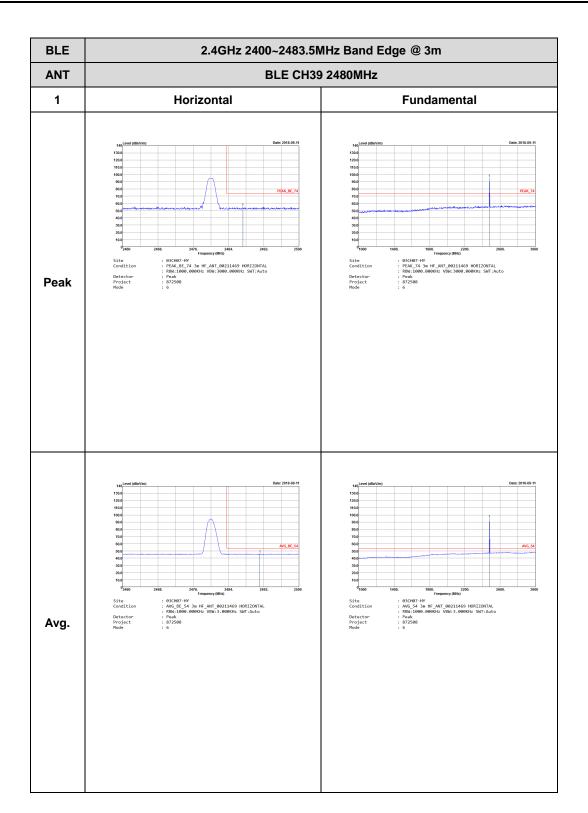


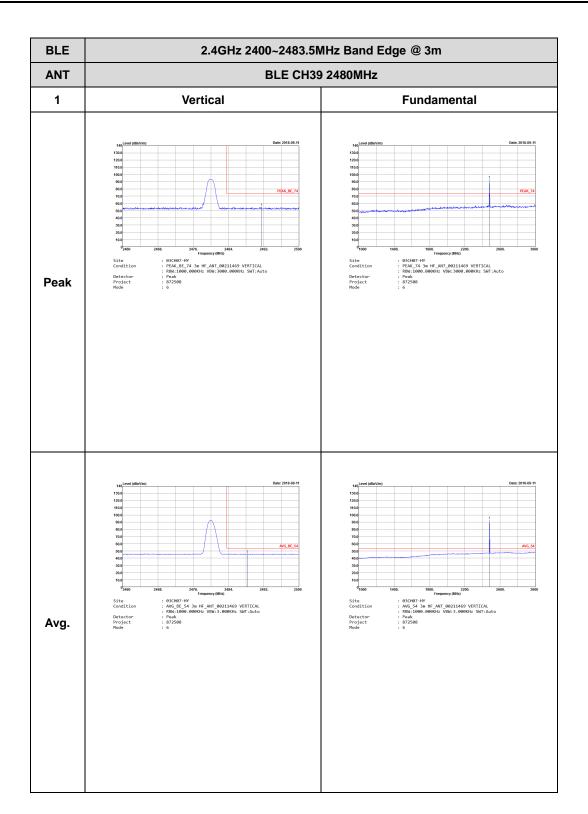

BLE_1Mbps (Band Edge @ 3m)



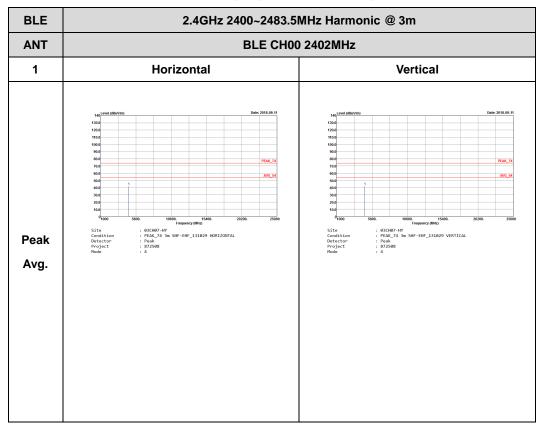


BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m		
ANT	BLE CH19 2440MHz - R		
1	Horizontal	Fundamental	
Peak	<text></text>	Left blank	
Avg.	<text></text>	Left blank	



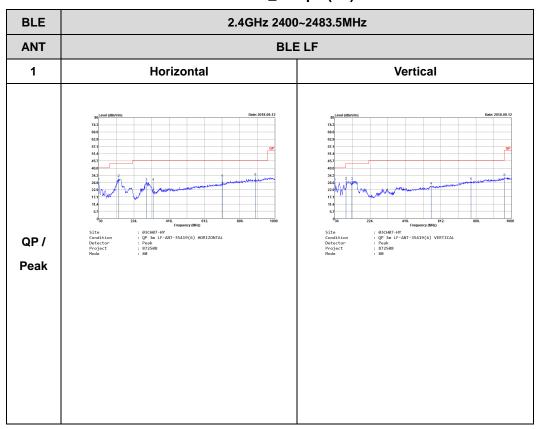


BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m		
ANT	BLE CH19 2440MHz - R		
1	Vertical	Fundamental	
Peak	<text></text>	Left blank	
Avg.	<text></text>	Left blank	



2.4GHz 2400~2483.5MHz

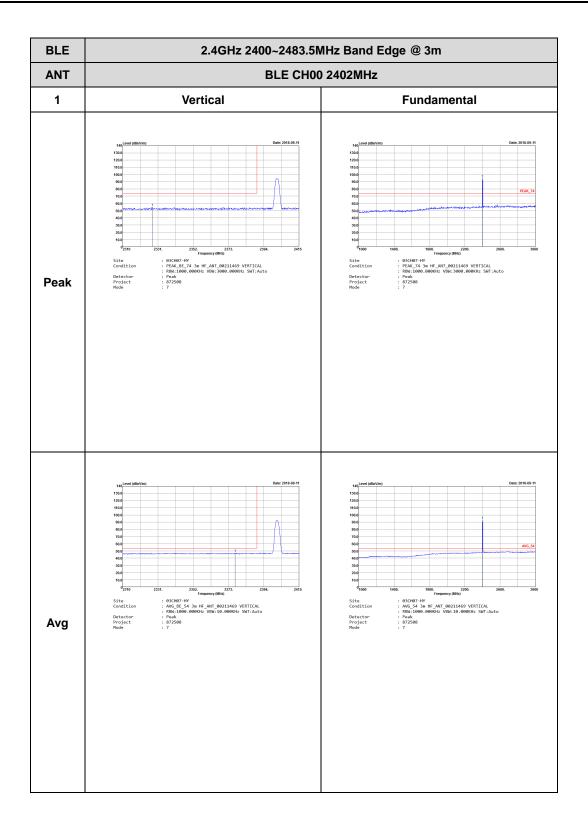
BLE_1Mbps (Harmonic @ 3m)


BLE	2.4GHz 2400~2483.5MHz Harmonic @ 3m			
ANT	BLE CH19 2440MHz			
1	Horizontal	Vertical		
Peak Avg.	image: existing Difference image: existing Differen	important important important		

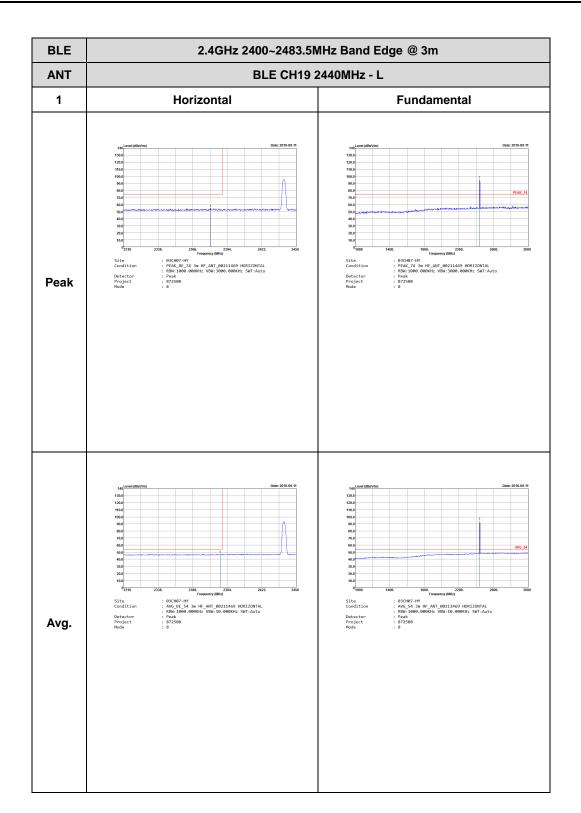
BLE	2.4GHz 2400~2483.5MHz Harmonic @ 3m					
ANT	BLE CH39 2480MHz					
1	Horizontal	Vertical				
Peak	10 10 <td< th=""><th>100 100</th></td<>	100 100				



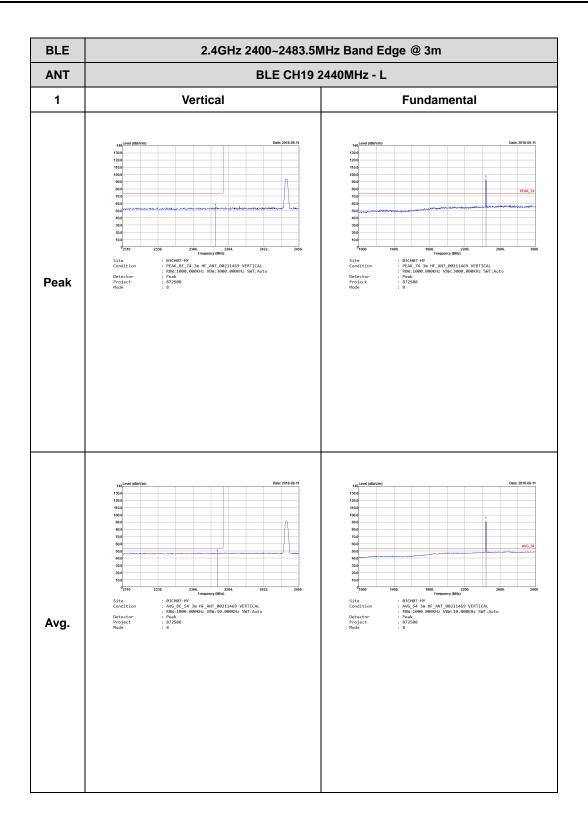
Emission below 1GHz

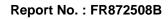

2.4GHz BLE_1Mbps (LF)

2.4GHz 2400~2483.5MHz

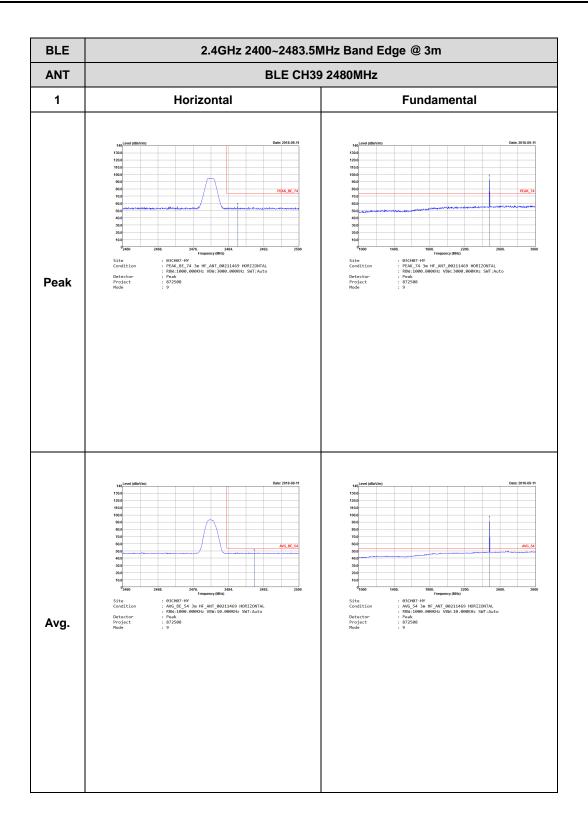


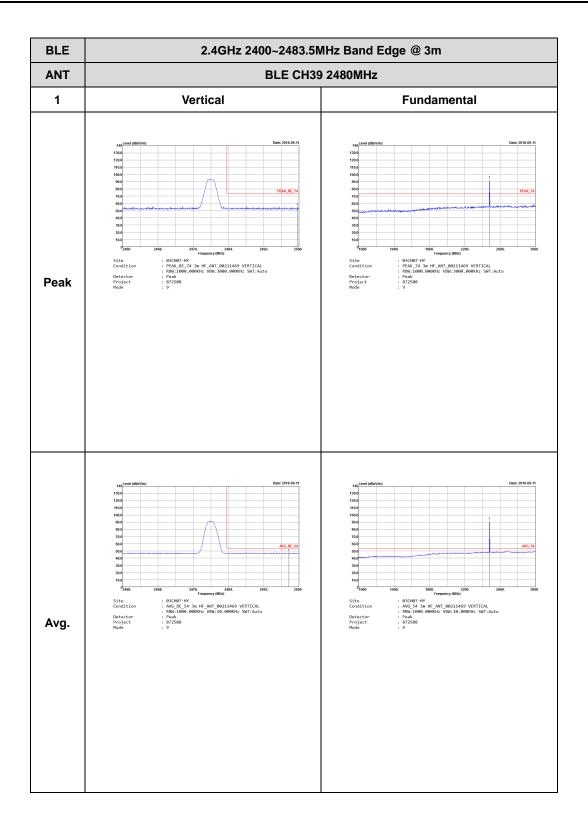
BLE_2Mbps (Band Edge @ 3m)



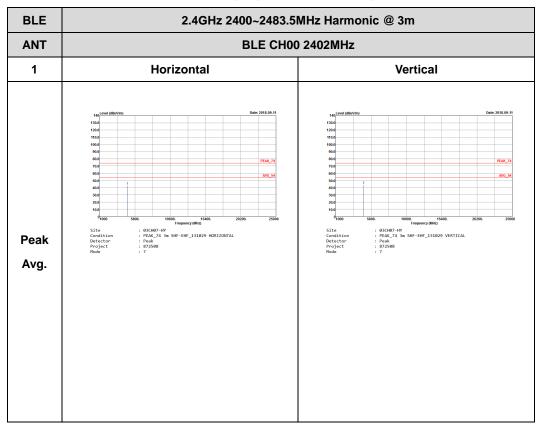


BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m			
ANT	BLE CH19 2440MHz - R			
1	Horizontal	Fundamental		
Peak	<text></text>	Left blank		
Avg.	<text></text>	Left blank		



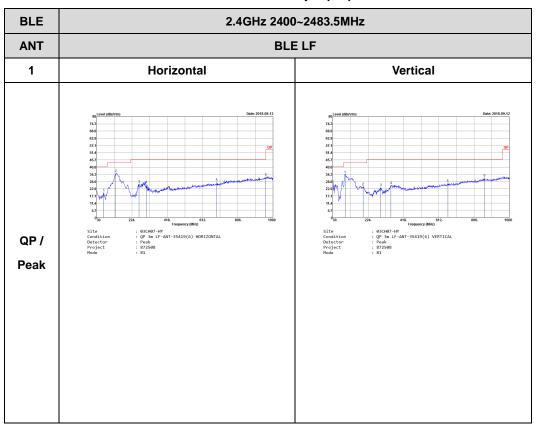


BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m			
ANT	BLE CH19 2440MHz - R			
1	Vertical	Fundamental		
Peak	<text></text>	Left blank		
Avg.	<text></text>	Left blank		



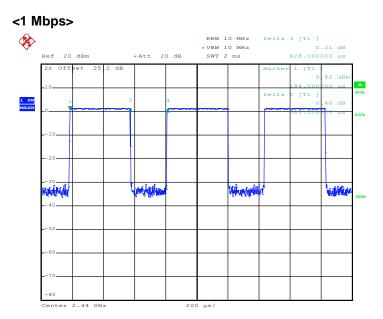
2.4GHz 2400~2483.5MHz

BLE_2Mbps (Harmonic @ 3m)

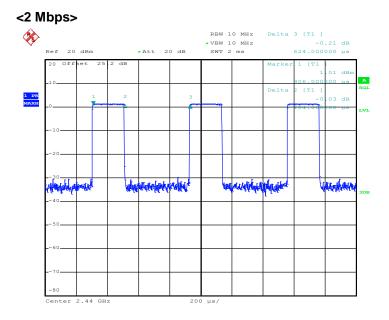

BLE	2.4GHz 2400~2483.5MHz Harmonic @ 3m				
ANT	BLE CH19 2440MHz				
1	Horizontal	Vertical			
Peak Avg.	1 1 <th>46 Ever (dBM/m) Detr. 2014.08 11 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0</th>	46 Ever (dBM/m) Detr. 2014.08 11 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0			

BLE	2.4GHz 2400~2483.5MHz Harmonic @ 3m BLE CH39 2480MHz				
ANT					
1	Horizontal	Vertical			
Peak	Mathematical systemDecrementMathematical systemDecrement <tr< th=""><th>10 10<</th></tr<>	10 10<			

Emission below 1GHz



2.4GHz BLE_2Mbps (LF)



Appendix D. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting	Duty Factor(dB)
Bluetooth – LE 1Mbps	61.78	388.00	2.58	3kHz	2.09
Bluetooth – LE 2Mbps	32.69	204.00	4.90	10kHz	4.86

Date: 22.AUG.2018 01:26:46

Date: 22.AUG.2018 01:29:08