

FCC RF Test Report

APPLICANT	: Zebra Technologies Corporation
EQUIPMENT	: Touch computer
BRAND NAME	: Zebra
MODEL NAME	: TC700K
FCC ID	: UZ7TC700K
STANDARD	: FCC Part 15 Subpart C §15.247
CLASSIFICATION	: (DTS) Digital Transmission System

The product was received on Aug. 12, 2016 and testing was completed on Dec. 27, 2016. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC. No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : UZ7TC700K

Page Number : 1 of 16 Report Issued Date : Jan. 05, 2017 Report Version : Rev. 01 Report Template No.: BU5-FR15CBT4.0 Version 1.3

TABLE OF CONTENTS

SU	MMAF	Y OF TEST RESULT	4
1	GEN	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Re-use of Measured Data	6
	1.5	Modification of EUT	6
	1.6	Testing Location	
	1.7	Applicable Standards	7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Descriptions of Test Mode	8
	2.2	Test Mode	8
	2.3	Measurement Results Explanation Example	9
3	TEST	RESULT	10
	3.1	Peak Output Power Measurement	10
	3.2	Power Spectral Density Measurement	11
	3.3	Antenna Requirements	15
4	LIST	OF MEASURING EQUIPMENT	16
AP	PEND	IX A. CONDUCTED TEST RESULTS	

APPENDIX B. PRODUCT EQUALITY DECLARATION.

APPENDIX C. ORIGINAL REPORT

REVISION HISTORY

VERSION	DESCRIPTION	ISSUED DATE
Rev. 01	Initial issue of report	Jan. 05, 2017

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(b)(3)	Peak Output Power	≤ 30dBm	Pass	-
3.2	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.3	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

1 General Description

1.1 Applicant

Zebra Technologies Corporation

1 Zebra Plaza Holtsville, NY 11742

1.2 Manufacturer

Wistron Corporation

21F, No. 88, Sec. 1, Hsin Tai Wu Rd., Hsichih Dist, New Taipei City 221, Taiwan R.O.C.

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment	Touch computer			
Brand Name	Zebra			
Model Name	TC700K			
FCC ID	UZ7TC700K			
	NFC			
FUT our north Dedies emplication	WLAN 11a/b/g/n HT20/HT40			
EUT supports Radios application	WLAN 11ac VHT20/VHT40/VHT80			
	Bluetooth BR/EDR/LE			
HW Version	DV			
SW Version	Android version 6.0.1			
FW Version	91-12.04.4-MG-00			
MFD	08NOV16			
EUT Stage	Engineering sample			

Specification of Accessories							
AC Adapter	Brand Name	Zebra	Part Number	PWR-BUA5V16W0WW			
Snap-On USB/Charge Cable	Brand Name	Symbol	Part Number	CBL-TC7X-USB1-01			
Snap-On Charging Cable Cup	Brand Name	Symbol	Part Number	CHG-TC7X-CBL1-01			
Battery	Brand Name	Zebra	Part Number	BT-000318-01			
Earphone 1	Brand Name	Zebra	Part Number	HDST-35MM-PTVP-01			
Earphone 2	Brand Name	Zebra	Part Number	HS2100-OTH			
Earphone 3	Brand Name	Zebra	Part Number	HS3100-OTH			
Snap-on 3.5MM Audio Jack Adapter	Brand Name	Symbol	Part Number	ADP-TC7X-AUD35-01			
3.5mm Jack 43"(1.1m) Standard Cable	Brand Name	Zebra	Part Number	CBL-HS2100-3MS1-01			
Soft Holster	Brand Name	Zebra	Part Number	SG-TC7X-HLSTR1-01			
Rigid Holster	Brand Name	Zebra	Part Number	SG-TC7X-RHLSTR1-0 1			
Power Cord	Brand Name	LOROM	Part Number	50-16000-182R			
Cable line	Brand Name	Zebra	Part Number	CBL-DC-383A1-01			

1.4 Re-use of Measured Data

1.4.1 Introduction Section

The part 15C test data for Bluetooth (equipment class: DTS) of UZ7TC700K (model: TC700K) is referenced from UZ7TC75EK (model: TC75EK).

The applicant takes full responsibility that the test data as referenced in section 1.4.4 below represent compliance for UZ7TC700K (model: TC700K).

1.4.2 Difference Section

UZ7TC700K is a variant version of UZ7TC75EK by changing hardware in UZ7TC75GK. Detailed information is available in the appendix B - Product Equality Declaration.

1.4.3 Spot Check Verification Data Section

In order to confirm hardware similarity of the subject device with the reference device, WLAN conducted power and PSD spot check has been performed on FCC ID: UZ7TC700K (model: TC700K) for certain parameters. The test results are significantly consistent with its parent model FCC ID: UZ7TC75EK (model: TC75EK).

1.4.4 Reference detail Section:

Equipment Class	Reference FCC ID	Folder Test/RF Exposure	Report Title/Section
DTS	UZ7TC75EK	Part15C (FR672834B)	All sections applicable

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW1022 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.
	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,
Test Site Location	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.
Test Site Location	TEL: +886-3-327-3456
	FAX: +886-3-328-4978
Toot Site No	Sporton Site No.
Test Site No.	TH02-HY

Note: The test site complies with ANSI C63.4 2014 requirement.

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

The RF output power was recorded in the following table:

	F actor 1	Bluetooth – LE RF Average Output Power (dBm)
Channel		Data Rate / Modulation
Channel	Frequency	GFSK
		1Mbps
Duty C	ycle (%)	61.78
Ch00	2402MHz	1.24 dBm
Ch19	2440MHz	<mark>3.04</mark> dBm
Ch39	2480MHz	1.64 dBm

		Bluetooth – LE RF Peak Output Power (dBm)
Channel	Fraguanay	Data Rate / Modulation
Channel	Frequency	GFSK
		1Mbps
Ch00	2402MHz	2.25 dBm
Ch19	2440MHz	<mark>3.79</mark> dBm
Ch39	2480MHz	2.72 dBm

2.2 Test Mode

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases					
Test Item	Data Rate / Modulation					
Test Item	Bluetooth – LE / GFSK					
Conductod	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps					
Conducted	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps					
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps					

2.3 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

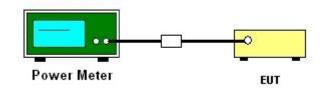
 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$ = 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 Peak Output Power Measurement

3.1.1 Limit of Peak Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.


3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v03r05 section 9.1.2 PKPM1 Peak power meter method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.1.4 Test Setup

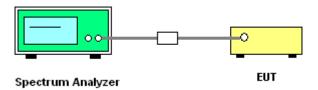
3.1.5 Test Result of Peak Output Power

Test data refers to Appendix A.

3.2 Power Spectral Density Measurement

3.2.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

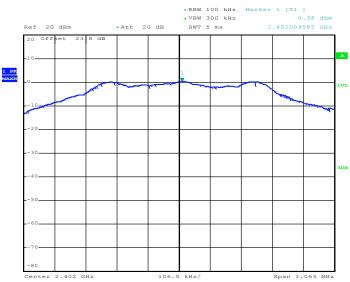

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

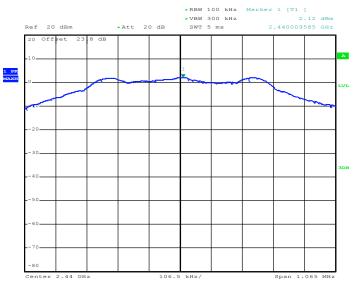
- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize.
 Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.2.4 Test Setup



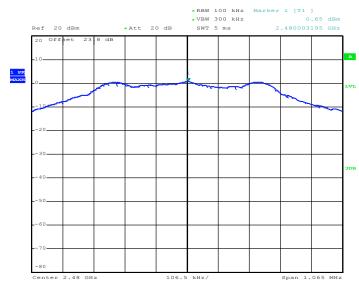
3.2.5 Test Result of Power Spectral Density

Test data refers to Appendix A.



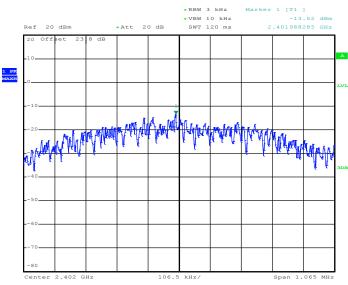
3.2.6 Test Result of Power Spectral Density Plots (100kHz)

PSD 100kHz Plot on Channel 00


Date: 27.DEC.2016 20:06:06

PSD 100kHz Plot on Channel 19

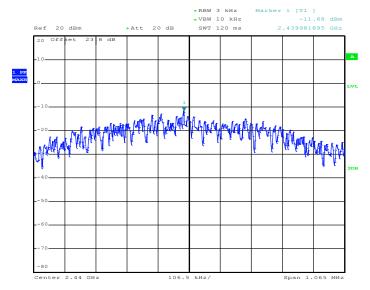
Date: 27.DEC.2016 20:04:34



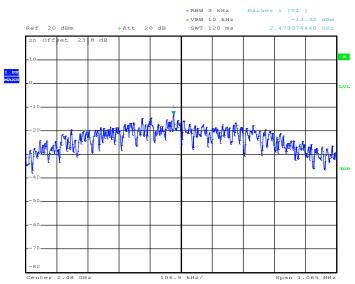
PSD 100kHz Plot on Channel 39

Date: 27.DEC.2016 20:07:36

3.2.7 Test Result of Power Spectral Density Plots (3kHz)


PSD 3kHz Plot on Channel 00

Date: 27.DEC.2016 20:05:53


SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : UZ7TC700K

PSD 3kHz Plot on Channel 19

Date: 27.DEC.2016 20:04:14

PSD 3kHz Plot on Channel 39

Date: 27.DEC.2016 20:07:19

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : UZ7TC700K

3.3 Antenna Requirements

3.3.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.3.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.3.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Meter	Agilent	E4416A	GB412923	3412923 300MHz~40GH Dec. 26, 2016 Dec. 27, 2010	Dec. 27. 2016	Dec. 25. 2017	Conducted	
Fower weter	Aglient	E4410A	44	Z	Dec. 26, 2016	Dec. 27, 2010	Dec. 25, 2017	(TH02-HY)
Power Sensor	Agilent E9327A	US404415	300MHz~40GH	Dec. 26. 2016	Dec 27 2016	Dec. 25, 2017	Conducted	
Fower Sensor	Aglient	E9327A	48	Z	Dec. 20, 2010	6 Dec. 27, 2016	Dec. 25, 2017	(TH02-HY)
Spectrum	Rohde &		100055		lup 17 2016	Dec 07 2016	Jun. 16, 2017	Conducted
Analyzer	Schwarz	FSP40	100055	9kHz~40GHz	Jun. 17, 2016	Dec. 27, 2016		(TH02-HY)

Appendix A. Conducted Test Results

Report Number : FR672834-04B

Bluetooth Low Energy

Test Engineer:	Kenny Chen	Temperature:	21~25	°C
Test Date:	2016/12/27	Relative Humidity:	51~54	%

	<u>TEST RESULTS DATA</u> <u>Peak Power Table</u>									
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	2.25	30.00	2.50	4.75	36.00	Pass
BLE	1Mbps	1	19	2440	3.79	30.00	2.50	6.29	36.00	Pass
BLE	1Mbps	1	39	2480	2.72	30.00	2.50	5.22	36.00	Pass

	<u>TEST RESULTS DATA</u> <u>Average Power Table</u> <u>(Reporting Only)</u>						
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)	
BLE	1Mbps	1	0	2402	2.09	1.24	
BLE	1Mbps	1	19	2440	2.09	3.04	
BLE	1Mbps	1	39	2480	2.09	1.64	

	<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>									
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail	
BLE	1Mbps	1	0	2402	0.38	-13.52	2.50	8.00	Pass	
BLE	1Mbps	1	19	2440	2.12	-11.68	2.50	8.00	Pass	
BLE	1Mbps	1	39	2480	0.65	-13.32	2.50	8.00	Pass	

Appendix B. Product Equality Declaration

- 1. CPU change, pin to pin capability see attached power point
- 2. Remove below components
 - (1) WWAN Multi-band PA
 - (2) LTE B2/4/5/12/13/17/25/26 TRX components
 - (3) WCDMA B1/2/4/5/8 TRX components
 - (4) GSM 850/900/1800/1900 TRX components
 - (5) CDMA BC0/1/10 TRX components
 - (6) WWAN Primary Antenna switch
 - (7) Antenna tuner
 - (8) DC/DC converter for WWAN PA
 - (9) GPS RX components
 - (10) WWAN Diversity Antenna switch
 - (11) LTE B2/4/5/12/13/17/25/26 DRX components
 - (12) WCDMA B1/2/4/5/8 DRX components
 - (13) CDMA BC0/1/10 DRX components
 - (14) RF Transceiver components
- 3. Remove WAN/GPS components (bottom of device).
- 4. Keep DIV/GPS/ Main antenna (top of device).
- 5. No layout change

Appendix C. Original Report

Please refer to Sporton report number FR672834B as below.

FCC RF Test Report

APPLICANT	: Zebra Technologies Corporation
EQUIPMENT	: Touch computer
BRAND NAME	: Zebra
MODEL NAME	: TC75EK
FCC ID	: UZ7TC75EK
STANDARD	: FCC Part 15 Subpart C §15.247
CLASSIFICATION	: (DTS) Digital Transmission System

The product was received on Jul. 28, 2016 and testing was completed on Sep. 20, 2016. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

noelsar

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC. No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : UZ7TC75EK Page Number : 1 of 52 Report Issued Date : Oct. 07, 2016 Report Version : Rev. 03 Report Template No.: BU5-FR15CBT4.0 Version 1.3

TABLE OF CONTENTS

SU	MMAR	Y OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
	1.1 1.2 1.3 1.4 1.5 1.6	Applicant Manufacturer Product Feature of Equipment Under Test Product Specification of Equipment Under Test Modification of EUT Testing Location	5 5 6 6
•	1.7	Applicable Standards	
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1 2.2 2.3 2.4 2.5	Descriptions of Test Mode Test Mode Connection Diagram of Test System	8 9 0
	2.6	Measurement Results Explanation Example1	1
3	TEST	RESULT1	2
4	3.1 3.2 3.3 3.4 3.5 3.6 3.7 LIST	6dB and 99% Bandwidth Measurement 1 Peak Output Power Measurement 1 Power Spectral Density Measurement 1 Conducted Band Edges and Spurious Emission Measurement 2 Radiated Band Edges and Spurious Emission Measurement 2 AC Conducted Emission Measurement 3 Antenna Requirements 5 OF MEASURING EQUIPMENT 5	7 8 23 28 32 50
5	UNCE	ERTAINTY OF EVALUATION	2
AP	PENDI	X A. CONDUCTED TEST RESULTS	
AP	PENDI	X B. RADIATED SPURIOUS EMISSION	
AP	PENDI	X C. RADIATED SPURIOUS EMISSION PLOTS	
AP	PENDI	X D. DUTY CYCLE PLOTS	

APPENDIX E. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR672834B	Rev. 01	Initial issue of report	Sep. 29, 2016
FR672834B	Rev. 02	Revising the specification of accessories.	Oct. 04, 2016
FR672834B	Rev. 03	Revising the Adapter information in specification of accessories.	Oct. 07, 2016

Report Section	FCC Rule Description		Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.1	-	99% Bandwidth	-	Pass	-
3.2	15.247(b)(3)	Peak Output Power	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	≤ 20dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 5.42 dB at 79.140 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 3.10 dB at 0.758 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

1 General Description

1.1 Applicant

Zebra Technologies Corporation

1 Zebra Plaza Holtsville, NY 11742

1.2 Manufacturer

Wistron Corporation

21F, No. 88, Sec. 1, Hsin Tai Wu Rd., Hsichih Dist, New Taipei City 221, Taiwan R.O.C.

1.3 Product Feature of Equipment Under Test

Product Feature					
Equipment	Touch computer				
Brand Name	Zebra				
Model Name	TC75EK				
FCC ID	UZ7TC75EK				
	CDMA/EV-DO/GSM/EGPRS/WCDMA/HSPA/LTE/NFC				
FUT cumparts Dadias application	WLAN 11a/b/g/n HT20/HT40				
EUT supports Radios application	WLAN 11ac VHT20/VHT40/VHT80				
	Bluetooth BR/EDR/LE				
HW Version	DV				
SW Version	Android version 6.0.1				
FW Version	91-10-01-MG-00				
MFD	14JUL16				
EUT Stage	Engineering sample				

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

Specification of Accessories				
AC Adapter	Brand Name	Zebra	Part Number	PWR-BUA5V16W0WW
Snap-On USB/Charge Cable	Brand Name	Symbol	Part Number	CBL-TC7X-USB1-01
Snap-On Charging Cable Cup	Brand Name	Symbol	Part Number	CHG-TC7X-CBL1-01
Battery	Brand Name	Zebra	Part Number	BT-000318-01
Earphone 1	Brand Name	Zebra	Part Number	HDST-35MM-PTVP-01
Earphone 2	Brand Name	Zebra	Part Number	HS2100-OTH
Earphone 3	Brand Name	Zebra	Part Number	HS3100-OTH
Snap-on 3.5MM Audio Nugget	Brand Name	Symbol	Part Number	ADP-TC7X-AUD35-01
3.5mm Jack 43"(1.1m) Standard Cable	Brand Name	Zebra	Part Number	CBL-HS2100-3MS1-01
Soft Holster	Brand Name	Zebra	Part Number	SG-TC7X-HLSTR1-01
Rigid Holster	Brand Name	Zebra	Part Number	SG-TC7X-RHLSTR1-01
Power Cord	Brand Name	LOROM	Part Number	50-16000-182R
Cable line	Brand Name	Zebra	Part Number	CBL-DC-383A1-01

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification					
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz				
Number of Channels	40				
Carrier Frequency of Each Channel	40 Channel(37 hopping + 3 advertising channel)				
Maximum Output Power to Antenna	4.51 dBm (0.0028 W)				
99% Occupied Bandwidth	1.06 MHz				
Antenna Type / Gain	IFA Antenna type with gain 2.60 dBi				
Type of Modulation	Bluetooth LE : GFSK				

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW1022 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.				
	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,				
Test Site Location	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.				
Test Sile Location	TEL: +886-3-327-3456				
	FAX: +886-3-328-4978				
Test Otto Ne	Sporton Site No.				
Test Site No.	TH02-HY	CO05-HY	03CH07-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B,

recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

	Frequency	Bluetooth – LE RF Average Output Power (dBm)	
Channel		Data Rate / Modulation	
		GFSK	
		1Mbps	
Duty Cycle (%)		62.18	
Ch00 2402MHz		1.60 dBm	
Ch19	2440MHz	3.20 dBm	
Ch39	2480MHz	<mark>3.48</mark> dBm	

The RF output power was recorded in the following table:

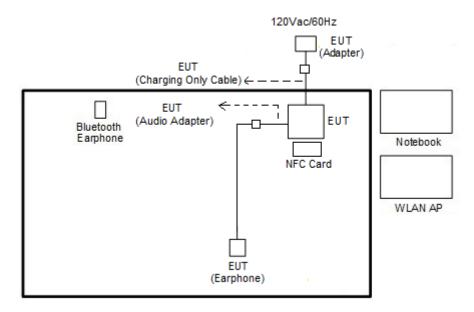
Channel	Frequency	Bluetooth – LE RF Peak Output Power (dBm)	
		Data Rate / Modulation	
		GFSK	
		1Mbps	
Ch00	2402MHz	3.02 dBm	
Ch19	2440MHz	4.27 dBm	
Ch39	2480MHz	<mark>4.51</mark> dBm	

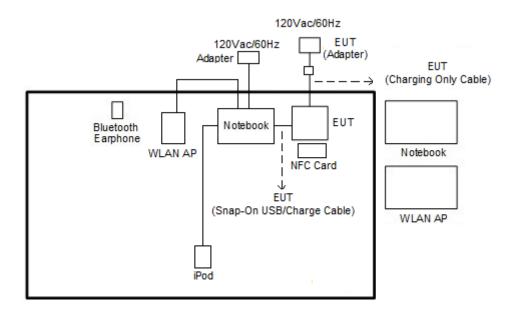
a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration. The worst position for each mode was recorded in the appendix of this test report. From all possible combinations.

b. AC power line Conducted Emission was tested under maximum output power.

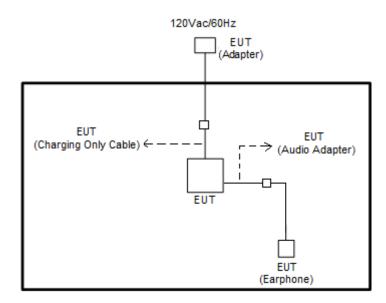
2.2 Test Mode

The following summary table is showing all test modes to demonstrate in compliance with the standard.


	Summary table of Test Cases				
Test Item	Data Rate / Modulation				
Test item	Bluetooth – LE / GFSK				
Conducted	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps				
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps				
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps				
Radiated	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps				
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps				
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps				
	Mode 1 :NFC Link + WLAN (2.4GHz) Link + Bluetooth Link + Earphone 1 with Audio				
	Adapter connect to EUT + Charging Only Cable + AC Adapter				
AC	Mode 2 :NFC Link + WLAN (5GHz) Link + Bluetooth Link with Earphone 3 + Snap on				
Conducted	USB Cable Data Link with Notebook + Copy Data from Notebook to EDA (SD				
Emission	Card) + AC Adapter				
	Mode 3 :NFC Link + WLAN (2.4GHz) Link + Bluetooth Link + Earphone 2 with Audio				
	Adapter connect to EUT + Charging Only Cable + AC Adapter				
Remark: All th	Remark: All the radiated test cases were performance with Earphone 1, Adapter and USB Cable.				



2.3 Connection Diagram of Test System


<AC Conducted Emission for charging mode>

<AC Conducted Emission for data link mode>

<For Fundamental Emissions and Mask and Radiated Emissions Measurement>

2.4 Support Unit used in test configuration and system

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	WLAN AP	D-Link	DIR-628	KA2DIR628A2	N/A	Unshielded, 1.8 m
2.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
3.	Notebook	DELL	P20G	FCC DoC/ Contains FCC ID: QDS-BRCM1051	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	Notebook	DELL	Latitude E6320	FCC DoC/ Contains FCC ID: QDS-BRCM1054	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
5.	Notebook	Lenovo	M490S(E330)	QDS-BRCM1063	N/A	Unshielded, 1.8 m
6.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A
7.	NFC Card	Metro Taipei	Easy Card	N/A	N/A	N/A
8.	iPod	Apple	A1285	FCC DoC	Shielded, 1.0 m	N/A

2.5 EUT Operation Test Setup

For Bluetooth function, the RF utility, "Command" was installed in EUT which was programmed in order to make the EUT get into the engineering modes to contact with Bluetooth base station for continuous transmitting and receiving signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

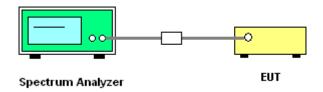
 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$ = 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

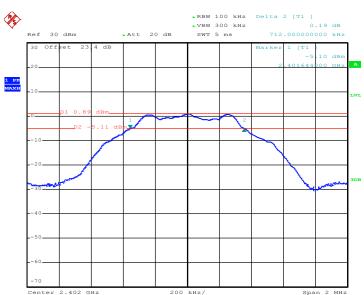
The minimum 6 dB bandwidth shall be at least 500 kHz.


3.1.2 Measuring Instruments

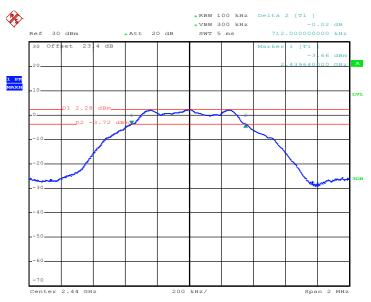
The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.1.3 Test Procedures

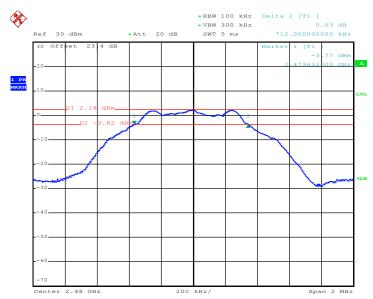
- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 30kHz and set the Video bandwidth (VBW) = 100kHz.
- 6. Measure and record the results in the test report.


3.1.4 Test Setup

3.1.5 Test Result of 6dB Bandwidth


Test data refer to Appendix A.

6 dB Bandwidth Plot on Channel 00

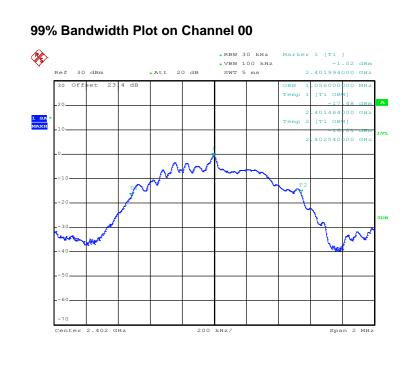

Date: 26.AUG.2016 22:04:24

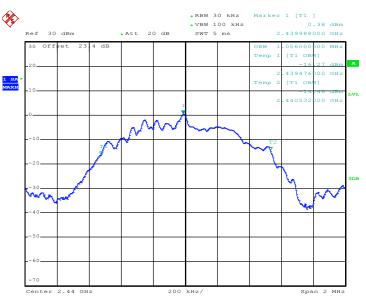
6 dB Bandwidth Plot on Channel 19

Date: 26.AUG.2016 21:59:22

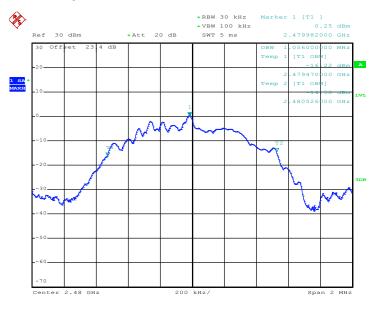
6 dB Bandwidth Plot on Channel 39

Date: 26.AUG.2016 21:53:05


SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : UZ7TC75EK


3.1.6 Test Result of 99% Occupied Bandwidth

Test data refer to Appendix A.


Date: 26.AUG.2016 22:06:50

99% Occupied Bandwidth Plot on Channel 19

Date: 26.AUG.2016 22:02:15

99% Occupied Bandwidth Plot on Channel 39

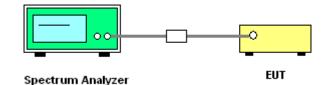
Date: 26.AUG.2016 21:55:54

Note : The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Peak Output Power Measurement

3.2.1 Limit of Peak Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.


3.2.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v03r05 section 9.1.2 PKPM1 Peak power meter method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

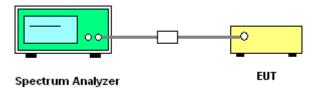
3.2.5 Test Result of Peak Output Power

Test data refers to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

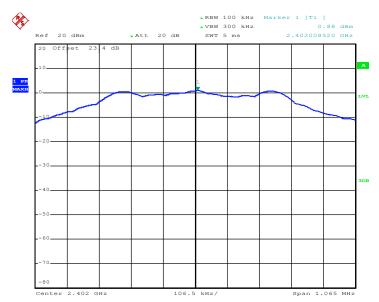

3.3.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.3.3 Test Procedures

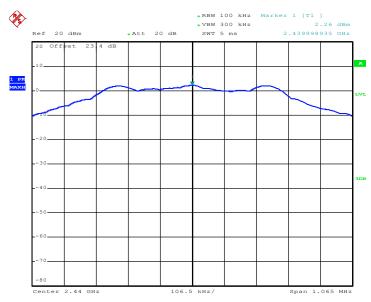
- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup



3.3.5 Test Result of Power Spectral Density

Test data refers to Appendix A.

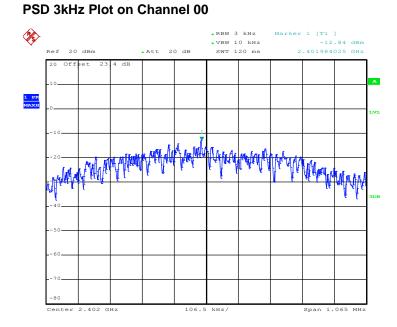

3.3.6 Test Result of Power Spectral Density Plots (100kHz)

PSD 100kHz Plot on Channel 00

Date: 26.AUG.2016 22:05:18

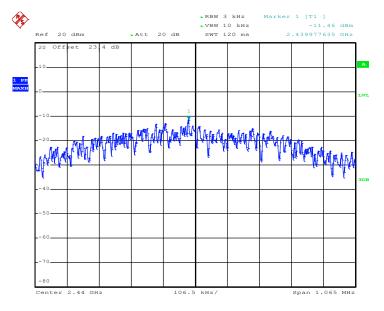
PSD 100kHz Plot on Channel 19

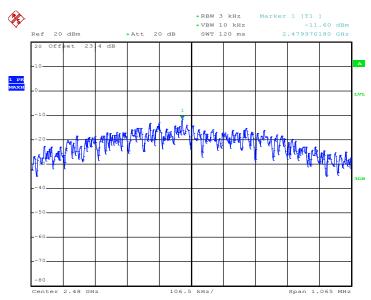
Date: 26.AUG.2016 22:00:30



PSD 100kHz Plot on Channel 39

Date: 26.AUG.2016 21:54:05


3.3.7 Test Result of Power Spectral Density Plots (3kHz)


Date: 26.AUG.2016 22:04:58

PSD 3kHz Plot on Channel 19

Date: 26.AUG.2016 22:00:08

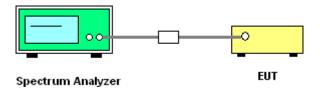
PSD 3kHz Plot on Channel 39

Date: 26.AUG.2016 21:53:45

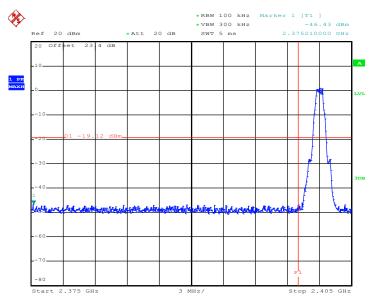
3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

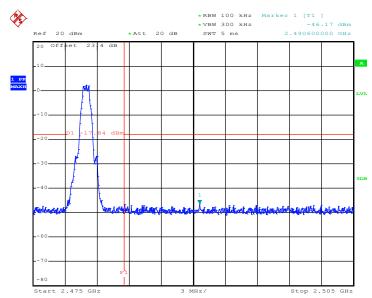

3.4.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.


3.4.3 Test Procedure

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

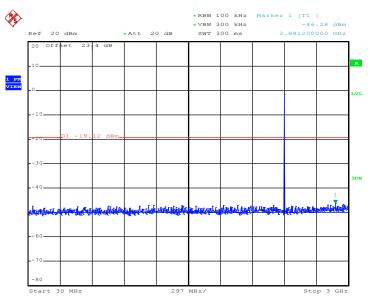
3.4.4 Test Setup



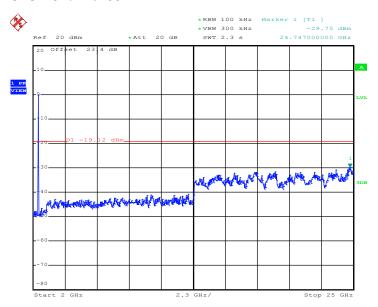
3.4.5 Test Result of Conducted Band Edges Plots

Low Band Edge Plot on Channel 00

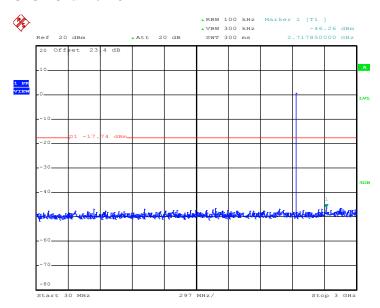
Date: 26.AUG.2016 22:05:34


High Band Edge Plot on Channel 39

Date: 26.AUG.2016 21:54:26

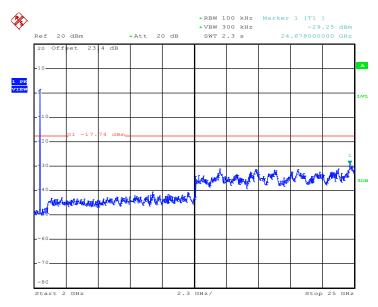

3.4.6 Test Result of Conducted Spurious Emission Plots

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00

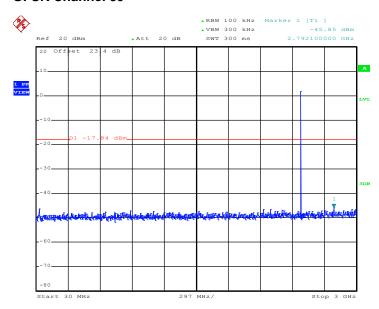

Date: 26.AUG.2016 22:05:47

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00

Date: 26.AUG.2016 22:05:55

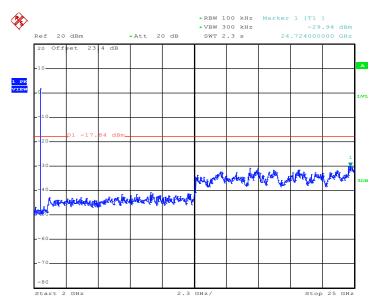


Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19


Date: 26.AUG.2016 22:01:24

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19

Date: 26.AUG.2016 22:01:32



Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Date: 26.AUG.2016 21:55:15

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Date: 26.AUG.2016 21:55:24

3.5 Radiated Band Edges and Spurious Emission Measurement

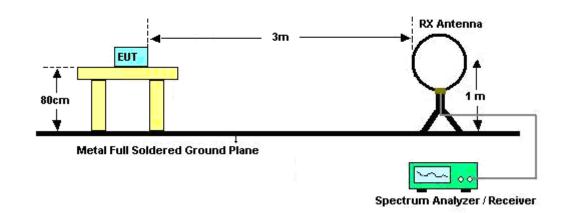
3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

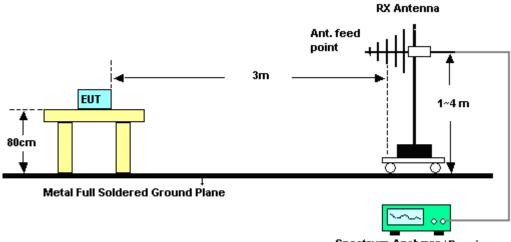
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

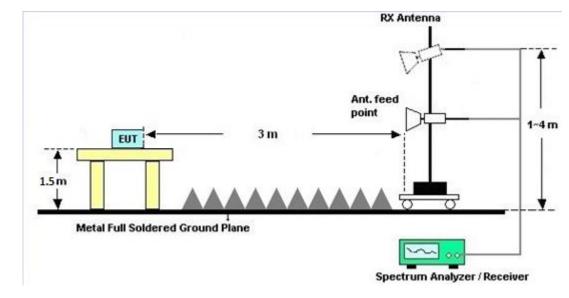

3.5.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for f ≥ 1 GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.



3.5.4 Test Setup

For radiated emissions below 30MHz



For radiated emissions from 30MHz to 1GHz

Spectrum Analyzer / Receiver

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

3.5.7 Duty Cycle

Please refer to Appendix D.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B and C.

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

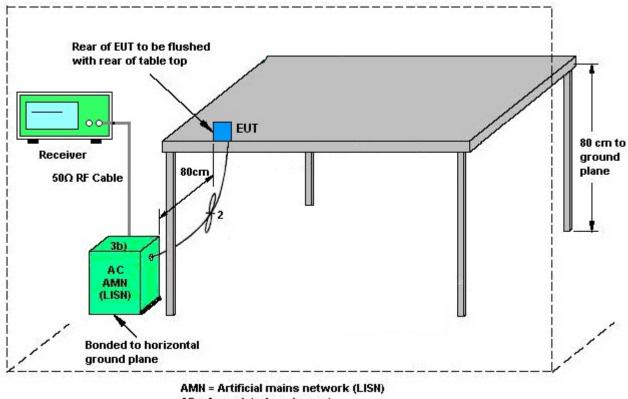
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)					
Frequency of emission (MHZ)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

*Decreases with the logarithm of the frequency.

For terminal test result, the testing follows FCC KDB 174176.

3.6.2 Measuring Instruments

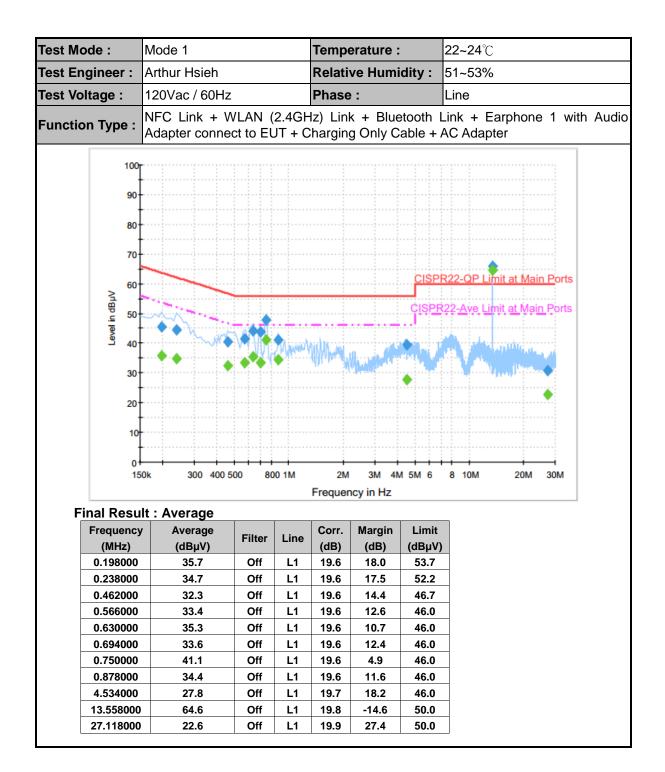

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

- AE = Associated equipment
- EUT = Equipment under test ISN = Impedance stabilization network

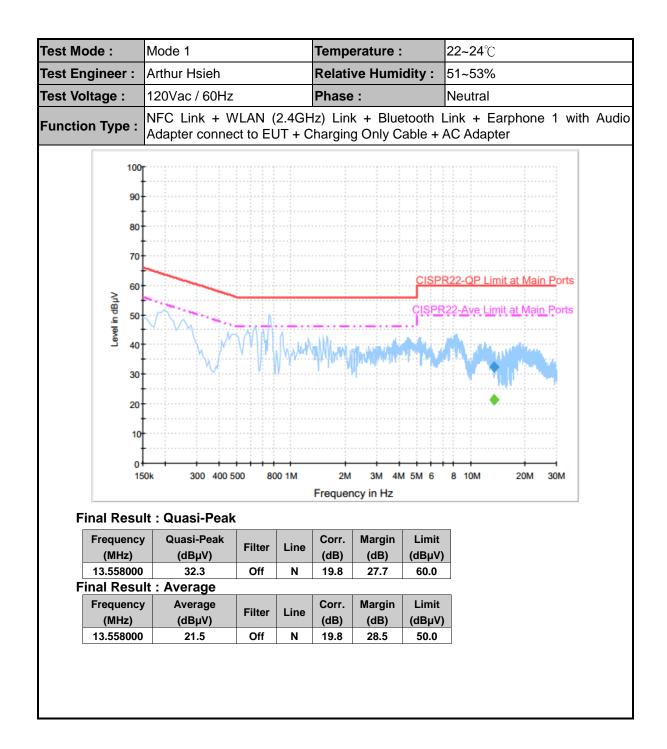


3.6.5 Test Result of AC Conducted Emission

<Original test result with NFC antenna>

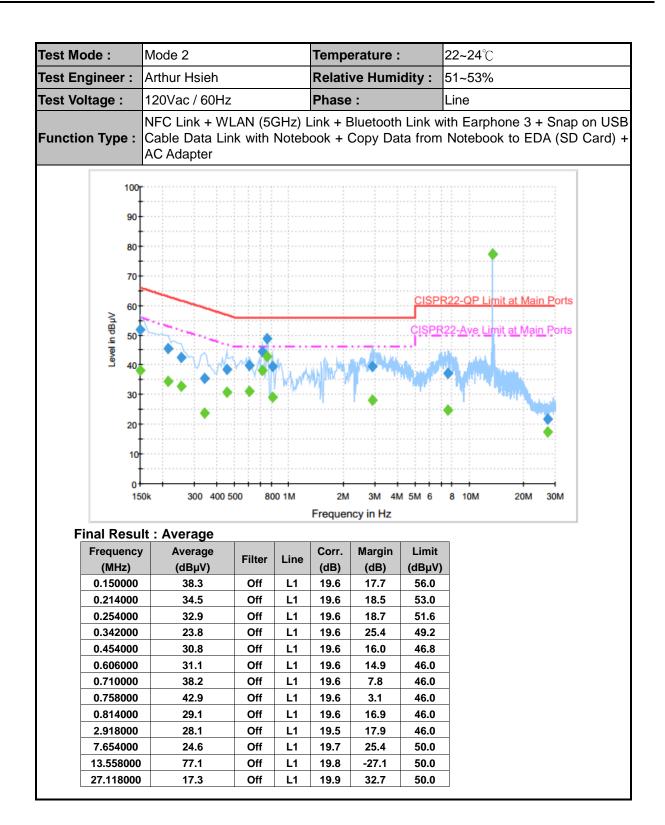
Test Mode :	Mode 1			Tempe	erature :		22~24 ℃
Test Engineer :	Arthur Hsieh			Relati	ve Humi	dity :	51~53%
Fest Voltage :	120Vac / 60Hz			Phase	:		Line
Function Type	NFC Link + W Adapter conne						Link + Earphone 1 with Au AC Adapter
10 94 84 71 64 89 19 80 1 80 1 80 1 1 1 1 1 1 1 1 1 1 1 1 1		00 800	1.11	2M	ологичности Эми 4М		8 10M 20M 30M
				Frequer	icy in Hz		
Final Res	ult : Quasi-Peak	Σ.					
Frequence (MHz) 0.198000	cy Quasi-Peak (dBµV)		Line L1	Corr. (dB) 19.6	Margin (dB) 18.2	Limit (dBµV) 63.7	
0.23800) 44.4	Off Off	L1 L1	19.6 19.6	17.8	62.2 56.7	_
0.56600	0 41.4	Off Off	L1 L1	19.6 19.6	14.6 11.9	56.0 56.0	-
0.69400	43.8	Off Off	L1 L1	19.6 19.6	12.2 8.0	56.0 56.0	_
0.87800 4.53400) 41.2	Off Off	L1 L1	19.6 19.7	14.8 16.7	56.0 56.0	
13.55800	0 65.9	Off	L1	19.8	-5.9	60.0	

Test Mode :	N	lode 1			Tempe	erature :		22~24 ℃	
Test Engineer	: A	rthur Hsieh			Relati	ve Humi	idity :	51~53%	
Test Voltage :	1:	20Vac / 60Hz			Phase	:		Neutral	
Function Type		FC Link + W dapter conne						ink + Earphone 1 AC Adapter	with Audio
	100 90 80 70 60 50 50 40 30 20 10						CISPR2	2-OP Limit at Main Ports 2-Ave Limit at Main Ports	
	0 1	50k 300 400	500 8	00 1M	2M Frequen		5M 6 8	10M 20M 30M	
	sult	: Quasi-Peak		00 1M	Frequen	cy in Hz		10M 20M 30M	
Final Res Frequer (MHz	sult ncy	: Quasi-Peak Quasi-Peak		00 1M			5M 6 8	10M 20M 30M	
Frequer	sult ncy)	: Quasi-Peak			Frequen	cy in Hz Margin	Limit	10M 20M 30M	
Frequer (MHz)	sult ncy) 00	: Quasi-Peak Quasi-Peak (dBµV)	Filter	Line	Frequen Corr. (dB)	cy in Hz Margin (dB)	Limit (dBµV)	10M 20M 30M	
Frequer (MHz) 0.2060	sult ncy) 00 00	: Quasi-Peak Quasi-Peak (dBµV) 44.0	Filter	Line N	Frequen Corr. (dB) 19.6	Margin (dB) 19.4	Limit (dBµV) 63.4	10M 20M 30M	
Frequer (MHz 0.2060 0.3260	sult ncy) 00 00 00	: Quasi-Peak Quasi-Peak (dBµV) 44.0 38.6	Filter Off Off	Line N N	Frequen Corr. (dB) 19.6 19.6	Cy in Hz Margin (dB) 19.4 21.0	Limit (dBµV) 63.4 59.6	10M 20M 30M	
Frequer (MHz) 0.20600 0.32600 0.47800	sult ncy) 00 00 00 00	: Quasi-Peak Quasi-Peak (dBµV) 44.0 38.6 37.6	Filter Off Off	Line N N N	Frequen Corr. (dB) 19.6 19.6 19.6 19.6	Margin (dB) 19.4 21.0 18.8 15.1 11.8	Limit (dBµV) 63.4 59.6 56.4	10M 20M 30M	
Frequer (MHz) 0.20600 0.32600 0.47800 0.63000 0.69400 0.75000	sult ncy) 00 00 00 00 00 00	: Quasi-Peak Quasi-Peak (dBµV) 44.0 38.6 37.6 40.9 44.2 44.7	Filter Off Off Off Off Off Off	Line N N N N N	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 19.4 21.0 18.8 15.1 11.8 11.3	Limit (dBµV) 63.4 59.6 56.4 56.0 56.0 56.0	10M 20M 30M	
Frequer (MHz) 0.20600 0.32600 0.47800 0.63000 0.69400 0.75000 2.32600	sult ncy) 00 00 00 00 00 00 00	: Quasi-Peak Quasi-Peak (dBµV) 44.0 38.6 37.6 40.9 44.2 44.7 38.1	Filter Off Off Off Off Off Off Off	Line N N N N N N	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 18.6	Margin (dB) 19.4 21.0 18.8 15.1 11.8 11.3 17.9	Limit (dBµV) 63.4 59.6 56.4 56.0 56.0 56.0 56.0	10M 20M 30M	
Frequer (MHz) 0.20600 0.32600 0.47800 0.63000 0.69400 0.75000 2.32600 3.02200	sult ncy) 00 00 00 00 00 00 00 00	: Quasi-Peak Quasi-Peak (dBµV) 44.0 38.6 37.6 40.9 44.2 44.7 38.1 39.3	Filter Off Off Off Off Off Off Off Off	Line N N N N N N N N	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 19.4 21.0 18.8 15.1 11.8 11.3 17.9 16.7	Limit (dBµV) 63.4 59.6 56.4 56.0 56.0 56.0 56.0 56.0	10M 20M 30M	
Frequer (MHz) 0.20600 0.32600 0.47800 0.63000 0.69400 0.75000 2.32600 3.02200 13.55800	sult hcy) 00 00 00 00 00 00 00 00 00	: Quasi-Peak Quasi-Peak (dBµV) 44.0 38.6 37.6 40.9 44.2 44.7 38.1 39.3 65.3	Filter Off Off Off Off Off Off Off	Line N N N N N N	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 18.6	Margin (dB) 19.4 21.0 18.8 15.1 11.8 11.3 17.9	Limit (dBµV) 63.4 59.6 56.4 56.0 56.0 56.0 56.0	10M 20M 30M	
Frequer (MHz 0.20600 0.32600 0.47800 0.63000 0.69400 0.75000 2.32600 3.02200 13.55800 Final Res	sult ncy) 00 00 00 00 00 00 00 00 00 00 00 00 0	: Quasi-Peak (dBµV) 44.0 38.6 37.6 40.9 44.2 44.7 38.1 39.3 65.3 : Average	Filter Off Off Off Off Off Off Off Off	Line N N N N N N N N	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.5 19.5 19.8	Margin (dB) 19.4 21.0 18.8 15.1 11.8 11.3 17.9 16.7 -5.3	Limit (dBµV) 63.4 59.6 56.4 56.0 56.0 56.0 56.0 56.0 60.0		
Frequer (MHz 0.20600 0.32600 0.47800 0.63000 0.69400 0.75000 2.32600 3.02200 13.55800 Final Res	sult ncy) 00 00 00 00 00 00 00 00 00 00 00 00 0	: Quasi-Peak Quasi-Peak (dBµV) 44.0 38.6 37.6 40.9 44.2 44.7 38.1 39.3 65.3 : Average Average	Filter Off Off Off Off Off Off Off Off	Line N N N N N N N N	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.5 19.8 79.8	Margin (dB) 19.4 21.0 18.8 15.1 11.8 11.3 17.9 16.7 -5.3 Margin	Limit (dBµV) 63.4 59.6 56.4 56.0 56.0 56.0 56.0 56.0 60.0		
Frequer (MHz) 0.20600 0.32600 0.47800 0.63000 0.69400 0.75000 2.32600 3.02200 13.55800 Final Res Frequer (MHz)	sult ncy) 000 000 000 000 000 000 000 sult ncy)	: Quasi-Peak Quasi-Peak (dBµV) 44.0 38.6 37.6 40.9 44.2 44.7 38.1 39.3 65.3 : Average (dBµV)	Filter Off Off Off Off Off Off Off Off Filter	Line N N N N N N N N Line	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.5 19.8 Corr. (dB)	Margin (dB) 19.4 21.0 18.8 15.1 11.8 11.3 17.9 16.7 -5.3 Margin (dB)	Limit (dBµV) 63.4 59.6 56.4 56.0 56.0 56.0 56.0 56.0 56.0 60.0		
Frequer (MHz) 0.20600 0.32600 0.47800 0.63000 0.69400 0.75000 2.32600 3.02200 13.5580 Final Res Frequer (MHz) 0.20600	sult ncy) 00 00 00 00 00 00 00 00 00 00 00 00 0	: Quasi-Peak Quasi-Peak (dBµV) 44.0 38.6 37.6 40.9 44.2 44.7 38.1 39.3 65.3 : Average Average (dBµV) 33.9	Filter Off Off Off Off Off Off Off Off Filter	Line N N N N N N N N Line N	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.5 19.8 (dB) 19.6	Margin (dB) 19.4 21.0 18.8 15.1 11.8 11.3 17.9 16.7 -5.3 Margin (dB) 19.5	Limit (dBµV) 63.4 59.6 56.4 56.0 56.0 56.0 56.0 56.0 60.0 Limit (dBµV) 53.4		
Frequer (MHz) 0.20600 0.32600 0.47800 0.63000 0.69400 2.32600 3.02200 13.5580 Final Res Frequer (MHz) 0.20600 0.32600	sult ncy) 00 00 00 00 00 00 00 00 00 00 00 00 0	: Quasi-Peak Quasi-Peak (dBµV) 44.0 38.6 37.6 40.9 44.2 44.7 38.1 39.3 65.3 : Average (dBµV) 33.9 31.8	Filter Off Off Off Off Off Off Off Off Filter	Line N N N N N N N N Line N N	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.5 19.8 (dB) 19.6 19.6 19.6	Margin (dB) 19.4 21.0 18.8 15.1 11.8 11.3 17.9 16.7 -5.3 Margin (dB) 19.5 17.8	Limit (dBµV) 63.4 59.6 56.4 56.0 56.0 56.0 56.0 56.0 60.0 Limit (dBµV) 53.4 49.6		
Frequer (MHz 0.20600 0.32600 0.47800 0.63000 0.69400 0.75000 2.32600 3.02200 13.55800 Final Res Frequer (MHz 0.20600 0.32600 0.47800	sult ncy) 00 00 00 00 00 00 00 00 00 00 00 00 0	: Quasi-Peak (dBµV) 44.0 38.6 37.6 40.9 44.2 44.7 38.1 39.3 65.3 : Average (dBµV) 33.9 31.8 30.1	Filter Off Off Off Off Off Off Off Off Filter Off Off Off	Line N N N N N N N Line N N N N	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.5 19.8 (dB) 19.6 19.6 19.6 19.6	Margin (dB) 19.4 21.0 18.8 15.1 11.8 11.3 17.9 16.7 -5.3 Margin (dB) 19.5 17.8 16.3	Limit (dBµV) 63.4 59.6 56.0 56.0 56.0 56.0 56.0 60.0 Limit (dBµV) 53.4 49.6 46.4		
Frequer (MHz 0.20600 0.32600 0.47800 0.63000 0.69400 0.75000 2.32600 3.02200 13.55800 Final Res Frequer (MHz 0.20600 0.32600 0.47800 0.63000	sult ncy) 00 00 00 00 00 00 00 00 00 00 00 00 0	: Quasi-Peak (dBµV) 44.0 38.6 37.6 40.9 44.2 44.7 38.1 39.3 65.3 : Average (dBµV) 33.9 31.8 30.1 31.9	Filter Off Off Off Off Off Off Off Off Filter Off Off Off Off	Line N N N N N N N Line N N N N N N	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.5 19.8 Corr. (dB) 19.6 19.6 19.6 19.6	Margin (dB) 19.4 21.0 18.8 15.1 11.8 11.3 17.9 16.7 -5.3 Margin (dB) 19.5 17.8 16.3 14.1	Limit (dBµV) 63.4 59.6 56.4 56.0 56.0 56.0 56.0 60.0 Limit (dBµV) 53.4 49.6 46.4 46.0		
Frequer (MHz 0.20600 0.32600 0.47800 0.63000 0.69400 0.75000 2.32600 3.02200 13.55800 Final Res Frequer (MHz 0.20600 0.32600 0.47800 0.63000 0.69400	sult ncy) 00 00 00 00 00 00 00 00 00 00 00 00 0	: Quasi-Peak Quasi-Peak (dBµV) 44.0 38.6 37.6 40.9 44.2 44.7 38.1 39.3 65.3 : Average (dBµV) 33.9 31.8 30.1 31.9 34.5	Filter Off Off Off Off Off Off Off Off Off Of	Line N N N N N N N N Line N N N N N N	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.8 Corr. (dB) 19.6 19.6 19.6 19.6 19.6	Margin (dB) 19.4 21.0 18.8 15.1 11.3 17.9 16.7 -5.3 Margin (dB) 19.5 17.8 16.3 14.1 11.5	Limit (dBµV) 63.4 59.6 56.4 56.0 56.0 56.0 56.0 56.0 60.0 Limit (dBµV) 53.4 49.6 46.4 46.0		
Frequer (MHz 0.20600 0.32600 0.47800 0.63000 0.69400 2.32600 3.02200 13.5580 Final Res Frequer (MHz 0.20600 0.32600 0.47800 0.63000 0.69400 0.75000	sult ncy) 00 00 00 00 00 00 00 00 00 00 00 00 0	: Quasi-Peak Quasi-Peak (dBµV) 44.0 38.6 37.6 40.9 44.2 44.7 38.1 39.3 65.3 : Average (dBµV) 33.9 31.8 30.1 31.9 34.5 37.1	Filter Off Off Off Off Off Off Off Off Off Of	Line N N N N N N N N Line N N N N N N N N N N N N N N N N N N N	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.5 19.8 Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 19.4 21.0 18.8 15.1 11.8 11.3 17.9 16.7 -5.3 Margin (dB) 19.5 17.8 16.3 14.1 11.5 8.9	Limit (dBµV) 63.4 59.6 56.4 56.0 56.0 56.0 56.0 56.0 60.0 56.0 60.0 56.3 40.0 46.0 46.0 46.0		
Frequer (MHz 0.20600 0.32600 0.47800 0.63000 0.69400 0.75000 2.32600 3.02200 13.55800 Final Res Frequer (MHz 0.20600 0.32600 0.47800 0.63000 0.69400	sult ncy) 00 00 00 00 00 00 00 00 00 00 00 00 0	: Quasi-Peak Quasi-Peak (dBµV) 44.0 38.6 37.6 40.9 44.2 44.7 38.1 39.3 65.3 : Average (dBµV) 33.9 31.8 30.1 31.9 34.5	Filter Off Off Off Off Off Off Off Off Off Of	Line N N N N N N N N Line N N N N N N	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.8 Corr. (dB) 19.6 19.6 19.6 19.6 19.6	Margin (dB) 19.4 21.0 18.8 15.1 11.3 17.9 16.7 -5.3 Margin (dB) 19.5 17.8 16.3 14.1 11.5	Limit (dBµV) 63.4 59.6 56.4 56.0 56.0 56.0 56.0 56.0 60.0 Limit (dBµV) 53.4 49.6 46.4 46.0		


SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : UZ7TC75EK Page Number : 36 of 52 Report Issued Date : Oct. 07, 2016 Report Version : Rev. 03 Report Template No.: BU5-FR15CBT4.0 Version 1.3

Test Mode	e:		Mode 1			Tempe	erature :		22~24 °C
est Engi	neer	:	Arthur Hsieh			Relati	ve Humi	idity :	51~53%
est Volta	ige :		120Vac / 60Hz			Phase	:		Line
Function	Туре		NFC Link + W Adapter connec						Link + Earphone 1 with Audio
	Level in dBµV	100- 90 - 80 - 70 - 50 - 30 - 20 - 10 -	V L	V					R22-OP Limit at Main Ports
		0+ 150	0k 300 400 5	00 80	00 1M	2M		M 5M 6	8 10M 20M 30M
						Frequer	ncy in Hz		
Fina	al Re	sul	t : Quasi-Peak		r	T			_
F	reque	-	Quasi-Peak	Filter	Line	Corr.	Margin	Limit	
1	(MHz 3.558	-	(dBµV) 33.5	Off	L1	(dB) 19.8	(dB) 26.5	(dBµV) 60.0	-
			t : Average	UII	LI	19.0	20.5	00.0	
	reque		Average			Corr.	Margin	Limit	
	(MHz	-	(dBµV)	Filter	Line	(dB)	(dB)	(dBµV)	
		, 000	23.6	Off	L1	19.8	26.4	50.0	1

. . .14 with d •+ .



Test Mode :	Mode 2		,	Tempe	erature :		22~24 ℃
Fest Engineer :	Arthur Hsieh			Relati	ve Humi	dity :	51~53%
Test Voltage :	120Vac / 60Hz			Phase	•		Line
Function Type		•	,				ith Earphone 3 + Sna Notebook to EDA (Sl
10 9 8 7 ∧1 8 9 5 5 9 9 9 9 9 1 3 2 1							<u>22-OP Limit at Main P</u> orts
	150k 300 400 5	00 800		2M Frequer	3M 4N cyin Hz	15M6	8 10M 20M 30M
Final Res	ult : Quasi-Peak	ſ					
Frequen (MHz)	cy Quasi-Peak (dBµV)	Filter I	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	
0.15000		Off	L1	19.6	14.1	66.0	_
0.21400		Off	L1	19.6	17.4	63.0 61.6	_
0.25400		Off Off	L1 L1	19.6 19.6	19.0 23.8	61.6 59.2	_
0.34200		Off	L1	19.6	18.3	56.8	-
0.45400		Off	L1	19.6	16.2	56.0	-
0.71000		Off	L1	19.6	11.6	56.0	-
0.75800		Off	L1	19.6	7.2	56.0	-
0.75800		Off	L1	19.6	16.4	56.0	-
							-
2.91800		Off	L1 L1	19.5 19.7	16.4	56.0 60.0	-
7.65400		Off Off	L1 L1	19.7	22.8 -17.4	60.0 60.0	-
	N (1.4	UNT					
27.1180		Off	L1	19.9	38.1	60.0	-

<Original test result with NFC antenna>

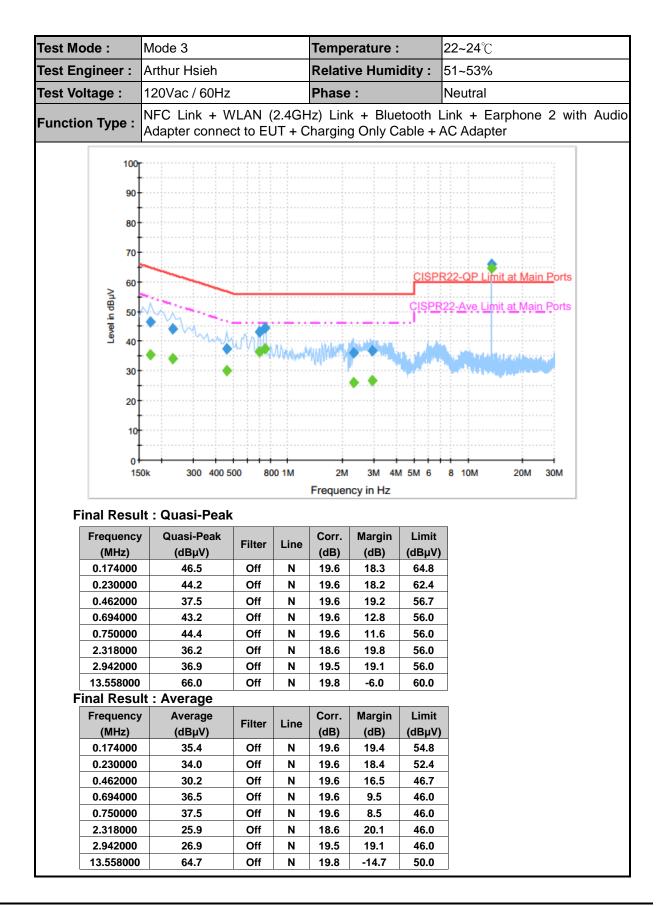
Test Mod	le :	Μ	ode 2			Temp	erature	:	22~24 ℃
Test Eng	ineer	: Ai	rthur Hsieh			Relati	ve Hum	idity :	51~53%
Test Volt	age :	12	20Vac / 60Hz			Phase	:		Neutral
Function	Туре	: C							ith Earphone 3 + Snap on US Notebook to EDA (SD Card)
ſ	9 8 7 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9								2-QP Limit at Main Ports
		0 150k	300 400 50	0 800		2M requenc	3M 4M 5 cyin Hz	M 6 8	10M 20M 30M
		150k sult :	300 400 50 Cuasi-Peak	<u> </u>	F		cy in Hz	M 6 8	10M 20M 30M
	al Res Frequer (MHz)	sult :	: Quasi-Peak			requend			
F	Frequer (MHz) 0.15000	sult : ncy) 00	: Quasi-Peak Quasi-Peak (dBµV) 52.0	Filter	Fi Line N	Corr. (dB) 19.6	Margin (dB) 14.0	Limit (dBµV) 66.0	
F	requer (MHz) 0.15000 0.23000	150k sult : ncy) 00 00	: Quasi-Peak Quasi-Peak (dBµV) 52.0 45.9	Filter Off Off	Fi Line N N	Corr. (dB) 19.6 19.6	Margin (dB) 14.0 16.5	Limit (dBµV) 66.0 62.4	
F	Frequer (MHz) 0.15000 0.23000 0.25400	150k sult : hcy) 00 00 00	: Quasi-Peak Quasi-Peak (dBµV) 52.0 45.9 45.3	Filter Off Off Off	Fi Line N N N	Corr. (dB) 19.6 19.6 19.6	Margin (dB) 14.0 16.5 16.3	Limit (dBµV) 66.0 62.4 61.6	
F	Frequer (MHz) 0.15000 0.23000 0.25400 0.48600	150k sult : hcy) 00 00 00 00	: Quasi-Peak Quasi-Peak (dBµV) 52.0 45.9 45.3 40.2	Filter Off Off Off Off	Fine N N N N	Corr. (dB) 19.6 19.6 19.6	Margin (dB) 14.0 16.5 16.3 16.0	Limit (dBµV) 66.0 62.4 61.6 56.2	
F 	Frequer (MHz) 0.15000 0.23000 0.25400	150k sult : ncy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	: Quasi-Peak Quasi-Peak (dBµV) 52.0 45.9 45.3 40.2 40.1	Filter Off Off Off	Fi Line N N N	Corr. (dB) 19.6 19.6 19.6	Margin (dB) 14.0 16.5 16.3	Limit (dBµV) 66.0 62.4 61.6	
	Frequer (MHz) 0.15000 0.23000 0.25400 0.48600 0.58200	150k sult : ncy 00 00 00 00 00 00 00 00 00 00 00 00 00	: Quasi-Peak Quasi-Peak (dBµV) 52.0 45.9 45.3 40.2	Filter Off Off Off Off Off	Fi Line N N N N N	Corr. (dB) 19.6 19.6 19.6 19.6 19.6	Margin (dB) 14.0 16.5 16.3 16.0 15.9	Limit (dBµV) 66.0 62.4 61.6 56.2 56.0	
	Frequer (MHz) 0.15000 0.23000 0.25400 0.48600 0.58200 0.71000	150k sult : ncy) 00 00 00 00 00 00 00 00 00 00 00 00 0	: Quasi-Peak Quasi-Peak (dBµV) 52.0 45.9 45.3 40.2 40.1 42.1	Filter Off Off Off Off Off	Fi Line N N N N N N	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 14.0 16.5 16.3 16.0 15.9 13.9	Limit (dBµV) 66.0 62.4 61.6 56.2 56.0 56.0	
	requer (MHz) 0.15000 0.23000 0.25400 0.48600 0.48600 0.58200 0.71000 0.75800	sult : ncy) 00 00 00 00 00 00 00 00 00 00 00	: Quasi-Peak Quasi-Peak (dBµV) 52.0 45.9 45.3 40.2 40.1 42.1 49.8	Filter Off Off Off Off Off Off Off	Fi Line N N N N N N N	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 14.0 16.5 16.3 16.0 15.9 13.9 6.2	Limit (dBµV) 66.0 62.4 61.6 56.2 56.0 56.0 56.0	
F	requer (MHz) 0.15000 0.23000 0.25400 0.48600 0.48600 0.58200 0.71000 0.75800 0.87000	150k sult: cy) 00 00 00 00 00 00 00 00 00 00 00 00 0	: Quasi-Peak Quasi-Peak (dBµV) 52.0 45.9 45.3 40.2 40.1 42.1 49.8 36.7	Filter Off Off Off Off Off Off Off Off	Fi Line N N N N N N N N	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 14.0 16.5 16.3 16.0 15.9 13.9 6.2 19.3	Limit (dBµV) 66.0 62.4 61.6 56.2 56.0 56.0 56.0 56.0	
F	requer (MHz) 0.15000 0.23000 0.25400 0.48600 0.58200 0.71000 0.75800 0.87000 0.87000	150k sult ncy 000	: Quasi-Peak Quasi-Peak (dBµV) 52.0 45.9 45.3 40.2 40.1 42.1 49.8 36.7 40.1	Filter Off Off Off Off Off Off Off Off Off	Fi N N N N N N N N N N N	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 14.0 16.5 16.3 16.0 15.9 13.9 6.2 19.3 15.9	Limit (dBµV) 66.0 62.4 61.6 56.2 56.0 56.0 56.0 56.0 56.0	
F	requer (MHz) 0.15000 0.23000 0.25400 0.25400 0.48600 0.71000 0.71000 0.75800 0.75800 0.87000 0.91000 1.21400 1.21400 2.97400	150k sult: cy 000 00 00 00 00 00 00 00 00 00 00 00 0	: Quasi-Peak Quasi-Peak (dBµV) 52.0 45.9 45.3 40.2 40.1 42.1 49.8 36.7 40.1 36.9 41.0 39.7	Filter Off Off Off Off Off Off Off Off Off Of	Fi N N N N N N N N N N N N N N N N	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 14.0 16.5 16.3 16.0 15.9 13.9 6.2 19.3 15.9 19.1 15.0 16.3	Limit (dBµV) 66.0 62.4 61.6 56.2 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0	
F	Frequer (MHz) 0.15000 0.23000 0.25400 0.48600 0.58200 0.71000 0.75800 0.87000 0.91000 1.21400 1.51000	150k sult: comparison s	: Quasi-Peak Quasi-Peak (dBµV) 52.0 45.9 45.3 40.2 40.1 42.1 49.8 36.7 40.1 36.9 41.0	Filter Off Off Off Off Off Off Off Off Off Of	Fi N N N N N N N N N N N N N N	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 14.0 16.5 16.3 16.0 15.9 13.9 6.2 19.3 15.9 19.1 15.0	Limit (dBµV) 66.0 62.4 61.6 56.2 56.0 56.0 56.0 56.0 56.0 56.0 56.0	

Test Mode :	Ν	lode 2			Temp	erature :		22~24 ℃
Test Engineer	: A	rthur Hsieh			Relati	ve Humi	idity :	51~53%
Test Voltage :	1	20Vac / 60Hz			Phase	:		Neutral
Function Type	ə: C		•	,				ith Earphone 3 + Snap on USI Notebook to EDA (SD Card)
Level in dBµV	100 90 80 70 60 50 40 30 20 10				24			2-QP Limit at Main Ports
	150k	300 400 50	0 800			3M 4M 51 vin Hz	M 6 8	10M 20M 30M
	150k		0 800			зм 4м5 syinHz	M 6 8	10M 20M 30M
Final Re Freque (MHz	150k esult ency	300 400 50 : Average Average (dBµV)	Filter				Limit	1
Freque (MHz 0.1500	150k esult ency z) 000	: Average Average (dBµV) 40.1	Filter Off	Fi Line N	Corr. (dB) 19.6	Margin (dB) 15.9	Limit (dBµV) 56.0	1
Freque (MHz	150k esult ency z) 000 000	: Average Average (dBµV)	Filter	F	Corr. (dB)	y in Hz Margin (dB) 15.9 14.7	Limit (dBµV)	
Freque (MH: 0.1500 0.2300	150k esult ency z) 000 000	: Average Average (dBµV) 40.1 37.7	Filter Off Off	F Line N N	Corr. (dB) 19.6 19.6	Margin (dB) 15.9	Limit (dBµV) 56.0 52.4	
Freque (MH: 0.1500 0.2300 0.2540	150k esult ency z) 000 000 000	: Average Average (dBµV) 40.1 37.7 36.3	Filter Off Off Off	F Line N N N	Corr. (dB) 19.6 19.6	Margin (dB) 15.9 14.7 15.3	Limit (dBµV) 56.0 52.4 51.6	
Freque (MHz 0.1500 0.2300 0.2540 0.4860 0.5820 0.7100	150k esult ency z) 000 000 000 000 000	: Average Average (dBµV) 40.1 37.7 36.3 33.1 31.0 38.3	Filter Off Off Off Off Off Off	Fine N N N N N N	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 15.9 14.7 15.3 13.1 15.0 7.7	Limit (dBµV) 56.0 52.4 51.6 46.2 46.0 46.0	
Freque (MH: 0.1500 0.2300 0.2540 0.4860 0.5820 0.7100 0.7580	150k esuit ency z) 000 000 000 000 000 000 000	: Average Average (dBµV) 40.1 37.7 36.3 33.1 31.0 38.3 42.8	Filter Off Off Off Off Off Off Off Off	Fine N N N N N N N N	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 15.9 14.7 15.3 13.1 15.0 7.7 3.2	Limit (dBµV) 56.0 52.4 51.6 46.2 46.0 46.0 46.0	
Freque (MH) 0.1500 0.2300 0.2540 0.4860 0.5820 0.7100 0.7580 0.8700	150k ency z) 000 000 000 000 000 000 000 000 000	: Average Average (dBµV) 40.1 37.7 36.3 33.1 31.0 38.3 42.8 29.8	Filter Off Off Off Off Off Off Off Off Off	Fine N N N N N N N N N N N	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 15.9 14.7 15.3 13.1 15.0 7.7 3.2 16.2	Limit (dBµV) 56.0 52.4 51.6 46.2 46.0 46.0 46.0 46.0	
Freque (MHz 0.1500 0.2300 0.2540 0.4860 0.5820 0.7100 0.7580 0.8700 0.9100	150k esult ency z) 000 000 000 000 000 000 000 000 000	: Average Average (dBµV) 40.1 37.7 36.3 33.1 31.0 38.3 42.8 29.8 32.7	Filter Off Off Off Off Off Off Off Off Off Of	Fine N N N N N N N N N N N N	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 15.9 14.7 15.3 13.1 15.0 7.7 3.2 16.2 13.3	Limit (dBµV) 56.0 52.4 51.6 46.2 46.0 46.0 46.0 46.0 46.0	
Freque (MHz 0.1500 0.2300 0.2540 0.4860 0.5820 0.7100 0.7580 0.8700 0.9100 1.2140	150k esult ency z) 000 000 000 000 000 000 000 000 000	: Average Average (dBµV) 40.1 37.7 36.3 33.1 31.0 38.3 42.8 29.8 32.7 30.3	Filter Off Off Off Off Off Off Off Off Off Of	Fine N N N N N N N N N N N N N	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 15.9 14.7 15.3 13.1 15.0 7.7 3.2 16.2 13.3 15.7	Limit (dBµV) 56.0 52.4 51.6 46.2 46.0 46.0 46.0 46.0 46.0 46.0	1
Freque (MHz 0.1500 0.2300 0.2540 0.4860 0.5820 0.7100 0.7580 0.8700 0.9100	150k esult ency z) 000 000 000 000 000 000 000 000 000	: Average Average (dBµV) 40.1 37.7 36.3 33.1 31.0 38.3 42.8 29.8 32.7 30.3 31.4	Filter Off Off Off Off Off Off Off Off Off Of	F N N N N N N N N N N N N N N N	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 15.9 14.7 15.3 13.1 15.0 7.7 3.2 16.2 13.3 15.7 14.6	Limit (dBµV) 56.0 52.4 51.6 46.2 46.0 46.0 46.0 46.0 46.0 46.0 46.0	1
Freque (MHz 0.1500 0.2300 0.2540 0.4860 0.5820 0.7100 0.7580 0.8700 0.9100 1.2140 1.5100	150k esult ency z) 000 000 000 000 000 000 000 000 000	: Average Average (dBµV) 40.1 37.7 36.3 33.1 31.0 38.3 42.8 29.8 32.7 30.3	Filter Off Off Off Off Off Off Off Off Off Of	Fine N N N N N N N N N N N N N	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 15.9 14.7 15.3 13.1 15.0 7.7 3.2 16.2 13.3 15.7	Limit (dBµV) 56.0 52.4 51.6 46.2 46.0 46.0 46.0 46.0 46.0 46.0	1

	Ν	/lode 2			Tempe	erature :		22~24 ℃
st Enginee	r: /	Arthur Hsieh			Relativ	ve Humi	dity :	51~53%
st Voltage :	: 1	20Vac / 60Hz			Phase	:		Line
nction Type	e: 🔇							ith Earphone 3 + Snap on Notebook to EDA (SD Car
Level in dBµV	100 90 80 70 60 50 40 30 20 10		ų	4	<u>, 111</u>	·//·		R22-OP Limit at Main Ports
	0 150	300 400 5	00 800	1M	2м Frequen	3M 4N Icyin Hz	15M 6	8 10M 20M 30M
Final Re	esult	: Quasi-Peak						
Freque (MH	ency z)	Quasi-Peak (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	
Freque (MH 13.558	ency z) 8000	Quasi-Peak (dBµV) 28.2		Line L1				
Freque (MH 13.558 Final Re	ency z) 8000 esult	Quasi-Peak (dBµV) 28.2 : Average	Filter		(dB) 19.8	(dB) 31.8	(dBµV) 60.0	
Freque (MH 13.558 Final Re Freque	ency z) 6000 esult ency	Quasi-Peak (dBµV) 28.2 : Average Average	Filter		(dB) 19.8 Corr.	(dB) 31.8 Margin	(dBµV) 60.0 Limit]
Freque (MH 13.558 Final Re	ency z) 6000 esult ency	Quasi-Peak (dBµV) 28.2 : Average	Filter Off	L1	(dB) 19.8	(dB) 31.8	(dBµV) 60.0	

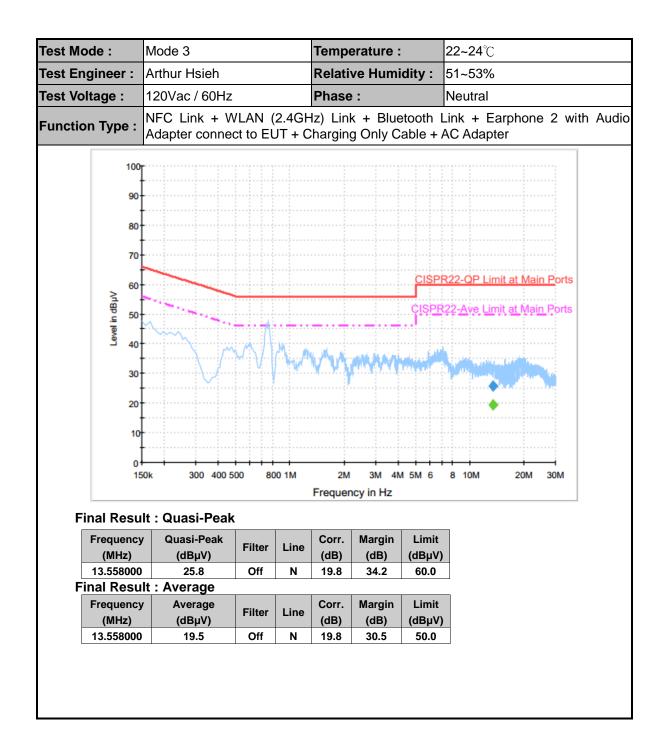
<Terminal test result with dummy load>

120 NF : Ca	hur Hsieh 0Vac / 60Hz C Link + WL ble Data Lin Adapter		GHz) L	Phase ink + E	Bluetooth	ı Link w			
: NF Ca AC	C Link + WL ble Data Lin		GHz) L	Link + E	Bluetooth	ı Link w	ith Earpho		
: Ca AC	ble Data Lin								
10									
50 10 10	300 400 5			2M		CISPR	R22-OP Limit	at Main F	
sult :	Quasi-Peak								
су	Quasi-Peak (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)			
	27.4	Off	Ν	19.8	32.6	60.0			
				0	N4	1.1			
		Filter	Line						
		0"	N				-		
	150k sult : icy 00	50 40 30 40 30 40 40 40 40 40 40 40 40 40 4	50 40	50 40	50 40	50 40	CISPR 40	00 CISPR22-Ave Limit 00 0 <td>20 CISPR22-Ave Limit at Main f 20 CISPR22-Ave Limit at Main f 20</td>	20 CISPR22-Ave Limit at Main f 20


Test Mod	le :	Mode 3			Temp	erature :		22~24 ℃
lest Eng	ineer :	Arthur Hsieh			Relati	ve Humi	dity :	51~53%
Fest Volta	age :	120Vac / 60Hz			Phase	:		Line
Function	Type :	NFC Link + W Adapter conne						ink + Earphone 2 with Audio
	¹⁰⁰ T							
	90							
	+							
	80							
	70-							
							CISPR 2	2-QP Limitat Main Ports
	≧ ⁶⁰			- D				
	Ald Bhild Sol	$\mathcal{M}_{\mathbf{a}}$				G	<u> 18 PR 22</u>	<u>-Ave Limit at Ma</u> in Ports
		· mai	A 🛃 🔒				. 4	
	- ••[her*\$141	MANUL			in the second second
	30 -			•				and the second
	20					•		
	201							
	10-							
	۰ţ							
	150	k 300 400 500	800	1M	2M	3M 4M 5M	468	10M 20M 30M
				Fr	equenc	cyin Hz		
F :								
		It : Quasi-Peak						-
F	Frequency		Filter	Line	Corr.	Margin	Limit	
	(MHz) 0.190000	(dBµV) 43.2	Off	L1	(dB) 19.6	(dB) 20.8	(dBµV) 64.0	-
	0.222000	45.8	Off	L1	19.6	16.9	62.7	_
	0.462000	41.2	Off	L1	19.6	15.5	56.7	
	0.590000	42.7	Off	 L1	19.6	13.3	56.0	_
	0.694000	43.2	Off	L1	19.6	12.8	56.0	
		48.5	Off	L1	19.6	7.5	56.0	
	0.742000	40.0	I.		40.0	16.0	56.0	
	0.742000 0.870000	39.2	Off	L1	19.6	16.8	56.0	
			Off Off	L1 L1	19.6	19.4	56.0	_
	0.870000	39.2						_

Oriai .14 with NEC

Test Mode	e:	Mode 3			Temp	erature :		22~24 ℃
Test Engi	neer :	Arthur Hsieh			Relati	ve Humi	dity :	51~53%
Test Volta	ige :	120Vac / 60Hz			Phase	:		Line
Function	Type :	NFC Link + W Adapter connec						Link + Earphone 2 with Audio
	100- 90- 80- 70- 90- 80- - 90- 90- - 90- - - - - - - - - - - -				2M requence			2-QP Limit at Main Ports
Fina	al Resu	It: Average						
Fi	requenc <u>:</u> (MHz)	y Average (dBμV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	
C	0.190000	34.0	Off	L1	19.6	20.0	54.0	
).222000		Off	L1	19.6	16.4	52.7	_
	0.462000		Off	L1	19.6	13.4	46.7	
	0.590000		Off	L1	19.6	12.1	46.0	_
	0.694000		Off	L1	19.6	9.8	46.0	_
	0.742000		Off	L1	19.6	3.4	46.0	_
).870000		Off	L1	19.6	14.6	46.0	_
	.222000		Off	L1	19.6	16.6	46.0	-
	3.702000 3.558000		Off Off	L1 L1	19.7 19.8	21.7 -15.4	46.0 50.0	-
				I.	ı		1	_


SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : UZ7TC75EK Page Number : 47 of 52 Report Issued Date : Oct. 07, 2016 Report Version : Rev. 03 Report Template No.: BU5-FR15CBT4.0 Version 1.3

est Engineer				Temperature :			22~24 ℃	
	r:	Arthur Hsieh			Relative Humidity :			51~53%
Test Voltage :	1	-			Phase	:		Line
Function Type		NFC Link + WLAN (2.4GH Adapter connect to EUT + C						ink + Earphone 2 with Audio
	100 T				1			
	90							
	ł							
	80							
	70						CISPR 2	2 <u>-QP Limitat Ma</u> in Ports
S ^I	60							
Levelin dBµV	50	\sqrt{m}				C	ISPR 22	<u>2-Ave Limit at M</u> ain Ports
Lev	40		A.H.	a das.	MALA	whether		
	30	wy/		rw ^e n		1		
	20							
	ł							
	10							
	0∔ 150	k 300 400 500	800	1M	2M	3M 4M 5M	VI6 8	10M 20M 30M
				Fr	equenc	y in Hz		
Final Re	esul	t : Quasi-Peak						
Freque	-		Filter	Line	Corr.	Margin	Limit	
(MH) 13.558		(dBµV) 28.4	Off	L1	(dB) 19.8	(dB) 31.6	(dBµV) 60.0	
		t : Average	•			0110	0010	
Freque	-	-	Filter	Line	Corr.	Margin	Limit	
(MH: 13.558	-	(dBµV) 19.8	Off	L1	(dB) 19.8	(dB) 30.2	(dBµV) 50.0	

<Terminal test result with dummy load>

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Meter	Agilent	E4416A	GB412923 44	300MHz~40GH z	Jan. 08, 2016	Aug. 22, 2016 ~ Aug. 26, 2016	Jan. 07, 2017	Conducted (TH05-HY)
Power Sensor	Agilent	E9327A	US404415 48	300MHz~40GH z	Jan. 07, 2016	Aug. 22, 2016 ~ Aug. 26, 2016	Jan. 06, 2017	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100057	9kHz-40GHz	Nov. 23, 2015	Aug. 22, 2016 ~ Aug. 26, 2016	Nov. 22, 2016	Conducted (TH05-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Sep. 06, 2016 ~ Sep. 20, 2016	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI 7	100724	9kHz~7GHz	Aug. 30, 2016	Sep. 06, 2016 ~ Sep. 20, 2016	Aug. 29, 2017	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Dec. 02, 2015	Sep. 06, 2016 ~ Sep. 20, 2016	Dec. 01, 2016	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Dec. 14, 2015	Sep. 06, 2016 ~ Sep. 20, 2016	Dec. 13, 2016	Conduction (CO05-HY)
Bilog Antenna	TESEQ	CBL 6111D	35419	30MHz to 1GHz	Jan. 13, 2016	Aug. 23, 2016 ~ Sep. 09, 2016	Jan. 12, 2017	Radiation (03CH07-HY)
Double Ridge Horn Antenna	ESCO	3117	00075962	1GHz ~ 18GHz	Aug. 19, 2016	Aug. 23, 2016 ~ Sep. 09, 2016	Aug. 18, 2017	Radiation (03CH07-HY)
EMI Test Receiver	Keysight	N9038A (MXE)	MY541300 85	20Hz ~ 8.4GHz	Nov. 04, 2015	Aug. 23, 2016 ~ Sep. 09, 2016	Nov. 03, 2016	Radiation (03CH07-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Sep. 02, 2015	Aug. 23, 2016 ~ Sep. 09, 2016	Sep. 01, 2017	Radiation (03CH07-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590075	1GHz ~ 18GHz	Apr. 15, 2016	Aug. 23, 2016 ~ Sep. 09, 2016	Apr. 14, 2017	Radiation (03CH07-HY)
Preamplifier	COM-POWER	PA-103A	161241	10MHz-1GHz	Mar. 18, 2016	Aug. 23, 2016 ~ Sep. 09, 2016	Mar. 17, 2017	Radiation (03CH07-HY)
Preamplifier	Agilent	8449B	3008A023 62	1GHz~ 26.5GHz	Oct. 19, 2015	Aug. 23, 2016 ~ Sep. 09, 2016	Oct. 18, 2016	Radiation (03CH07-HY)
Spectrum Analyzer	Agilent	N9010A	MY534701 18	10Hz~44GHz	Feb. 27, 2016	Aug. 23, 2016 ~ Sep. 09, 2016	Feb. 26, 2017	Radiation (03CH07-HY)
Antenna Mast	Max-Full	MFA520BS	N/A	1m~4m	N/A	Aug. 23, 2016 ~ Sep. 09, 2016	N/A	Radiation (03CH07-HY)
Turn Table	ChainTek	Chaintek 3000	N/A	0~360 Degree	N/A	Aug. 23, 2016 ~ Sep. 09, 2016	N/A	Radiation (03CH07-HY)
Preamplifier	MITEQ	JS44-180040 00-33-8P	1840917	18GHz ~ 40GHz	Jun. 14, 2016	Aug. 23, 2016 ~ Sep. 09, 2016	Jun. 13, 2017	Radiation (03CH07-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 584	18GHz- 40GHz	Nov. 02, 2015	Aug. 23, 2016 ~ Sep. 09, 2016	Nov. 01, 2016	Radiation (03CH07-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

|--|

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.70
of 95% (U = 2Uc(y))	5.70

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5,50
of 95% (U = 2Uc(y))	5.50

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.20
of 95% (U = 2Uc(y))	5.20

Appendix A. Conducted Test Results

Report Number : FR672834B

Bluetooth Low Energy

Test Engineer:	An Wu and Tommy Lee	Temperature:	21~25	°C
Test Date:	2016/08/22~2016/08/26	Relative Humidity:	51~54	%

	<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth									
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail		
BLE	1Mbps	1	0	2402	1.06	0.71	0.50	Pass		
BLE	1Mbps	1	19	2440	1.06	0.71	0.50	Pass		
BLE	1Mbps	1	39	2480	1.06	0.71	0.50	Pass		

	<u>TEST RESULTS DATA</u> <u>Peak Power Table</u>										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail	
BLE	1Mbps	1	0	2402	3.02	30.00	2.60	5.62	36.00	Pass	
BLE	1Mbps	1	19	2440	4.27	30.00	2.60	6.87	36.00	Pass	
BLE	1Mbps	1	39	2480	4.51	30.00	2.60	7.11	36.00	Pass	

						Avera	RESULTS DATA ge Power Table porting Only)
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)	
BLE	1Mbps	1	0	2402	2.06	1.60	
BLE	1Mbps	1	19	2440	2.06	3.20	
BLE	1Mbps	1	39	2480	2.06	3.48	

						<u>Peak</u>	Power D	ensity		
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail	
BLE	1Mbps	1	0	2402	0.88	-12.84	2.60	8.00	Pass	
BLE	1Mbps	1	19	2440	2.26	-11.46	2.60	8.00	Pass	
BLE	1Mbps	1	39	2480	2.16	-11.60	2.60	8.00	Pass	

Appendix B. Radiated Spurious Emission

Tost Engineer :	Luke Chang, Jesse Wang, Derreck Chen and James Chiu	Temperature :	21~24°C	
Test Engineer .		Relative Humidity :	50~55%	

2.4GHz 2400~2483.5MHz

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2355.15	55.13	-18.87	74	50.25	32.03	7.24	34.39	100	37	Ρ	Н
		2389.59	46.05	-7.95	54	40.99	32.08	7.31	34.33	100	37	А	Н
	*	2402	98.03	-	-	92.95	32.08	7.31	34.31	100	37	Ρ	Н
	*	2402	97.5	-	-	92.42	32.08	7.31	34.31	100	37	А	Н
													н
BLE CH 00													н
СП 00 2402MHz		2370.27	55.43	-18.57	74	50.5	32.06	7.24	34.37	198	303	Ρ	V
240210172		2374.365	46.19	-7.81	54	41.25	32.06	7.24	34.36	198	303	А	V
	*	2402	98.43	-	-	93.35	32.08	7.31	34.31	198	303	Ρ	V
	*	2402	97.82	-	-	92.74	32.08	7.31	34.31	198	303	А	V
													V
													V
		2363.34	55.42	-18.58	74	50.53	32.03	7.24	34.38	100	53	Р	Н
		2386.16	46.09	-7.91	54	41.04	32.08	7.31	34.34	100	53	А	Н
	*	2440	97.92	-	-	92.67	32.14	7.36	34.25	100	53	Р	Н
	*	2440	97.37	-	-	92.12	32.14	7.36	34.25	100	53	А	Н
		2497.76	55.59	-18.41	74	50.14	32.2	7.4	34.15	100	53	Р	Н
BLE		2488.66	46.57	-27.43	74	41.14	32.2	7.4	34.17	100	53	Р	Н
CH 19 2440MHz		2381.26	54.97	-19.03	74	49.95	32.06	7.31	34.35	198	304	Р	V
244UIVI11Z		2370.06	46.09	-7.91	54	41.16	32.06	7.24	34.37	198	304	А	V
	*	2440	98.86	-	-	93.61	32.14	7.36	34.25	198	304	Р	V
	*	2440	98.39	-	-	93.14	32.14	7.36	34.25	198	304	А	V
		2494.61	55.61	-18.39	74	50.17	32.2	7.4	34.16	198	304	Р	V
		2497.69	46.69	-7.31	54	41.24	32.2	7.4	34.15	198	304	А	V

BLE (Band Edge @ 3m)

Report No. : FR672834B

	*	2480	97.24	-	-	91.84	32.18	7.4	34.18	100	55	Р	Н
	*	2480	96.64	-	-	91.24	32.18	7.4	34.18	100	55	А	Н
		2486.16	56.33	-17.67	74	50.92	32.18	7.4	34.17	100	55	Р	Н
		2491.6	46.64	-7.36	54	41.2	32.2	7.4	34.16	100	55	А	н
BLE													Н
CH 39													Н
2480MHz	*	2480	98	-	-	92.6	32.18	7.4	34.18	208	312	Ρ	V
240010112	*	2480	97.26	-	-	91.86	32.18	7.4	34.18	208	312	А	V
		2491.92	55.41	-18.59	74	49.97	32.2	7.4	34.16	208	312	Ρ	V
		2488.04	46.62	-7.38	54	41.19	32.2	7.4	34.17	208	312	А	V
													V
													V
Remark		o other spurious I results are PA		Peak and	Average lir	nit line.							

2.4GHz 2400~2483.5MHz

BLE	(Harmonic	@ 3m)	
-----	-----------	-------	--

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)		(P/A)	
		4804	40.31	-33.69	74	53.46	34.1	11.83	59.08	100	0	Р	Н
													Н
BLE													Н
CH 00													Н
2402MHz		4804	40.2	-33.8	74	53.35	34.1	11.83	59.08	100	0	Р	V
240211112													V
													V
													V
		4880	39.83	-34.17	74	53.14	34.1	11.53	58.94	100	0	Р	н
		7320	40.71	-33.29	74	48.76	36.1	13.81	57.96	100	0	Р	н
													н
BLE													н
CH 19		4880	40.03	-33.97	74	53.34	34.1	11.53	58.94	100	0	Р	V
2440MHz		7320	39.87	-34.13	74	47.92	36.1	13.81	57.96	100	0	Р	V
													V
													V
		4960	40.95	-33.05	74	54.4	34.1	11.22	58.77	100	0	Р	н
		7440	40.74	-33.26	74	48.65	36.17	14.05	58.13	100	0	Р	н
													н
BLE													н
CH 39		4960	40.54	-33.46	74	53.99	34.1	11.22	58.77	100	0	Р	V
2480MHz		7440	41.45	-32.55	74	49.36	36.17	14.05	58.13	100	0	Р	V
													V
			1										

Emission below 1GHz

					2.4GHz	BLE (LF)							
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	
		84	28.55	-11.45	40	44.44	14.38	1.28	31.55	-	-	Р	Н
		157.98	37.36	-6.14	43.5	49.94	17.14	1.78	31.5	100	280	Ρ	Н
		259.5	30.49	-15.51	46	39.78	20	2.07	31.36	-	-	Ρ	н
		305.6	30.75	-15.25	46	39.64	19.96	2.41	31.26	-	-	Р	Н
		735.4	30.2	-15.8	46	30.17	26.96	3.74	30.67	-	-	Р	Н
		966.4	34.42	-19.58	54	30.65	30.23	4.07	30.53	-	-	Р	Н
													Н
													Н
													Н
													Н
2 4011-													Н
2.4GHz BLE													н
LF		79.14	34.58	-5.42	40	51.06	13.79	1.28	31.55	100	84	Ρ	V
		116.4	34.86	-8.64	43.5	47.14	17.68	1.55	31.51	-	-	Р	V
		224.94	29.66	-16.34	46	42.22	16.8	2.07	31.43	-	-	Ρ	V
		323.8	29.63	-16.37	46	38	20.47	2.41	31.25	-	-	Р	V
		673.8	29.36	-16.64	46	30.32	26.14	3.65	30.75	-	-	Р	V
		990.9	33.6	-20.4	54	29.86	30.28	3.98	30.52	-	-	Ρ	V
													V
													V
													V
													V
													V
													V
Remark		o other spuriou I results are PA		mit line.									

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not
	exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

1. Level(dBµV/m) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dBµV/m) – Limit Line(dBµV/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

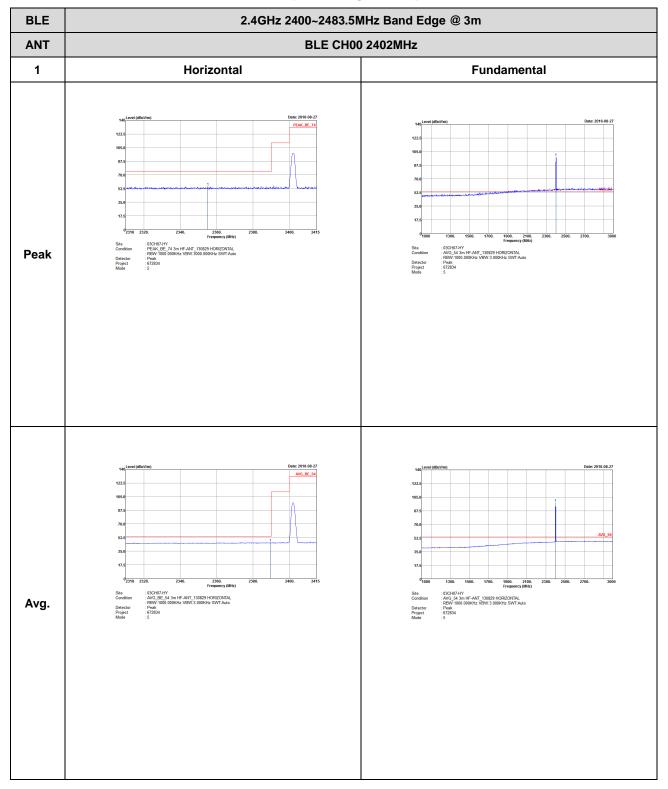
For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

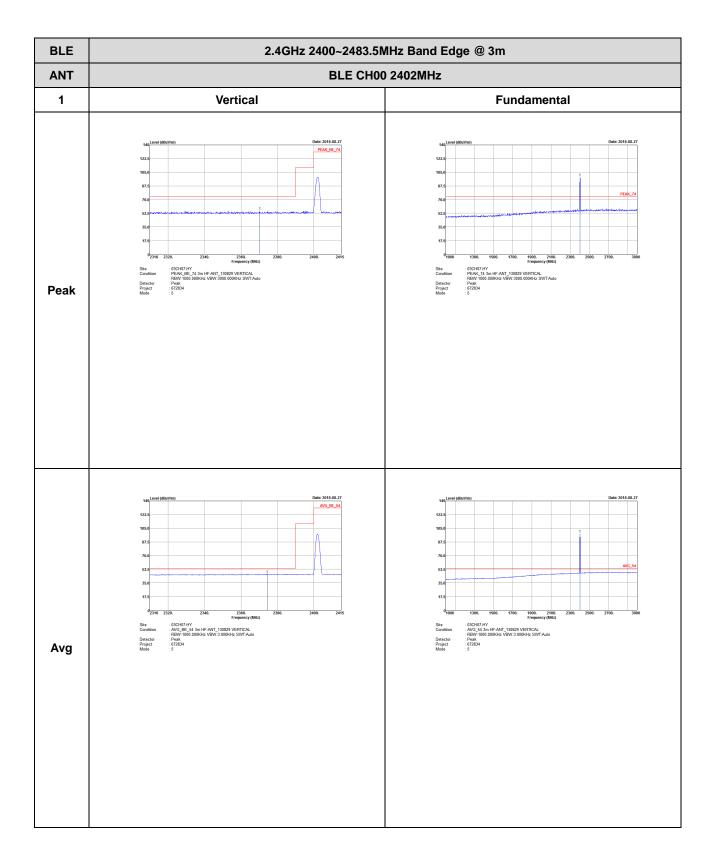
Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix C. Radiated Spurious Emission Plots

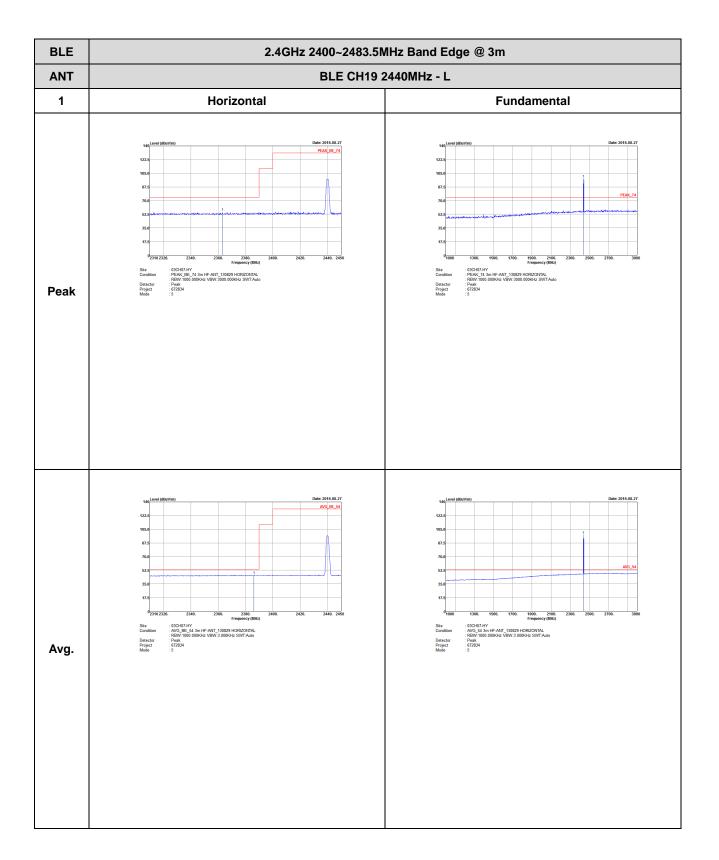
Test Engineer :	Luke Chang, Jesse Wang, Derreck Chen and James Chiu		21~24°C
		Relative Humidity :	50~55%

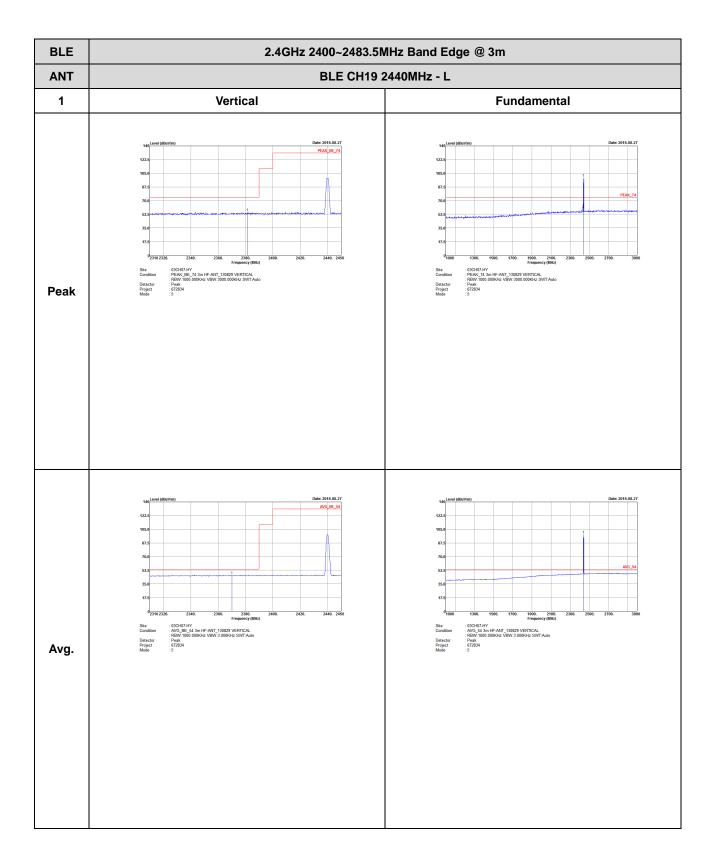

Note symbol

-L	Low channel location
-R	High channel location

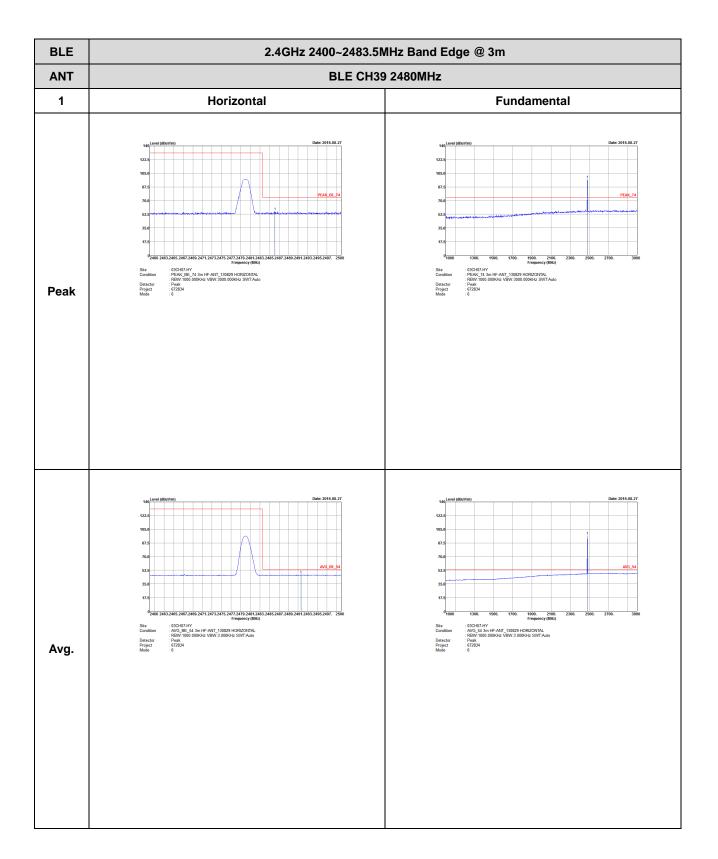

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

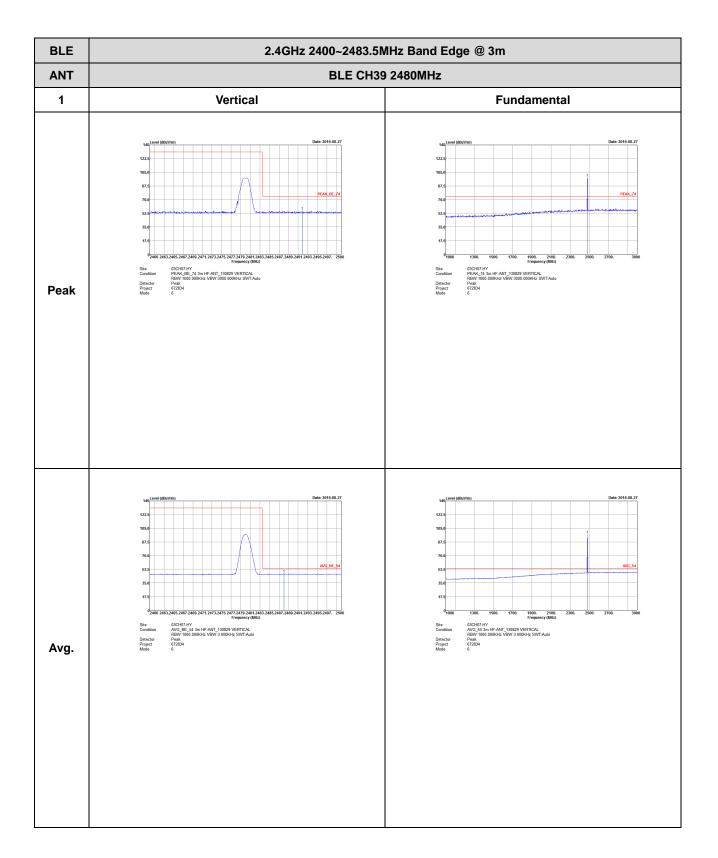


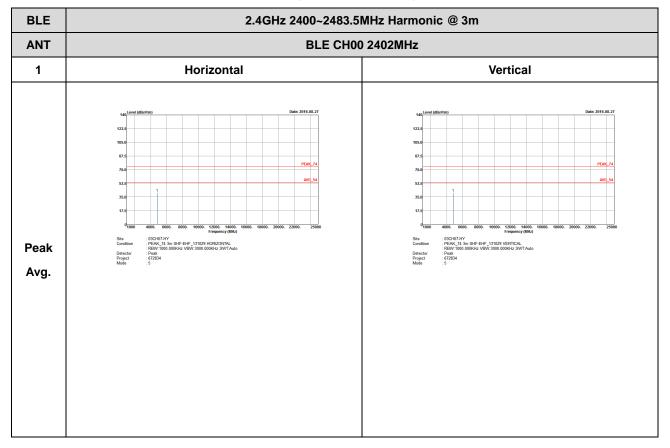


BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m					
ANT	BLE CH19 2440MHz - R					
1	Horizontal	Fundamental				
Peak	Image: text effectiveDet: 201-0.07Image: text effectiveImage:	Left blank				
Avg.	Image: set effectiveDef: 2018-027Image: set effectiveImage: set effective <t< th=""><th>Left blank</th></t<>	Left blank				



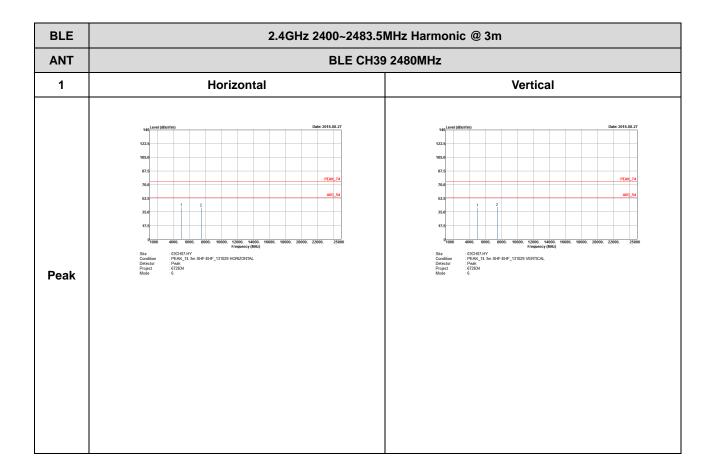
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m					
ANT	BLE CH19 2440MHz - R					
1	Vertical	Fundamental				
Peak	140 Delt: 2016-06.27 1224 140 1235 140 1236 <td< th=""><th>Left blank</th></td<>	Left blank				
Avg.	Image: text of the text of tex	Left blank				





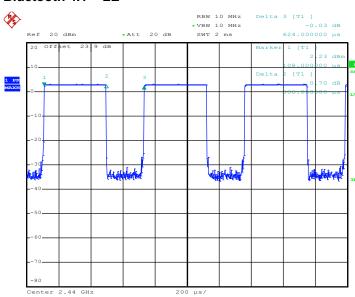
2.4GHz 2400~2483.5MHz

BLE (Harmonic @ 3m)



BLE	2.4GHz 2400~2483.5MHz Harmonic @ 3m					
ANT	BLE CH19 2440MHz					
1	Horizontal	Vertical				
Peak Avg.	<form></form>	interest effective Description interest effect				

Emission below 1GHz


BLE 2.4GHz 2400~2483.5MHz ANT BLE LF 1 Horizontal Vertical 60 60. 50 50. 40. 30.0 : 03CH07-F : QP 3m LF : Peak : 672834 : 60 : 03CH07-H QP 3m LF : Peak : 672834 : 60 NT-35419(6) VERTICAL QP/ IT-35419(6) HORIZONTAL Condition Detector Project Peak

2.4GHz BLE (LF)

Appendix D. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth 4.1 – LE	62.179	388	2.58	3kHz

Bluetooth 4.1 – LE

Date: 19.AUG.2016 14:10:24