Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: CD2600V3-1018 Aug21 # CALIBRATION CERTIFICATE Object CD2600V3 - SN: 1018 Calibration procedure(s) QA CAL-20.v7 Calibration Procedure for Validation Sources in air Calibration date: August 24, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|---------------------------------|-----------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Probe EF3DV3 | SN: 4013 | 28-Dec-20 (No. EF3-4013_Dec20) | Dec-21 | | DAE4 | SN: 781 | 23-Dec-20 (No. DAE4-781_Dec20) | Dec-21 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | |---|-----------------|-----------------------------------|------------------------| | Power meter Agilent 4419B | SN: GB42420191 | 09-Oct-09 (in house check Oct-20) | In house check: Oct-23 | | Power sensor HP E4412A | SN: US38485102 | 05-Jan-10 (in house check Oct-20) | In house check: Oct-23 | | Power sensor HP 8482A | SN: US37295597 | 09-Oct-09 (in house check Oct-20) | | | RF generator R&S SMT-06 | SN: 837633/005 | 10-Jan-19 (in house check Oct-20) | In house check: Oct-23 | | Network Analyzer Agilent E8358A | SN: US41080477 | | In house check: Oct-23 | | Terrorit / Bridly Zer / Igiletit E0000A | 314. 0341060477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | Calibrated by: Name Function Leif Klysner Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: August 27, 2021 Signature This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C S Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 #### References [1] ANSI-C63.19-2019 (ANSI-C63.19-2011) American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. # Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy. - Feed Point Impedance and Return Loss: These parameters are measured using a Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E-field distribution: E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any nonparallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: CD2600V3-1018_Aug21 Page 2 of 5 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------------|------------------|----------| | Phantom | HAC Test Arch | | | Distance Dipole Top - Probe Center | 15 mm | | | Scan resolution | dx, dy = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | | Input power drift | < 0.05 dB | | #### Maximum Field values at 2600 MHz | E-field 15 mm above dipole surface | condition | Interpolated maximum | |------------------------------------|--------------------|-------------------------| | Maximum measured above high end | 100 mW input power | 86.7 V/m = 38.76 dBV/m | | Maximum measured above low end | 100 mW input power | 85.6 V/m = 38.65 dBV/m | | Averaged maximum above arm | 100 mW input power | 86.1 V/m ± 12.8 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters** | Frequency | Return Loss | Impedance | |-----------|-------------|-----------------| | 2450 MHz | 19.2 dB | 43.0 Ω - 7.4 jΩ | | 2550 MHz | 29.2 dB | 47.0 Ω + 1.5 jΩ | | 2600 MHz | 34.5 dB | 49.9 Ω + 1.9 jΩ | | 2650 MHz | 34.9 dB | 51.7 Ω + 0.7 jΩ | | 2750 MHz | 21.3 dB | 50.1 Ω - 8.7 jΩ | #### 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. # Impedance Measurement Plot #### **DASY5 E-field Result** Date: 24.08.2021 Test Laboratory: SPEAG Lab2 #### DUT: HAC Dipole 2600 MHz; Type: CD2600V3; Serial: CD2600V3 - SN: 1018 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EF3DV3 - SN4013; ConvF(1, 1, 1) @ 2600 MHz; Calibrated: 28.12.2020 Sensor-Surface: (Fix Surface) Electronics: DAE4 Sn781; Calibrated: 23.12.2020 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole E-Field measurement @ 2600MHz/E-Scan - 2600MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 68.33 V/m; Power Drift = -0.01 dB Applied MIF = 0.00 dB RF audio interference level = 38.76 dBV/m Emission category: M2 MIF scaled E-field | | Grid 2 M2
38.65 dBV/m | Grid 3 M2 | |-----------|--------------------------|-----------| | Grid 4 M2 | Grid 5
M2
37.99 dBV/m | Grid 6 M2 | | Grid 7 M2 | Grid 8 M2
38.76 dBV/m | Grid 9 M2 | 0 dB = 86.65 V/m = 38.76 dBV/m #### CD2600V3, serial no. 1018 Extended Dipole Calibrations Referring to KDB 865664, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. #### <Justification of the extended calibration> | CD 2600 V3 – serial no. 1018 | | | | | | | |--|------------------|-----------|----------------------|-------------|---------------------------|-------------| | | | | 260 | 0MHZ | | | | Date of Measurement | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) | | 08.24.2021
(Cal. Report) | -34.547 | | 49.891 | | 1.8686 | | | 08.23.2022
(extended) | -31.562 | -8.64 | 51.592 | 1.701 | 2.8302 | 0.9616 | | 08.22.2023
(extended) | -32.051 | -7.22 | 49.645 | -0.246 | 3.4929 | 1.6243 | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. TEL: 886-3-327-3456 FAX: 886-3-328-4978 # <Dipole Verification Data> - CD2600 V3, serial no. 1018 (Data of Measurement : 08.22.2023) 2600 MHz - Head TEL: 886-3-327-3456 FAX: 886-3-328-4978 # <Dipole Verification Data> - CD2600 V3, serial no. 1018 (Data of Measurement : 8.23.2022) 2600 MHz - Head TEL: +1 408-904-3300 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton **Taoyuan City** Certificate No. CD3500V3-1022 Jun23 # IBRATION CERTIFICATE CD3500V3 - SN: 1022 Object QA CAL-20.v7 Calibration procedure(s) Calibration Procedure for Validation Sources in air June 08, 2023 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|---------------------------------|-----------------------| | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Type-N mismatch combination | SN: 310982 / 06327 | 30-Mar-23 (No. 217-03810) | Mar-24 | | Probe EF3DV3 | SN: 4013 | 30-Dec-22 (No. EF3-4013_Dec22) | Dec-23 | | DAE4 | SN: 781 | 03-Jan-23 (No. DAE4-781_Jan23) | Jan-24 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | |---------------------------|----------------|-----------------------------------|------------------------| | Power meter Agilent 44198 | SN: GB42420191 | 09-Oct-09 (in house check Oct-20) | In house check; Oct-23 | | Power sensor HP E4412A | SN: US38485102 | 05-Jan-10 (in house check Oct-20) | In house check: Oct-23 | | Power sensor HP 8482A | SN: US37295597 | 09-Oct-09 (in house check Oct-20) | In house check: Oct-23 | | RF generator R&S SMT-06 | SN: 837633/005 | 10-Jan-19 (in house check Oct-20) | in house check: Oct-23 | | | Name | Function | Signature | Calibrated by: Aldonia Georgiadou Laboratory Technician > Sven Kühn Technical Manager > > Issued: June 22, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Approved by: # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Certificate No: CD3500V3-1022 Jun23 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 #### References ANSI-C63.19-2019 (ANSI-C63.19-2011) [1] American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. #### Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy. - Feed Point Impedance and Return Loss: These parameters are measured using a Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E-field distribution: E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any nonparallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------------|--------------------------------------|----------| | Phantom | HAC Test Arch | | | Distance Dipole Top - Probe Center | 15 mm | | | Scan resolution | dx. dy = 5 mm | | | Frequency | 3500 MHz ± 1 MHz
3900 MHz ± 1 MHz | | | Input power drift | < 0.05 dB | | | | | | #### Maximum Field values at 3500 MHz | E-field 15 mm above dipole surface | condition | Interpolated maximum | |------------------------------------|--------------------|-------------------------| | Maximum measured above high end | 100 mW input power | 82.9 V/m = 38.37 dBV/m | | Maximum measured above low end | 100 mW input power | 82.4 V/m = 38.31 dBV/m | | Averaged maximum above arm | 100 mW input power | 82.6 V/m ± 12.8 % (k=2) | # Maximum Field values at 3900 MHz | E-field 15 mm above dipole surface | condition | Interpolated maximum | |------------------------------------|--------------------|-------------------------| | Maximum measured above high end | 100 mW input power | 80.9 V/m = 38.16 dBV/m | | Maximum measured above low end | 100 mW input power | 80.8 V/m = 38.14 dBV/m | | Averaged maximum above arm | 100 mW input power | 80.8 V/m ± 12.8 % (k=2) | #### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters** #### Nominal Frequencies | Frequency | Return Loss | Impedance | |-----------|-------------|-----------------------------| | 3300 MHz | 17.4 dB | $65.0 \Omega + 3.5 j\Omega$ | | 3400 MHz | 22.8 dB | 57,4 Ω - 2.5 jΩ | | 3500 MHz | 23.0 dB | 56.9 Ω - 3.2 jΩ |
| 3600 MHz | 22.7 dB | 51.4 Ω - 7.3 jΩ | | 3950 MHz | 16.5 dB | 57.6 Ω + 14.4 jΩ | #### Additional Frequencies | Frequency | Return Loss | Impedance | |-----------|-------------|-----------------| | 3900 MHz | 18.4 dB | 52.3 Ω + 1.2 jΩ | #### 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. #### Impedance Measurement Plot #### DASY5 E-field Result Date: 08.06.2023 Test Laboratory: SPEAG Lab2 DUT: HAC Dipole 3500 MHz; Type: CD3500V3; Serial: CD3500V3 - SN: 1022 Communication System: UID 0 - CW; Frequency: 3500 MHz, Frequency: 3900 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EF3DV3 - SN4013; ConvF(1, 1, 1) @ 3500 MHz, ConvF(1, 1, 1) @ 3900 MHz; Calibrated: 30.12.2022 Sensor-Surface: (Fix Surface) Electronics: DAE4 Sn781; Calibrated: 03.01.2023 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole E-Field measurement @ 3500MHz/E-Scan - 3500MHz d=15mm/Hearing Aid Compatibility Test (41x121x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 35.04 V/m; Power Drift = 0.02 dB Applied MIF = 0.00 dB RF audio interference level = 38.37 dBV/m Emission category: M2 #### MIF scaled E-field | Grid 1 M2 | Grid 2 M2 | Grid 3 M2 | |-------------|-------------|-------------| | 38.34 dBV/m | 38.37 dBV/m | 38.06 dBV/m | | Grid 4 M2 | Grid 5 M2 | Grid 6 M2 | | 38 dBV/m | 38.03 dBV/m | 37.79 dBV/m | | Grid 7 M2 | Grid 8 M2 | Grid 9 M2 | | 38.28 dBV/m | 38.31 dBV/m | 38.03 dBV/m | #### Dipole E-Field measurement @ 3500MHz/E-Scan 3900MHz, d=15mm/Hearing Aid Compatibility Test (41x121x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 33.23 V/m; Power Drift = -0.00 dB Applied MIF = 0.00 dB RF audio interference level = 38.14 dBV/m Emission category: M2 MIF scaled E-field | Grid 2 M2
38.16 dBV/m | | |------------------------------|--------------------------| | Grid 5 M2
37.95 dBV/m | Grid 6 M2
37.81 dBV/m | |
Grid 8 M2
38.14 dBV/m | Grid 9 M2
37.91 dBV/m | 0 dB = 82.88 V/m = 38.37 dBV/m #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client Sporton Taoyuan City Certificate No: DAE3-577_Sep23 # CALIBRATION CERTIFICATE Object DAE3 - SD 000 D03 AA - SN: 577 Calibration procedure(s) QA CAL-06.v30 Calibration procedure for the data acquisition electronics (DAE) Calibration date: September 14, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|--------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 29-Aug-23 (No:37421) | Aug-24 | | Secondary Standards | 10# | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit | SE UWS 053 AA 1001 | 27-Jan-23 (in house check) | In house check: Jan-24 | | Calibrator Box V2.1 | | 27-Jan-23 (in house check) | In house check: Jan-24 | Calibrated by: Name Function Signature Dominique Steffen Laboratory Technician Approved by: Sven Kühn Technical Manager Issued: September 14, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. # DC Voltage Measurement A/D - Converter Resolution nominal High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -1.....+3 mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | × | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 403.592 ± 0.02% (k=2) | 403,582 ± 0.02% (k=2) | 403.888 ± 0.02% (k=2) | | Low Range | 3.92898 ± 1.50% (k=2) | 3,94282 ± 1.50% (k=2) | 3.96224 ± 1.50% (k=2) | #### Connector Angle | Connector Angle to be used in DASY system | 191.0°±1° | |---|-----------| Certificate No: DAE3-577_Sep23 Page 3 of 5 # Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 199995.15 | -0.58 | -0.00 | | Channel X + Input | 20006.14 | 4.30 | 0.02 | | Channel X - Input | -20000.18 | 2.36 | -0.01 | | Channel Y + Input | 199992.80 | -1.97 | -0.00 | | Channel Y + Input | 20003.03 | 1.30 | 0.01 | | Channel Y - Input | -20002.04 | 0.70 | -0.00 | | Channel Z + Input | 199995.34 | 0.15 | 0.00 | | Channel Z + Input | 20002.88 | 1.18 | 0.01 | | Channel Z - Input | -20002.20 | 0.56 | -0.00 | | Low Range | Reading (µV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2001.62 | 1.10 | 0.05 | | Channel X + Input | 201.15 | 0.41 | 0.20 | | Channel X - Input | -198.07 | 0.93 | -0.47 | | Channel Y + Input | 2000.85 | 0.45 | 0.02 | | Channel Y + Input | 200.37 | -0.20 | -0.10 | | Channel Y - Input | -199.57 | -0.38 | 0.19 | | Channel Z + Input | 2000.80 | 0.56 | 0.03 | | Channel Z + Input | 199.55 | -0.92 | -0.46 | | Channel Z - Input | -200.32 | -1.13 | 0.57 | Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | -2.04 | -4.27 | | | - 200 | 5.93 | 4.01 | | Channel Y | 200 | -13.55 | -13.70 | | | - 200 | 12.93 | 13.02 | | Channel Z | 200 | 2.94 | 2.95 | | | - 200 | -5.54 | -5.51 | #### 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (µV) | Channel Y (µV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | -0.89 | -3.60 | | Channel Y | 200 | 8.26 | 183 | 0.38 | | Channel Z | 200 | 5.56 | 5.37 | 55 | Certificate No: DAE3-577_Sep23
4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 16125 | 15407 | | Channel Y | 16098 | 16228 | | Channel Z | 16092 | 13010 | 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | nput 10Ms2 | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) | | |------------|--------------|------------------|------------------|---------------------|--| | Channel X | 0.74 | -0.20 | 1.45 | 0.37 | | | Channel Y | -0.73 | -3.04 | 1.37 | 0.59 | | | Channel Z | 1.47 | 0.68 | 2.92 | 0.44 | | 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | | |-----------|----------------|------------------|--| | Channel X | 200 | 200 | | | Channel Y | 200 | 200 | | | Channel Z | 200 | 200 | | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7,6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA | | |----------------|-------------------|---------------|------------------|--| | Supply (+ Vcc) | +0.01 | +6 | +14 | | | Supply (- Vcc) | -0.01 | -8 | -9 | | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Taoyuan City Certificate No. EF-4047 Dec23 #### CALIBRATION CERTIFICATE Object EF3DV3 - SN:4047 Calibration procedure(s) QA CAL-02.v9, QA CAL-25.v8 Calibration procedure for E-field probes optimized for close near field evaluations in air Calibration date December 04, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID: | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|---------------------------------|-----------------------| | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 30-Mar-23 (No. 217-03809) | Mar-24 | | DAE4 | SN: 789 | 03-Jan-23 (No. DAE4-789_Jan23) | Jan-24 | | Reference Probe ER3DV6 | SN: 2328 | 02-Oct-23 (No. ER3-2328_Oct23) | Oct-24 | | | | | | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | |-------------------------|------------------|-----------------------------------|------------------------| | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-22) | In house check: Jun-24 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (In house check Oct-22) | In house check: Oct-24 | Name Function Calibrated by Jeffrey Katzman Laboratory Technician Approved by Sven Kühn Technical Manager Issued: December 04, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary NORMx,y,z sensitivity in free space DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters En incident E-field orientation normal to probe axis Ep incident E-field orientation parallel to probe axis Polarization φ φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005 - b) CTIA Test Plan for Hearing Aid Compatibility, Rev 3.1.1, May 2017 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 for XY sensors and θ = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz in R22 waveguide). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media. - · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EF-4047_Dec23 Page 2 of 21 EF3DV3 - SN:4047 #### Parameters of Probe: EF3DV3 - SN:4047 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k = 2) | |------------------------|----------|----------|----------|-------------| | Norm $(\mu V/(V/m)^2)$ | 0.85 | 0.68 | 1,20 | ±10.1% | | DCP (mV) B | 98.2 | 100.5 | 96.7 | ±4.7% | #### Calibration Results for Frequency Response (30 MHz - 5.8 GHz) | Frequency
MHz | Target
E-field (En)
V/m | Measured
E-field (En)
V/m | Deviation
E-field (En) | Target
E-field (Ep)
V/m | Measured
E-field (Ep)
V/m | Deviation
E-field (Ep) | Unc (k = 2) | |------------------|-------------------------------|---------------------------------|---------------------------|-------------------------------|---------------------------------|---------------------------|-------------| | 30 | 77.1 | 77.4 | 0.4% | 77.1 | 77.1 | -0.0% | ±5.1% | | 100 | 77.0 | 77.7 | 0.9% | 77.0 | 77.7 | 1.0% | ±5.1% | | 450 | 77.2 | 77.9 | 0.9% | 77.2 | 78.1 | 1.2% | ±5.1% | | 600 | 77.2 | 77.3 | 0.1% | 77.2 | 77.6 | 0.4% | ±5.1% | | 750 | 77.2 | 77.3 | 0.1% | 77.2 | 77.4 | 0.3% | ±5.1% | | 1800 | 143.1 | 140.0 | -2.2% | 143.0 | 140.4 | -1.8% | ±5.1% | | 2000 | 135.0 | 129.5 | -4.1% | 134.8 | 129.8 | -3.7% | ±5.1% | | 2200 | 127.5 | 124.6 | -2.3% | 127.6 | 126.2 | -1,1% | ±5.1% | | 2500 | 125.3 | 120.2 | -4.1% | 125.3 | 121.4 | -3.1% | ±5.1% | | 3000 | 79.4 | 76.4 | -3.8% | 79.5 | 77.6 | -2.4% | ±5.1% | | 3500 | 255.9 | 255.2 | -0.3% | 256.0 | 252.6 | -1.3% | ±5.1% | | 3700 | 249.8 | 245.1 | -1.9% | 250.0 | 243.7 | -2.5% | ±5.1% | | 5200 | 50.8 | 51.0 | 0.4% | 50.8 | 51.1 | 0.6% | ±5.1% | | 5500 | 49.6 | 48.9 | -1.4% | 49.6 | 49.1 | -1.1% | ±5.1% | | 5800 | 48.8 | 48.0 | -1,7% | 48.9 | 47.5 | -2.8% | ±5.1% | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^B Linearization parameter uncertainty for maximum specified field strength. E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. #### Parameters of Probe: EF3DV3 - SN:4047 #### Calibration Results for Modulation Response | UID | Communication System Name | | dB | B
dB√μV | С | dB
D | VR
mV | Max
dev. | Max
Unc ^E
k = 2 | |---------------
--|---|-------|------------|-------|------------|----------|--------------|----------------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 131.2 | ±2.7% | ±4.7% | | | SCALLES. | Y | 0.00 | 0.00 | 1.00 | | 157.5 | COLDINATOR (| 12-5-7mil 1770 | | | | Z | 0.00 | 0.00 | 1.00 | | 125.6 | | | | 10352 | Pulse Waveform (200Hz, 10%) | X | 7.53 | 77.89 | 16.71 | 10.00 | 60.0 | ±1.8% | ±9.6% | | | | Y | 7.35 | 77.49 | 16.83 | 10/9/95/95 | 60.0 | 360150150 | | | | | Z | 6.72 | 76.45 | 15.76 | | 60.0 | | | | 10353 | Pulse Waveform (200Hz, 20%) | X | 20.00 | 89.57 | 19.01 | 6.99 | 80.0 | ±0.9% | ±9.6% | | | The state of s | Y | 20.00 | 89.63 | 19.30 | 2000 | 80.0 | | <u> </u> | | | | Z | 20.00 | 89.51 | 18.60 | | 80.0 | | | | 10354 | Pulse Waveform (200Hz, 40%) | X | 20.00 | 90.65 | 18.00 | 3.98 | 95.0 | ±0.8% | ±9.6% | | | Sect Constant Manual Cart | Y | 20.00 | 90.67 | 18.29 | 202 | 95.0 | | | | | | Z | 20.00 | 90.52 | 17.55 | | 95.0 | | | | 10355 Pulse W | Pulse Waveform (200Hz, 60%) | X | 20.00 | 92.32 | 17.52 | 2.22 | 120.0 | ±0.9% | ±9.6% | | | 20 20 20 | Y | 20.00 | 92.69 | 18.00 | | 120.0 | | | | | | Z | 20.00 | 92.56 | 17.25 | | 120.0 | | | | 10387 | QPSK Waveform, 1 MHz | X | 2.16 | 69.49 | 17.57 | 1.00 | 150.0 | ±1.6% | ±9.6% | | | | Y | 2.14 | 69.47 | 17.46 | | 150.0 | | | | | | Z | 2.05 | 69.82 | 17.38 | | 150.0 | | | | 10388 | QPSK Waveform, 10 MHz | X | 3.03 | 72.91 | 18.35 | 0.00 | 150.0 | ±1.0% | ±9.6% | | | | Y | 2.96 | 72.59 | 18.18 | | 150.0 | | | | | | Z | 2.86 | 72.42 | 18.19 | | 150.0 | | | | 10396 | 64-QAM Waveform, 100 kHz | X | 3.51 | 73.45 | 20.39 | 3.01 | 150.0 | ±0.7% | ±9.6% | | | | Y | 5.82 | 82.50 | 23.84 | | 150.0 | | | | | | Z | 3.07 | 72.10 | 19.77 | | 150.0 | | | | 10399 | 64-QAM Waveform, 40 MHz | X | 3.81 | 68.50 | 16.79 | 0.00 | 150.0 | ±1.0% | ±9.6% | | | The second secon | Y | 3.79 | 68.48 | 16.73 | | 150.0 | - | | | | | Z | 3,78 | 68.53 | 16.81 | | 150.0 | | | | 10414 | WLAN CCDF, 64-QAM, 40 MHz | X | 5.10 | 66.00 | 15.98 | 0.00 | 150.0 | ±2.5% | ±9.6% | | F 16.1 P 17.1 | A STATE OF THE PROPERTY | Y | 5.09 | 66.06 | 15.95 | 4000 | 150.0 | -8-4:0.35 | -50000000 | | | | Z | 4.91 | 65.73 | 15.86 | | 150.0 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EF-4047_Dec23 ⁹ Linearization parameter uncertainty for maximum specified field strength. E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EF3DV3 - SN:4047 # Parameters of Probe: EF3DV3 - SN:4047 #### Sensor Frequency Model Parameters | | Sensor X | Sensor Y | Sensor Z | |----------------------|----------|----------|----------| | Frequency Corr. (LF) | -0.39 | -0.20 | 5.90 | | Frequency Corr. (HF) | 2.82 | 2.82 | 2.82 | #### Sensor Model Parameters | | C1
(F | C2
fF | ν-1 | T1
msV ⁻² | T2
msV ⁻¹ | T3
ms | T4
V-2 | T5
V-1 | T6 | |---|----------|----------|-------|-------------------------|-------------------------|----------|-----------|-----------|------| | X | 72.0 | 475.32 | 37.00 | 13.09 | 0.80 | 5.01 | 0.18 | 0.48 | 1,00 | | у | 68.4 | 445.03 | 36.05 | 15.02 | 0.97 | 4.99 | 1.86 | 0.27 | 1.01 | | Z | 56.6 | 374.98 | 37.21 | 10.13 | 0.57 | 5.01 | 0.55 | 0.32 | 1.00 | #### Other Probe Parameters | Sensor Arrangement | Rectangular | |---|-------------| | Connector Angle | -34.7° | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 12 mm | | Tip Length | 25 mm | | Tip Diameter | 4 mm | | Probe Tip to Sensor X Calibration Point | 1.5 mm | | Probe Tip to Sensor Y Calibration Point | 1.5 mm | | Probe Tip to Sensor Z Calibration Point | 1.5 mm | # Receiving Pattern (ϕ), $\theta = 0^{\circ}$ # Receiving Pattern (ϕ), $\theta = 90^{\circ}$ # Receiving Pattern (ϕ), $\theta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2) # Receiving Pattern (ϕ), $\theta = 90^{\circ}$ Uncertainty of Axial isotropy Assessment: ±0.5% (k=2) # Dynamic Range f(E-field) (TEM cell, feval = 900 MHz) Uncertainty of Linearity Assessment: ±0.6% (k=2) # Deviation from Isotropy in Air Error (ϕ, θ) , f = 900 MHz # Appendix: Modulation Calibration Parameters | UID | Rev | Communication System Name | Group | PAR (dB) | Unc ^E k = | |--|---------------------------------|---
--|---------------|---| | 0 | | OW | CW | 0.00 | £4.7 | | 10010 | CAB | SAR Validation (Square, 100 ms, 10 ms) | Test | 10.00 | ±9.6 | | 10011 | CAC | UMTS-FDD (WCDMA) | WCDMA | 2.91 | ±9.6 | | 0012 | CAB | IEEE 802.11b WIFI 2.4 GHz (DSSS, 1 Mbps) | WLAN | 1.87 | ±9.6 | | 0013 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps) | WLAN | 9.46 | ±9.6 | | 0021 | DAC | GSM-FDD (TDMA, GMSK) | GSM | 9.39 | ±9.6 | | 0023 | DAC | GPRS-FDD (TDMA, GMSK, TN 0) | GSM | | | | Activities to the | - | | (F/X) | 9.57 | ±9.6 | | 0024 | DAC | GPRS-FD0 (TDMA, GMSK, TN 0-1) | GSM | 6.56 | ±9.6 | | 0025 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0) | GSM | 12.62 | ±9.6 | | 10026 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1) | GSM | 9.55 | ±9.6 | | 0027 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2) | GSM | 4.80 | ±9.6 | | 0028 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3) | GSM | 3.55 | ±9.6 | | 10029 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2) | GSM | 7.78 | ±9.6 | | 0030 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH1) | Bluetooth | 5.30 | ±9.6 | | 0031 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH3) | Bluetooth | 1.87 | ±9.6 | | 0032 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5) | Bluetooth | 1.16 | ±9.6 | | 0033 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1) | Bluetooth | 7.74 | ±9.6 | | 0034 | CAA | IEEE 802,15.1 Bluetooth (PI/4-DQPSK, DH3) | Bluetooth | 4.53 | ±9.6 | | 0035 | CAA | IEEE 802.15.1 Bluetooth (PV4-DQPSK, DH5) | Bluetooth | 3.83 | ±9.6 | | 0036 | CAA | IEEE 802 15.1 Bluetooth (8-DPSK, DH1) | Bluetooth | 8.01 | - | | | - | | | | ±9.6 | | 0037 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH3) | Bluetooth | 4.77 | ±9.6 | | 0038 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH5) | Bluetooth | 4:10 | ±9.6 | | 0039 | CAB | CDMA2000 (1xRTT, RC1) | CDMA2000 | 4.57 | ±9.6 | | 0042 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Haifrate) | AMPS | 7.78 | ±9.6 | | 0.044 | GAA | IS-91/EIA/TIA-553 FDD (FDMA, FM) | AMPS | 0.00 | ±9.6 | | 0048 | CAA | DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24) | DECT | 13.80 | ±9.6 | | 0049 | CAA | DECT (TDD, TDMA/FDM, GFSK, Double Stot, 12) | DECT | 10.79 | ±9.6 | | 0056 | CAA | UMTS-TDD (TD-SCDMA, 1.28 Mcps) | TD-SCDMA | 11.01 | ±9.6 | | 0.058 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) | GSM | 6.52 | ±9.6 | | 0.059 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mops) | WLAN | 2.12 | ±9.6 | | 0060 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps) | WLAN | 2.83 | ±9.6 | | 0061 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps) | WLAN | 100000 | - | | 0.062 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps) | | 3.60 | ±9.6 | | 0063 | CAD | | WLAN | 8.68 | ±9.6 | | manufacture marks between | and the relative between | IEEE 802.11a/h WIFI 5 GHz (OFDM, 9 Mbps) | WLAN | 8.63 | ±9.6 | | 0064 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps) | WLAN | 9.09 | ±9.6 | | 0.065 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps) | WLAN | 9.00 | ±9.6 | | 10066 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps) | WLAN | 9.38 | ±9.6 | | 10067 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 38 Mbps) | WLAN | 10.12 | ±9.6 | | 0068 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps) | WLAN | 10.24 | ±9.6 | | 0069 | CAD | IEEE 802.11a/h WiFl 5 GHz (OFDM, 54 Mbps) | WLAN | 10.56 | ±9.6 | | 10071 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps) | WLAN | 9.83 | ±9.6 | | 0072 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps) | WLAN | 9.62 | ±9.6 | | 0073 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps) | WLAN | 9.94 | ±9.6 | | 0074 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps) | WLAN | 10.30 | ±9.6 | | 0075 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 36 Mbps) | WLAN | 10.77 | | | The second | - | | | | ±9.6 | | 0076 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps) | WLAN | 10.94 | ±9.6 | | 0077 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps) | WLAN | 11.00 | ±9.6 | | 0081 | CAB | CDMA2000 (1xRTT, RC3) | CDMA2000 | 3.97 | ±9.6 | | 0082 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate) | AMPS | 4,77 | ±9.6 | | 0090 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-4) | GSM | 6.56 | ±9.6 | | 0097 | CAC | UMTS-FDD (HSDPA) | WCDMA | 3.98 | ±9.6 | | 0098 | CAC | UMTS-FDD (HSUPA, Subtest 2) | WCDMA | 3.98 | ±9.6 | | 0099 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-4) | GSM | 9.55 | ±9.6 | | 0100 | CAF | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-FDD | 5.67 | ±9.6 | | 0101 | CAF | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ±9.6 | | 0102 | CAF | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.60 | ±9.6 | | 0103 | CAH | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-TOO | 9.29 | ±9.6 | | 0104 | CAH | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-TOD | 9.97 | 100000000000000000000000000000000000000 | | The State of S | And in column 2 is not a second | | The second secon | - Internation | ±9.6 | | 0105 | CAH | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-TD0 | 10.01 | ±9.6 | | 0108 | CAH | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-FD0 | 5.80 | ±9.6 | | 0109 | CAH | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-FD0 | 6.43 | ±9.6 | | 0110 | CAH | LTE-FDD (SC-FDMA, 100% RB, 5MHz, QPSK) | LTE-FDD | 5.75 | ±9.6 | | 0111 | CAH | LTE-FDD (SC-FDMA, 100% RB, 5MHz, 16-QAM) | LTE-FD0 | 6.44 | ±9.6 | Certificate No: EF-4047_Dec23 | UID | Rev | Communication System Name | Group | PAR (dB) | Unc E $k=2$ | |-------|-----|--|---------|----------|---------------| | 10112 | CAH | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.59 | ±9.6 | | 10113 | CAH | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-FOD | 6.62 | ±9.6 | | 10114 | CAD | IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK) | WLAN | 8.10 | ±9.6 | | 10115 | CAD | IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM) | WLAN | 8.46 | ±9.6 | | 10116 | CAD | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM) | WLAN | 8.15 | ±9.6 | | 10117 | CAD | IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK) | WLAN | 8.07 | ±9.6 | | 10118 | CAD | IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM) | WLAN | 8.59 | ±9,6 | | 10119 | CAD | IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM) | WLAN | 8.13 | ±9.6 | | 10140 | CAF | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-FOD | 6.49 | ±9.6 | | 10141 | CAF | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-FDD | 6.53 | ±9.6 | | 10142 | CAF | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | ±9.6 | | 10143 | CAF | LTE-FDD (SC-FDMA, 100% RB, 3MHz, 16-QAM) | LTE-FDD | 6.35 | ±9.6 | | 10144 | CAF | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.65 | ±9.6 | | 10145 | CAG | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.76 | ±9.6 | | 10146 | CAG | LTE-FDD (SC-FDMA, 100% RB, 1.4MHz, 16-QAM) | LTE-FDD | 6.41 | ±9.6 | | 10147 | CAG | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-FD0 | 6.72 | ±9.6 | | 10149 | CAF | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ±9.6 | | 10150 | CAF | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.60 | ±9.6 | | 10151 | CAH | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-TD0 | 9.28 | ±9.6 | | 10152 | CAH | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-TOD | 9.92 | ±9.6 | | 10153 | CAH | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-TDD | 10.05 | ±9.6 | | 10154 | CAH | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, OPSK) | LTE-FDD | 5.75 | ±9.6 | | 10155 | CAH | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ±9.6 | | 10156 | CAH | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-FDD | 5.79 | ±9.6 | | 10157 | CAH | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.49 | ±9.6 | | 10158 | CAH | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.62 | ±9.6 | | 10159 | CAH | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-FDD | 6.56 | ±9.6 | | 10160 | CAF | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-FDD | 5.82 | ±9.6 | | 10161 | CAF | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.43 | ±9.6 | | 10162 | CAF | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-FDD | 6.58 | ±9.6 | | 10166 | CAG | LTE-FDD
(SC-FDMA, 50% RB, 1.4MHz, QPSK) | LTE-FDD | 5.46 | ±9.6 | | 10167 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM). | LTE-FDD | 6.21 | ±9.6 | | 10168 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.79 | ±9.6 | | 10169 | CAF | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-FDD | 5.73 | ±9.6 | | 10170 | CAF | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-FDD | 6.52 | ±9.6 | | 10171 | AAF | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-FDD | 6.49 | ±9.6 | | 10172 | CAH | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-TOD | 9.21 | ±9.6 | | 10173 | CAH | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-TDD | 9.48 | ±9.6 | | 10174 | CAH | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-TDD | 10.25 | ±9.6 | | 10175 | CAH | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-FDD | 5.72 | £9.6 | | 10176 | CAH | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-FDD | 6.52 | ±9.6 | | 10177 | CAJ | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-FDD | 5.73 | ±9.6 | | 10178 | CAH | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-FDD | 6.52 | ±9.6 | | 10179 | CAH | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-FDD | 6.50 | ±9.6 | | 10180 | CAH | LTE-FDD (SC-FDMA, 1 RB, 5MHz, 64-QAM) | LTE-FDD | 6,50 | ±9.6 | | 10181 | CAF | LTE-FDD (SC-FDMA, 1 RB, 15MHz, QPSK) | LTE-FDD | 5.72 | ±9.5 | | 10182 | CAF | LTE-FDD (SC-FDMA, 1 RB, 15MHz, 16-QAM) | LTE-FDD | 6.52 | ±9.6 | | 10183 | AAE | LTE-FDD (SC-FDMA, 1 RB, 15MHz, 64-QAM) | LTE-FDD | 6.50 | ±9.6 | | 10184 | CAF | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | ±9.6 | | 10185 | CAF | LTE-FDD (SC-FDMA, 1 RB, 3MHz, 16-QAM) | LTE-FDD | 6.51 | ±9.6 | | 10186 | AAF | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-FDD | 6.50 | ±9.6 | | 10187 | CAG | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-FDD | 5.73 | ±9.6 | | 10188 | CAG | LTE-FDD (SC-FDMA, 1 R8, 1.4 MHz, 16-QAM) | LTE-FD0 | 6.52 | ±9.6 | | 10189 | AAG | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.50 | ±9.6 | | 10193 | CAD | IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) | WLAN | 8.09 | ±9.6 | | 10194 | CAD | IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) | WLAN | 8.12 | ±9.6 | | 10195 | CAD | IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) | WLAN | 8.21 | ±9.6 | | 10196 | CAD | IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) | WLAN | 8.10 | ±9.6 | | 10197 | CAD | IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM) | WLAN | 8.13 | ±9,6 | | 10198 | CAD | IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) | WLAN | 8.27 | ±9.6 | | 10219 | CAD | IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK) | WLAN | 8.03 | ±9.6 | | 10220 | CAD | IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM) | WLAN | 8.13 | ±9.6 | | 10221 | CAD | IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM) | WLAN | 8.27 | ±9.6 | | 10222 | CAD | IEEE 802.11n (HT Mixed, 15 Mbps, BPSK) | WLAN | 8.06 | ±9.6 | | 10223 | CAD | IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM) | WLAN | 8.48 | ±9.6 | | 10224 | CAD | IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM) | WLAN | 8.08 | ±9.6 | | UID | Rev | Communication System Name | Group | PAR (dB) | UncE k = 2 | |------------------------|------------|--|-------------------|----------|------------| | 10225 | CAC | UMTS-FDD (HSPA+) | WCDMA | 5.97 | ±9.6 | | 10226 | CAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-TOD | 9.49 | ±9.6 | | 10227 | CAC | LTE-TDD (SC-FDMA, 1 RB, 1,4 MHz, 64-QAM) | LTE-TOD | 10.26 | ±9.6 | | 10228 | CAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-TDD | 9.22 | ±9.6 | | 10229 | CAE | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-TDD | 9.48 | ±9.6 | | 10230 | CAE | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-TOD | 10.25 | ±9.6 | | 10231 | CAE | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-TOD | 9.19 | ±9.6 | | 10232 | CAH | LTE-TDD (SC-FDMA, 1 RB, 5MHz, 16-QAM) | LTE-TDD | 9.48 | ±9.6 | | 10233 | CAH | LTE-TDD (SC-FDMA, 1 RB, 5MHz, 64-QAM) | LTE-TDD | 10.25 | ±9.6 | | 10234 | CAH | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-TDD | 9.21 | ±9.6 | | 10235 | CAH | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-TOD | 9.48 | ±9.6 | | 10236 | CAH | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-TDD | 10.25 | ±9.6 | | 10237 | CAH | LTE-TOD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-TDD | 9.21 | ±9.6 | | 10238 | CAG | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-TOD | 9.48 | ±9.6 | | 10239 | CAG | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-TOD | 10.25 | ±9.6 | | 10240 | CAG | LTE-TDD (SC-FDMA, ¶ RB, 15MHz, QPSK) | LTE-TOD | 9.21 | ±9.6 | | 10241 | CAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.82 | ±9.6 | | 10242 | CAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-TOD | | 0000000 | | 10242 | CAC | | | 9.86 | ±9.6 | | | | LTE-TDD (SC-FDMA, 56% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.46 | ±9.6 | | 10244 | CAE | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-TOD | 10.06 | ±9.6 | | 10245 | CAE | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-TOD | 10.06 | ±9.6 | | 10246 | CAE | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-TOD | 9.30 | ±9.6 | | 10247 | CAH | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-TDD | 9.91 | ±9.6 | | 10248 | CAH | LTE-TDO (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-TOD | 10.09 | ±9.6 | | 10249 | CAH | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-TD0 | 9.29 | ±9.6 | | 10250 | CAH | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-TD0 | 9.81 | ±9.6 | | 10251 | CAH | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-TD0 | 10.17 | ±9.6 | | 10252 | CAH | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-TOD | 9.24 | ±9.6 | | 10253 | CAG | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-TDD | 9.90 | ±9.6 | | 10254 | CAG | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-TDD | 10.14 | ±9.6 | | 10255 | CAG | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-TDD | 9.20 | ±9.6 | | 10256 | CAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-OAM) | LTE-TDD | 9.96 | ±9.6 | | 10257 | CAC | LTE-TDD (SC-FDMA, 100% RB, 1.4MHz, 84-QAM) | LTE-TDD | 10.08 | ±9.6 | | 10258 | CAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.34 | ±9.6 | | 10259 | CAE | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-TDD | 9.98 | ±9.6 | | 10260 | CAE | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-TOD | 9.97 | ±9.6 | | 10261 | CAE | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-TDD | 9.24 | ±9.6 | | 10262 | CAH | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-TOD | 9.83 | ±9,6 | | 10263 | CAH | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 84-QAM) | LTE-TDD | 10.16 | ±9.6 | | 10264 | CAH | LTE-TDD (SC-FDMA, 100% RB, 5MHz, QPSK) | LTE-TOD | 9.23 | ±9.6 | | 10265 | CAH | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.92 | ±9.6 | | 10266 | CAH | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-TOD | 10.07 | ±9.6 | | 10267 | CAH | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-TDD | 9.30 | ±9.6 | | 10268 | CAG | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-TDD | 10.06 | ±9.6 | | 10269 | CAG | LTE-TOD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-TOD | 10.13 | ±9.6 | | 10270 | CAG | LTE-TDD (SC-FDMA, 100% RB, 15MHz, QPSK) | LTE-TDD | 9.58 | ±9.6 | | 10274 | CAC | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10) | WCDMA | 4.87 | ±9.6 | | 10275 | CAC | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rei8.4) | WCDMA | 3.96 | ±9.6 | | 10277 | CAA | PHS (QPSK) | PHS | 11.81 | ±9.6 | | 10278 | CAA | PHS (QPSK, BW 884 MHz, Rolloff 0.5) | PHS | 11.81 | ±9.6 | | 10279 | CAA | PHS (QPSK, BW 884 MHz, Rolloff 0.38) | PHS | 12,18 | ±9.6 | | 10290 | AAB | CDMA2000, RC1, SO55, Full Rate | CDMA2000 | 3.91 | ±9.6 | | 10291 | AAB | CDMA2000, RC3, SO55, Full Rate | CDMA2000 | 3.46 | ±9.6 | | 10292 | AAB | CDMA2000, RC3, SO32, Full Rate | CDMA2000 | 3.39 | ±9.6 | | 10293 | AAB | CDMA2000, RC3, SO3, Full Rate | CDMA2000 | 3.50 | ±9.6 | | 10295 | AAB | CDMA2000, RC1, SO3, 1/8th Rate 25 fr. | CDMA2000 | 12.49 | ±9.6 | | 10297 | A Commence | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, OPSK) | LTE-FDD | 5.81 | ±9.6 | | 10298 | AAE | LTE-FDD (SC-FDMA, 50% RB, 3MHz, QPSK) | LTE-FDD | 5.72 | ±9.6 | | 10298 | AAE | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 4FSN) | LTE-FDD | 6.39 | ±9.6 | | 10300 | AAE | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.60 | ±9.6 | | and desired the second | - | | WIMAX | 12.03 | ±9.6 | | 10301 | AAA | IEEE 802 16e WIMAX (29:18, 5 ms, 10 MHz, OPSK, PUSC) | WIMAX | 12.57 | ±9.6 | | 10302 | AAA | IEEE 802.16e WIMAX (29:18, 5 ms. 10 MHz, QPSK, PUSC, 3 CTRL symbols) | The second second | 12.52 | | | 10303 | AAA | IEEE 802,166 WIMAX (31:15, 5 ms, 10 MHz, 64QAM, PUSC) | WIMAX | | ±9.6 | | 10304 | AAA | IEEE 802.16e WIMAX (29:18, 5 ms, 10 MHz, 64QAM, PUSC) | WIMAX | 11.86 | ±9.6 | | 10305 | AAA | IEEE 802 16e WIMAX (31:15, 10 ms, 10 MHz, 64QAM, PUSC, 15 symbols) | WIMAX | 15.24 | ±9.6 | | 10306 | AAA | IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, 64QAM, PUSC, 18 symbols) | I WIMAX | 14.67 | ±9.6 | | UID | Rev | Communication System Name | Group | PAR (dB) | Unc ^E $k=2$ | |--|--------------------------
--|--------------|--------------|------------------------| | 10307 | AAA | IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, QPSK, PUSC, 18 symbols) | WIMAX | 14,49 | ±9.6 | | 10308 | AAA | IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, 16QAM, PUSC) | WIMAX | 14.46 | ±9.6 | | 10309 | AAA | IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 16QAM, AMC 2x3, 18 symbols) | WiMAX | 14.58 | ±9.6 | | 10310 | AAA | IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, QPSK, AMC 2x3, 18 symbols) | WIMAX | 14.57 | ±9.6 | | 10311 | AAE | LTE-FDD (SC-FDMA, 100% RB, 15MHz, QPSK) | LTE-FDD | 6.06 | ±9.6 | | 10313 | AAA | IDEN 1:3 | IDEN | 10.51 | ±9.6 | | 10314 | AAA | IDEN 1:8 | IDEN | 13,48 | ±9.6 | | 10315 | AAB | IEEE 802,11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle) | WLAN | 1.71 | ±9.6 | | 10316 | AAB | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc duty cycle) | WLAN | 8.36 | ±9.6 | | 10317 | AAE | IEEE 802.11a WiFl 5 GHz (OFDM, 6 Mbps, 96pc duty cycle) | WLAN | 8.36 | ±9.6 | | 10352 | AAA | Pulse Waveform (200Hz, 10%) | Generic | 10.00 | ±9.6 | | 10353 | AAA | Pulse Waveform (200Hz, 20%) | Generic | 6.99 | ±9.6 | | 10354 | AAA | Pulse Waveform (200Hz, 40%) | Generic | 3.98 | ±9.6 | | 10355 | AAA | Pulse Waveform (200Hz, 60%) | Generic | 2.22 | ±9.5 | | 10356 | AAA | Pulse Waveform (200Hz, 80%) | Generic | 0.97 | ±9.6 | | 10387 | AAA | QPSK Waveform, 1 MHz | Generic | 5.10 | ±9.6 | | 10388 | AAA | QPSK Wäveform, 10 MHz | Generic | 5.22 | ±9.6 | | 10396 | AAA | 64-QAM Waveform, 100 kHz | Generic . | 6.27 | ±9.6 | | 10399 | AAA | 64-QAM Waveform, 40 MHz | Generic | 6.27 | ±9.6 | | 10400 | AAE | IEEE 802.11ac WiFi (20 MHz, 84-QAM, 99pc duty cycle) | WLAN | 8.37 | ±9.6 | | 10401 | AAE | IEEE 802.11ac WiFi (40 MHz, 64-QAM, 99pc duty cycle) | WLAN | 8.60 | ±9.6 | | 10402 | AAE | IEEE 802,11ac WiFi (80 MHz, 64-QAM, 99pc duty cycle) | WLAN: | 8.53 | ±9.6 | | 10403 | AAB | CDMA2000 (1xEV-DO, Rev. 0) | CDMA2000 | 3.76 | ±9.6 | | 10404 | AAB | CDMA2000 (1xEV-DO, Rev. A) | CDMA2000 | 3.77 | ±9.6 | | 10406 | AAB | CDMA2000, RC3, SO32, SCH0, Full Rate | CDMA2000 | 5.22 | ±9.6 | | 10410 | AAH | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4) | LTE-TDD | 7.82 | ±9.6 | | 10414 | AAA | WLAN CCDF, 64-QAM, 40 MHz | Generic | 8.54 | ±9.6 | | 10415 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle) | WLAN | 1.54 | ±9.6 | | 10416 | AAA | IEEE 802,11g WiFi 2,4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle) | WLAN | 8.23 | ±9.6 | | 10417 | AAC | IEEE 802.11a/h WiFl 5 GHz (OFDM, 6 Mbps, 99pc duty cycle) | WLAN | 8.23 | ±9.6 | | 10418 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preambule) | WLAN | 8.14 | ±9.6 | | 10419 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preambule) | WLAN | 8.19 | ±9.6 | | 10422 | AAC | IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) | WLAN | 8.32 | ±9.6 | | 10423 | AAC | IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) | WLAN | 8.47 | ±9.6 | | 10424 | AAC | IEEE 802,11n (HT Greenfield, 72.2 Mbps, 64-QAM) | WLAN | 8.40 | ±9.6 | | 10425 | AAC | IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) | WLAN | 8.41 | ±9.6 | | 10426 | AAC | IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) | WLAN | 8.45 | ±9.6 | | 10427 | AAC | IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) | WLAN | 8.41 | ±9.6 | | 10430 | AAE | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) | LTE-FDD | 8.28 | ±9.6 | | 10431 | - | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) | LTE-FDD | 8.38 | ±9.6 | | 10432 | AAD | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)
LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) | LTE-FDD | 8,34 | ±9.6 | | | | A CONTRACTOR OF THE | LTE-FDD | 8.34 | 19.6 | | 10434 | AAB | W-CDMA (BS Test Model 1, 64 DPCH) | WCDMA | 8.60 | ±9.6 | | 10435 | AAE | LTE-TOD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.82 | ±9.6 | | 10447 | | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD | 7.56 | ±9.6 | | 10448 | AAE | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%) | LTE-FDD | 7.53 | ±9.6 | | والمنابعة المنابعة | - | LTE-FOD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD | 7,51 | ±9.6 | | 10450 | AAB | W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) | LTE-FDD | 7,48 | ±9.6 | | 10451 | | The state of s | WCDMA | 7.59 | ±9.6 | | 10456 | AAC | Validation (Square, 10 ms, 1 ms) IEEE 802,11ac WiFi (160 MHz, 64-QAM, 99pc duty cycle) | Test
WLAN | 10.00 | ±9.6 | | 10456 | AAB | UMTS-FDD (DC-HSDPA) | WCDMA | 6.62 | ±9.6 | | 10457 | AAA | CDMA2000 (1xEV-DO, Rev. B, 2 carriers) | CDMA2000 | 6.55 | ±9.6 | | 10459 | AAA | CDMA2000 (1xEV-DO, Rev. B, 2 carriers) CDMA2000 (1xEV-DO, Rev. B, 3 carriers) | CDMA2000 | 8.25 | ±9.6 | | 10459 | AAB | UMTS-FDD (WCDMA, AMR) | WCDMA | 2.39 | ±9.6 | | 10461 | AAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subtrame=2,3,4,7,8,9) | LTE-TDD | 7.82 | ±9.6 | | Alarman . | AAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.30 | ±9.6 | | 10482 | AAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 8.56 | ±9.6 | | 10462 | - | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7,82 | ±9.6 | | 10463 | | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, GFSA, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8,32 | ±9.6 | | 10463
10464 | AAD | | 1.00 | 0,32 | 10000000 | | 10463
10464
10465 | AAD | | LTE-TDO | 9.57 | 1.77 (2.1 | | 10463
10464
10465
10466 | AAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 8.57 | ±9.6 | | 10463
10464
10465
10466
10467 | AAD
AAG | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 7.82 | ±9.6 | | 10463
10464
10465
10466
10467
10468 | AAD
AAD
AAG
AAG | LTE-TDD (SC-FDMA, 1 RB, 3MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 1 RB, 5MHz, QPSK, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 1 RB, 5MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 7.82
8,32 | ±9.6
±9.6 | | 10463
10464
10465
10466 | AAD
AAG | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 7.82 | ±9.6 | | UID | Rev | Communication System Name | Group | PAR (dB) | UncE k = | |---------------------|--------------
--|--|----------|----------| | 10472 | AAG | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.57 | ±9.6 | | 0473 | AAF | LTE-TDD (SC-FDMA, 1 RB, 15MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 7,82 | ±9.6 | | 0474 | AAF | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-OAM, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 8.32 | ±9.6 | | 0475 | AAF | LTE-TDD (SC-FDMA, 1 RB, 15MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.57 | ±9.6 | | 0477 | AAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 8.32 | ±9.6 | | 0478 | AAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 8.57 | ±9.6 | | 0479 | AAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe 2,3,4,7,8,9) | LTE-TOD | 7.74 | ±9.6 | | 0480 | AAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 8.18 | ±9.5 | | 0481 | AAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2.3.4.7.8.9) | LTE-TOD | 8.45 | ±9.6 | | 0482 | AAD | LTE-TOD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 7.71 | 19.6 | | | and the same | | | | | | 0483 | AAD | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 15-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.39 | ±9.6 | | 0484 | AAD | LTE-TDD (SC-FDMA, 50% RB, 3MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 8.47 | ±9.6 | | 0485 | AAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 7.59 | ±9.6 | | 0486 | AAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 8.38 | ±9.6 | | 487 | AAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.60 | ±9.6 | | 1488 | AAG | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 7.70 | ±9.6 | | 1489 | AAG | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe+2,3,4,7,8,9) | LTE-TOD | 8.31 | ±9.6 | | 1490 | AAG | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 8.54 | ±9.6 | | 1491 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 7.74 | ±9.6 | | 1492 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.41 | ±9.6 | | 493 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2.3,4,7,8,9) | LTE-TDD | 8.55 | ±9.6 | | 1494 | AAG | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2.3.4.7.8.9) | LTE-TDD | 7.74 | ±9.6 | | 0495 | AAG | LTE-TDD (SO-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3.4,7,8.9) | LTE-TOD | 8.37 | ±9.6 | | 1496 | AAG | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2.3.4.7.8.9) | LTE-TDD | 8.54 | ±9.6 | | 0497 | AAC | | LTE-TOD | | | | | 1/5/25/5/5/ | LTE-TDD (SC-FDMA, 180% RB, 1.4 MHz, QPSK, UL Subtrame=2,3,4,7.8,9) | 20002000 | 7.67 | ±9.6 | | 0498 | AAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subtrame=2,3,4,7,8,9) | LTE-TDD | 8.40 | ±9.6 | | 0499 | AAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 8,68 | ±9.6 | | 0500 | AAD | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 7.67 | ±9.6 | | 0501 | AAD | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 8.44 | ±9.6 | | 0502 | AAD | LTE-TDD (SC-FDMA, 100% RB, 3MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 8.52 | ±9.6 | | 0503 | AAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8.9) | LTE-TDD | 7.72 | ±9.6 | | 0504 | AAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.31 | ±9.6 | | 0505 | AAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.54 | ±9.6 | | 0506 | AAG | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.74 | ±9.6 | | 0507 | AAG | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.36 | ±9.6 | | 0508 | AAG | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 8.55 | ±9.6 | | 0509 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2.3,4.7,8,9) | LTE-TOD | 7.99 | ±9.6 | | 0510 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.49 | ±9.6 | | - | | Exercise Fig. 1 - Construction of the Construc | LTE-TDD | 8.51 | ±9.6 | | 0511 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | The state of s | C+10000 | - | | 0512 | AAG | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.74 | ±9,6 | | 0513 | AAG | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.42 | ±9.6 | | 0514 | AAG | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TOD | 8.45 | ±9.6 | | 0515 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mops, 99pc duty cycle) | WLAN | 1,58 | ±9.6 | | 10516 | AAA | IEEE 802,11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle) | WLAN | 1,57 | ±9.6 | | 10517 | AAA | IEEE 802.11b WiFl 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle) | WLAN | 1.58 | ±9.6 | | 0518 | AAC | IEEE 802.11a/h WIFI 5 GHz (OFDM, 9 Mbps, 99pc duty cycle) | WLAN | 8.23 | ±9.6 | | 0519 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle) | WLAN | 8.39 | ±9.6 | | 0520 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle) | WLAN | 8.12 | ±9.6 | | 10521 | AAC | IEEE 802.11a/h WIFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle) | WLAN | 7.97 | ±9.6 | | 0522 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle) | WLAN | 8.45 | ±9.6 | | 0523 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle) | WLAN | 8.08 | ±9.6 | | 0524 | AAC | IEEE 802,11a/h WIFI 5 GHz (OFDM, 54 Mbps, 99pc duty cycle) | WLAN | 8.27 | ±9.6 | | - | - | IEEE 802.11ac WiFI (20MHz, MCS0, 99pc duty cycle) | WLAN | 8.36 | ±9.6 | | 0525 | AAC | | WLAN | 8.42 | ±9.6 | | 0526 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS1, 99pc duty cycle) | | | | | 0527 | AAC | IEEE 802.11ac WIFI (20 MHz, MCS2, 98pc
duty cycle) | WLAN | 8.21 | ±9.6 | | 0528 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc duty cycle) | WLAN | 8.36 | ±9.6 | | 0529 | AAC | IEEE 802.11ac WiFl (20MHz, MCS4, 99pc duty cycle) | WLAN | 8.36 | ±9.6 | | 0531 | AAC | IEEE 802 11ac WiFi (20 MHz, MCS6, 99pc duty cycle) | WLAN | 8.43 | ±9.6 | | 10532 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc duty cycle) | WLAN | 8.29 | ±9.6 | | 0533 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS8, 99pc duty cycle) | WLAN | 8.38 | ±9.6 | | 10534 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS0, 99pc duty cycle) | WLAN | 8.45 | ±9,6 | | 10535 | AAC | IEEE 802.11ac WIFI (40 MHz, MCS1, 99pc duty cycle) | WLAN | 8.45 | ±9.6 | | 10536 | AAC | IEEE 802.11ac WIFI (40 MHz, MCS2, 99pc duty cycle) | WLAN | 8.32 | ±9.6 | | 10537 | AAC | IEEE 802.1 (ac WiFi (40 MHz, MCS3, 99pc duty cycle) | WLAN | 8.44 | ±9.6 | | THE PARTY OF STREET | - | IEEE 802.11ac WiFI (40 MHz, MCS4, 99pc duty cycle) | WLAN | 8.54 | 49.6 | | 10538 | AAC | | | | | | UID | Rev | Communication System Name | Group | PAR (dB) | $Unc^{E} k = 2$ | |-------|-----------|--|-------|----------|-----------------| | 10541 | AAC | IEEE 802.11ac WiFl (40 MHz, MCS7, 99pc duty cycle) | WLAN | 8,46 | ±9.6 | | 10542 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS8, 99pc duty cycle) | WLAN | 8.65 | ±9.6 | | 10543 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS9, 99pc duty cycle) | WLAN | 8.65 | ±9.6. | | 10544 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS0, 99pc duty cycle) | WLAN | 8.47 | ±9.6 | | 10545 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS1, 99pc duty cycle) | WLAN | 8.55 | ±9.6 | | 10546 | AAC | IEEE 802.11ap WiFi (80 MHz, MCS2, 99pc duty cycle) | WLAN | 8.35 | ±9.6 | | 10547 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS3, 99pc duty cycle) | WLAN | 8.49 | ±9.6 | | 10548 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS4, 99pc duty cycle) | WLAN | 8.37 | ±9.6 | | 10550 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS6, 99pc duty cycle) | WLAN | 8.38 | ±9.6 | | 10551 | AAC | IEEE 802.11ac WIFI (80 MHz, MCS7, 99pc duty cycle) | WLAN | 8.50 | ±9.6 | | 10552 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS8, 99pc duty cycle) | WLAN | 8.42 | ±9.6 | | 10553 | AAC | IEEE 802,11ac WiFi (80 MHz, MCS9, 99pc duty cycle) | WLAN | 8.45 | ±9.6 | | 10554 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS0, 99pc duty cycle) | WLAN | 8.48 | ±9.6 | | 10555 | AAD | IEEE 802.11ac WIFI (160 MHz, MCS1, 99pc duty cycle) | WLAN | 8.47 | ±9.6 | | 10556 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS2, 99pc duty cycle) | WLAN | 8.50 | ±9.6 | | 10557 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS3, 99pc duty cycle) | WLAN | 8.52 | ±9.6 | | 10558 | AAD | IEEE 802.11ac WiFI (160 MHz, MCS4, 99pc duty cycle) | WLAN | 8,61 | ±9.6 | | 10560 | AAD | IEEE 802.11ac WiFI (160 MHz, MCS6, 99pc duty cycle) | WLAN | 8.73 | ±9.6 | | 10561 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS7, 99pc duty cycle) | WLAN | 8.56 | ±9.6 | | 10562 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS8, 99pc duty cycle) | WLAN | 8.69 | ±9.6 | | 10563 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS9, 99pc duty cycle) | WLAN | 8,77 | ±9.6 | | 10564 | AAA | IEEE 802.11g WiFl 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty cycle) | WLAN | 8.25 | ±9.6 | | 10565 | AAA | IEEE 802.11g WiFl 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle) | WLAN | 8,45 | ±9.6 | | 10586 | AAA | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty cycle) | WLAN | 8.13 | ±9.6 | | 10567 | AAA | IEEE 802.11g WiFl 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty cycle) | WLAN | 8.00 | ±9.6 | | 10568 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle) | WLAN | 8.37 | ±9.6 | | 10569 | AAA | IEEE 802,11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle) | WLAN | 8,10 | ±9.6 | | 10570 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty cycle) | WLAN | 8.30 | ±9.6 | | 10571 | AAA | IEEE 802.11b WiFl 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle) | WLAN | 1,99 | £9.6 | | 10572 | AAA | IEEE 802.11b WIFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle) | WLAN | 1.99 | ±9.5 | | 10573 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle) | WLAN | 1.98 | ±9.6 | | 10574 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle) | WLAN | 1.98 | ±9.6 | | 10575 | AAA | IEEE 802-11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle) | WLAN | 8.59 | ±9.6 | | 10576 | AAA | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle) | WLAN | 8.60 | ±9.6 | | 10577 | AAA | IEEE 802.11g WIFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle) | WLAN | 8.70 | ±9.6 | | 10578 | AAA | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle) | WLAN | 8,49 | ±9.6 | | 10579 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle) | WLAN | 8.76 | ±9.6 | | 10581 | AAA | IEEE 802.11g WIF1 2.4 GHz (DSSS-OFDM, 35 Mbps, 90pc duty cycle) | WLAN | 8.35 | ±9.6 | | 10582 | AAA | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 46 Wdps, 90pc duty cycle) | WLAN | 8.87 | ±9.6 | | 10583 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle) | WLAN | 8.59 | ±9.6 | | 10584 | AAC | IEEE 802.11a/n WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle) | WLAN | 8.60 | ±9.6 | | 10585 | AAC | IEEE 802.11a/h WIFI 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) | WLAN | 8.70 | ±9.6 | | 10586 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle) | WLAN | 8,49 | ±9.6 | | 10587 | AAC | IEEE 802.11a/h WIFI 5 GHz (OFDM, 24 Mbps, 90pc duty cycle) | WLAN | 8.36 | ±9.6 | | 10588 | AAC | IEEE 802.11a/n WiFi 5 GHz (OFDM, 36 Mbps, 90oc duty cycle) | WLAN | 8.76 | ±9.6 | | 10589 | AAC | IEEE 802.11a/h WiFr 5 GHz (OFDM, 36 Mbps, 90pc duty cycle) | WLAN | 8.35 | ±9.6 | | 10590 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM; 54 Mbps, 90pc duty cycle) | WLAN | 8.67 | ±9.5 | | 10591 | AAC | IEEE 802.11a (HT Mixed, 20 MHz, MGS0, 90pc duty cycle) | WLAN | 8.63 | 19.6 | | 10592 | AAC | IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle) | WEAN | 8.79 | ±9.6 | | 10593 | AAC | IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle) | WLAN | 8.64 | ±9.6 | | 10594 | AAC | IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) | WLAN | 8.74 | ±9.6 | | 10595 | AAC | IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle) | WLAN | 8.74 | ±9.6 | | 10596 | AAC | IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) | WLAN | 8.71 | ±9.6 | | 10597 | AAC | IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle) | WLAN | 8.72 | ±9.6 | | 10598 | AAC | IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) | WLAN | 8.50 | ±9.6 | | 10599 | AAC | IEEE 802 11n (HT Mixed, 40 MHz, MCSO, 90pc duty cycle) | WLAN | 8.79 | ±9.6 | | 10600 | AAC | IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle) | WLAN | 8.88 | ±9.6 | | 10601 | AAC | IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle) | WLAN | 8.82 | ±9.6 | | 10602 | AAC | IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle) | WLAN | 8.94 | ±9.6 | | 10603 | AAC | IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc duty cycle) | WLAN | 9.03 | ±9.6 | | 10604 | AAC | IEEE 802 11n (HT Mixed, 40 MHz, MCS5, 90pc duty cycle) | WLAN | 8.76 | ±9.6 | | 10605 | AAC | IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc duty cycle) | WLAN | 8.97 | ±9.6 | | 10606 | AAC | IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc duty cycle) | WLAN | 8.82 | ±9.6 | | 10607 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc duty cycle) | WLAN | 8.64 | ±9.6 | | | 4.1217.07 | The state of s | WLAN | 8,77 | ±9.6 | | UID | Rev | Communication System Name | Group | PAR (dB) | Unc ^E k = | |---|----------------------------|--
--|----------|----------------------| | 10609 | AAC | IEEE 802,11ac WiFi (20 MHz, MCS2, 90pc duty cycle) | WLAN | 8.57 | ±9.6 | | 10610 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS3, 90pc duty cycle) | WLAN | 8.78 | ±9.6 | | 10611 | AAC | IEEE 802 11ac WiFi (20 MHz, MCS4, 90pc duty cycle) | WLAN | 8.70 | ±9.6 | | 10612 | AAG | IEEE 802.11ac WiFi (20 MHz, MCS5, 90pc duty cycle) | WLAN | 8.77 | ±9.6 | | 10613 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS6, 90pc duty cycle) | WLAN | 8,94 | ±9.6 | | 10614 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS7, 90pc duty cycle) | WLAN | 8.59 | ±9.6 | | 0615 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS8, 90pc duty cycle) | WLAN | 8.82 | ±9.6 | | 10616 | AAC | IEEE 802:11ac WiFI (40 MHz, MCS0, 90pc duty cycle) | WLAN | 8.82 | ±9.6 | | 0617 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS1, 90pc duty cycle) | WLAN | 8.81 | ±9.6 | | 10618 | AAC | IEEE 802.11ac WIFI (40 MHz, MCS2, 90pc duty cycle) | WLAN | 8.58 | ±9.6 | | 10619 | AAC | IEEE 802.11ac WIFr (40 MHz, MCS3, 90pc duty cycle) | WLAN | 8.86 | ±9.6 | | 10620 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS4, 90pc duty cycle) | WLAN | 8.87 | ±9.6 | | 10621 | AAC | IEEE 802,11ac WiFi (40 MHz, MCS5, 90pc duty cycle) | WLAN | 8.77 | ±9.6 | | 10622 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS6, 90pc duty cycle) | WLAN | 8.68 | ±9.6 | | 10623 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS7, 90pc duty cycle) | WLAN | 8.82 | ±9.6 | | 10624 | AAC | IEEE 802,11ac WiFi (40 MHz, MCS8, 90pc duty cycle) | WLAN | 8.96 | ±9.6 | | 0825 | AAC | IEEE 802.11ac WiFI (40 MHz, MCS9, 90pc duty cycle) | WLAN | 8.96 | ±9.6 | | 0626 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS0, 90pc duty cycle) | WLAN | 8.83 | ±9.6 | | 0627 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS1, 90pc duty cycle) | WLAN | 88.8 | ±9.6 | | 0628 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS2, 90pc duty cycle) | WLAN | 8.71 | ±9.6 | | 0629 | AAC | IEEE 802 11ac WiFI (80 MHz, MCS3, 90pc duty cycle) | WLAN | 8.85 | ±9.6 | | 0630 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS4, 90pc duty cycle) | WLAN | 8.72 | ±9.6 | | 0631 | AAC | IEEE 802.11ac WiFi (80 MHz; MCS5, 90pc duty cycle) | WLAN | 8.81 | ±9.6 | | 0632 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS6, 90pc duty cycle) | WLAN | 8.74 | ±9.6 | | 10633 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS7, 90pc duty cycle) | WLAN | 8.83 | ±9.6 | | 10634 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS8, 90pc duty cycle) | WLAN | 8.80 | ±9.6 | | 0635 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS9, 90pc duty cycle) | WLAN | 8.81 | ±9.6 | | 0636 | AAD | IEEE 802.11ac WiFi (160 MHz. MCS0, 90pc duty cycle) | WLAN | 8.83 | ±9.6 | | 0637 | AAD | IEEE 802,11ac WiFi (160 MHz, MCS1, 90pc duty cycle) | WLAN | 8.79 | ±9.6 | | 0638 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS2, 90pc duty cycle) | WLAN | 8.86 | ±9.6 | | 10639 | AAD | IEEE 802,11ac WIFI (160 MHz, MC\$3, 90pc duty cycle) | WLAN | 8.85 | ±9.6 | | 10640 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS4, 90pc duty cycle) | WLAN | 8.98 | ±9.6 | | 10641 | AAD | IEEE 802.11ac WIFI (160 MHz; MCS5, 90pc duty cycle) | WLAN | 9.06 | ±9.6 | | 10642 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS6, 90pc duty cycle) | WLAN | 9.06 | ±9.6 | | 10643 | AAD | IEEE 802 11ac WiFi (160 MHz, MCS7, 90pc duty cycle) | WLAN | 8.89 | ±9.6 | | 10644 | AAD | IEEE 802.11ac WIFI (160 MHz, MCS8, 90pc duty cycle) | WLAN | 9.05 | ±9.6 | | 10645 | AAD | IEEE 802.11ac WIFI (160 MHz, MCS9, 90pc duty cycle) | WLAN | 9.11 | ±9.6 | | 10646 | AAH | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7) | LTE-TOD | 11.95 | ±9.6 | | 10647 | AAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7) | LTE-TOD | 11.96 | ±9.6 | | 10648 | AAA | CDMA2000 (1x Advanced) | CDMA2000 | 3.45 | ±9.6 | | 10652 | AAF | LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 6.91 | ±9.6 | | 10653 | AAF | LTE-TOD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) | LTE-TOD | 7.42 | ±9.6 | | 10654 | AAE | LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 6.96 | ±9.6 | | 0655 | AAF | LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 7.21 | ±9.6 | | 10658 | AAB | Pulse Waveform (200Hz, 10%) | Test | 10.00 | ±9.6 | | 10659 | AAB | Puise Waveform (200Hz, 20%) | Test | 6.99 | ±9.6 | | 0660 | AAB | Pulse Waveform (200Hz, 40%) | Test | 3.98 | ±9.6 | | 10661 | AAB | Pulse Waveform (200Hz, 60%) | Test | 2.22 | ±9.6 | | 0662 | AAB | Pulse Waveform (200Hz, 80%) | Test | 0.97 | ±9.6 | | 10670 | AAA | Bluetooth Low Energy | Bluetooth | 2.19 | ±9.6 | | 0671 | AAC | IEEE 802.11ax (20 MHz, MCS0, 90pc duty cycle) | WLAN | 9.09 | ±9.6 | | 0672 | AAC | IEEE 802,11ax (20 MHz, MCS1, 90pc duty cycle) | WLAN | 8.57 | ±9.6 | | 0673 | AAC | IEEE 802.11ax (20 MHz, MCS2, 90pc duty cycle) | WLAN | 8.78 | ±9.6 | | 0674 | AAC | IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle) | WLAN | 8.74 | ±9.6 | | 0675 | AAC | IEEE 802.11ax (20 MHz, MCS4, 90pc duty cycle) | WLAN | 8.90 | ±9.6 | | 0676 | AAC | IEEE 802,11ax (20 MHz, MCS5, 90pc duty cycle) | WLAN | 8.77 | ±9.6 | | 0677 | AAC | IEEE 802.11ax (20 MHz, MCS6, 90pc duty cycle) | WLAN | 8.73 | ±9.6 | | 0878 | AAC | IEEE 802.11ax (20 MHz, MCS7, 90pc duty cycle) | WLAN | 8.78 | ±9.6 | | | AAC | IEEE 802.11ax (20 MHz, MCS8, 90pc duty cycle) | WLAN | 8.89 | ±9.6 | | 00/8 | AAC | IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle) | WLAN | 8.80 | ±9.6 | | - Service Services | CONTRACTOR OF THE PARTY OF | IEEE 802.11ax (20 MHz, MCS10, 90pc duty cycle) | WLAN | 8.62 | ±9.6 | | 0680 | AAG | | WLAN | 8.83 | ±9.6 | | 10680
10681 | AAC | I IEEE 802,11ax (20 MHz, MCS11, 90bc duty cycle) | | | 100 | | 10680
10681
10682 | AAC | IEEE 802.11ax (20 MHz, MCS11, 90pc duty cycle) IEEE 802.11ax (20 MHz, MCS0, 99pc duty cycle) | The state of s | | +9.6 | | 10680
10681
10682
10683 | AAC | IEEE 802.11ax (20 MHz, MCS0, 99pc duly cycle) | WLAN | 8.42 | ±9.6 | | 10679
10680
10681
10682
10683
10684
10685 | AAC | | The state of s | | ±9.6
±9.6 | | UID | Rev | Communication System Name | Group | PAR (dB) | Unc ^E k = |
---|------|---|-------|----------|----------------------| | 10687 | AAC | IEEE 802,11ax (20 MHz, MCS4, 99pc duty cycle) | WLAN. | 8.45 | ±9.6 | | 10688 | AAC | IEEE 802.11ax (20 MHz, MCS5, 99pc duty cycle) | WLAN | 8,29 | ±9.6 | | 10689 | AAC | IEEE 802.11ax (20 MHz, MCS6, 99pc duty cycle) | WLAN | 8.55 | ±9.6 | | 10690 | AAG | IEEE 802,11ax (20 MHz, MCS7, 99pc duty cycle) | WLAN | 8.29 | ±9.6 | | 10691 | AAC | IEEE 802.11ax (20 MHz, MCS8, 99pc duty cycle) | WLAN | 8.25 | ±9.6 | | 10692 | AAC | IEEE 802.11ax (20 MHz, MCS9, 99pc duty cycle) | WLAN | 8.29 | ±9.6 | | 10693 | AAC | IEEE 802.11ax (20 MHz, MCS10, 99pc duty cycle) | WLAN. | 8.25 | ±9.6 | | 10694 | AAC | IEEE 802.11ax (20 MHz, MCS11, 99pc duty cycle) | WLAN | 8.57 | ±9.6 | | 10695 | AAC | IEEE 802.11ax (40 MHz, MCS0, 90pc duty cycle) | WLAN | 8.78 | ±9.6 | | 10696 | AAC | IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) | WLAN | 8.91 | ±9.6 | | 10697 | AAC | IEEE 802.11ax (40 MHz, MGS2, 90pc duty cycle) | WLAN | 8,61 | ±9.6 | | 10698 | AAC | IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) | WLAN | 8.89 | ±9.6 | | 10899 | AAC | IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) | WLAN | 8.82 | ±9.6 | | 10700 | AAC | IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) | WLAN | 8.73 | ±9.6 | | 10701 | AAC | IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) | WLAN | 8.86 | ±9.6 | | 10702 | AAC | IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) | WLAN. | 8.70 | ±9.6 | | 10703 | AAC | IEEE 802.11ax (40 MHz, MCS8, 90pc duty cycle) | WLAN | 8.82 | ±9.6 | | 10704 | AAC | IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) | WLAN | 8.56 | ±9.6 | | 10705 | AAC | IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) | WLAN. | 8.69 | ±9.6 | | and the same of | AAC | IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) | WLAN | 8.66 | ±9.6 | | and the second second | AAC | IEEE 802.11ax (40 MHz, MCS0, 99pc duty cycle) | WLAN | 8.32 | ±9.6 | | Action Control | AAC | IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle) | WLAN | 8.55 | ±9.6 | | - | AAC | IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle) | WLAN | 8.33 | ±9.6 | | 32010 (31711) | AAC | IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) | WLAN | 8.29 | ±9.6 | | | AAC | IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle) | WLAN | 8.39 | ±9.6 | | 10712 | AAC | IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) | WLAN | 8.67 | ±9.6 | | in in its annual to | AAC | IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) | WLAN | 8,33 | ±9.6 | | market at the control of | AAC | IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) | WLAN | 8.26 | ±9.6 | | 173 SE 175 L | AAC | IEEE 802.11ax (40 MHz, MCS8, 99pc duty cycle) | WLAN | 8,45 | ±9.6 | | Andrew Street | AAC | IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) | WLAN | 8.30 | ±9.6 | | | AAC. | IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle) | WLAN | 8.48 | ±9.6 | | - | AAC | IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle). | WLAN | 8.24 | ±9.6 | | And the second second | AAC | IEEE 802,11ax (80 MHz, MCS0, 90pc duty cycle) | WLAN | 8.81 | ±9.6 | | | AAC | IEEE 802,11ax (80 MHz, MCS1, 90pc duty cycle) | WLAN | 8.87 | ±9,6 | | | AAC | IEEE 802.11ax (80 MHz, MCS2, 90pc duty cycle) | WLAN | 8.76 | ±9.6 | | - | AAC | IEEE 802.11ax (80 MHz, MCS3, 90pc duty cycle) | WLAN | 8.55 | ±9.6 | | | AAC | IEEE 802.11ax (80 MHz, MCS4, 90pc duty cycle) | WLAN | 8.70 | ±9.6 | | and the second | AAC | IEEE 802.11ax (80 MHz, MCS5, 90pc duty cycle) | WLAN | 8.90 | ±9.6 | | | AAC | IEEE 802.11ax (80 MHz, MCS6, 90pc duty cycle) | WLAN | 8.74 | ±9.6 | | - | AAC | IEEE 802.11ax (80 MHz, MCS7, 90pc duty cycle) | WLAN | 8.72 | ±9.6 | | | AAC | IEEE 802.11ax (80 MHz, MCS8, 90pc duty cycle) | WI,AN | 8.66 | ±9.6 | | a transfer in the | AAC | IEEE 802.11ax (80 MHz, MCS9, 90pc duty cycle) | WLAN | 8.65 | ±9.6 | | CAMPAGE TO SERVICE AND ADDRESS OF THE PARTY | AAC | IEEE 802.11ax (80 MHz, MCS10, 90pc duty cycle) | WLAN | 8.64 | ±9.6 | | | AAC | IEEE 802.11ax (80 MHz, MCS11, 90pc duty cycle) | WLAN | 8.67 | ±9.6 | | | AAC | IEEE 802.11ax (80 MHz, MCS0, 99pc duty cycle) | WLAN | 8.42 | ±9.6 | | The second second | AAC | IEEE 802.11ax (80 MHz, MCS1, 99pc duty cycle) | WLAN | 8.46 | ±9.6 | | est-color base of the | AAC | IEEE 802.11ax (80 MHz, MCS2, 99pc duty cycle) | WLAN | 8.40 | ±9.6 | | A SURFERINGE WAY | AAC. | IEEE 802.11ax (80 MHz. MCS3, 99pc duty cycle) | WLAN | 8.25 | ±9.6 | | - | AAC | IEEE 802.11ax (80 MHz, MCS4, 99pc duty cycle) | WLAN | 8.33 | ±9.6 | | - | AAC | IEEE 802.11ax (80 MHz, MCS5, 99pc duty cycle) | WLAN | 8.27 | ±9.6 | | of mining and an in- | AAC | IEEE 802.11ax (80 MHz, MCS6, 99pc duty cycle) | WLAN | 8.36 | ±9.6 | | child bearing the control | AAC | IEEE 802.11ax (80 MHz, MCS7, 99pc duty cycle) | WLAN | 8.42 | ±9.6 | | Contraction of the last | AAC | IEEE 802.11ax (80 MHz, MCS8, 99pc duty cycle) | WLAN | 8.29 | ±9.6 | | | AAC: | IEEE 802,11ax (80 MHz, MCS9, 99pc duty cycle) | WLAN | 8.48 | ±9.6 | | | AAC | IEEE 802.11ax (80 MHz, MCS10, 99pc duty cycle) | WLAN | 8.40 | ±9.6 | | | AAC | IEEE 802.11ax (80 MHz, MCS11, 99pc duty cycle) | WLAN | 8.43 | ±9.6 | | - | AAC | IEEE 802.11ax (160 MHz, MCS0, 90pc duty cycle) | WLAN | 8,94 | ±9.6 | | _ | AAC | IEEE 802.11ax (160 MHz. MCS1, 90pc duty cycle) | WLAN | 9.16 | ±9.6 | | and the second | AAC | IEEE 802,11ax (160 MHz, MCS2, 90pc duty cycle) | WLAN | 8.93 | ±9,6 | | | AAC | IEEE 802.11ax (160 MHz, MCS3, 90pc duty cycle) | WLAN | 9.11 | ±9.6 | | | AAC. | IEEE 802.11ax (160 MHz, MCS4, 90pc duty cycle) | WLAN | 9.04 | ±9.6 | | _ | AAC | IEEE 802.11ax (160 MHz, MCS5, 90pc duty cycle) | WLAN | 8.93 | ±9.6 | | | AAC | IEEE 802.11ax (160 MHz, MCS6, 90pc duty cycle) | WLAN | 8.90 | ±9.6 | | | AAC | IEEE 802.11ax (160 MHz, MCS7, 90pc duty cycle) | WLAN | 8.79 | ±9.6 | | - | AAC | IEEE 802.11ax (160 MHz, MCS8, 90pc duty cycle) | WLAN | 8.82 | ±9.6 | | 0752 | AAC | IEEE 802.11ax (160 MHz, MCS9, 90pc duty cycle) | WLAN: | 8.81 | ±9.6 | December 04, 2023 | UID | Rev | Communication System Name | Group | PAR (dB) | The second second | |-------|---|---
--|---------------------------------|-------------------| | 10753 | AAC | IEEE 802.11ax (160MHz, MCS10, 90pc duty cycle) | WLAN | 9.00 | ±9.6 | | 10754 | AAC | IEEE 802.11ax (160 MHz, MCS11, 90pc duty cycle) | WLAN | 8.94 | ±9.6 | | 10755 | AAC | IEEE 802.11ax (160 MHz, MCS0, 99pc duty cycle) | WLAN | 8.64 | ±9.6 | | 10756 | AAC | IEEE 802.11ax (160 MHz, MCS1, 99pc duty cycle) | WLAN | 8.77 | ±9.6 | | 10757 | AAC | IEEE 802,11ax (160 MHz, MCS2, 99pc duly cycle) | WLAN | 8.77 | ±9.6 | | 10758 | AAC | IEEE 802.11ax (160 MHz, MCS3, 99pc duty cycle) | WLAN | 8.69 | ±9.6 | | 10759 | AAC | IEEE 802.11ax (160 MHz. MCS4, 99pc duty cycle) | WLAN | 8.58 | ±9.6 | | 10760 | AAC | IEEE 802,11ax (160 MHz, MCS5, 99pc duty cycle) | WLAN | 8.49 | ±9,6 | | 10761 | AAC | IEEE 802.11ax (160 MHz, MCS6, 99pc duty cycle) | WLAN | 8,58 | ±9.6 | | 10762 | AAC | IEEE 802.11ax (160 MHz, MCS7, 99pc duty cycle) | WLAN | 8.49 | ±9.6 | | 10763 | AAC | IEEE 802.11ax (160 MHz, MCS8, 99pc duty cycle) | WLAN | 8.53 | ±9.6 | | 10764 | AAC | IEEE 802.11ax (160 MHz, MCS9, 99pc duty cycle) | WLAN | 8.54 | ±9.6 | | 10765 | AAC | IEEE 802.11ax (160 MHz, MCS10, 99pc duty cycle) | WLAN | 8.54 | ±9.6 | | 10766 | AAC | IEEE 802.11ax (160 MHz, MCS11, 99pc duty cycle) | WLAN | 8.51 | ±9.6 | | 10767 | AAE | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 7,99 | ±9.6 | | 10768 | AAD | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ±9.6 | | 10769 | AAD | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ±9.6 | | 10770 | AAD | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ±9.6 | | 10771 | AAD | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ±9.6 | | 10772 | AAD | 5G NR (CP-OFDM, 1 RB, 30 MHz, OPSK, 15 kHz) | 5G NR FR1 TDD | 8.23 | ±9.6 | | 10773 | AAD | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.03 | ±9.6 | | 10774 | AAD | SG NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ±9.6 | | 10775 | AAD | SG NR (CP-OFDM, 50% RB, 5MHz, OPSK, 15kHz) | 5G NR FR1 TDD | 8.31 | ±9.6 | | 10776 | AAD | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15kHz) | 5G NR FR1 TDD | 8.30 | ±9.6 | | 10777 | AAC | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.30 | ±9.6 | | 10778 | AAD | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8,34 | ±9.6 | | 10779 | AAC | 5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.42 | \$9.6 | | 10780 | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, OPSK, 15 kHz) | 5G NR FRI TDD | 8.38 | ±9.6 | | 10781 | AAD | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15kHz) | 5G NR FR1 TDD | 8.38 | ±9.6 | | 10782 | AAD | 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.43 | ±9.5 | | 10783 | AAE | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.31 | ±9.6 | | 10784 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.29 | ±9.6 | | 10786 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.40 | ±9.6 | | | 0.1000000000000000000000000000000000000 | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) | To be seen as a second transport of the transpo | and the beautiful to the second | | | 10787 | AAD | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.44 | ±9.6 | | 10789 | AAD | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15kHz) | 5G NR FR1 TDD | 8.37 | ±9.6 | | 10790 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.39 | ±9.6 | | 10791 | AAE | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.83 | ±9.6 | | 10792 | AAD | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.92 | ±9.6 | | 10793 | AAD | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TOD | 7.95 | ±9.6 | | 10794 | AAD | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.82 | ±9.6 | | 10795 | AAD | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.84 | ±9.6 | | 10796 | AAD | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.82 | ±9.6 | | 10797 | AAD | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.01 | ±9.6 | | 10798 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.89 | ±9.6 | | 10799 | AAD | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.93 | ±9.6 | | 10801 | AAD | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.89 | ±9.6 | | 10802 | AAD | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.87 | ±9.6 | | 10803 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.93 | ±9.6 | | 10805 | AAD | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 | | 10806 | AAD | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TOD | 8.37 | ±9.6 | | 10809 | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 KHz) | 5G NR FR1 TDD | 8.34 | ±9.8 | | 10810 | AAD | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TOD | 8.34 | ±9.6 | | 10812 | AAD | 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | ±9.6 | | 10817 | AAE | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | ±9.6 | | 10818 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, OPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 | | 10819 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.33 | ±9.6 | | 10820 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.30 | ±9.6 | | 10821 | AAD | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6 | | 10822 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6 | | 10823 | AAD | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.36 | ±9.6 | | 10824 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.39 | ±9.6 | | 10825 | AAD | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TOD | 8.41 | ±9.6 | | 10827 | AAD | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TOD | 8.42 | ±9.6 | | 10828 | AAD | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz) | 5G NR FR1 TOD | B.43 | ±9.6 | | UID | Rev | Communication System Name | Group | PAR (dB) | Unc $^{\rm E}$ $k=2$ | |---|---|--|---|--|--| | 10829 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.40 | ±9.6 | | 10830 | AAD | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.63 | ±9.6 | | 10831 | AAD | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.73 | ±9.6 | | 10832 | AAD | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7,74 | ±9.6 | | 10833 | AAD | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ±9.6 | | 10834 | AAD | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.75 | ±9.6 | | 10835 | AAD | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ±9.6 | | 10836 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.66 | ±9.6 | | 10837 | AAD | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.68 | ±9.6 | | 10839 | AAD | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ±9.6 | | 10840 | AAD | 5G NR (CP-OFDM, 1 R8, 90 MHz, QPSK, 60
kHz) | 5G NR FR1 TOD | 7.67 | ±9.6 | | 10841 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz) | 5G NA FR1 TDD | 7.71 | ±9.6 | | 10843 | AAD | 5G NR (CP-OFDM, 50% RB, 15MHz, QPSK, 60 kHz) | 5G NA FR1 TDD | 8.49 | ±9.6 | | 10844 | AAD | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 | | 10846 | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8,41 | ±9.6 | | 10854 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 | | 10855 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TOD | 8.36 | ±9.6 | | 10856 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.37 | ±9.6 | | 10857 | AAD | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.35 | ±9.6 | | 10858 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.36 | ±9.6 | | 10859 | AAD | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 | | 10860 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6 | | 10861 | AAD | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.40 | ±9.6 | | 10863 | AAD | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) | SG NR FR1 TDD | 8.41 | ±9.6 | | 10864 | AAD | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.37 | ±9.6 | | 10865 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6 | | 10866 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ±9.6 | | 10868 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.89 | ±9.6 | | 10869 | AAE | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ±9.6 | | 10870 | AAE | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.86 | ±9.6 | | 10871 | AAE | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 5.75 | ±9.6 | | 10872 | AAE | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 18QAM, 120 kHz) | 5G NR FR2 TDD | 6.52 | ±9.6 | | 10873 | AAE | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.61 | ±9.6 | | 10874 | AAE | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) | 5G NA FR2 TDD | 6.85 | ±9.6 | | 10875 | AAE | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 7.78 | ±9.6 | | 10876 | AAE | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 8.39 | ±9.6 | | 10877 | AAE | 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 7.95 | ±9.6 | | 10878 | AAE | 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8,41 | ±9.6 | | 10879 | AAE | 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.12 | ±9.6 | | 10880 | AAE | 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.38 | ±9.6 | | 10881 | AAE | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5,75 | ±9.6 | | 10882 | AAE | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.96 | ±9.6 | | 10883 | AAE | SG NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.57 | ±9.6 | | 10884 | AAE | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.53 | ±9.6 | | 10885 | AAE | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.61 | ±9.6 | | 10886 | AAE | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.65 | ±9.6 | | 10887 | AAE | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 7,78 | ±9,6 | | 10888 | AAE | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 8.35 | ±9.6 | | 10889 | AAE | 5G NR (CP-OFDM, 1 RB, 50MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.02 | ±9.6 | | 10890 | AAE | 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.40 | ±9.6 | | 10891 | AAE | 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.13 | ±9.6 | | 10892 | AAE | 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TOD | 8.41 | ±9.6 | | 10897 | AAC | 5G NR (DFT-s-OFDM, 1 RB, 5MHz, OPSK, 30kHz) | 5G NR FR1 TOD | 5.66 | ±9.6 | | 10000 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.87 | ±9.6 | | - | AAB | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.67 | ±9.6 | | 10899 | AAB | EG ND IDET A DEDUK & DD COARL - COOK COALLS | PRINCE HOLDEN | 2.00 | | | 10898
10899
10900 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 KHz) | 5G NR FR1 TDD | 5.68 | ±9.5 | | 10899
10900
10901 | AAB
AAB | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ±9.6 | | 10899
10900
10901
10902 | AAB
AAB
AAB | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD
5G NR FR1 TDD | 5.68
5.68 | ±9.6
±9.6 | | 10899
10900
10901
10902
10903 | AAB
AAB
AAB | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TOD
5G NR FR1 TOD
5G NR FR1 TOD | 5.68
5.68
5.68 | ±9.6
±9.6
±9.6 | | 10898
10900
10901
10902
10903
10904 | AAB
AAB
AAB
AAB | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TOD
5G NR FR1 TOD
5G NR FR1 TOD
5G NR FR1 TOD | 5.68
5.68
5.68
5.68 | ±9.6
±9.6
±9.6
±9.6 | | 10898
10900
10901
10902
10903
10904
10905 | AAB
AAB
AAB
AAB
AAB
AAB | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD
5G NR FR1 TDD
5G NR FR1 TDD
5G NR FR1 TDD
5G NR FR1 TDD | 5.68
5.68
5.68
5.68
5.68 | ±9.6
±9.6
±9.6
±9.6 | | 10898
10900
10901
10902
10903
10904
10905
10906 | AAB
AAB
AAB
AAB
AAB
AAB | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FRI TOD
5G NR FRI TOD | 5.68
5.68
5.68
5.68
5.68
5.68 | ±9.6
±9.6
±9.6
±9.6
±9.6 | | 10898
10900
10901
10902
10903
10904
10905
10906
10907 | AAB
AAB
AAB
AAB
AAB
AAB
AAB | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FRI TOD | 5.68
5.68
5.68
5.68
5.68
5.68
5.78 | ±9.6
±9.6
±9.6
±9.6
±9.6
±9.6 | | 10898
10900
10901
10902
10903
10904
10905
10906 | AAB
AAB
AAB
AAB
AAB
AAB | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FRI TOD
5G NR FRI TOD | 5.68
5.68
5.68
5.68
5.68
5.68 | ±9.6
±9.6
±9.6
±9.6
±9.6 | | UID | Rev | Communication System Name | Group | PAR (dB) | Unce k = 2 | |-----------------|------|---|----------------|----------|--| | 10911 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK,
30 kHz) | 5G NR FR1 TDD | 5.93 | ±9.6 | | 10912 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ±9.6 | | 10913 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ±9.6 | | 10914 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.85 | ±9.6 | | 10915 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.83 | ±9.6 | | 10916 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.87 | ±9.6 | | 10917 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | ±9.6 | | 10918 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.86 | ±9.6 | | 10919 | AAB | 5G NR (DFT-s-QFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.86 | ±9.6 | | 10920 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 15MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.87 | ±9.6 | | 10921 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ±9.6 | | 10922 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.82 | ±9.6 | | 10923 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ±9.6 | | 10924 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ±9.6 | | 10925 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.95 | ±9.6 | | 10926 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ±9.6 | | 10927 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | £9,6 | | 10928 | AAC | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ±9.6 | | 10929 | AAC | 5G NR (DFT-8-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FRI FDD | 5.52 | ±9.6 | | 10930 | AAC | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ±9.6 | | 10931 | AAC | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ±9.6 | | 10932 | AAC | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FD0 | 5.51 | ±9.6 | | 10933 | AAC | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5,51 | ±9.6 | | 10934 | AAC | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ±9.6 | | 10935 | AAD | 6G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ±9.6 | | 10936 | AAC | 5G NR (DFT-s-OFDM, 50% RB, 5MHz, QPSK, 15kHz) | 5G NR FR1 FDD | 5.90 | ±9.6 | | 10937 | AAC | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.77 | ±9.6 | | 10938 | AAC | 6G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.90 | 19.6 | | 10939 | AAC | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD. | 5.82 | ±9.6 | | 10940 | AAC | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.89 | ±9.6 | | 10941 | AAC | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.83 | ±9.6 | | 10942 | AAC | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.85 | ±9.6 | | 10943 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5,95 | ±9.6 | | 10944 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 5MHz, QPSK, 15 kHz) | 5G NR FRT FDD | 5.81 | ±9.6 | | 10945 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.85 | ±9.6 | | 10946 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 15MHz, QPSK, 15KHz) | 5G NR FR1 FDD | 5.83 | ±9.6 | | 10947 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.87 | ±9.6 | | 10948 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) | SG NR FR1 FDD | 5.94 | ±9.6 | | 10949 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.87 | ±9.6 | | 10950 | AAC | 5G NR (DFT's-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.94 | ±9.6 | | 10951 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 5.92 | ±9.6 | | - | AAA | | 5G NR FR1 FDD | 8.25 | ±9.6 | | 10953 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.15 | ±9.6 | | 10954 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 15MHz, 64-QAM, 15kHz) | 5G NR FR1 FDD | 8.23 | ±9.6 | | 10955 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.42 | ±9.6 | | 10956 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.14 | ±9.6 | | 10957 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | SG NR FR1 FDD | 8.31 | ±9.6 | | 10958 | AAA | | 5G NR FR1 FDD | 8.61 | ±9.6 | | 10959 | | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.33 | ±9.6 | | 10960 | AAC | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.32 | ±9.6 | | and the same of | - | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.36 | ±9.6 | | 10962 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.40 | ±9,6 | | 10964 | AAC | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 KHz) | 5G NR FR1 TDD | 9.55 | ±9.6 | | 10965 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.29 | ±9.6
±9.6 | | 10966 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.55 | | | 10967 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.55 | ±9.6 | | 10968 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.49 | The state of s | | 10972 | AAB | 5G NR (CP-OFDM, 1 RB, 20 MHz, OPSK, 15 kHz) | 5G NR FR1 TOD | 11.59 | ±9.6
±9.6 | | 10972 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FRI TOD | 9.06 | ±9.6 | | 10974 | AAB | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 KHz) | 5G NR FR1 TDD | 10.28 | ±9.6 | | 10974 | AAA | ULLA BDR | ULLA | 1.18 | ±9.6 | | 10979 | AAA | ULLA HDR4 | ULLA | 8.58 | ±9.6 | | - | AAA | ULLA HDR8 | ULLA | 10.32 | ±9.6 | | | PVVV | MERITHUS | | | | | 10980 | AAA | ULLA HDRp4 | ULLA | 3.19 | ±9.6 | | UID | Rev | Communication System Name | Group | PAR (dB) | UncE k = 2 | |--------|------|--|---------------|----------|------------| | 10983 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.31 | ±9.6 | | 10984 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.42 | ±9.6 | | 10985 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.54 | ±9.6 | | 10986 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 50 MHz; 64-QAM, 30 kHz) | 5G NR FR1 TOD | 9.50 | ±9.6 | | 10987 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 60 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.53 | ±9.6 | | 10988 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 70 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.38 | ±9.6 | | 10389 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 80 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.33 | ±9.6 | | 10990 | AAA: | 5G NR DL (CP-OFDM, TM 3.1, 90 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.52 | ±9.6 | | 11003 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 15kHz) | 5G NR FR1 TDD | 10.24 | ±9.6 | | 11004 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 10.73 | ±9.6 | | 11005 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 25 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.70 | ±9.6 | | 11006 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 84-QAM, 15 kHz) | 5G NR FR1 FDD | 8.55 | ±9.6 | | 11007 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.46 | ±9.6 | | 11008 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15kHz) | 5G NR FR1 FDD | 8.51 | ±9.6 | | 11009 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 25 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.76 | ±9.6 | | 11010 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.95 | ±9.6 | | 11.011 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 54-QAM, 30 kHz) | 5G NR FR1 FDD | 8.96 | ±9.6 | | 11012 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.68 | ±9.6 | | 11013 | AAA | IEEE 802.11be (320 MHz, MCS1, 99pc duty cycle) | WLAN | 8.47 | ≘9.6 | | 11014 | AAA | IEEE 802.11be (320 MHz, MCS2, 99pc duty cycle) | WLAN | 8.45 | ±9.5 | | 11015 | AAA | IEEE 802.11be (320 MHz, MCS3, 99pc duty cycle) | WLAN | 8.44 | ±9.6 | | 11016 | AAA | IEEE 802.11be (320 MHz, MCS4, 99pc duty cycle) | WLAN . | 8.44 | ±9.6 | | 11017 | AAA | IEEE 802.11be (320 MHz, MCS5, 99pc duty cycle) | WLAN | 8.41 | ±9.6 | | 11018 | AAA | IEEE 802.11be (320 MHz, MCS6, 99pc duty cycle) | WLAN | 8.40 | ±9.6 | | 11019 | AAA | IEEE 802.11be (320 MHz. MCS7, 99pc duty cycle) | WLAN | 8.29 | ±9.6 | | 11020 | AAA | IEEE 802.11be (320 MHz, MCS8, 99pc duty cycle) | WLAN | 8.27 | ±9.6 | | 11021 | AAA | IEEE 802.11be (320 MHz, MCS9, 99pc duty cycle) | WLAN | 8.46 | ±9.6 | | 11022 | AAA | IEEE 802.11be (320 MHz, MCS10, 99pc duty cycle) | WLAN | 8.36 | ±9,6 | | 11023 | AAA | IEEE 802.11be (320 MHz, MCS11, 99pc duty cycle) | WLAN | 8.09 | ±9.6 | | 11024 | AAA: | IEEE 802.11be (320 MHz, MCS12, 99pc duty cycle) | WLAN | 8.42 | ±9.6 | | 11025 | AAA | IEEE 802.11be (320 MHz, MCS13, 99pc duty cycle) | WLAN | 8.37 | ±9.6 | | 11026 | AAA | IEEE 802.11be (320 MHz, MCS0, 99pc duty cycle) | WLAN | 8.39 | ±9.6 | E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.