

Report No. : FR040704A

FCC RADIO TEST REPORT

FCC ID :	UZ7TC520K
Equipment :	Touch Computer
Brand Name :	Zebra
Model Name :	TC520K
Applicant :	Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Manufacturer :	Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Standard :	FCC Part 15 Subpart C §15.247

The product was received on Apr. 24, 2020 and testing was started from May 01, 2020 and completed on May 20, 2020. We, SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this variant report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Lunis Wu

Reviewed by: Louis Wu SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	3
Sur	nmary	of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	6
	1.3	Modification of EUT	6
	1.4	Testing Location	6
	1.5	Applicable Standards	7
2	Test	Configuration of Equipment Under Test	8
	2.1	Carrier Frequency Channel	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	12
	2.4	Support Unit used in test configuration and system	12
	2.5	EUT Operation Test Setup	12
3	Test	Result	13
	3.1	Output Power Measurement	13
	3.2	Radiated Band Edges and Spurious Emission Measurement	15
	3.3	Antenna Requirements	18
4	List c	f Measuring Equipment	19
5	Unce	rtainty of Evaluation	20
Ар	oendix	A. Radiated Spurious Emission	
Ар	oendix	B. Radiated Spurious Emission Plots	
Ар	pendix	C. Duty Cycle Plots	

Appendix D. Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FR040704A	01	Initial issue of report	Jun. 03, 2020

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
-	15.247(a)(1)	Number of Channels	Not Required	-
-	15.247(a)(1)	Hopping Channel Separation	Not Required	-
-	15.247(a)(1)	Dwell Time of Each Channel	Not Required	-
-	15.247(a)(1)	20dB Bandwidth	Not Required	-
-	2.1049	99% Occupied Bandwidth	Not Required	-
3.1	15.247(b)(1)	Peak Output Power	Pass	-
-	15.247(d)	Conducted Band Edges	Not Required	-
-	15.247(d)	Conducted Spurious Emission	Not Required	-
3.2	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	Under limit 28.67 dB at 2331.525 MHz
-	15.207	AC Conducted Emission	Not Required	-
3.3	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Note:

2. This is a variant report by Change List. All the test cases were performed on original report which can be referred to Sporton Report Number FR853105A. Based on the original report, the test cases were verified.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang

Report Producer: Amy Chen

^{1.} Not required means after assessing, test items are not necessary to carry out.

1 General Description

1.1 Product Feature of Equipment Under Test

Product Specification subjective to this standard				
Equipment Touch Computer				
Brand Name	Zebra			
Model Name	TC520K			
FCC ID	UZ7TC520K			
EUT supports Radios application	NFC WLAN 11a/b/g/n HT20/HT40 WLAN 11ac VHT20/VHT40/VHT80 Bluetooth BR/EDR/LE			
HW Version	DV1			
SW Version	10-10-19.00-QG-U04-PRD-HEL-04			
FW Version	BTFM.CHE.2.1.5.c5-00007-QCACHROMZ-1			
MFD	26MAR20			
EUT Stage Engineering Sample				

Remark: The above EUT's information was declared by manufacturer.

Specification of Accessories				
Adapter	Brand Name	Zebra	Model Name	SAWA-65-20005A
Battery 1	Brand Name	Zebra	Part Number	BT-000314-50
Battery 2	Brand Name	Zebra	Part Number	BT-000314-01
USB cable	Brand Name	Zebra	Part Number	CBL-TC51-USB1-01
Headset Jumper 1	Brand Name	Zebra	Part Number	CBL-TC51-HDST25-01
Headset Jumper 2	Brand Name	Zebra	Part Number	CBL-TC51-HDST35-01
2.5mm Earphone	Brand Name	Zebra	Part Number	HDST-25MM-PTVP-01
3.5mm Earphone	Brand Name	Zebra	Part Number	HDST-35MM-PTVP-01
Exoskeleton	Brand Name	Zebra	Part Number	SG-TC51-EX01-01
Trigger Handle	Brand Name	Zebra	Part Number	TRG-TC51-SNP1-01
Soft Holster	Brand Name	Zebra	Part Number	SG-TC51-HLSTR1-01
Hand strap	Brand Name	Zebra	Part Number	SG-TC51-BHDSTP1-03
USB-C Adaptor	Brand Name	Zebra	Part Number	ADPTR-TC56-USBC-01
USB Type C cable	Brand Name	Zebra	Part Number	N/A

1.2 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz		
Number of Channels	79		
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78		
	Bluetooth BR(1Mbps) : 3.11 dBm (0.0020 W)		
Maximum Output Power to Antenna	Bluetooth EDR (2Mbps) : 2.10 dBm (0.0016 W)		
	Bluetooth EDR (3Mbps) : 2.51 dBm (0.0018 W)		
Antenna Type / Gain	PIFA Antenna type with gain 2.0 dBi		
	Bluetooth BR (1Mbps) : GFSK		
Type of Modulation	Bluetooth EDR (2Mbps) : π /4-DQPSK		
	Bluetooth EDR (3Mbps) : 8-DPSK		

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Testing Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory		
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978		
Test Site No.	Sporton Site No. TH05-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No. 03CH12-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW0007

1.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.
- 3. The TAF code is not including all the FCC KDB listed without accreditation.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode

		Blue	etooth Average Output Po	ower		
Channel Frequency		GFSK / 1Mbps				
		DH1	DH3	DH5		
Ch00	2402MHz	<mark>2.81</mark> dBm	2.73 dBm	2.70 dBm		
Ch39	2441MHz	2.52 dBm	2.42 dBm	2.39 dBm		
Ch78	2480MHz	1.69 dBm	1.58 dBm	1.56 dBm		

		Blue	tooth Average Output Po	ower
Channel Frequency π/4-DQF		π/4-DQPSK / 2Mbps	PSK / 2Mbps	
		2DH1	2DH3	2DH5
Ch00	2402MHz	<mark>-0.44</mark> dBm	-0.62 dBm	-0.69 dBm
Ch39	2441MHz	-0.69 dBm	-0.91 dBm	-0.99 dBm
Ch78	2480MHz	-1.46 dBm	-1.68 dBm	-1.74 dBm

		Bluetooth Average Output Power					
Channel	Frequency	8-DPSK / 3Mbps					
		3DH1	3DH3	3DH5			
Ch00	2402MHz	<mark>-0.45</mark> dBm	-0.64 dBm	-0.71 dBm			
Ch39	2441MHz	-0.69 dBm	-0.89 dBm	-0.97 dBm			
Ch78	2480MHz	-1.48 dBm	-1.64 dBm	-1.72 dBm			

		Bluetooth Peak Output Power					
Channel	Frequency	GFSK / 1Mbps					
		DH1	DH3	DH5			
Ch00	2402MHz	<mark>3.11</mark> dBm	3.07 dBm	3.04 dBm			
Ch39	2441MHz	2.82 dBm	2.79 dBm	2.77 dBm			
Ch78	2480MHz	2.01 dBm	2.00 dBm	1.98 dBm			

		Bluetooth Peak Output Power equency π/4-DQPSK / 2Mbps					
Channel	Frequency						
		2DH1	2DH3	2DH5			
Ch00	2402MHz	2.09 dBm	<mark>2.10</mark> dBm	2.09 dBm			
Ch39	2441MHz	1.86 dBm	1.82 dBm	1.80 dBm			
Ch78	2480MHz	1.14 dBm	1.12 dBm	1.05 dBm			

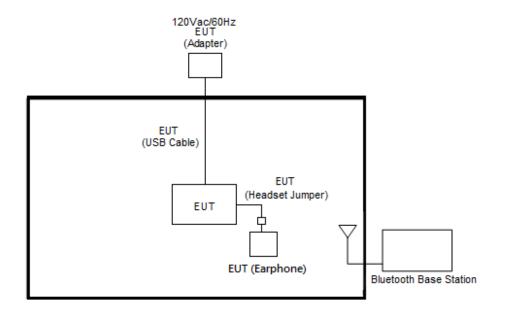
		Blu	uetooth Peak Output Pov	ver			
Channel	Frequency	8-DPSK / 3Mbps					
		3DH1	3DH3	3DH5			
Ch00	2402MHz	<mark>2.51</mark> dBm	2.48 dBm	2.42 dBm			
Ch39	2441MHz	2.36 dBm	2.30 dBm	2.14 dBm			
Ch78	2480MHz	1.62 dBm	1.57 dBm	1.51 dBm			

Remark: The data rate was set in 1Mbps for all the test items due to the highest RF output power.

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases							
		Data Rate / Modulation						
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps					
	GFSK	π /4-DQPSK	8-DPSK					
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz					
Test Cases	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz					
Test Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz					
Radiated	Bluetooth BR 1Mbps GFSK							
Test Cases		Mode 1: CH00_2402 MHz						


Remark:

- For radiated test cases, the worst mode data rate 1Mbps was reported only since the highest RF output power in the preliminary tests. The conducted spurious emissions and conducted band edge measurement for other data rates were not worse than 1Mbps, and no other significantly frequencies found in conducted spurious emission.
- 2. For Radiated Test Cases, the tests were performed with Battery 1, Headset Jumper 1 and 2.5mm Earphone

TEL : 886-3-327-3456	Page Number	: 11 of 20
FAX : 886-3-328-4978	Issued Date	: Jun. 03, 2020
Report Template No.: BU5-FR15CBT Version 2.4	Report Version	: 01

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8 m

2.5 EUT Operation Test Setup

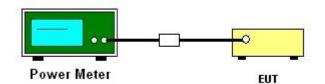
The RF test items, utility "QRCT V3.0.303.0" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to contact with base station to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

3 Test Result

3.1 Output Power Measurement

3.1.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.


3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 1. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Measure the conducted output power with cable loss and record the results in the test report.
- 4. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of Peak Output Power

Test Engine	er: Ho	ward Lin	-	Temperature :	21~25℃
····g			I	Relative Humidity :	51~54%
DH	CH.	Νтх	Peak Power (dBm)	Power Limit (dBm) Test Result
	0	1	3.11	30.00	Pass
DH1	39	1	2.82	30.00	Pass
	78	1	2.01	30.00	Pass
2DH	CH.	Νтх	Peak Power (dBm)	Power Limit (dBm) Test Result
	0	1	2.10	20.97	Pass
2DH3	39	1	1.82	20.97	Pass
	78	1	1.12	20.97	Pass
3DH	CH.	Νтх	Peak Power (dBm)	Power Limit (dBm) Test Result
	0	1	2.51	20.97	Pass
3DH1	39	1	2.36	20.97	Pass
	78	1	1.62	20.97	Pass

3.1.6 Test Result of Average Output Power (Reporting Only)

Test Engine	er · Ho	ward Lin	Tempera	nture : 21~25℃
			Relative	Humidity : 51~54%
DH	CH.	Νтх	Average Power (dBm)	Duty Factor (dB)
	0	1	2.81	5.21
DH1	39	1	2.52	5.21
	78	1	1.69	5.21
2DH	CH.	Νтх	Average Power (dBm)	Duty Factor (dB)
	0	1	-0.44	5.16
2DH1	39	1	-0.69	5.16
	78	1	-1.46	5.16
3DH	CH.	Νтх	Average Power (dBm)	Duty Factor (dB)
	0	1	-0.45	5.12
3DH1	39	1	-0.69	5.12
	78	1	-1.48	5.12

3.2 Radiated Band Edges and Spurious Emission Measurement

3.2.1 Limit of Radiated Band Edges and Spurious Emission

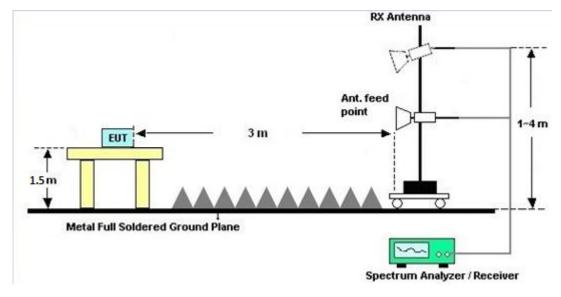
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 - 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

3.2.3 Test Procedures


- 1. The EUT was placed on a turntable with 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW \ge RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.76dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

3.2.4 Test Setup

3.2.5 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix A and B.

3.2.6 Duty Cycle

Please refer to Appendix C.

3.2.7 Test Result of Radiated Spurious Emission

Please refer to Appendix A and B.

3.3 Antenna Requirements

3.3.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.3.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.3.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

List of Measuring Equipment 4

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Dec. 26, 2019	May 06, 2020~ May 18, 2020	Dec. 25, 2020	Radiation (03CH12-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N -06	37059 & 01	30MHz~1GHz	Oct. 12, 2019	May 06, 2020~ May 18, 2020	Oct. 11, 2020	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-132 8	1GHz~18GHz	Nov. 14, 2019	May 06, 2020~ May 18, 2020	Nov. 13, 2020	Radiation (03CH12-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 584	18GHz~40GHz	Dec. 10, 2019	May 06, 2020~ May 18, 2020	Dec. 09, 2020	Radiation (03CH12-HY)
Preamplifier	COM-POWER	PA-103	161075	10MHz~1GHz	Mar. 25, 2020	May 06, 2020~ May 18, 2020	Mar. 24, 2021	Radiation (03CH12-HY)
Preamplifier	Keysight	83017A	MY532701 48	1GHz~26.5GHz	Dec. 20, 2019	May 06, 2020~ May 18, 2020	Dec. 19, 2020	Radiation (03CH12-HY)
Preamplifier	Jet-Power	JPA0118-55-3 03K	17100018 00054002	1GHz~18GHz	Aug. 06, 2019	May 06, 2020~ May 18, 2020	Aug. 05, 2020	Radiation (03CH12-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz~40GHz	Dec. 13, 2019	May 06, 2020~ May 18, 2020	Dec. 12, 2020	Radiation (03CH12-HY)
Spectrum Analyzer	Agilent	N9010A	MY534701 18	10Hz~44GHz	Mar. 12, 2020	May 06, 2020~ May 18, 2020	Mar. 11, 2021	Radiation (03CH12-HY)
Filter	Wainwright	WLKS1200-12 SS	SN2	1.2GHz Low Pass Filter	Mar. 21, 2020	May 06, 2020~ May 18, 2020	Mar. 20, 2021	Radiation (03CH12-HY)
Filter	Wainwright	WHKX12-2700 -3000-18000-6 0ST	SN2	3GHz High Pass Filter	Jul. 15, 2019	May 06, 2020~ May 18, 2020	Jul. 14, 2020	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY15539/ 4	30MHz~18GHz	Feb. 25, 2020	May 06, 2020~ May 18, 2020	Feb. 24, 2021	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	505134/2	30MHz~40GHz	Feb. 25, 2020	May 06, 2020~ May 18, 2020	Feb. 24, 2021	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	800740/2	30MHz~40GHz	Feb. 25, 2020	May 06, 2020~ May 18, 2020	Feb. 24, 2021	Radiation (03CH12-HY)
Hygrometer	TECPEL	DTM-303B	TP140349	N/A	Oct. 25, 2019	May 06, 2020~ May 18, 2020	Oct. 24, 2020	Radiation (03CH12-HY)
Controller	EMEC	EM1000	N/A	Control Turn table & Ant Mast	N/A	May 06, 2020~ May 18, 2020	N/A	Radiation (03CH12-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1m~4m	N/A	May 06, 2020~ May 18, 2020	N/A	Radiation (03CH12-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	May 06, 2020~ May 18, 2020	N/A	Radiation (03CH12-HY)
Software	Audix	E3 6.2009-8-24	RK-00098 9	N/A	N/A	May 06, 2020~ May 18, 2020	N/A	Radiation (03CH12-HY)
Hygrometer	Testo	608-H2	41410069	N/A	Jun. 17, 2019	May 01, 2020~ May 20, 2020	Jun. 16, 2020	Conducted (TH05-HY)
Power Meter	Agilent	E4416A	GB412923 44	N/A	Dec. 27, 2019	May 01, 2020~ May 20, 2020	Dec. 26, 2020	Conducted (TH05-HY)
Power Sensor	Agilent	E9327A	US404415 48	50MHz~18GHz	Dec. 27, 2019	May 01, 2020~ May 20, 2020	Dec. 26, 2020	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100055	9kHz-40GHz	Aug. 14, 2019	May 01, 2020~ May 20, 2020	Aug. 13, 2020	Conducted (TH05-HY)
BT Base Station	Rohde & Schwarz	СВТ	101136	BT 3.0	Oct. 27, 2019	May 01, 2020~ May 20, 2020	Oct. 26, 2020	Conducted (TH05-HY)
Switch Box & RF Cable	Burgeon	ETF-058	EC130048 4	N/A	Aug. 22, 2019	May 01, 2020~ May 20, 2020	Aug. 21, 2020	Conducted (TH05-HY)

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.6
of 95% (U = 2Uc(y))	5.6

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0
of 95% (U = 2Uc(y))	5.0

Appendix A. Radiated Spurious Emission

Test Engineer :	Jack Cheng , Lance Chiang and Chuan Chu	Temperature :	22.2~24.7°C
lest Engineer.		Relative Humidity :	54.7~61.2%

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2331.525	45.33	-28.67	74	41.23	27.67	5.73	29.3	205	51	Ρ	Н
		2331.525	20.57	-33.43	54	-	-	-	-	-	-	А	Н
	*	2402	94.21	-	-	90.15	27.5	5.84	29.28	205	51	Р	Н
	*	2402	69.45	-	-	-	-	-	-	-	-	А	Н
DT													Н
ВТ СН00													Н
2402MHz		2338.035	45.2	-28.8	74	41.11	27.65	5.74	29.3	111	51	Р	V
240210112		2338.035	20.44	-33.56	54	-	-	-	-	-	-	А	V
	*	2402	94.39	-	-	90.33	27.5	5.84	29.28	111	51	Р	V
	*	2402	69.63	-	-	-	-	-	-	-	-	А	V
													V
													V
Remark	1. No	o other spurious	s found.										
	2. All	results are PA	SS against F	eak and	Average lim	it line.							

Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
(MH-)	(dBu)//m)	Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
(11172)	(ασμν/m)	(u D)	(aph v/m)	(α Βμν)	(ab/m)	(a b)	(ab)	(cm)	(deg)	(P/A)	(п/v)
4804	39.29	-34.71	74	58.81	31.1	9.84	60.46	100	0	Р	Н
4804	14.53	-39.47	54	-	-	-	-	-	-	А	Н
											Н
											Н
4804	38.93	-35.07	74	58.45	31.1	9.84	60.46	100	0	Р	V
4804	14.17	-39.83	54	-	-	-	-	-	-	А	V
											V
											V
•		eak and	Average lim	it line.							
	4804 4804 4804 4804 . No other spurious	4804 39.29 4804 14.53 4804 14.53 4804 38.93 4804 14.17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(MHz) (dBμV/m) (dB) 4804 39.29 -34.71 4804 14.53 -39.47 4804 14.53 -39.47 4804 14.53 -39.47 4804 38.93 -35.07 4804 14.17 -39.83 4804 14.17 -39.83 1 - -	(MHz) (dBμV/m) (dB) (dBμV/m) 4804 39.29 -34.71 74 4804 14.53 -39.47 54 4804 14.53 -39.47 54 4804 14.53 -39.47 54 4804 38.93 -35.07 74 4804 14.17 -39.83 54 4804 14.17 -39.83 54	(ΜΗz) (dBµV/m) (dBµV/m) (dBµV/m) (dBµV/m) 4804 39.29 -34.71 74 58.81 4804 14.53 -39.47 54 - 4804 14.53 -39.47 54 - 4804 14.53 -39.47 54 - 4804 14.53 -39.47 54 - 4804 38.93 -35.07 74 58.45 4804 14.17 -39.83 54 - 4804 14.17 -39.83 54 -	(MHz) (dBμV/m) (dBμV/m) (dBμV/m) (dBμV) (dB/m) 4804 39.29 -34.71 74 58.81 31.1 4804 14.53 -39.47 54 - - 4804 14.53 -39.47 54 - - 4804 14.53 -39.47 54 - - 4804 14.53 -39.47 54 - - 4804 38.93 -35.07 74 58.45 31.1 4804 14.17 -39.83 54 - - 4804 14.17 -39.83 54 - - 4804 14.17 -39.83 54 - -	(MHz)(dBμV/m)(dB μV/m)(dBμV)(dB/m)(dB/m)480439.29-34.717458.8131.19.84480414.53-39.4754480414.53-39.4754480414.53-39.4754480438.93-35.077458.4531.19.84480414.17-39.8354480414.17-39.83541	(MHz)(dBμV/m)(dBμV/m)(dBμV)(dB/m)(dB)(dB)480439.29-34.717458.8131.19.8460.46480414.53-39.4754480414.53-39.4754480414.53-39.4754480438.93-35.077458.4531.19.8460.46480414.17-39.8354480414.17-39.8354 <t< th=""><th>(MHz)(dBμV/m)(dB)(dBμV/m)(dBμV)(dB/m)(dB)(dB)(dB)(cm)480439.29-34.717458.8131.19.8460.46100480414.53-39.4754480414.53-39.4754480414.53-39.4754480438.93-35.077458.4531.19.8460.46100480414.17-39.8354480414.17-39.8354124014.17-39.8354</th><th>(MHz) (dBµV/m) (dBµV/m) (dBµV/m) (dBµV/m) (dB/m) (dB) (dB) (dm) (deg) 4804 39.29 -34.71 74 58.81 31.1 9.84 60.46 100 0 4804 14.53 -39.47 54 -</th><th>(MHz) (dBµV/m) (dB) (dBµV/m) (dBµV/m) (dBµV) (dB/m) (dB) (dB) (deg) (PA) 4804 39.29 -34.71 74 58.81 31.1 9.84 60.46 100 0 P 4804 14.53 -39.47 54 - - - - A 1 4804 14.53 -39.47 54 - - - - A 1 14.53 -39.47 54 - - - - - A 1 14.53 -39.47 54 - - - - A 1 14.53 -39.47 54 - - - - - A 4804 38.93 -35.07 74 58.45 31.1 9.84 60.46 100 0 P 4804 14.17 -39.83 54 - - - - -<</th></t<>	(MHz)(dBμV/m)(dB)(dBμV/m)(dBμV)(dB/m)(dB)(dB)(dB)(cm)480439.29-34.717458.8131.19.8460.46100480414.53-39.4754480414.53-39.4754480414.53-39.4754480438.93-35.077458.4531.19.8460.46100480414.17-39.8354480414.17-39.8354124014.17-39.8354	(MHz) (dBµV/m) (dBµV/m) (dBµV/m) (dBµV/m) (dB/m) (dB) (dB) (dm) (deg) 4804 39.29 -34.71 74 58.81 31.1 9.84 60.46 100 0 4804 14.53 -39.47 54 -	(MHz) (dBµV/m) (dB) (dBµV/m) (dBµV/m) (dBµV) (dB/m) (dB) (dB) (deg) (PA) 4804 39.29 -34.71 74 58.81 31.1 9.84 60.46 100 0 P 4804 14.53 -39.47 54 - - - - A 1 4804 14.53 -39.47 54 - - - - A 1 14.53 -39.47 54 - - - - - A 1 14.53 -39.47 54 - - - - A 1 14.53 -39.47 54 - - - - - A 4804 38.93 -35.07 74 58.45 31.1 9.84 60.46 100 0 P 4804 14.17 -39.83 54 - - - - -<

BT (Harmonic @ 3m)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
вт		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

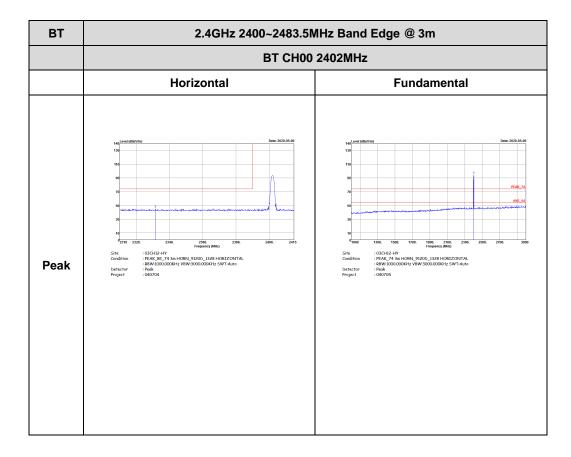
For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

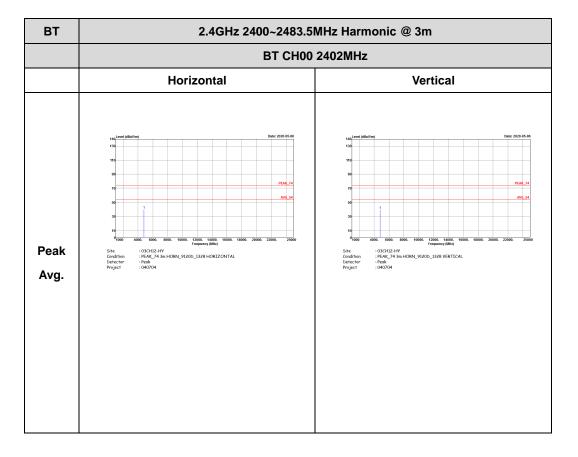


Appendix B. Radiated Spurious Emission Plots

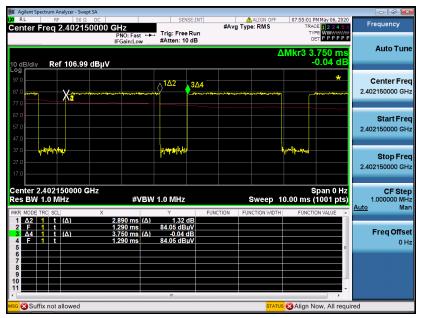
Test Engineer :		Temperature :	22.2~24.7°C
Test Engineer.	Jack Cheng , Lance Chiang and Chuan Chu	Relative Humidity :	54.7~61.2%

2.4GHz 2400~2483.5MHz

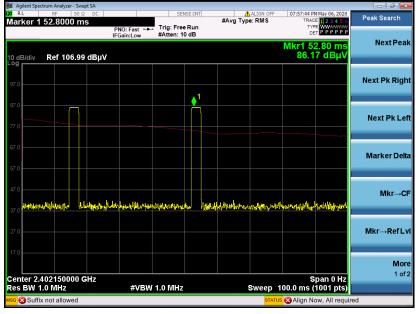
BT (Band Edge @ 3m)



вт	2.4GHz 2400~2483.5MHz Band Edge @ 3m										
	BT CH00	2402MHz									
	Vertical	Fundamental									
Peak	intermediateDet 2004 00intermediate <th><pre>set_test (BioVing) Dec 2021.05 //</pre></th>	<pre>set_test (BioVing) Dec 2021.05 //</pre>									


2.4GHz 2400~2483.5MHz

BT (Harmonic @ 3m)



Appendix C. Duty Cycle Plots

3DH5 on time (One Pulse) Plot on Channel 0

on time (Count Pulses) Plot on Channel 0

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = $2 \times 2.89 / 100 = 5.78 \%$
- 2. Worst case Duty cycle correction factor = $20*\log(\text{Duty cycle}) = -24.76 \text{ dB}$
- 3. **3DH5** has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

2.89 ms x 20 channels = 57.8 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.8 ms] = 2 hops

Thus, the maximum possible ON time:

2.89 ms x 2 = 5.78 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times \log(5.78 \text{ ms}/100 \text{ ms}) = -24.76 \text{ dB}$