

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

S Servizio svizzero di taratura

Swiss Calibration Service

S

C

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton

Certificate No: CD2450V3-1186_Jan19

CALIBRATION CERTIFICATE

Object	CD2450V3 - SN:	1186	
Calibration procedure(s)	QA CAL-20.v7 Calibration Proce	edure for Validation Sources in air	r
Calibration date:	January 30, 2019)	
This calibration certificate docume	ents the traceability to nati	onal standards, which realize the physical uni	ts of measurements (SI).
The measurements and the unce	rtainties with confidence p	robability are given on the following pages an	d are part of the certificate.
All calibrations have been conduc	ted in the closed laborator	ry facility: environment temperature (22 ± 3)°C	C and humidity < 70%.
		, <u>, , , , , , , , , , , , , , , , , , </u>	,
Calibration Equipment used (M&1	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
	SN: 104778	04 Apr 10 (No. 017 00670/00679)	Apr. 10
Power meter NHP	014. 104770	04-Apt-18 (No. 217-02072/02073)	Api-13
Power meter NRP Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 103244 SN: 103245	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673)	Apr-19 Apr-19 Apr-19
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682)	Apr-19 Apr-19 Apr-19
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 03-Jan-19 (No. EF3-4013_Jan19)	Apr-19 Apr-19 Apr-19 Apr-19 Jan-20
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 781	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 03-Jan-19 (No. EF3-4013_Jan19) 09-Jan-19 (No. DAE4-781_Jan19)	Apr-19 Apr-19 Apr-19 Apr-19 Jan-20 Jan-20
Power meter NHP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 781	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 03-Jan-19 (No. EF3-4013_Jan19) 09-Jan-19 (No. DAE4-781_Jan19)	Apr-19 Apr-19 Apr-19 Apr-19 Jan-20 Jan-20 Scheduled Check
Power meter NHP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Acilent 4419B	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 781	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 03-Jan-19 (No. EF3-4013_Jan19) 09-Jan-19 (No. DAE4-781_Jan19) Check Date (in house) 09-Oct-09 (in house check Oct-17)	Apr-19 Apr-19 Apr-19 Apr-19 Jan-20 Jan-20 Scheduled Check
Power meter NHP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 44198 Power sensor HP E4412A	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 03-Jan-19 (No. EF3-4013_Jan19) 09-Jan-19 (No. DAE4-781_Jan19) Check Date (in house) 09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17)	Apr-19 Apr-19 Apr-19 Apr-19 Jan-20 Jan-20 Scheduled Check In house check: Oct-20 In house check: Oct-20
Power meter NHP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 44198 Power sensor HP E4412A Power sensor HP 8482A	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02683) 04-Apr-18 (No. 217-02683) 03-Jan-19 (No. EF3-4013_Jan19) 09-Jan-19 (No. DAE4-781_Jan19) 09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17)	Apr-19 Apr-19 Apr-19 Apr-19 Jan-20 Jan-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Power meter NHP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A BE pererator B&S SMT-06	SN: 103770 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 832283/011	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 03-Jan-19 (No. EF3-4013_Jan19) 09-Jan-19 (No. DAE4-781_Jan19) 09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17)	Apr-19 Apr-19 Apr-19 Apr-19 Jan-20 Jan-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Power meter NHP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 44198 Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer HP 8358A	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 832283/011 SN: US41080477	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 03-Jan-19 (No. EF3-4013_Jan19) 09-Jan-19 (No. DAE4-781_Jan19) Check Date (in house) 09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17) 27-Aug-12 (in house check Oct-17) 31-Mar-14 (in house check Oct-18)	Apr-19 Apr-19 Apr-19 Apr-19 Jan-20 Jan-20 Scheduled Check In house check: Oct-20 In house check: Oct-19
Power meter NHP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 44198 Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer HP 8358A	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 832283/011 SN: US41080477 Name	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 03-Jan-19 (No. EF3-4013_Jan19) 09-Jan-19 (No. DAE4-781_Jan19) Check Date (in house) 09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17) 27-Aug-12 (in house check Oct-17) 31-Mar-14 (in house check Oct-18)	Apr-19 Apr-19 Apr-19 Apr-19 Jan-20 Jan-20 Scheduled Check In house check: Oct-20 In house check: Oct-19 Signature

Approved by:

Technical Manager

Issued: January 31, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Katja Pokovic

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

References

[1] ANSI-C63.19-2011

American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	2450 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 2450 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	84.5 V/m = 38.54 dBV/m
Maximum measured above low end	100 mW input power	83.7 V/m = 38.45 dBV/m
Averaged maximum above arm	100 mW input power	84.1 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance
2250 MHz	17.2 dB	64.4 Ω + 6.3 jΩ
2350 MHz	26.9 dB	53.7 Ω - 2.8 jΩ
2450 MHz	32.4 dB	52.1 Ω - 1.3 jΩ
2550 MHz	46.8 dB	50.3 Ω + 0.4 jΩ
2650 MHz	17.8 dB	64.1 Ω - 4.0 jΩ

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Impedance Measurement Plot

DASY5 E-field Result

Date: 30.01.2019

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 2450 MHz; Type: CD2450V3; Serial: CD2450V3 - SN: 1186

Communication System: UID 0 - CW ; Frequency: 2450 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 2450 MHz; Calibrated: 03.01.2019
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 09.01.2019
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole E-Field measurement @ 2450MHz/E-Scan - 2450MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm Reference Value = 72.75 V/m; Power Drift = -0.00 dB Applied MIF = 0.00 dB RF audio interference level = 38.54 dBV/m Emission category: M2

MIF scaled E-field

Grid 1 M2	Grid 2 M2	Grid 3 M2
38.09 dBV/m	38.45 dBV/m	38.43 dBV/m
Grid 4 M2	Grid 5 M2	Grid 6 M2
37.44 dBV/m	37.67 dBV/m	37.62 dBV/m
Grid 7 M2	Grid 8 M2	Grid 9 M2
38.24 dBV/m	38.54 dBV/m	38.45 dBV/m

0 dB = 84.53 V/m = 38.54 dBV/m

C2450V3, serial no. 1186 Extended Dipole Calibrations

Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

<Justification of the extended calibration>

CD 2450 V3 – serial no. 1186						
			245	OMHZ		
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
01.30.2019	32 405		52 102		1 2549	
(Cal. Report)	-52.405		52.102		-1.2340	
01.29.2020	21 229	2 202	51 212	0.70	2 4096	4 7524
(extended)	-31.330	3.293	51.512	0.79	3.4900	4.7554
01.28.2021	00.000	0.554	55.000	0.400	0.0004	0 7050
(extended)	-29.309	9.554	55.238	-3.136	-3.9601	2.7053

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

<Dipole Verification Data> - CD2450 V3, serial no. 1186 (Data of Measurement : 01.29.2020) 2450 MHz - Head

<Dipole Verification Data> - CD2450 V3, serial no. 1186 (Data of Measurement : 01.28.2021) 2450 MHz - Head

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- S Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton

Certificate No: CD3500V3-1009_Feb19

CALIBRATION CERTIFICATE

Object

CD3500V3 - SN: 1009

Calibration procedure(s)

QA CAL-20.v7 Calibration Procedure for Validation Sources in air

Calibration date:

February 18, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Probe EF3DV3	SN: 4013	03-Jan-19 (No. EF3-4013_Jan19)	Jan-20
DAE4	SN: 781	09-Jan-19 (No. DAE4-781_Jan19)	Jan-20

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter Agilent 4419B	SN: GB42420191	09-Oct-09 (in house check Oct-17)	In house check: Oct-20
Power sensor HP E4412A	SN: US38485102	05-Jan-10 (in house check Oct-17)	In house check: Oct-20
Power sensor HP 8482A	SN: US37295597	09-Oct-09 (in house check Oct-17)	In house check: Oct-20
RF generator R&S SMT-06	SN: 832283/011	27-Aug-12 (in house check Oct-17)	In house check: Oct-20
Network Analyzer HP 8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Set Man
Approved by:	Katja Pokovic	Technical Manager	stilles
			and

Issued: February 18, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

S Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

References

[1] ANSI-C63.19-2011

American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	3500 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 3500 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	85.2 V/m = 38.61 dBV/m
Maximum measured above low end	100 mW input power	84.1 V/m = 38.49 dBV/m
Averaged maximum above arm	100 mW input power	84.6 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance
3300 MHz	17.9 dB	64.5 Ω + 1.4 jΩ
3400 MHz	22.1 dB	55.9 Ω - 5.8 jΩ
3500 MHz	24.7 dB	52.0 Ω - 5.6 jΩ
3600 MHz	23.2 dB	48.3 Ω - 6.6 jΩ
3700 MHz	22.1 dB	42.9 Ω - 2.0 jΩ

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Impedance Measurement Plot

DASY5 E-field Result

Date: 18.02.2019

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 3500 MHz; Type: CD3500V3; Serial: CD3500V3 - SN: 1009

Communication System: UID 0 - CW ; Frequency: 3500 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 3500 MHz; Calibrated: 03.01.2019
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 09.01.2019
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole E-Field measurement @ 3500MHz/E-Scan - 3500MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 33.68 V/m; Power Drift = 0.01 dB Applied MIF = 0.00 dB RF audio interference level = 38.61 dBV/m Emission category: M2

MIF scaled E-field

Grid 1 M2	Grid 2 M2	Grid 3 M2
38.14 dBV/m	38.49 dBV/m	38.48 dBV/m
Grid 4 M2	Grid 5 M2	Grid 6 M2
38.34 dBV/m	38.61 dBV/m	38.55 dBV/m
Grid 7 M2	Grid 8 M2	Grid 9 M2
38.31 dBV/m	38.59 dBV/m	38.53 dBV/m

0 dB = 85.20 V/m = 38.61 dBV/m

C3500V3, serial no. 1009 Extended Dipole Calibrations

Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

<Justification of the extended calibration>

CD 3500 V3 – serial no. 1009							
		3500MHZ					
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	
02.18.2019	24 608		52.048		5 5952		
(Cal. Report)	-24.090		52.046		-5.5853		
02.17.2020	22.49	4 022	55 122	2 094	4 0272	0.6591	
(extended)	-23.40	-4.932	55.152	-3.064	-4.9272	-0.0581	
02.16.2021	21 407	12.061	FF 0F2	3 004	6 2920	0.6086	
(extended)	-21.497	-12.901	55.952	-3.904	-0.2839	0.6986	

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

<Dipole Verification Data> - CD3500 V3, serial no. 1009 (Data of Measurement : 02.17.2020) 3500 MHz - Head

<Dipole Verification Data> - CD3500 V3, serial no. 1009 (Data of Measurement : 02.16.2021) 3500 MHz - Head

S Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

C

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton

Certificate No: CD5500V3-1009_Jan19

CALIBRATION CERTIFICATE

	CD5500V3 - SN:	1009	
Calibration procedure(s)	QA CAL-20.v7 Calibration Proce	edure for Validation Sources in air	
Calibration date:	January 30, 2019	9	
This calibration certificate docum	ents the traceability to nati	onal standards, which realize the physical unit	ts of measurements (SI).
			and humidity - 70%
All calibrations have been conduc	cted in the closed laborator	ry facility; environment temperature (22 ± 3)*C	, and numidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)	Cal Data (Cartificata No.)	Scheduled Calibration
Primary Standards	ENI: 104779	04 Apr 19 (No. 217,02672/02673)	Apr-10
Power neter NRF	SN: 103244	04-Apr-18 (No. 217-02072/02073)	Anr-19
ower sensor NRF-291	SN: 100244	04-Apr-18 (No. 217-02672)	Apr-19
Ower sensor NHP-Z91	SN. 103245	04-Api-18 (No. 217-02073)	Apr-19
Informan 20 dB Attonuator	1 SM+ 6068 (202)		
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Anr-19
Reference 20 dB Attenuator Type-N mismatch combination Probe EE2DV/2	SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 03-lap-19 (No. EE3-4013, Jan19)	Apr-19
Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 781	04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 03-Jan-19 (No. EF3-4013_Jan19) 09-Jan-19 (No. DAE4-781_Jan19)	Apr-19 Jan-20 Jan-20
Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 781	04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 03-Jan-19 (No. EF3-4013_Jan19) 09-Jan-19 (No. DAE4-781_Jan19)	Apr-19 Jan-20 Jan-20 Scheduled Check
Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 781	04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 03-Jan-19 (No. EF3-4013_Jan19) 09-Jan-19 (No. DAE4-781_Jan19) Check Date (in house)	Apr-19 Jan-20 Jan-20 Scheduled Check
Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E44124	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102	04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 03-Jan-19 (No. EF3-4013_Jan19) 09-Jan-19 (No. DAE4-781_Jan19) Check Date (in house) 09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17)	Apr-19 Jan-20 Jan-20 Scheduled Check In house check: Oct-20 In house check: Oct-20
Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 84824	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597	04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 03-Jan-19 (No. EF3-4013_Jan19) 09-Jan-19 (No. DAE4-781_Jan19) Check Date (in house) 09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17)	Apr-19 Jan-20 Jan-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A 3E generator B&S SMT-06	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 832283/011	04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 03-Jan-19 (No. EF3-4013_Jan19) 09-Jan-19 (No. DAE4-781_Jan19) Check Date (in house) 09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17) 27-Aug-12 (in house check Oct-17)	Apr-19 Jan-20 Jan-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer HP 8358A	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 832283/011 SN: US41080477	04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 03-Jan-19 (No. EF3-4013_Jan19) 09-Jan-19 (No. DAE4-781_Jan19) Check Date (in house) 09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17) 27-Aug-12 (in house check Oct-17) 31-Mar-14 (in house check Oct-18)	Apr-19 Jan-20 Jan-20 Scheduled Check In house check: Oct-20 In house check: Oct-19
Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer HP 8358A	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 832283/011 SN: US41080477 Name	04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 03-Jan-19 (No. EF3-4013_Jan19) 09-Jan-19 (No. DAE4-781_Jan19) 09-Oct-09 (in house) 09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17) 27-Aug-12 (in house check Oct-17) 31-Mar-14 (in house check Oct-18) Function	Apr-19 Jan-20 Jan-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19 Signature
Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer HP 8358A Calibrated by:	SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 832283/011 SN: US31080477 Name Leif Klysner	04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 03-Jan-19 (No. EF3-4013_Jan19) 09-Jan-19 (No. DAE4-781_Jan19) 09-Oct-09 (in house) 09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17) 27-Aug-12 (in house check Oct-17) 31-Mar-14 (in house check Oct-18) Function Laboratory Technician	Apr-19 Jan-20 Jan-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19 Signature

Issued: January 31, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

S

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- S Servizio svizzero di taratura
 - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

References

[1] ANSI-C63.19-2011

American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2	
Phantom	HAC Test Arch		
Distance Dipole Top - Probe Center	15 mm		
Scan resolution	dx, dy = 5 mm		
Frequency	5500 MHz ± 1 MHz		
Input power drift	< 0.05 dB		

Maximum Field values at 5500 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum above arm	100 mW input power	99.8 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance
5000 MHz	21.4 dB	43.5 Ω - 4.6 jΩ
5200 MHz	29.9 dB	47.3 Ω + 1.6 jΩ
5500 MHz	23.9 dB	56.8 Ω + 0.4 jΩ
5800 MHz	21.4 dB	42.8 Ω + 3.1 jΩ
5900 MHz	21.3 dB	47.5 Ω + 8.1 jΩ

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Impedance Measurement Plot

DASY5 E-field Result

Date: 30.01.2019

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 5500 MHz; Type: CD5500V3; Serial: CD5500V3 - SN: 1009

Communication System: UID 0 - CW ; Frequency: 5500 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 5500 MHz; Calibrated: 03.01.2019 .
- Sensor-Surface: (Fix Surface) ٠
- Electronics: DAE4 Sn781; Calibrated: 09.01.2019 .
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 .
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) .

Dipole E-Field measurement @ 5500MHz/E-Scan - 5500MHz d=15mm/Hearing Aid Compatibility Test (41x121x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

MIF scaled E-field

Device Reference Point: 0, 0, -6.3 mm Reference Value = 132.0 V/m; Power Drift = -0.01 dB Applied MIF = 0.00 dBRF audio interference level = 39.99 dBV/m **Emission category: M2**

> Grid 1 M2 Grid 2 M2 Grid 3 M2 39.13 dBV/m 39.36 dBV/m 39.25 dBV/m Grid 4 M2 Grid 5 M2 Grid 6 M2 39.74 dBV/m 39.99 dBV/m 39.86 dBV/m Grid 7 M2 Grid 8 M2 Grid 9 M2 39.24 dBV/m 39.51 dBV/m 39.4 dBV/m

C5500V3, serial no. 1009 Extended Dipole Calibrations

Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

<Justification of the extended calibration>

CD 5500 V3 – serial no. 1009							
		5500MHZ					
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	
01.30.2019	22,800		56 709		0.44621		
(Cal. Report)	-23.099		50.796		0.44631		
01.29.2020	25 297	6 006	ED 651	4 4 4 7	4.074	4 7202	
(extended)	-23.307	-0.220	52.051	4.147	-4.274	4.7203	
01.28.2021	24.050	1 404	50.245	4 5 4 7	0.45000	0.50000	
(extended)	-24.256	-1.494	58.345	-1.547	-0.15008	0.59639	

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

<Dipole Verification Data> - CD5500 V3, serial no. 1009 (Data of Measurement : 01.29.2020) 5500 MHz - Head

<Dipole Verification Data> - CD5500 V3, serial no. 1009 (Data of Measurement : 01.28.2021) 5500 MHz - Head

Sporton

Client

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: DAE4-854_May20

Accreditation No.: SCS 0108

CALIBRATION CERTIFICATE

Object	DAE4 - SD 000 D	04 BM - SN: 854	
Calibration procedure(s)	QA CAL-06.v30 Calibration procee	lure for the data acquisition electron	ics (DAE)
Calibration date:	May 26, 2020		
Calibration date.	May 20, 2020		
This calibration certificate documer The measurements and the uncerta	ts the traceability to nation ainties with confidence pro	nal standards, which realize the physical units of r bability are given on the following pages and are	neasurements (SI). part of the certificate.
All collibrations have been conduct	d in the closed laboratory		
All calibrations have been conducte	ed in the closed laboratory	facility: environment temperature $(22 \pm 3)^{\circ}$ C and	numidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	03-Sep-19 (No:25949)	Sep-20
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	09-Jan-20 (in house check)	In house check: Jan-21
Calibrator Box V2.1	SE UMS 006 AA 1002	09-Jan-20 (in house check)	In house check: Jan-21
	Name	Function	Signature
Calibrated by:	Dominique Steffen	Laboratory Technician	RAD
Approved by	Orace K"In		
Approved by:	Sven Kühn	Deputy Manager	i.V.Bellue
This calibration certificate shall not	be reproduced except in fi	Ill without written approval of the laboratory.	Issued: May 26, 2020

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage

С Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv

DAE Connector angle

data acquisition electronics

information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically . by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a • result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an . input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter . corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of • zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, . during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement A/D - Converter Resolution nominal

High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV ,	full range =	-1+3mV
DASY measurement p	parameters: Aut	o Zero Time: 3	sec; Measuring	time: 3 sec

Calibration Factors	Х	Υ	Z
High Range	404.902 ± 0.02% (k=2)	404.679 ± 0.02% (k=2)	405.773 ± 0.02% (k=2)
Low Range	3.97207 ± 1.50% (k=2)	3.94819 ± 1.50% (k=2)	3.99503 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	325.0 ° ± 1 °

Appendix (Additional assessments outside the scope of SCS0108)

1. DC VOILage Linearity	1.	DC	Voltage	Linearity
-------------------------	----	----	---------	-----------

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199995.13	2.57	0.00
Channel X + Input	20000.49	-1.29	-0.01
Channel X - Input	-19998.95	2.31	-0.01
Channel Y + Input	199993.48	0.79	0.00
Channel Y + Input	19999.49	-2.26	-0.01
Channel Y - Input	-20000.37	0.92	-0.00
Channel Z + Input	199993.40	0.68	0.00
Channel Z + Input	19998.76	-2.86	-0.01
Channel Z - Input	-20001.56	-0.21	0.00

Low Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	2001.29	0.12	0.01
Channel X	+ Input	201.78	0.21	0.10
Channel X	- Input	-198.04	0.29	-0.15
Channel Y	+ Input	2001.22	0.20	0.01
Channel Y	+ Input	201.23	-0.23	-0.12
Channel Y	- Input	-198.91	-0.49	0.25
Channel Z	+ Input	2001.14	0.16	0.01
Channel Z	+ Input	200.64	-0.72	-0.36
Channel Z	- Input	-199.54	-1.00	0.51

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-12.20	-13.58
	- 200	14.65	13.01
Channel Y	200	-7.85	-8.28
	- 200	7.33	7.21
Channel Z	200	16.85	16.68
	- 200	-19.88	-19.26

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (µV)
Channel X	200	-	1.88	-3.29
Channel Y	200	7.95	-	3.37
Channel Z	200	9.73	5.70	-

Certificate No: DAE4-854_May20

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16117	14859
Channel Y	15964	16277
Channel Z	15850	15306

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (µV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	0.75	-0.29	1.77	0.34
Channel Y	0.27	-0.62	2.21	0.42
Channel Z	-0.21	-0.99	0.48	0.30

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland BC-MRA

S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Auden

Certificate No: EF3-4062_Dec20

CALIBRATION CERTIFICATE

Object	EF3DV3- SN:4062
Calibration procedure(s)	QA CAL-02.v9, QA CAL-25.v7 Calibration procedure for E-field probes optimized for close near field evaluations in air
Calibration date:	December 18, 2020
Calibration date:	currents the traceability to national standards, which realize the physical units of measurements (SI).

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: CC2552 (20x)	31-Mar-20 (No. 217-03106)	Apr-21
DAE4	SN: 789	18-Jun-20 (No. DAE4-789_Jun20)	Jun-21
Reference Probe ER3DV6	SN: 2328	05-Oct-20 (No. ER3-2328_Oct20)	Oct-21
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21

	Name	Function	Signature
Calibrated by:	Jeffrey Katzman	Laboratory Technician	J. light
Approved by:	Katja Pokovic	Technical Manager	Raf
			Issued: December 18, 2020
This calibration certificate	e shall not be reproduced except in full	without written approval of the laboratory	1

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- C Servizio svizzero di taratura S
 - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
NORMx,y,z	sensitivity in free space
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
En	incident E-field orientation normal to probe axis
Ep	incident E-field orientation parallel to probe axis
Polarization ϕ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system
Polarization φ Polarization θ Connector Angle	φ rotation around probe axis ϑ rotation around an axis that is in the plane normal to probe axis (at measurement of i.e., $\vartheta = 0$ is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1309-2005, " IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005
- b) CTIA Test Plan for Hearing Aid Compatibility, Rev 3.1.1, May 2017

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 for XY sensors and 9 = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW . signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

DASY/EASY - Parameters of Probe: EF3DV3 - SN:4062

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)$	0.69	0.78	1.19	± 10.1 %
DCP (mV) ^B	96.6	94.4	89.2	

Calibration results for Frequency Response (30 MHz - 6 GHz)

Frequency	Target E-Field	Measured	Deviation	Measured	Deviation	Unc (k=2)
MHz	V/m	E-field (En)	E-normal	E-field (Ep)	E-normal	%
		V/m	in %	V/m	in %	
30	77.2	77.1	-0.1%	76.9	-0.3%	± 5.1 %
100	77.3	78.2	1.2%	78.2	1.3%	± 5.1 %
450	77.1	78.1	1.3%	78.3	1.5%	± 5.1 %
600	77.2	77.7	0.8%	77.7	0.8%	± 5.1 %
750	77.3	77.6	0.6%	77.5	0.5%	± 5.1 %
1800	140.3	139.6	-2.6%	139.5	-2.7%	± 5.1 %
2000	133.0	131.8	-2.6%	132.1	-2.4%	± 5.1 %
2200	125.1	123.8	-3.1%	125.2	-2.0%	± 5.1 %
2500	123.7	122.1	-2.3%	123.4	-1.2%	± 5.1 %
3000	78.9	76.2	-4.3%	77.6	-2.5%	± 5.1 %
3500	250.5	242.1	-5.6%	239.0	-6.8%	± 5.1 %
3700	244.2	235.5	-5.6%	235.6	-5.6%	± 5.1 %
5200	50.8	52.2	2.9%	51.9	2.4%	± 5.1 %
5500	49.7	50.0	0.7%	48.5	-2.4%	± 5.1 %
5800	48.9	49.1	0.4%	50.1	2.3%	± 5.1 %

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EF3DV3 - SN:4062

UID	Communication System Name		A	В	С	D	VR	Max	Max
	-		dB	dBõV		dB	mV	dev.	Unc ^E
	1								(k=2)
0	CW	Х	0.00	0.00	1.00	0.00	116.8	± 3.0 %	±4.7 %
		Y	0.00	0.00	1.00		121.6		
		Z	0.00	0.00	1.00		117.0		
10352-	Pulse Waveform (200Hz, 10%)	X	2.66	65.51	9.70	10.00	60.0	± 3.6 %	± 9.6 %
AAA		Y	15.00	84.94	17.37		60.0		
		Z	14.00	84.00	17.00		60.0		
10353-	Pulse Waveform (200Hz, 20%)	Х	1.64	64.54	8.21	6.99	80.0	± 1.8 %	± 9.6 %
AAA		Y	15.00	87.78	17.27		80.0		
		Z	15.00	88.15	17.29		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	0.61	61.60	5.99	3.98	95.0	± 2.3 %	±9.6 %
AAA		Y	15.00	108.69	25.55		95.0		
		Z	15.00	138.96	38.94		95.0		
10355-	Pulse Waveform (200Hz, 60%)	X	0.39	62.10	5.65	2.22	120.0	± 1.7 %	± 9.6 %
AAA		Y	15.00	130.00	90.00		120.0		
		Z	0.05	60.00	15.00		120.0		
10387-	QPSK Waveform, 1 MHz	X	0.41	60.00	5.19	0.00	150.0	± 3.3 %	±9.6 %
AAA		Y	0.39	60.00	5.11	j	150.0		
		Z	0.40	60.00	5.13]	150.0		
10388-	QPSK Waveform, 10 MHz	X	2.33	70.55	17.36	0.00	150.0	± 1.9 %	± 9.6 %
AAA		Y	3.38	78.45	21.61		150.0		
		Z	3.45	78.83	21.84		150.0		
10396-	64-QAM Waveform, 100 kHz	X	1.89	65.73	16.96	3.01	150.0	± 4.3 %	±9.6 %
AAA		Y	1.85	67.93	19.98]	150.0		
		Z	1.70	66.58	18.59		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.45	67.64	16.31_	0.00	150.0	± 2.0 %	± 9.6 %
AAA		Y	3.80	69.78	17.90		150.0		
1		Z	3.82	69.81	17.99		150.0	1	
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.64	66.05	15.93	0.00	150.0	± 3.5 %	± 9.6 %
AAA		Y	4.83	66.92	16.81		150.0		
		Z	4.86	66.92	16.89]	150.0		

Calibration Results for Modulation Response

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EF3DV3 - SN:4062

Sensor Frequency Model Parameters

	Sensor X	Sensor Y	Sensor Z
Frequency Corr. (LF)	0.04	0.04	5.04
Frequency Corr. (HF)	2.82	2.82	2.82

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
X	30.4	198.02	36.07	5.29	0.15	4.95	0.00	0.13	1.00
Y	32.0	215.63	38.72	3.51	0.00	5.06	0.00	0.00	1.01
Z	32.7	224.51	39.93	1.15	0.00	5.07	0.00	0.00	1.00

Other Probe Parameters

Sensor Arrangement	Rectangular
Connector Angle (°)	-118
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	12 mm
Tip Length	25 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	1.5 mm
Probe Tip to Sensor Y Calibration Point	1.5 mm
Probe Tip to Sensor Z Calibration Point	1.5 mm

December 18, 2020

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Receiving Pattern (ϕ), ϑ = 90°

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Receiving Pattern (ϕ), $\vartheta = 90^{\circ}$

Dynamic Range f(E-field) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

December 18, 2020

Deviation from Isotropy in Air Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E (k=2)
0		CW	CW	0.00	± 4.7 %
10010	CAA	SAR Validation (Square, 100ms, 10ms)	Test	10.00	± 9.6 %
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	± 9.6 %
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	± 9.6 %
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	± 9.6 %
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	± 9.6 %
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	± 9.6 %
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	± 9.6 %
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	± 9,6 %
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	± 9.6 %
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	± 9.6 %
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	+9.6 %
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	+96%
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	+96%
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	+96%
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.07	+96%
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	+96%
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	+96%
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	+ 9.6 %
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	10.0%
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	19.0 %
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.17	19.0 %
10039	CAR	CDMA2000 (1xRTT_RC1)	CDMA2000	4.10	± 9.0 %
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM_PI/4-DOPSK_Halfrate)	AMPS	4.37	19.0 %
10044	CAA	IS-91/EIA/TIA-553 EDD (EDMA EM)	AMPS	1.10	± 9.6 %
10048	CAA	DECT (TDD, TDMA/EDM, GESK, Full Slot, 24)	DECT	12.80	± 9.0 %
10049	CAA	DECT (TDD, TDMA/EDM, GESK, Double Slot, 12)	DECT	10.70	± 9.0 %
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	10.79	± 9.0 %
10058	DAC	EDGE-FDD (TDMA 8PSK TN 0-1-2-3)	GSM	6.52	± 9.0 %
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS_2 Mbps)	WLAN	0.52	19.0 %
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.12	± 9.0 %
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS_11 Mbps)		2.03	I 9.0 %
10062	CAD	IEEE 802.11a/h WiFi 5 GHz (OEDM 6 Mbps)		0.60	19.0 %
10063	CAD	IEEE 802 11a/h WiFi 5 GHz (OFDM, 9 Mbps)		0.00	I 9.0 %
10064	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)		0.03	± 9.0 %
10065	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)		9.09	±9.0 %
10066	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)		9.00	19.0%
10067	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)		9.50	19.0%
10068	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)		10.12	± 9.0 %
10069	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)		10.24	19.0%
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OEDM .9 Mbps)		10.56	I 9.0 %
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)		9.63	± 9.6 %
10073	CAR	IEEE 802 11g WIFI 2.4 GHz (DSSS/OEDM, 12 Mbps)		9.62	± 9.6 %
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OEDM, 24 Mbps)		9.94	± 9.6 %
10075	CAB	IEEE 802 11g WiFi 2 4 GHz (DSSS/OEDM, 36 Mbps)	WLAN	10.30	±9.6 %
10076	CAR	IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM 48 Mbps)		10.77	19.0%
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM 54 Mbps)		10.94	± 9.6 %
10081	CAD	CDMA2000 (1xRTT_RC3)		11.00	± 9.6 %
10082	CAB	IS-54 / IS-136 EDD (TDMA/EDM_DI/A-DORSK_Euthora)		3.97	± 9.6 %
10090	DAC	GPRS-EDD (TDMA_GMSK_TNL0.4)	AIVIPS	4.//	± 9.6 %
10097	CAC	UMTS-EDD (HSDPA)	UNCOMA	6.56	± 9.6 %
10098	DAC	UMTS-FDD (HSUPA_Subtest 2)	WODIVIA	3.98	± 9.6 %
	DAG		VVCDIVIA	3.98	± 9.0 %

10099	CAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	+96%
10100	CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	+96%
10101	CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)		6.42	+96%
10102	CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)		6.60	+96%
10103	DAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)		0.00	+06%
10104	CAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)		0.07	10.0 %
10105	CAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)		10.01	± 9.0 %
10108		LTE-FDD (SC-FDMA 100% RB 10 MHz OPSK)		5 90	± 9.0 %
10109	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-OAM)		6.42	± 9.0 %
10110		LTE-EDD (SC-EDMA 100% RB 5 MHz OPSK)		5.75	± 9.0 %
10111	CAG	LTE-FDD (SC-FDMA 100% RB 5 MHz 16-OAM)		5.75	± 9.0 %
10112	CAG	LTE-EDD (SC-EDMA 100% RB 10 MHz 64-OAM)		0.44	± 9.0 %
10113		LTE-EDD (SC-EDMA 100% RB 5 MHz 64-0 AM)		0.09	± 9.0 %
10114		IEEE 802 110 (HT Greenfield 13.5 Mbos BPSK)		0.02	± 9.0 %
10115	CAG	IEEE 802 11n (HT Greenfield, 81 Mbps, 16-OAM)		0.10	± 9.0 %
10116		IEEE 802.11n (HT Greenfield, 135 Mbps, 10-QAM)		0.40	± 9.0 %
10117		IEEE 802 110 (HT Mixed 13.5 Mbps, BPSK)		8.15	± 9.6 %
10118		IEEE 802 110 (HT Mixed, 81 Mbps, 16-OAM)		8.07	± 9.6 %
10119		IEEE 802.11n (HT Mixed, 81 Mbps, 10-QAM)		8.59	±9.6 %
10140		LTE-EDD (SC-EDMA 100% PB 15 MHz 16 OAM)		8.13	± 9.6 %
10141	CAD	LTE-EDD (SC-EDMA, 100% RB, 15 MHz, 10-QAM)		6.49	± 9.6 %
10142		LTE-EDD (SC-EDMA, 100% RB, 3 MHz, 04-0AM)		6.53	± 9.6 %
10143		LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16 OAM)		0.73	±9.6%
10144		LTE-EDD (SC-EDMA, 100% RB, 3 MHz, 64-0 AM)		6.35	± 9.6 %
10145		LTE-EDD (SC-EDMA 100% RB, 14 MHz, OPSK)		0.05	± 9.6 %
10146		LTE-EDD (SC-EDMA 100% RB, 14 MHz, 16-0AM)		5.76	± 9.6 %
10147	CAC	LTE-EDD (SC-EDMA, 100% RB, 1.4 MHz, 10-QAM)		6.41	± 9.6 %
10149		LTE-EDD (SC-EDMA, 100% RB, 20 MHz, 16-OAM)		6.72	± 9.6 %
10150		LTE-EDD (SC-EDMA 50% RB 20 MHz 64-OAM)		0.42	± 9.6 %
10151		LTE-TDD (SC-EDMA 50% RB 20 MHz, OPSK)		0.00	± 9.6 %
10152		LTE-TDD (SC-EDMA 50% RB 20 MHz, 16-OAM)		9.28	£9.0 %
10153		LTE-TDD (SC-FDMA 50% RB 20 MHz 64-OAM)		9.92	± 9.0 %
10154	CAF	LTE-FDD (SC-FDMA 50% RB 10 MHz, OPSK)		10.00 5.75	± 9.0 %
10155	CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)		5.75	± 9.0 %
10156	CAF	LTE-FDD (SC-FDMA 50% RB 5 MHz OPSK)		5 70	± 9.0 %
10157	CAF	LTE-FDD (SC-FDMA, 50% RB, 5 MHz 16-OAM)		5.79	± 9.0 %
10158	CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)		6.62	± 9.0 %
10159	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)		0.02	± 9.0 %
10160	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, OPSK)		5.00	±9.0%
10161	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)		6.43	19.0 %
10162	CAG	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	ITE-EDD	6.58	+0.6 %
10166	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	+96%
10167	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	+96%
10168	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	+ 9.6 %
10169	CAG	LTE-FDD (SC-FDMA, 1 RB. 20 MHz, QPSK)	LTE-FDD	5.73	+96%
10170	CAG	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)		6.52	+96%
10171	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	+96%
10172	CAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	+96%
10173	CAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9 48	+96%
10174	CAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	+96%
10175	CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
10176	CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10177	CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10178	CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10179	AAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10180	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %