

Report No. : FR010720A

FCC RADIO TEST REPORT

FCC ID	: UZ7TC26AK
Equipment	: Touch computer
Brand Name	: Zebra
Model Name	: TC26AK
Applicant	: Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Manufacturer	: Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Standard	: FCC Part 15 Subpart C §15.247

The product was received on Mar. 12, 2020 and testing was started from Mar. 18, 2020 and completed on Apr. 24, 2020. We, SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Lunis Wu

Reviewed by: Louis Wu SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

Sur	nmary	v of Test Result	.4
1	Gene	ral Description	.5
	1.1	Product Feature of Equipment Under Test	.5
	1.2.	Product Specification of Equipment Under Test	.6
	1.3	Modification of EUT	.6
	1.4	Testing Location	.7
	1.5	Applicable Standards	.7
2	Test	Configuration of Equipment Under Test	.8
	2.1	Carrier Frequency Channel	.8
	2.2	Test Mode	.9
	2.3	Connection Diagram of Test System	14
	2.4	Support Unit used in test configuration and system	15
	2.5	EUT Operation Test Setup	15
	2.6	Measurement Results Explanation Example	15
3	Test	Result	16
	3.1	Number of Channel Measurement	16
	3.2	Hopping Channel Separation Measurement	18
	3.3	Dwell Time Measurement	24
	3.4	20dB and 99% Bandwidth Measurement	
	3.5	Output Power Measurement	37
	3.6	Conducted Band Edges Measurement	40
	3.7	Conducted Spurious Emission Measurement	47
	3.8	Radiated Band Edges and Spurious Emission Measurement	57
	3.9	AC Conducted Emission Measurement	
	3.10	Antenna Requirements	63
4		of Measuring Equipment	
5	Unce	rtainty of Evaluation	66
Ар	pendix	A. AC Conducted Emission Test Result	
Ар	pendix	B. Radiated Spurious Emission	
Ар	pendix	C. Radiated Spurious Emission Plots	

Appendix D. Duty Cycle Plots

Appendix E. Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FR010720A	01	Initial issue of report	Apr. 30, 2020

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	Pass	-
3.4	2.1049	99% Occupied Bandwidth	Reporting only	-
3.5	15.247(b)(1)	Peak Output Power	Pass	-
3.6	15.247(d)	Conducted Band Edges	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	Under limit 9.94 dB at 945.680 MHz
3.9	15.207	AC Conducted Emission	Pass	Under limit 8.74 dB at 13.560 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang

Report Producer: Celery Wei

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature				
Equipment	Touch computer			
Brand Name	Zebra			
Model Name	TC26AK			
FCC ID	UZ7TC26AK			
Sample	Single-WAN, WLAN, GMS, SE4710, NFC, 4GB/64GB, Rear camera and Front camera, 2-pin connector			
EUT supports Radios application	WCDMA/HSPA/LTE/NFC/GNSS WLAN 11a/b/g/n HT20/HT40 WLAN 11ac VHT20/VHT40/VHT80 Bluetooth BR/EDR/LE			
HW Version	DV0			
OS Version	FUSION_QA_2_1.0.0.008_Q			
SW Version	Android version 10			
FW Version	Zebra/TC26PA/TC26:10/03-09-09.00-QN-U00-PRD/Nabe03 091333:userdebug/test-keys			
MFD	26MAR20			
EUT Stage	Engineering sample			

Remark: The above EUT's information was declared by manufacturer.

Specification of Accessories						
AC Adapter	Brand Name	Zebra	Part Number	PWR-WUA5V12W0US		
Battery 1	Brand Name	Zebra	Part Number	BT-000409-00		
Battery 2	Brand Name	Zebra	Part Number	BT-000409-50		
Battery 3	Brand Name	Zebra	Part Number	BT-000411-08		
USB Cable 1 (Type A plug to Type C plug)	Brand Name	Zebra	Part Number	CBL-TC5X-USBC2A-01		
USB Cable 2 (Type A plug to Type C plug)	Brand Name	Zebra	Part Number	CBL-TC2Y-USBC90A-01		
Headset 3.5mm type with PTT/micassy	Brand Name	Zebra	Part Number	HDST-35MM-PTVP-01		
Adapter Cable PTT headset (3.5mm to 3.5mm)	Brand Name	Zebra	Part Number	CBL-TC51-HDST35-01		
Snap on Trigger handle	Brand Name	Zebra	Part Number	TRG-TC2Y-SNP1-01		
Belt Holster	Brand Name	Zebra	Part Number	SG-TC2Y-HLSTR1-01		
Wearable Arm Mount	Brand Name	Zebra	Part Number	SG-TC2Y-ARMNT-01		

Supported Unit Used in Test Configuration and System				
Type C to 3.5mm headset adaptor	Brand Name	Google	Part Number	Pixel-2-2XL

1.2. Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz		
Number of Channels	79		
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78		
Maximum Output Power to Antenna	<class i=""> Bluetooth BR(1Mbps) : 7.78 dBm (0.0060 W) Bluetooth EDR (2Mbps) : 6.82 dBm (0.0048 W) Bluetooth EDR (3Mbps) : 7.24 dBm (0.0053 W) <class ii=""> Bluetooth BR(1Mbps) : 2.19 dBm (0.0017 W) Bluetooth EDR (2Mbps) : 4.65 dBm (0.0029 W) Bluetooth EDR (3Mbps) : 5.06 dBm (0.0032 W)</class></class>		
99% Occupied Bandwidth	Bluetooth BR(1Mbps) : 0.848 MHz Bluetooth EDR (2Mbps) : 1.164 MHz Bluetooth EDR (3Mbps) : 1.152 MHz		
Antenna Type	PIFA Antenna type with gain 0.60 dBi		
Type of Modulation	Bluetooth BR (1Mbps) : GFSK Bluetooth EDR (2Mbps) : π /4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK		

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Testing Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory		
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978		
Test Site No.	Sporton TH05-HY	Site No. CO05-HY	

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	PORTON INTERNATIONAL INC. EMC & Wireless Communications aboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No. 03CH12-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW0007

1.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode

<class i=""></class>	
----------------------	--

		Blue	Bluetooth Average Output Power		
Channel Frequency		GFSK / 1Mbps			
		DH1	DH3	DH5	
Ch00	2402MHz	<mark>7.45</mark> dBm	7.44 dBm	7.41 dBm	
Ch39	2441MHz	7.05 dBm	7.04 dBm	6.97 dBm	
Ch78	2480MHz	6.71 dBm	6.69 dBm	6.63 dBm	

		Bluetooth Average Output Power			
Channel Frequency		π/4-DQPSK / 2Mbps			
		2DH1	2DH3	2DH5	
Ch00	2402MHz	<mark>4.20</mark> dBm	4.02 dBm	4.00 dBm	
Ch39	2441MHz	3.89 dBm	3.70 dBm	3.69 dBm	
Ch78	2480MHz	3.64 dBm	3.45 dBm	3.41 dBm	

		Bluetooth Average Output Power				
Channel	Frequency		8-DPSK / 3Mbps			
		3DH1	3DH3	3DH5		
Ch00	2402MHz	<mark>4.21</mark> dBm	4.02 dBm	4.00 dBm		
Ch39	2441MHz	3.88 dBm	3.69 dBm	3.67 dBm		
Ch78	2480MHz	3.61 dBm	3.43 dBm	3.40 dBm		

		Blu	Bluetooth Peak Output Power		
Channel Frequent		GFSK / 1Mbps			
		DH1	DH3	DH5	
Ch00	2402MHz	<mark>7.78</mark> dBm	7.75 dBm	7.73 dBm	
Ch39	2441MHz	7.43 dBm	7.41 dBm	7.35 dBm	
Ch78	2480MHz	7.09 dBm	7.06 dBm	7.03 dBm	

		Bluetooth Peak Output Power						
Channel	Frequency	π/4-DQPSK / 2Mbps		π/4-DQPSK / 2Mbps				
		2DH1	2DH3	2DH5				
Ch00	2402MHz	<mark>6.82</mark> dBm	6.80 dBm	6.76 dBm				
Ch39	2441MHz	6.52 dBm	6.48 dBm	6.45 dBm				
Ch78	2480MHz	6.27 dBm	6.22 dBm	6.17 dBm				

		Bluetooth Peak Output Power			
Channel Frequency		8-DPSK / 3Mbps			
		3DH1	3DH3	3DH5	
Ch00	2402MHz	<mark>7.24</mark> dBm	7.08 dBm	7.07 dBm	
Ch39	2441MHz	6.90 dBm	6.87 dBm	6.79 dBm	
Ch78	2480MHz	6.59 dBm	6.58 dBm	6.55 dBm	

Remark: The data rate was set in 1Mbps for all the test items due to the highest RF output power.

<class ii=""></class>					
	Bluetooth Average Output Power			ower	
Channel	Frequency	GFSK / 1Mbps			
		DH1	DH3	DH5	
Ch00	2402MHz	0.83 dBm	0.81 dBm	0.80 dBm	
Ch39	2441MHz	<mark>1.31</mark> dBm	1.28 dBm	1.27 dBm	
Ch78	2480MHz	1.29 dBm	1.27 dBm	1.24 dBm	

Channel Frequency		Bluetooth Average Output Power		
		π/4-DQPSK / 2Mbps		
		2DH1	2DH3	2DH5
Ch00	2402MHz	1.37 dBm	1.26 dBm	1.24 dBm
Ch39	2441MHz	1.89 dBm	1.71 dBm	1.70 dBm
Ch78	2480MHz	<mark>1.94</mark> dBm	1.78 dBm	1.73 dBm

		Bluetooth Average Output Power				
Channel	Frequency		8-DPSK / 3Mbps	3DH5 1.23 dBm 1.69 dBm		
		3DH1	3DH3	3DH5		
Ch00	2402MHz	1.43 dBm	1.27 dBm	1.23 dBm		
Ch39	2441MHz	1.88 dBm	1.72 dBm	1.69 dBm		
Ch78	2480MHz	<mark>1.92</mark> dBm	1.78 dBm	1.76 dBm		

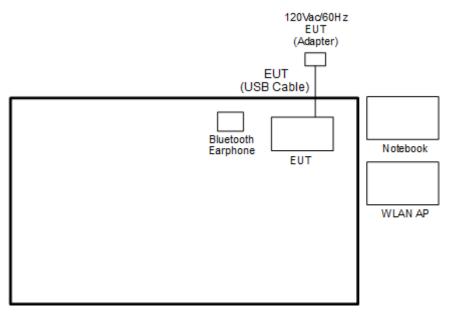
Channel Frequency		Bluetooth Peak Output Power			
		GFSK / 1Mbps			
		DH1	DH3	DH5	
Ch00	2402MHz	1.72 dBm	1.69 dBm	1.67 dBm	
Ch39	2441MHz	2.14 dBm	2.13 dBm	2.12 dBm	
Ch78	2480MHz	<mark>2.19</mark> dBm	2.17 dBm	2.15 dBm	

		Bluetooth Peak Output Power					
Channel	Frequency	π/4-DQPSK / 2Mbps		π/4-DQPSK / 2Mbps			
		2DH1	2DH3	2DH5			
Ch00	2402MHz	4.09 dBm	4.07 dBm	4.05 dBm			
Ch39	2441MHz	<mark>4.65</mark> dBm	4.55 dBm	4.53 dBm			
Ch78	2480MHz	4.63 dBm	4.60 dBm	4.56 dBm			

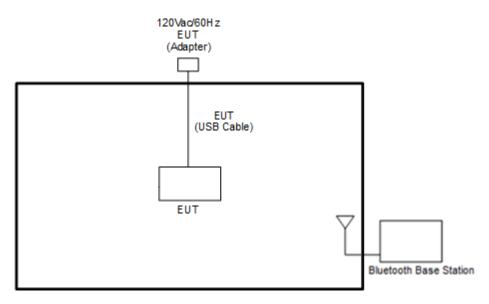
		Blu	Bluetooth Peak Output Power				
Channel	Frequency		8-DPSK / 3Mbps	DPSK / 3Mbps 3DH3 3DH5			
		3DH1	3DH3	3DH5			
Ch00	2402MHz	4.44 dBm	4.52 dBm	4.45 dBm			
Ch39	2441MHz	5.00 dBm	4.99 dBm	4.83 dBm			
Ch78	2480MHz	<mark>5.06</mark> dBm	4.95 dBm	4.92 dBm			

Remark: The class II was tested with power only.

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z, and Accessory. The worst cases (X plane with Adatper) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.


The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases									
		Data Rate / Modulation								
т	est Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps						
		GFSK	π /4-DQPSK	8-DPSK						
	onducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz						
	est Cases	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz						
Te	ist Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz						
			Bluetooth BR 1Mbps GFSK							
R	Radiated	Mode 1: CH00_2402 MHz								
Те	est Cases	Mode 2: CH39_2441 MHz								
		Mode 3: CH78_2480 MHz								
	AC	Mode 1 - + WI AN (2 4CHz) Link + Riveteeth Link + NEC On + USB eehle 1 (Cherging								
Co	onducted	Mode 1 : WLAN (2.4GHz) Link + Bluetooth Link + NFC On + USB cable 1 (Charging								
E	mission	from AC Adapter) + Battery 1								
Re	mark:									
1.	For radiate	only since the highest RF								
	output power in the preliminary tests. The conducted spurious emissions and conducted b									
	measurement for other data rates were not worse than 1Mbps, and no other significantly									
	frequencie	s found in conducted spurious	emission.							
2.	For Radiat	ed Test Cases, the tests were	performed with Battery 1 and	USB Cable 1.						



2.3 Connection Diagram of Test System

<AC Conducted Emission Mode>

<Bluetooth Tx Mode>

2.4 Support Unit used in test configuration and system

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8 m
2.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
3.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
4.	Notebook	DELL	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2m DC O/P: Shielded, 1.8m
5.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT V3.0.303.0" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to contact with base station to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup

Spectrum Analyzer

EUT

3.1.5 Test Result of Number of Hopping Frequency

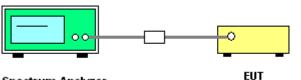
Test Engineer : R	ichard Qiu	Tem	nperature :	21~25 ℃	
Test Lingineer .		Re		51~54%	
Number of Hoppir (Channel)		Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail	
79		20		Pass	

Date: 25.MAR.2020 11:52:58

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

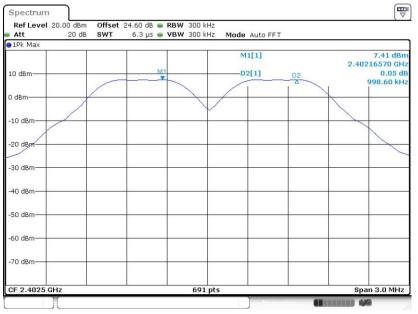
See list of measuring equipment of this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

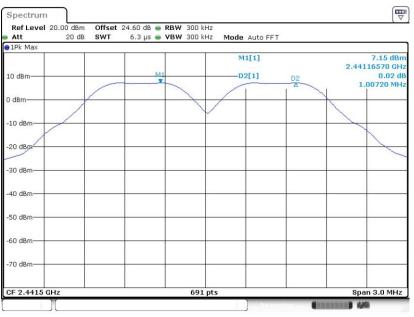
3.2.4 Test Setup

Spectrum Analyzer


3.2.5 Test Result of Hopping Channel Separation

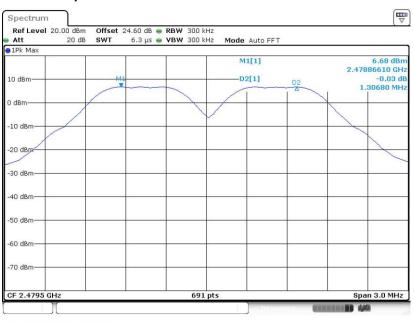
Test Engineer :	Richard Oiu	Temperature :	21~25 ℃
		Relative Humidity :	51~54%

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.999	0.6155	Pass
DH	1Mbps	1	39	2441	1.007	0.6155	Pass
DH	1Mbps	1	78	2480	1.307	0.6175	Pass
2DH	2Mbps	1	0	2402	0.977	0.8423	Pass
2DH	2Mbps	1	39	2441	1.146	0.8393	Pass
2DH	2Mbps	1	78	2480	1.159	0.8393	Pass
3DH	3Mbps	1	0	2402	1.003	0.8191	Pass
3DH	3Mbps	1	39	2441	1.311	0.8191	Pass
3DH	3Mbps	1	78	2480	0.999	0.8220	Pass


<1Mbps>

Channel Separation Plot on Channel 00 - 01

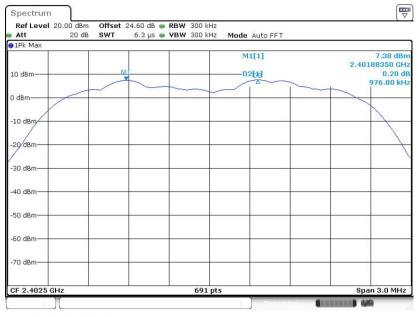
Date: 25.MAR.2020 11:48:52



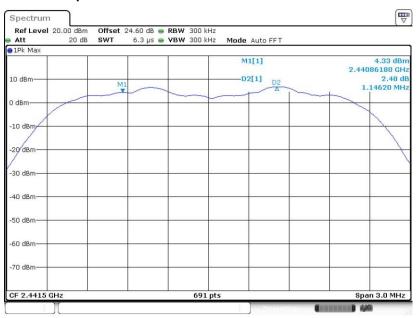
Channel Separation Plot on Channel 39 - 40

Date: 25.MAR.2020 13:36:49

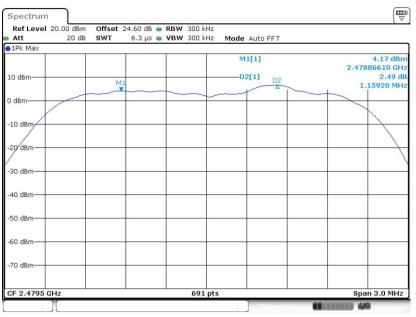
Channel Separation Plot on Channel 77 - 78



Date: 25.MAR.2020 11:54:45

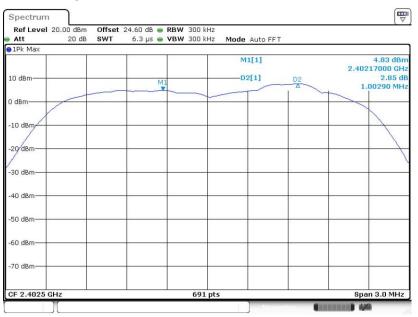

<2Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 25.MAR.2020 13:47:32

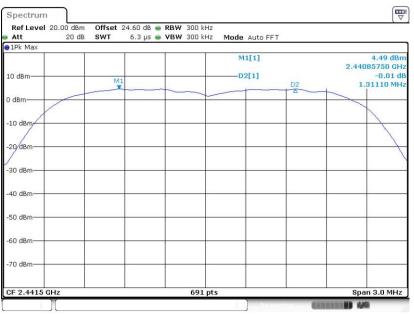
Channel Separation Plot on Channel 39 - 40

Date: 25.MAR.2020 13:40:19



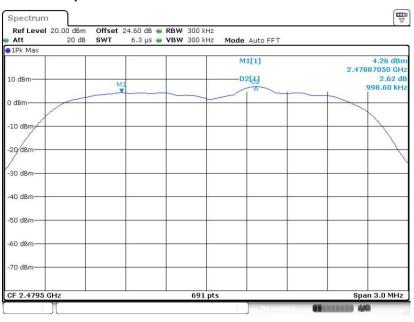
Channel Separation Plot on Channel 77 - 78

Date: 25.MAR.2020 13:49:19


<3Mbps>

Channel Separation Plot on Channel 00 - 01

Date: 25.MAR.2020 14:02:48



Channel Separation Plot on Channel 39 - 40

Date: 25.MAR.2020 14:06:10

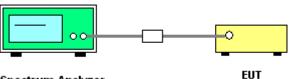
Channel Separation Plot on Channel 77 - 78

Date: 25.MAR.2020 13:57:36

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

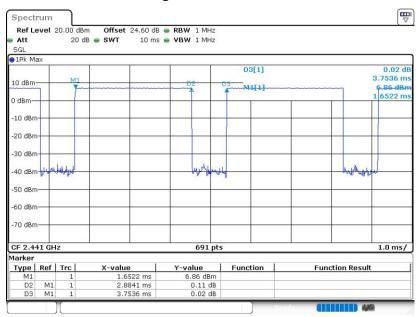

3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup


Spectrum Analyzer

3.3.5 Test Result of Dwell Time

Test Engineer :	Richard Oiu	Temperature :	21~25 ℃
	Richard Qiu	Relative Humidity :	51~54%

Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail
Nomal	79	106.67	2.88	0.31	0.4	Pass
AFH	20	53.33	2.88	0.15	0.4	Pass

Package Transfer Time Plot

Date: 25.MAR.2020 11:27:20

Remark:

1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s),Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

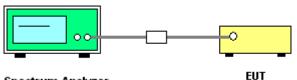
2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.

3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only


3.4.2 Measuring Instruments

See list of measuring equipment of this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

Spectrum Analyzer

3.4.5 Test Result of 20dB Bandwidth

Test Engir	eer : Richard			Temperature :		21~25 ℃	
Test Lingi				Relativ	e Humidity :	51~54%	
Mod.	Data Rate	ΝΤΧ	СН.	Freq. (MHz)	20db BW (M	Hz) Pass/Fail	
DH	1Mbps	1	0	2402	0.923	Pass	
DH	1Mbps		39	2441	0.923	Pass	
DH	H 1Mbps		78	2480	0.926	Pass	
2DH	2Mbps	1	0	2402	1.263	Pass	
2DH	2Mbps	1	39	2441	1.259	Pass	
2DH	2Mbps	1	78	2480	1.259	Pass	
3DH	3Mbps	1	0	2402	1.229	Pass	
3DH	3Mbps	1	39	2441	1.229	Pass	
3DH	3Mbps	1	78	2480	1.233	Pass	


<1Mbps>

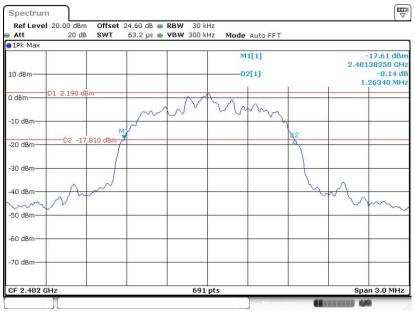
20 dB Bandwidth Plot on Channel 00

Date: 25.MAR.2020 11:50:14

20 dB Bandwidth Plot on Channel 39

Date: 25.MAR.2020 13:34:31

20 dB Bandwidth Plot on Channel 78



Date: 25.MAR.2020 11:55:42

<2Mbps>

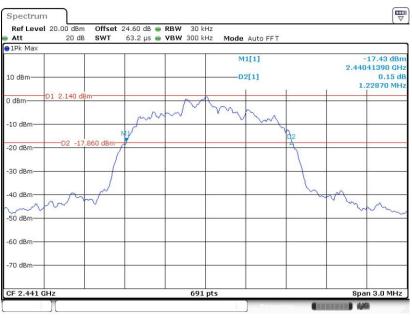
20 dB Bandwidth Plot on Channel 00


Date: 25.MAR.2020 13:41:30

Date: 25.MAR.2020 13:37:58

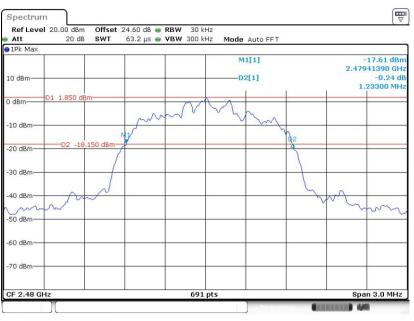
20 dB Bandwidth Plot on Channel 78

Date: 25.MAR.2020 13:50:14


<3Mbps>

20 dB Bandwidth Plot on Channel 00

Date: 25.MAR.2020 13:59:55



20 dB Bandwidth Plot on Channel 39

Date: 25.MAR.2020 14:03:50

20 dB Bandwidth Plot on Channel 78

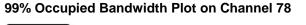
Date: 25.MAR.2020 13:53:39

3.4.6 Test Result of 99% Occupied Bandwidth

Test Engir	Bich	ard Qi			Temperature :	21~25 ℃
Test Eligi	ICCI. NICH		u		Relative Humidity :	51~54%
			-			
Mod.	Data Rate	Nтx	СН.	Freq. (MHz)	99% Bandwidth (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.848	Pass
DH	1Mbps	1	39	2441	0.848	Pass
DH	1Mbps	1	78	2480	0.848	Pass
2DH	2Mbps	1	0	2402	1.164	Pass
2DH	2Mbps	1	39	2441	1.164	Pass
2DH	2Mbps	1	78	2480	1.164	Pass
3DH	3Mbps	1	0	2402	1.152	Pass
3DH	3Mbps	1	39	2441	1.152	Pass
3DH	3Mbps	1	78	2480	1.146	Pass

<1Mbps>

99% Occupied Bandwidth Plot on Channel 00


Date: 25.MAR.2020 11:51:05

99% Occupied Bandwidth Plot on Channel 39

Date: 25.MAR.2020 13:35:06



Date: 25.MAR.2020 11:56:34

<2Mbps>

99% Occupied Bandwidth Plot on Channel 00

Date: 25.MAR.2020 13:42:25

99% Occupied Bandwidth Plot on Channel 39

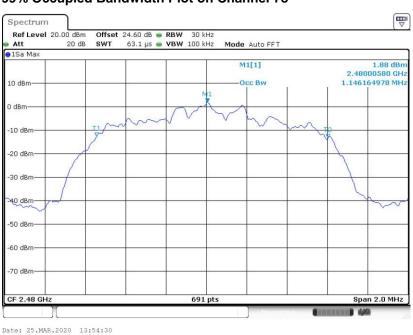
Date: 25.MAR.2020 13:38:31

99% Occupied Bandwidth Plot on Channel 78

Date: 25.MAR.2020 13:51:04

<3Mbps>

99% Occupied Bandwidth Plot on Channel 00


Date: 25.MAR.2020 14:00:48

99% Occupied Bandwidth Plot on Channel 39

Date: 25.MAR.2020 14:04:28

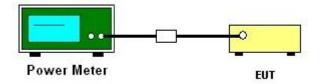
99% Occupied Bandwidth Plot on Channel 78

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.


3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Test Engineer :	Richard Qiu	Temperature :	21~25 ℃
lest Engineer .		Relative Humidity :	51~54%

<Class I>

DH	CH.	Ντχ	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	7.78	30.00	Pass
DH1	39	1	7.43	30.00	Pass
	78	1	7.09	30.00	Pass
2DH	CH.	Νтх	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	6.82	20.97	Pass
2DH1	39	1	6.52	20.97	Pass
	78 1		6.27	20.97	Pass
3DH	CH.	Νтх	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	7.24	20.97	Pass
3DH1	39	1	6.90	20.97	Pass
	78	1	6.59	20.97	Pass

<Class II>

DH	CH.	Νтх	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	1.72	30.00	Pass
DH1	39	1	2.14	30.00	Pass
	78	1	2.19	30.00	Pass
2DH	CH.	Νтх	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	4.09	20.97	Pass
2DH1	39	1	4.65	20.97	Pass
	78	1	4.63	20.97	Pass
3DH	CH.	Νтх	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	4.44	20.97	Pass
3DH1	39	1	5.00	20.97	Pass
	78	1	5.06	20.97	Pass

3.5.6 Test Result of Average Output Power (Reporting Only)

Test Engineer :	Richard Qiu	Temperature :	21~25 ℃
rest Engineer .		Relative Humidity :	51~54%

<Class I>

DH	CH.	Νтх	Average Power (dBm)	Duty Factor (dB)
	0	1	7.45	5.18
DH1	39	1	7.05	5.18
	78	1	6.71	5.18
2DH	CH.	Νтх	Average Power (dBm)	Duty Factor (dB)
	0	1	4.20	5.12
2DH1	39	1	3.89	5.12
	78	1	3.64	5.12
3DH	CH.	Νтх	Average Power (dBm)	Duty Factor (dB)
	0	1	4.21	5.12
3DH1	39	1	3.88	5.12
	78	1	3.61	5.12

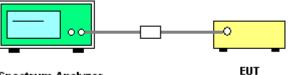
<Class II>

DH	CH.	Ντχ	Average Power (dBm)	Duty Factor (dB)
	0	1	0.83	5.18
DH1	39	1	1.31	5.18
	78	1	1.29	5.18
2DH	CH.	Νтх	Average Power (dBm)	Duty Factor (dB)
	0	1	1.37	5.12
2DH1	39	1	1.89	5.12
	78	1	1.94	5.12
3DH	CH.	Νтх	Average Power (dBm)	Duty Factor (dB)
	0	1	1.43	5.12
3DH1	39	1	1.88	5.12
	78	1	1.92	5.12

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

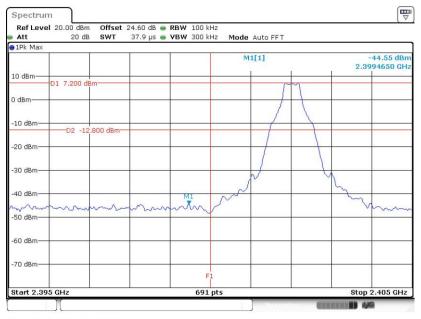

3.6.2 Measuring Instruments

See list of measuring equipment of this test report.

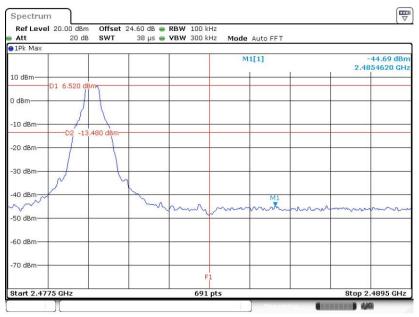
3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup


Spectrum Analyzer

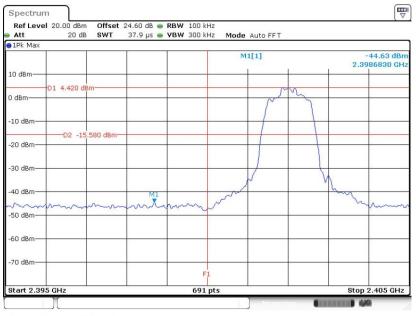
3.6.5 Test Result of Conducted Band Edges


<1Mbps>

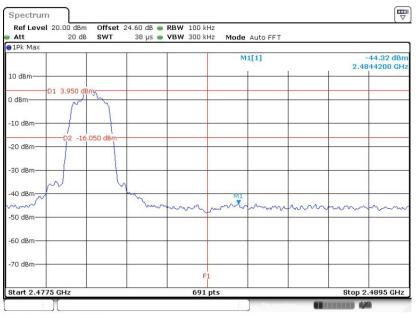
Low Band Edge Plot on Channel 00

Date: 25.MAR.2020 11:50:32

High Band Edge Plot on Channel 78



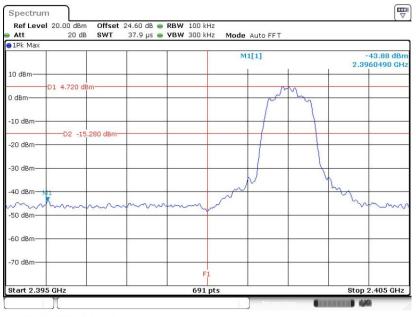
Date: 25.MAR.2020 11:56:01


<2Mbps>

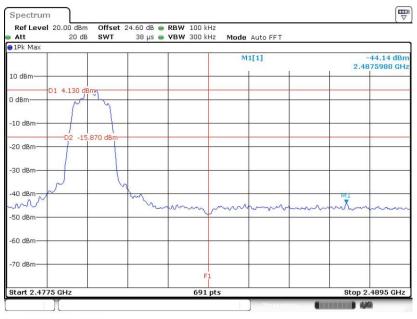
Low Band Edge Plot on Channel 00

Date: 25.MAR.2020 13:41:48

High Band Edge Plot on Channel 78



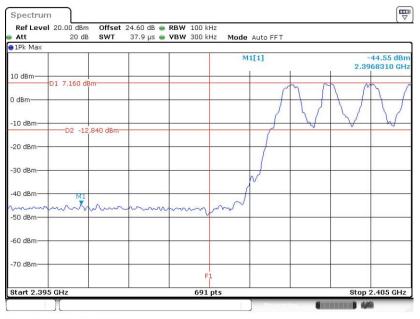
Date: 25.MAR.2020 13:50:32


<3Mbps>

Low Band Edge Plot on Channel 00

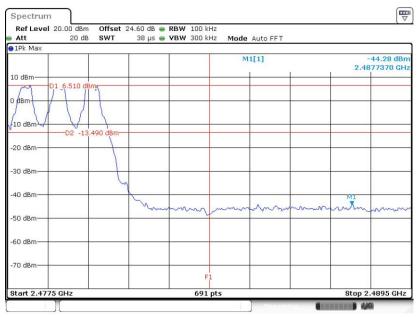
Date: 25.MAR.2020 14:00:13

High Band Edge Plot on Channel 78



Date: 25.MAR.2020 13:53:57

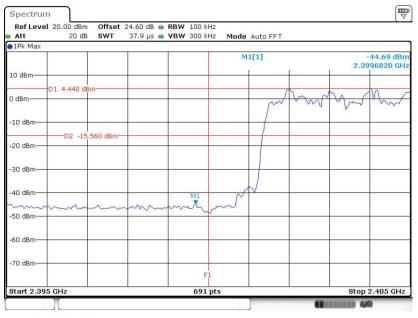
3.6.6 Test Result of Conducted Hopping Mode Band Edges


<1Mbps>

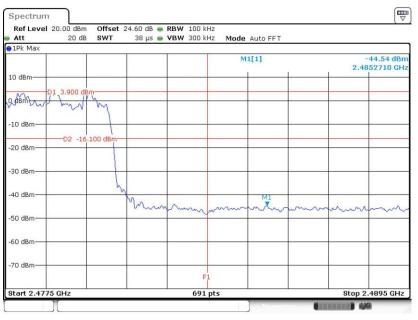
Hopping Mode Low Band Edge Plot

Date: 25.MAR.2020 11:53:20

Hopping Mode High Band Edge Plot



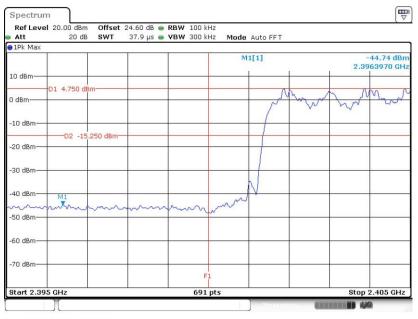
Date: 25.MAR.2020 11:53:43


<2Mbps>

Hopping Mode Low Band Edge Plot

Date: 25.MAR.2020 13:47:56

Hopping Mode High Band Edge Plot



Date: 25.MAR.2020 13:48:22

<3Mbps>

Hopping Mode Low Band Edge Plot

Date: 25.MAR.2020 13:58:35

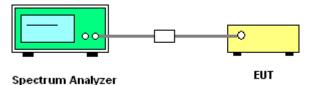
Hopping Mode High Band Edge Plot

Date: 25.MAR.2020 13:58:08

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

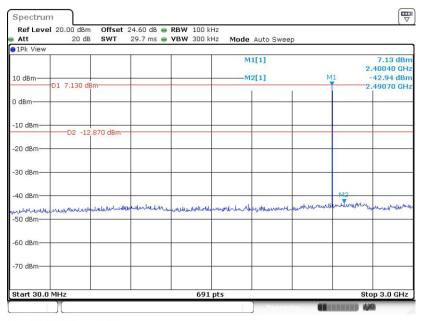

3.7.2 Measuring Instruments

See list of measuring equipment of this test report.

3.7.3 Test Procedure

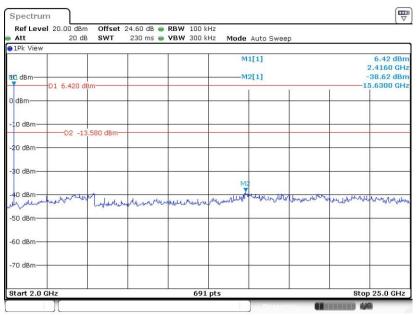
- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup



TEL : 886-3-327-3456 FAX : 886-3-328-4978 Report Template No.: BU5-FR15CBT Version 2.4

3.7.5 Test Result of Conducted Spurious Emission


<1Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 25.MAR.2020 11:51:35

1Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 25.MAR.2020 11:52:01

Att	20 dB	SWT	29.7 ms 👄	VBW 300	Hz Mode	Auto Swee	р			
1Pk View					M	1[1]			6.88 dBn	
10 dBm—	D1 6.880 dB	m			M2[1]			M1	2.43910 GH -42.71 dBn 2.58950 GH	
0 dBm										
-10 dBm—	D2 -13.	120 dBm-								
-20 dBm—				s						
-30 dBm—			<i>v.</i>	<u>.</u>				<u>.</u>		
40 dBm—					- 0.55			M2		
-50 dBm—	monrideradorrad	abababababa	-Malalikerene	permitentia	montenen	all all all and a second	hardenter		Helderson	
60 dBm—										
70 dBm—										
	D MHz			691				s		

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 25.MAR.2020 13:35:35

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Att	el 20.00 dBm 20 dB			RBW 100 k		Auto Swee	р		
1Pk View			1	1		4[4]			6.49 dBr
					IVI	1[1]			2.4490 GH
dBm-					M	2[1]			-38.93 dBi
1	D1 6.490 de	3m-				1	ľ	1	5.9300 GH
dBm									
10 dBm—									
to asm-	D2 -13	.510 dBm-		-			-		-
0 dBm—									
30 dBm—				-	-				1
					1	12			
40 dBm	munder	Muniter	Mr. Mr. Mr.	mumum	monument	therman	muhruth	whiteward	hall
50 dBm—		the teacher	1						
50 abm—									
50 dBm—									
70 dBm—									
tart 2.0	CH ₇			691	pts			Stor	25.0 GHz

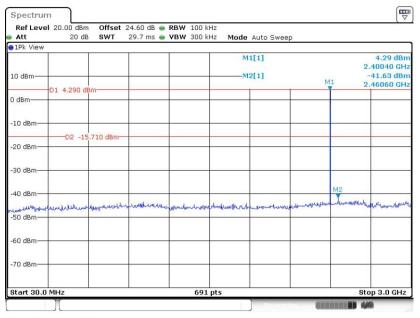
Date: 25.MAR.2020 13:36:02

Att	20 dB	SWT	29.7 ms 🖷	• VBW 300	kHz Mode	Auto Swee	р		
1Pk View	·								
					M1[1]				6.70 dBn 2.48210 GH
10 dBm—					M2[1]			M1	-42.62 dBn
	D1 6.700 dB	m		-		1	Ê.	1	-2.61100 GH
0 dBm				_					
-10 dBm—									
10 0011	D2 -13.	300 dBm-	-				-		
-20 dBm—									
-30 dBm—				-	-		2		
-40 dBm—								M	2
to abiii	wantrand	L. u. alabard	an handrande		d allow a low - th		marcher	mound	Mun she her all the
-50 dBm-	- Hear D. Arren D. D. L.	~~~~~		artis and a	afterness cade with	Partiand a role of			
-60 dBm—									
-oo ubiii—									
-70 dBm—									
	0 MHz				1 pts				Stop 3.0 GHz

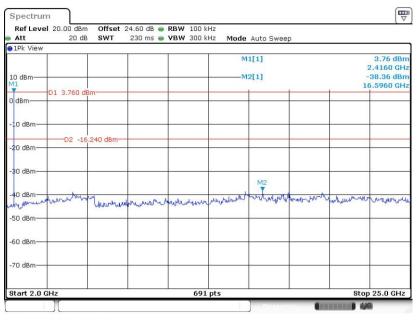
CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 25.MAR.2020 11:57:16

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


Att	el 20.00 dBm 20 dB	SWT		RBW 100 WBW 300 WBW 30		Auto Swee	0		
1Pk View	0								
La dBm-						1[1] 2[1]			6.42 dBr 2.4830 GH -38.82 dBr
) dBm	D1 6.420 dB	m						1	9.9570 GH
10 dBm—	D2 -13.	580 dBm-							
20 dBm—									
30 dBm—			0	-	4		M2		
40 dBm—	all with water to and	Munadan	munum	myrostewas	polensia robal	they had when the	munder	whether	andura
50 dBm—									
60 dBm—									
70 dBm—									
Start 2.0	CH2			691	pts			Stor	p 25.0 GHz

Date: 25.MAR.2020 11:57:49


<2Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 25.MAR.2020 13:42:54

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 25.MAR.2020 13:43:21

Att	el 20.00 dBm 20 dB	SWT	24.60 dB 👄 29.7 ms 👄	VBW 300		Auto Sweep			
●1Pk View	0								
10 dBm—					M			4.13 dBn 2.43910 GH -42.29 dBn	
	D1 4.130 dB	m			_	1 1		M1 3	2.61530 GH
0 dBm				-					
-10 dBm—				_					
-20 dBm—	D2 -15	870 dBm-							
-30 dBm—				-					
-40 dBm—								M2	
50 dBm-	www.	human	Muchan	enquerturate	mucheleset	houtennit	alutitution	and work when the	hadeneener
-60 dBm—									
-70 dBm—									
Start 30.					1 pts				op 3.0 GHz

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 25.MAR.2020 13:39:02

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Att	el 20.00 dBr 20 d		24.60 dB 👄 230 ms 👄	VBW 300 k		Auto Swee	р		
1Pk View					M	1[1]			4.02 dBn 2.4490 GH
LO dBm					M	2[1]			-39.02 dBn 6.9760 GH
dBm	D1 4.020 (3Bm							
10 dBm—									
20 dBm—	D2 -1	5.980 dBm-		-					
-30 dBm—									<i>x</i>
-0 dBm	uhu uhu han ha	M2 New Warne	releventer	Annaber	Multim	Whent	handle	Wheelphile	den and the second
60 dBm—									
70 dBm—			-						
Start 2.0	0.11-			691	nte			Pto	25.0 GHz

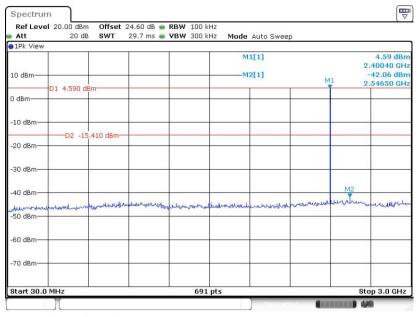
Date: 25.MAR.2020 13:39:29

Att	el 20.00 dBm 20 dB	SWT		RBW 100		Auto Sweep	5		
1Pk View	8 T			-					
10 dBm—						11[1]			4.08 dBn 2.48210 GH -42.52 dBn
	D1 4.080 dB	m						M1	2.55510 GH
0 dBm				-				-	
-10 dBm—									
-20 dBm—	D2 -15.	920 dBm					5- 		
-30 dBm—									
-40 dBm—								M2	Murrendelanaro
-50 dBm-	rwenner	muniatur	hereitensen	montalisticher	and a stand and a stand of the	lowellowelle	hard a second share	-per altama	un delanaro
-60 dBm—				-					
-70 dBm—									

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 25.MAR.2020 13:51:47

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


Att	el 20.00 dBm 20 dB		24.60 dB 👄 230 ms 👄	VBW 300 k		Auto Swee	р		
1Pk View									
					м	1[1]			3.56 dBr 2.4830 GH
LO dBm	-				M	2[1]			-38.83 dBr
M1	D1 3.560 df	300-					-	1	9.6910 GH
0 dBm	01 0.000 0								
-10 dBm—									
-20 dBm-	D2 -16	.440 dBm—							
20 0011									
-30 dBm									
40 dBm—	a a Astro	ktr		122	h h	the when week	M2	1	
Multimation	down the forthe	lenterhero	manthe	Unwelengement	Munu	an and and	Junear M C . A	Andrew and	monum
-50 dBm—									
60 dBm—									
70 dBm—									
Start 2.0	GHz			691	pts			Stop	p 25.0 GHz

Date: 25.MAR.2020 13:52:14

<3Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 25.MAR.2020 14:01:33

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Ref Level Att	20.00 dBm 20 dB	SWT		RBW 100 k		Auto Swee	D		
1Pk View									
l0 dBm	1					1[1] 2[1]			4.47 dBr 2.4160 GH 38.62 dBr 5.6300 GH
dBm)1 4.470 dB	m							
0 dBm									
20 dBm	D2 -15.	530 dBm-	-	-					
30 dBm			<i>v</i>	<u>.</u>					
40 dBm Vyshuursh 50 dBm	whateret	Upman	enumber	humund	Noneman		muhan		monofer
i0 dBm									
'0 dBm									
tart 2.0 Gł	47			691	nts			Stor	25.0 GHz

Date: 25.MAR.2020 14:02:00

Att	20 dB	SWT	29.7 ms	VBW 30	0 kHz Mode	e Auto Swee	p		
1Pk View	8								
10 dBm						M1[1] M2[1]			4.17 dBn 2.43910 GH -42.08 dBn
	D1 4.170 dBr							M1 ▼	2.34450 GH
0 dBm	D1 4.170 ubi	м							
-10 dBm—			-						
-20 dBm—	D2 -15.8	830 dBm-							
-30 dBm—				<u>.</u>					
-40 dBm—				_			M2		
-50 dBm-	undantion	mpater and a second second	hermonita	velunation	unvertilitie	mahlumahu	nontrobundeller	ulutura	havenunated
-60 dBm—			-	_	_				
-70 dBm—									
Start 30.0					91 pts				top 3.0 GHz

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 25.MAR.2020 14:04:57

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Att	el 20.00 dBm 20 dB			RBW 100 k		Auto Swee	р		
1Pk View				1					0.00.10
					M	1[1]			3.93 dBn 2.4490 GH
10 dBm					M	2[1]			-38.32 dBr
T	D1 3.930 dt	3m					1	1	5.5970 GH
dBm									
10 dBm-									~
	D2 -16	.070 dBm-		-	·/		-		-
20 dBm—									- 0
30 dBm—									
					Ma				
40 dBm-	muntermeter	the how the work	handerte	munum	munin	multinut	www.uhr	humaharaha	mandy
50 dBm—	-						-		
60 dBm—									
70 dBm—									
Start 2.0					pts				p 25.0 GHz

Date: 25.MAR.2020 14:05:23

Att	el 20.00 dBm 20 dB		24.60 dB 👄 29.7 ms 👄	VBW 300		Auto Swee	D		
∋1Pk View	8								
10 dBm						1[1]		M1	4.06 dBn 2.48210 GH -42.06 dBn 2.68410 GH
0 dBm	D1 4.060 dl	3m						H	
-10 dBm—									-
-20 dBm—	D2 -15	.940 dBm—							
-30 dBm—	1 <i>6</i>			8	d		82		
-40 dBm—								10	M2
-50 dBm—	warnetherspelow	uldrouded	humberhay	hunderstraktion	destermination	an the weat	Marcher	COM. Privation	44 Juliose harris
-60 dBm—			-						
-70 dBm—			-						
Start 30.0				(0)	L pts				Stop 3.0 GHz

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 25.MAR.2020 13:54:57

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Att	el 20.00 dBm 20 dB		24.60 dB 👄 230 ms 👄	VBW 300 k		Auto Swee	5		
1Pk View			1						
					м	1[1]			4.15 dBr 2.4830 GH
0 dBm					M	2[1]			-38.69 dBi
11	D1 4.150 dB	3m						2	0.0570 GH
0 dBm									
10 dBm—									
20 dBm-	D2 -15	.850 dBm-							
20 ubiii—									
30 dBm-					-				<i>4</i>
							M2		
40 dBm—	al motor have	wh	whenhow		and the state for	the here will	multiplet	4. Jona	Murthunhan
Minetunorthe	prod	baulitur	www.ushur	manne	parties -			0,000	and a construction
50 dBm—							-		
60 dBm—									
70 dBm—									
Start 2.0					pts				p 25.0 GHz

Date: 25.MAR.2020 13:55:24

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

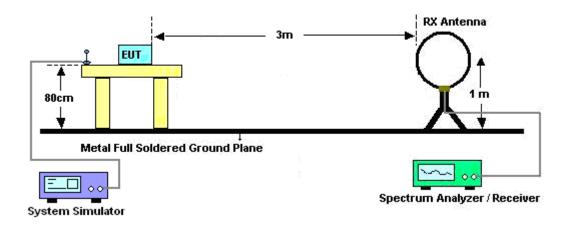
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 - 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

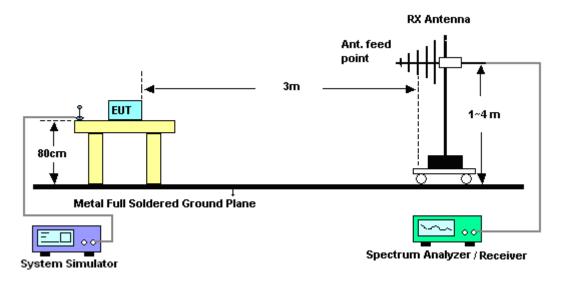
3.8.2 Measuring Instruments

See list of measuring equipment of this test report.

3.8.3 Test Procedures

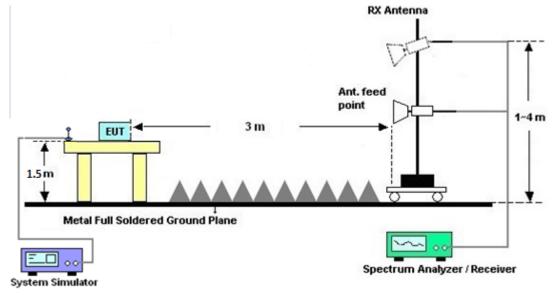

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.8.4 Test Setup

For radiated emissions below 30MHz


For radiated emissions from 30MHz to 1GHz

TEL : 886-3-327-3456	Page Number	: 59 of 66
FAX : 886-3-328-4978	Issued Date	: Apr. 30, 2020
Report Template No.: BU5-FR15CBT Version 2.4	Report Version	: 01

For radiated emissions above 1GHz

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

3.8.7 Duty Cycle

Please refer to Appendix D.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B and C.

3.9 AC Conducted Emission Measurement

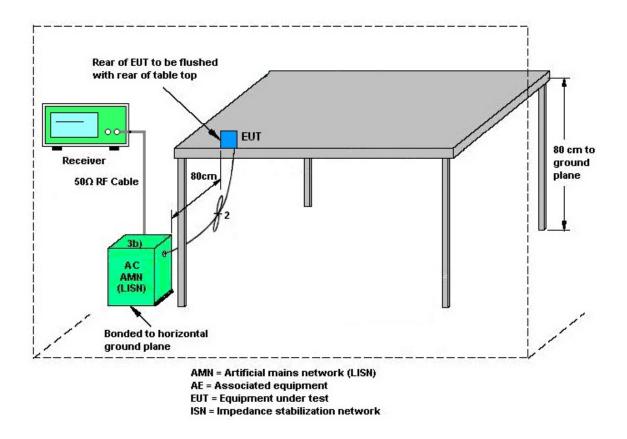
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted	limit (dBµV)
Frequency of emission (MHZ)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


See list of measuring equipment of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix A.

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Dec. 26, 2019	Mar. 19, 2020~ Apr. 24, 2020	Dec. 25, 2020	Radiation (03CH12-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01 N-06	37059 & 01	30MHz~1GHz	Oct. 12, 2019	Mar. 19, 2020~ Apr. 24, 2020	Oct. 11, 2020	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120D	9120D-132 8	1GHz ~ 18GHz	Nov. 14, 2019	Mar. 19, 2020~ Apr. 24, 2020	Nov. 13, 2020	Radiation (03CH12-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 584	18GHz ~ 40GHz	Dec. 10, 2019	Mar. 19, 2020~ Apr. 24, 2020	Dec. 09, 2020	Radiation (03CH12-HY)
Preamplifier	COM-POWER	PA-103	161075	10MHz~1GHz	Mar. 25, 2020	Mar. 19, 2020~ Apr. 24, 2020	Mar. 24, 2021	Radiation (03CH12-HY)
Preamplifier	Jet-Power	JPA00101800 -30-10P	160118000 2	1GHz~18GHz	Feb. 07, 2020	Mar. 19, 2020~ Apr. 24, 2020	Feb. 06, 2021	Radiation (03CH12-HY)
Preamplifier	Keysight	83017A	MY532701 48	1GHz~26.5GHz	Dec. 20, 2019	Mar. 19, 2020~ Apr. 24, 2020	Dec. 19, 2020	Radiation (03CH12-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz ~ 40GHz	Dec. 13, 2019	Mar. 19, 2020~ Apr. 24, 2020	Dec. 12, 2020	Radiation (03CH12-HY)
Spectrum Analyzer	Rohde & Schwarz	FSV40	101408	10Hz~40GHz	Aug. 13, 2019	Mar. 19, 2020~ Apr. 24, 2020	Aug. 12, 2020	Radiation (03CH12-HY)
Hygrometer	TECPEL	DTM-303B	TP161243	N/A	May 11, 2019	Mar. 19, 2020~ Apr. 24, 2020	May 10, 2020	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0058/126E	30M-18G	Dec. 12, 2019	Mar. 19, 2020~ Apr. 24, 2020	Dec. 11, 2020	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	505134/2	30M~40GHz	Feb. 25, 2020	Mar. 19, 2020~ Apr. 24, 2020	Feb. 24, 2021	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	800740/2	30M~40GHz	Feb. 25, 2020	Mar. 19, 2020~ Apr. 24, 2020	Feb. 24, 2021	Radiation (03CH12-HY)
Controller	EMEC	EM1000	N/A	Control Turn table & Ant Mast	N/A	Mar. 19, 2020~ Apr. 24, 2020	N/A	Radiation (03CH12-HY)
Antenna Mast	EMEC	AM-BS-4500- B	N/A	1m~4m	N/A	Mar. 19, 2020~ Apr. 24, 2020	N/A	Radiation (03CH12-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Mar. 19, 2020~ Apr. 24, 2020	N/A	Radiation (03CH12-HY)
Software	Audix	E3 6.2009-8-24	RK-00098 9	N/A	N/A	Mar. 19, 2020~ Apr. 24, 2020	N/A	Radiation (03CH12-HY)

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Mar. 18, 2020	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Nov. 15, 2019	Mar. 18, 2020	Nov. 14, 2020	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Mar. 19, 2019	Mar. 18, 2020	Mar. 18, 2020	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 20, 2019	Mar. 18, 2020	Nov. 19, 2020	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 15, 2019	Mar. 18, 2020	Nov. 14, 2020	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Mar. 18, 2020	N/A	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Jan. 02, 2020	Mar. 18, 2020	Jan. 01, 2021	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Jan. 02, 2020	Mar. 18, 2020	Jan. 01, 2021	Conduction (CO05-HY)
Hygrometer	Testo	608-H2	41410069	N/A	Jun. 17, 2019	Mar. 25, 2020	Jun. 16, 2020	Conducted (TH05-HY)
Power Meter	Agilent	E4416A	GB412923 44	N/A	Dec. 27, 2019	Mar. 25, 2020	Dec. 26, 2020	Conducted (TH05-HY)
Power Sensor	Agilent	E9327A	US404415 48	50MHz~18GHz	Dec. 27, 2019	Mar. 25, 2020	Dec. 26, 2020	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101566	10Hz~40GHz	Jul. 15, 2019	Mar. 25, 2020	Jul. 14, 2020	Conducted (TH05-HY)
BT Base Station	Rohde & Schwarz	СВТ	101136	BT 3.0	Oct. 27, 2019	Mar. 25, 2020	Oct. 26, 2020	Conducted (TH05-HY)
Switch Box & RF Cable	Burgeon	ETF-058	EC120838 2	N/A	Mar. 27, 2019	Mar. 25, 2020	Mar. 26, 2020	Conducted (TH05-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of Confidence	2.2
of 95% (U = 2Uc(y))	2.3

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.1
of 95% (U = 2Uc(y))	5.1

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.6
of 95% (U = 2Uc(y))	5.0

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.0
--	-----

Appendix A. AC Conducted Emission Test Results

est Engineer : Howard Huang					Tem	peratur	e:	21~25℃
					Rela	Relative Humidity :		
est Voltage : 120Vac / 60Hz					Phas	se :		Line
	100T			1		1 1 1		
	-							
	90-							
	-							
	80-			1				
	-							
	70							
	-							
2	60-				C	IS P R -C) P Limita	<u>t Ma</u> in Po
j j	A					++		
.⊆	50				C1	<u>S P R - A</u>	v e Limit a	<u>at Ma</u> in Po
Level in dBuV	- V~Y	and an and a set of the set of th						
Ľ	40+	Murrice M.				A. Makini a		ALC: NO
			well-independences	الله وريايينية الم				
	30-							
								\$
	20-							
	10-							
	10							
	10-							
	0	0400500 80	D 01 M	2M 3M	4M5M6	8 101	и И 20	M 30M
	0	0400500 80		2M 3M uency in		8 101	M 20	M 30M
	0 150k 30	0400500 80				8 101	И 20	M 30M
Fi	0 150k 30		Freq	uency in	Hz	8 101	и 20	
Fi	inal Result Frequency	QuasiPeak	Fre q CAverage	uencyin Limit	H z Margin	8 10M	M 20 Filter	Corr.
Fi	inal Result Frequency (MHz)		Fre q CAverage (dBuV)	uency in Limit (dBuV)	H z Margin (dB)	Line	Filter	Corr. (dB)
Fi	0 150k 30 inal Result Frequency (MHz) 0.161250	QuasiPeak (dBuV)	Fre q CAverage	uencyin Limit	H z Margin			Corr. (dB) 19.6
Fi	inal Result Frequency (MHz)	QuasiPeak (dBuV)	Fre q CAverage (dBuV)	Limit (dBuV) 55.40	H z Margin (dB) 21.31 15.70 21.32	Line L1	Filter	Corr. (dB)
Fi	0 150k 30 inal Result Frequency (MHz) 0.161250 0.161250 0.165750 0.165750	QuasiPeak (dBuV)	Freq (dBuV) 34.09 33.85 	Limit (dBuV) 55.40 65.40 55.17 65.17	H z Margin (dB) 21.31 15.70 21.32 17.30	Line L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF	Corr. (dB) 19.6 19.6 19.6 19.6
Fi	0 150k 30 inal Result Frequency (MHz) 0.161250 0.161250 0.165750 0.165750 0.187800	QuasiPeak (dBuV) 49.70 47.87 	Freq (dBuV) 34.09 33.85 34.80	Limit (dBuV) 55.40 65.40 55.17 65.17 54.13	H z Margin (dB) 21.31 15.70 21.32 17.30 19.33	Line L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6
Fi	0 150k 30 inal Result Frequency (MHz) 0.161250 0.161250 0.165750 0.165750 0.187800 0.187800	QuasiPeak (dBuV) 49.70	Freq (dBuV) 34.09 33.85 34.80 	Limit (dBuV) 55.40 65.40 55.17 65.17 54.13 64.13	H z Margin (dB) 21.31 15.70 21.32 17.30 19.33 16.84	Line L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6
Fi	0 150k 30 inal Result Frequency (MHz) 0.161250 0.161250 0.165750 0.165750 0.187800 0.187800 0.258000	QuasiPeak (dBuV) 49.70 47.87 47.29 	Freq (dBuV) 34.09 33.85 34.80 31.37	Limit (dBuV) 55.40 65.40 55.17 65.17 54.13 64.13 51.50	H z Margin (dB) 21.31 15.70 21.32 17.30 19.33 16.84 20.13	Line L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
Fi	0 150k 30 inal Result Frequency (MHz) 0.161250 0.161250 0.165750 0.165750 0.187800 0.187800 0.258000 0.258000	QuasiPeak (dBuV) 49.70 47.87 	Freq (dBuV) 34.09 33.85 34.80 31.37 	Limit (dBuV) 55.40 65.40 55.17 65.17 54.13 64.13 51.50 61.50	H z Margin (dB) 21.31 15.70 21.32 17.30 19.33 16.84 20.13 20.99	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
Fi	0 150k 30 inal Result Frequency (MHz) 0.161250 0.161250 0.165750 0.165750 0.187800 0.187800 0.258000	QuasiPeak (dBuV) 49.70 47.87 47.29 40.51	Freq (dBuV) 34.09 33.85 34.80 31.37	Limit (dBuV) 55.40 65.40 55.17 65.17 54.13 64.13 51.50	H z Margin (dB) 21.31 15.70 21.32 17.30 19.33 16.84 20.13	Line L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
Fi	0 150k 30 inal Result Frequency (MHz) 0.161250 0.161250 0.165750 0.165750 0.187800 0.258000 0.258000 1.206240 1.206240 3.093000	QuasiPeak (dBuV) 49.70 47.87 47.29 40.51 28.07 	Freq (dBuV) 34.09 33.85 34.80 31.37 24.14	Limit (dBuV) 55.40 65.40 55.17 65.17 54.13 64.13 51.50 61.50 46.00 56.00 46.00	H z Margin (dB) 21.31 15.70 21.32 17.30 19.33 16.84 20.13 20.99 21.86 27.93 21.41	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
Fi	0 150k 30 inal Result Frequency (MHz) 0.161250 0.161250 0.165750 0.187800 0.258000 0.258000 1.206240 1.206240 3.093000 3.093000	QuasiPeak (dBuV) 49.70 47.87 47.29 40.51 28.07 28.07 26.99	Freq (dBuV) 34.09 33.85 34.80 31.37 24.14 24.59 	Limit (dBuV) 55.40 65.40 55.17 65.17 54.13 64.13 51.50 61.50 46.00 56.00 46.00 56.00	H z Margin (dB) 21.31 15.70 21.32 17.30 19.33 16.84 20.13 20.99 21.86 27.93 21.41 29.01	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
Fi	0 150k 30 inal Result Frequency (MHz) 0.161250 0.161250 0.165750 0.165750 0.187800 0.258000 0.258000 0.258000 1.206240 1.206240 3.093000 3.093000 9.146580	QuasiPeak (dBuV) 49.70 47.87 47.29 40.51 28.07 28.07 26.99 	Freq (dBuV) 34.09 33.85 34.80 31.37 24.14 24.59 26.10	Limit (dBuV) 55.40 65.40 65.40 55.17 65.17 54.13 64.13 51.50 61.50 46.00 56.00 46.00 56.00 50.00	H z Margin (dB) 21.31 15.70 21.32 17.30 19.33 16.84 20.13 20.99 21.86 27.93 21.41 29.01 23.90	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
Fi	0 150k 30 inal Result Frequency (MHz) 0.161250 0.161250 0.165750 0.165750 0.187800 0.258000 0.258000 1.206240 1.206240 1.206240 3.093000 9.146580 9.146580	QuasiPeak (dBuV) 49.70 47.87 47.29 40.51 28.07 26.99 27.80	Freq (dBuV) 34.09 33.85 34.80 31.37 24.14 24.59 26.10 	Limit (dBuV) 55.40 65.40 65.40 55.17 65.17 54.13 64.13 51.50 61.50 46.00 56.00 46.00 56.00 50.00 60.00	H z Margin (dB) 21.31 15.70 21.32 17.30 19.33 16.84 20.99 21.86 27.93 21.41 29.01 23.90 32.20	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
Fi	0 150k 30 inal Result Frequency (MHz) 0.161250 0.161250 0.165750 0.165750 0.187800 0.258000 0.258000 0.258000 1.206240 1.206240 3.093000 3.093000 9.146580 9.146580 13.560000	QuasiPeak (dBuV) 49.70 47.87 47.29 40.51 28.07 26.99 27.80 	Freq (dBuV) 34.09 33.85 34.80 31.37 24.14 24.59 26.10 39.10	Limit (dBuV) 55.40 65.40 65.40 55.17 65.17 54.13 64.13 51.50 61.50 46.00 56.00 56.00 56.00 50.00 60.00 50.00	H z Margin (dB) 21.31 15.70 21.32 17.30 19.33 16.84 20.13 20.99 21.86 27.93 21.41 29.01 23.90 32.20 10.90	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
Fi	0 150k 30 inal Result Frequency (MHz) 0.161250 0.161250 0.165750 0.165750 0.187800 0.258000 0.258000 1.206240 1.206240 1.206240 3.093000 9.146580 9.146580	QuasiPeak (dBuV) 49.70 47.87 47.29 40.51 28.07 26.99 27.80	Freq (dBuV) 34.09 33.85 34.80 31.37 24.14 24.59 26.10 	Limit (dBuV) 55.40 65.40 65.40 55.17 65.17 54.13 64.13 51.50 61.50 46.00 56.00 46.00 56.00 50.00 60.00	H z Margin (dB) 21.31 15.70 21.32 17.30 19.33 16.84 20.99 21.86 27.93 21.41 29.01 23.90 32.20	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	Corr. (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6

Appendix B. Radiated Spurious Emission

Test Engineer :	Jack Cheng, Lance Chiang and Chuan Chu	Temperature :	19.2~26.8°C
Test Engineer .		Relative Humidity :	53.5~69%