FCC RADIO TEST REPORT

Model Name	:	Smart Badge
Brand Name	:	Motorola Solutions, Inc
Model No.	:	SB1
FCC ID	:	UZ7SB1
Standard	:	47 CFR FCC Part 15 Subpart C § 15.247
Frequency Range	:	2400 MHz – 2483.5 MHz
Applicant Manufacturer	:	Motorola Solutions, Inc. One Motorola Plaza Holtsville NY 11742-1300 USA

The product sample received on Jul. 09, 2012 and completely tested on Aug. 01, 2012. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Wayne Hsu / Assistant Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Accessories	7
1.3	Support Equipment	8
1.4	Testing Applied Standards	9
1.5	Testing Location Information	9
1.6	Measurement Uncertainty	10
2	TEST CONFIGURATION OF EUT	11
2.1	The Worst Case Modulation Configuration	11
2.2	Test Channel Frequencies Configuration	12
2.3	The Worst Case Power Setting Parameter	12
2.4	The Worst Case Measurement Configuration	13
2.5	Test Setup Diagram	15
3	TRANSMITTER TEST RESULT	18
3 3.1	TRANSMITTER TEST RESULT AC Power-line Conducted Emissions	18 18
3 3.1 3.2	TRANSMITTER TEST RESULT AC Power-line Conducted Emissions 6dB Bandwidth	18 18 29
3 3.1 3.2 3.3	TRANSMITTER TEST RESULT AC Power-line Conducted Emissions 6dB Bandwidth RF Output Power	18 18 29 34
3 3.1 3.2 3.3 3.4	TRANSMITTER TEST RESULT AC Power-line Conducted Emissions 6dB Bandwidth RF Output Power Power Spectral Density	18 18 29 34 41
3 3.1 3.2 3.3 3.4 3.5	TRANSMITTER TEST RESULT AC Power-line Conducted Emissions 6dB Bandwidth RF Output Power Power Spectral Density Transmitter Radiated Bandedge Emissions	18 18 29 34 41 46
3 3.1 3.2 3.3 3.4 3.5 3.6	TRANSMITTER TEST RESULT AC Power-line Conducted Emissions 6dB Bandwidth RF Output Power Power Spectral Density Transmitter Radiated Bandedge Emissions Transmitter Radiated Unwanted Emissions	18 18 29 34 41 46 52
 3.1 3.2 3.3 3.4 3.5 3.6 4 	TRANSMITTER TEST RESULT AC Power-line Conducted Emissions 6dB Bandwidth. RF Output Power Power Spectral Density Transmitter Radiated Bandedge Emissions Transmitter Radiated Unwanted Emissions TEST EQUIPMENT AND CALIBRATION DATA.	18
 3.1 3.2 3.3 3.4 3.5 3.6 4 5 	TRANSMITTER TEST RESULT AC Power-line Conducted Emissions 6dB Bandwidth RF Output Power Power Spectral Density Transmitter Radiated Bandedge Emissions Transmitter Radiated Unwanted Emissions TEST EQUIPMENT AND CALIBRATION DATA CERTIFICATION OF TAF ACCREDITATION	18 29 34 41 46 52 94 96
 3.1 3.2 3.3 3.4 3.5 3.6 4 5 APPEI 	TRANSMITTER TEST RESULT AC Power-line Conducted Emissions 6dB Bandwidth RF Output Power Power Spectral Density Transmitter Radiated Bandedge Emissions Transmitter Radiated Unwanted Emissions TEST EQUIPMENT AND CALIBRATION DATA CERTIFICATION OF TAF ACCREDITATION NDIX A. TEST PHOTOS	18 18 29 34 41 46 52 94 94 96

Summary of Test Result

Conformance Test Specifications								
Report Clause	Ref. Std. Clause	Description	Description Measured		Result			
1.1.2	15.203	Antenna Requirement	Antenna connector FCC 15.203 mechanism complied		Complied			
3.1	15.207	AC Power-line Conducted Emissions	0.652MHz: 33.79dBuV (12.21dB) - AV 37.51dBuV (18.49dB) - QP	FCC 15.207	Complied			
3.2	15.247(a)	6dB Bandwidth	6dB Bandwidth Unit [MHz] 11B-20M: 9.66 11G-20M: 16.38 11N2.4G-20M: 17.58	≥500kHz	Complied			
3.3	15.247(b)	RF Output Power (Maximum Peak Conducted Output Power)	Power [dBm] 11B-20M: 19.34 11G-20M: 24.57 11N2.4G-20M: 24.60	Power [dBm] 11B-20M: 30 11G-20M: 30 11N2.4G-20M: 30	Complied			
3.4	15.247(d)	Power Spectral Density	PSD [dBm/3kHz] 11B-20M: -8.50 11G-20M: -12.09 11N2.4G-20M: -11.15	PSD [dBm/3kHz] 8	Complied			
3.5	15.247(c)	Transmitter Radiated Bandedge Emissions	Non-Restricted Bands: 2538.20 MHz: 22.60dB Restricted Bands [dBuV/m at 3m]: 2390.00MHz: 72.08 (Margin 1.92dB) - PK 52.73 (Margin 1.27dB) - AV	Non-Restricted Bands: > 20 dB Restricted Bands: FCC 15.209	Complied			
3.6	15.247(c)	Transmitter Radiated Unwanted Emissions	Restricted Bands [dBuV/m at 3m]: 7386.00MHz: 50.94 (Margin 3.06dB) - PK	Non-Restricted Bands: > 20 dB Restricted Bands: FCC 15.209	Complied			

Revision History

Report No.	Version	Description	Issued Date		
FR270520	Rev. 01	Initial issue of report	Aug. 31, 2012		

1 General Description

1.1 Information

1.1.1 RF General Information

RF General Information							
Frequency Range (MHz)IEEE Std. 802.11Ch. Frequency (MHz)Channel NumberRF Output (dBm							
2400-2483.5	b	2412-2472	1-13 [13]	19.34			
2400-2483.5	g	2412-2472	1-13 [13]	24.57			
2400-2483.5	n (HT20)	2412-2472	1-13 [13]	24.60			

Note 1: IEEE Std. 802.11-2007 modulation consists of IEEE Std. 802.11g-2003 and IEEE Std. 802.11b-1999.

Note 2: IEEE Std. 802.11n-2009 modulation consists of HT20 and HT40 (HT: High Throughput). The EUT supports HT20 only.

Note 3: RF output power specifies that Maximum Peak Conducted Output Power.

Transmitter Chains & Receiver Chains Information							
IEEE Std. 802.11 Protocol	99% Emission Bandwidth (MHz)	Co-location					
b	1	1	Correlated	14.03	N/A		
g	1	1	Correlated	16.49	N/A		
n (HT20)	1	1	Uncorrelated	17.95	N/A		

Note 1: Co-location, Co-location is generally defined as simultaneously transmitting (co-transmitting) antennas within 20 cm of each other. (i.e., EUT has simultaneously co-transmitting that operating 2.4GHz and 5GHz.)

1.1.2 Antenna Information

	Antenna Category						
	Equipment placed on the market without antennas						
\boxtimes	Integral antenna (antenna permanently attached)						
	Temporary RF connector provided						
	\boxtimes	No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.					

	Antenna Information for Single Transmit Chain (1 N_{TX})						
Worst Antenna Port (Total 1 Port)				1			
RF Output Power Level (PL)				1			
Transmit Chains Power Distribution			ibution	Symmetrical distribution asymmetrical distribution			
Ant. Port Int No. X Connect to Ant. Port Y1 Ant. Cat. Ant. Type		Ant. Type	G _{ant (dBi)}				
1	1	Integral	PIFA	0.90			

1.1.3 Type of EUT

	Identify EUT				
Pre	sentation of Equipment 🛛 Production ; 🗋 Pre-Production ; 🗋 Prototype				
	Type of EUT				
\boxtimes	Stand-alone				
	Combined (EUT where the radio part is fully integrated within another device)				
	Combined Equipment - Brand Name / Model No.:				
	Plug-in radio (EUT intended for a variety of host systems)				
	Host System - Brand Name / Model No.:				
	Other:				

1.2 Accessories

Accessories Information							
	Drand Nama	Matarala	Model Name	DCH4-050MV-0301			
AC Adapter	Brand Name	Motorola	Part No.	PWRS-14000-253R Rev B			
	Power Rating	I/P: 100- 240∨	I/P: 100- 240Vac, 150mA ; O/P: 5Vdc, 850mA				
	Brand Name	Motorola	Part No.	82-158057-01 Rev 01			
Battery	Dower Doting	3.7Vdc,	Turne	Liion			
	Power Rating	910mAh	туре	LI-ION			
Headset 1	Brand Name	Motorola	Part No.	21-SB1X-HDSET-10R			
Headset 2	Brand Name	Motorola	Part No.	21-SB1X-HDSET2-10R			
USB Cable	Brand Name	Motorola	Part No.	25-124330-01R			
Holster	Brand Nama	Motorolo	Dort No				
(hip/belt w/ tether) SB1	Branu Name	MOLUIUIA	Fall NO.	36-3017-1131K-02K			
Lanyards:	Prond Nomo	Motorolo	Dort No				
SB1 w/ J-Hook (std)	Brand Name	MOLUIUIA	Fall NO.	RT-SBTA-LANTD-TUR			
Speaker Nugget	Brand Name	Motorola	Part No.	21-SB1X-SKADP-01R			
Headset Nugget	Brand Name	Motorola	Part No.	21-SB1X-HSADP-01R			
1 Slot Cradle	1 Slot Cradle Brand Name Motorola Part No. CRDSB1X-1000CR						
The above EUT information	was declared by	manufacturer ar	nd for more detai	iled features description,			
please refer to the manufacturer's specifications or user's manual.							

1.2.1 Test Signal Duty Cycle

	Operated Mode for Worst Duty Cycle							
] Operated normally mode for worst duty cycle							
\boxtimes	Operated test mode for worst duty cycle							
	Test Signal Duty Cycle (x)Power Duty Factor [dB] - (10 log 1/x)Voltage Duty Factor [dB] - (20 log 1/x)							
\square	100% - IEEE 802.11b	0	0					
\square	100% - IEEE 802.11g	0	0					
\square	100% - IEEE 802.11n (HT20)	0	0					

1.2.2 EUT Operational Condition

Supply Voltage	\boxtimes	AC mains		DC		
Type of DC Source		Internal DC supply	\boxtimes	External DC adapter	\boxtimes	Battery

1.3 Support Equipment

Support Equipment						
No.	Equipment	Brand Name	Model Name	Serial No.		
1	Personal Computer	HP Compaq	DC7700	DoC		
2	CRT Monitor	COMPAQ	S510	DoC		
3	Keyboard	HP	KB-0133	DoC		
4	Mouse	HP	M-S69	JNZ211488		
5	Printer	HP	C2642A(DJ400)	B94C2642X		
6	Modem	ACEEX	DM1414	IFAXDM1414		
7	Speaker Nugget	Motorola	Part No. 21-SB1X-SKADP-01R			
8	Headset Nugget	Motorola	Part No. 21-SB1X-HSADP-01R			
9	1 Slot Cradle	Motorola	Part No. CRDSB1X-1000CR			
10	Headset 1	Motorola	Part No. 21-SB1X-HDSET-10R			
11	Headset 2	Motorola	Part No. 21-SB1X-HDSET2-10R			
**We	chose the worst case test	photos recorded in this re	eport.			

1.4 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009
- FCC KDB 558074 D01 Guidance for Performing Compliance Measurements on DTS
- FCC KDB 662911 Emissions Testing of Transmitters with Multiple Outputs
- FCC KDB 412172 Guidelines for Determining the ERP and EIRP

1.5 Testing Location Information

Testing Location							
\boxtimes	HWA YA	ADD) :	No. 52, Hwa Ya	a 1st Rd., Kwei-Shan H	Hsiang, Tao Yuan Hsie	en, Taiwan, R.O.C.
		TEL	:	886-3-327-3456	6 FAX : 886	6-3-318-0055	
\boxtimes	LINKOU	DU ADD : No. 30-2, Dingfu Vil., Linkou Dist., New Taipei City 244, Taiwan, R.O.C.					
		TEL	:	886-2-2601-164	40 FAX : 886	6-2-2601-1695	
Test Condition		'n	Т	est Site No.	Test Engineer	Test Environment	Test Date
RF Conducted		d		TH01-HY	lan Tu	25.9°C / 42%	09-Jul-12 ~ 16-Jul-12
AC Conduction		'n		CO01-LK	Peter Lin	24°C / 48%	01-Aug-12
Rad	diated Emiss	ion	C)3CH02-HY	Hsiao	25.2°C / 54%	10-Jul-12 ~ 14-Jul-12

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty			
Test Item	Uncertainty	Limit	
AC power-line conducted emissions		±2.26 dB	N/A
Emission bandwidth, 6dB bandwidth		±1.42 %	N/A
RF output power, conducted		±0.63 dB	N/A
Power density, conducted		±0.81 dB	N/A
Unwanted emissions, conducted	30 – 1000 MHz	±0.51 dB	N/A
	1 – 18 GHz	±0.67 dB	N/A
	18 – 40 GHz	±0.83 dB	N/A
	40 – 200 GHz	N/A	N/A
All emissions, radiated 30 - 1000 MHz 1 - 18 GHz		±2.56 dB	N/A
		±3.59 dB	N/A
	18 – 40 GHz	±3.82 dB	N/A
	40 – 200 GHz	N/A	N/A
Temperature	•	±0.8 °C	N/A
Humidity	±3 %	N/A	
DC and low frequency voltages	±3 %	N/A	
Time		±1.42 %	N/A
Duty Cycle		±1.42 %	N/A

2 Test Configuration of EUT

2.1 The Worst Case Modulation Configuration

Worst Modulation Used for Conformance Testing						
Power	r Level	1				
IEEE 802.11 Protocol	Number of Transmit Chains (N _{TX})	Data Rate / Worst Data MCS Worst Data Rate / MCS Worst Modulation Mode RF Output Power (dBm)				Power Spectral Density (dBm/3kHz)
b	1	1-11 Mbps	1 Mbps	11B-20M	19.34	-8.50
g	1	6-54 Mbps	6 Mbps	11G-20M	24.57	-12.09
n (HT20)	1	MCS 0-7	MCS 0	11N2.4G-20M	24.60	-11.15
Note 1: IEEE Std. 802.11n-2009 modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT support HT20. Worst modulation mode of Guard Interval (GI) is 400ns. Note 2: Modulation modes consist of 11B-20M, 11G-20M, 11N2.4G-20M: 11B: IEEE 802.11b, 11G: IEEE 802.11g, 11N2.4G: IEEE 802.11n (2.4GHz Band) 20M: Channel Bandwidth 20MHz Note 3: RF output power specifies that Maximum Peak Conducted Output Power.						

2.2 Test Channel Frequencies Configuration

Test Channel Frequencies Configuration				
IEEE 802.11 Protocol	Worst Modulation Mode	Test Channel Frequencies (MHz) – FX (Frequencies Abbreviations)		
b	11B-20M	2412-(F1), 2437-(F2), 2462-(F3) 2467-(F4), 2472-(F5)		
g	11G-20M	2412-(F1), 2437-(F2), 2462-(F3) 2467-(F4), 2472-(F5)		
n (HT20)	11N2.4G-20M	2412-(F1), 2437-(F2), 2462-(F3) 2467-(F4), 2472-(F5)		

2.3 The Worst Case Power Setting Parameter

The Worst Case Power Setting Parameter					
Power	r Level	1			
Test So	oftware	Ralink QA			
Worst Modulation Mode	Number of Transmit Chains (N _{Tx})	Frequency (MHz)	Power Setting	Worst Data Rate / MCS	Maximum Peak Conducted Output Power (dBm)
11B-20M	1	2412	18.5	1 Mbps	19.06
11B-20M	1	2437	18.5	1 Mbps	19.34
11B-20M	1	2462	17.5	1 Mbps	18.87
11B-20M	1	2467	2.0	1 Mbps	3.39
11B-20M	1	2472	2.5	1 Mbps	3.63
11G-20M	1	2412	15.5	6 Mbps	20.84
11G-20M	1	2437	19.0	6 Mbps	24.57
11G-20M	1	2462	18.5	6 Mbps	24.22
11G-20M	1	2467	2.5	6 Mbps	7.99
11G-20M	1	2472	0.5	6 Mbps	6.28
11N2.4G-20M	1	2412	15.5	MCS 0	20.88
11N2.4G-20M	1	2437	19.0	MCS 0	24.60
11N2.4G-20M	1	2462	16.5	MCS 0	22.18
11N2.4G-20M	1	2467	2.5	MCS 0	8.29
11N2.4G-20M	1	2472	-2.0	MCS 0	4.29

2.4 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests							
Tests Item	AC power-line conducted emissions						
Condition	AC power-line conducted measurement for line and Test Voltage: 120V/60 Hz	neutral					
Operating Mode	Operating Mode Description Worst Modulation Mode Test Freq. Power Level						
1	Wireless 2.4G Link and 1-slot cradle	11N2.4G-20M	F2	1			
2	USB reads and writes (ActiveSync) Wireless 2.4G Link and 1-slot cradle	11N2.4G-20M	F2	1			
3	Headset Nugget Headset 1 Wireless 2.4G Link and 1-slot cradle 	11N2.4G-20M	F2	1			
4	Headset Nugget Headset 2 Wireless 2.4G Link and 1-slot cradle	11N2.4G-20M	F2	1			
5	Speaker Nugget、Wireless 2.4G Link and 1-slot cradle	11N2.4G-20M	F2	1			

The Worst Case Mode for Following Conformance Tests					
Tests Item	RF Output Power Power Spectral Density 6 dB Bandwidth				
Test Condition	Conducted measurer	Conducted measurement at transmit chains			
Worst Modulation Mode	Number of Transmit Chains (N _{TX})	Worst Data Rate / MCS	Test Frequency	Power Level	
11B-20M	1	1 Mbps	F1, F2, F3, F4, F5	1	
11G-20M	1	6 Mbps	F1, F2, F3, F4, F5	1	
11N2.4G-20M	1	MCS 0	F1, F2, F3, F4, F5	1	

The Worst Case Mode for Following Conformance Tests				
Tests Item	Transmitter Radiated	Bandedge Emissions		
Test Condition	Radiated measureme	ent		
Worst Modulation Mode	Number of Transmit Chains (N _{TX}) Worst Data Rate / MCS		Test Frequency	Power Level
11B-20M	1	1 Mbps	F1, F5	1
11G-20M	1	6 Mbps	F1, F5	1
11N2.4G-20M	1	MCS 0	F1, F5	1

	The Wo	rst Case Mode	for Following	Conformance	Tests	
Tests Item	Transmitter Radiated Unwanted Emissions					
Test Condition	Radiated meas	surement				
	EUT will be placed in fixed position.					
User Position	EUT will b performed	e placed in mo two or three o	bile position an rthogonal plane	d operating mul es.	tiple positions.	EUT shall be
	EUT will b multiple p	e a hand-held ositions. EUT s	or body-worn b hall be perform	attery-powered ed three orthog	devices and op onal planes.	erating
Operating	🛛 1. 11G-2	20M, F2				
Mode < 1GHz	🛛 2. 11N2.	4G-20M, F2				
Worst Modulation Mode	Number of Transmit Chains (N _{TX})	Worst Data Rate / MCS	Test Frequency	Power Level	Ant No.	Worst Orthogonal Planes of EUT
11B-20M	1	1 Mbps	F1, F2, F3, F4, F5	1	1	х
11G-20M	1	6 Mbps	F1, F2, F3, F4, F5	1	1	х
11N2.4G-20M	1	MCS 0	F1, F2, F3, F4, F5	1	1	х
11N2.4G-20M EUT with speaker nugget	1	MCS 0	F3	1	1	х
11N2.4G-20M EUT with headset nugget	1	MCS 0	F3	1	1	Х
	X Plane Y Plane Z Plane					
Orthogonal Planes of EUT	Orthogonal lanes of EUT					
Note 1: For the tr (20MHz) recorded	Note 1: For the transmitter radiated unwanted emissions test mode, the worst case was found in 802.11n (20MHz). We chose the worst case to test EUT with speaker nugget and headset nugget. And it was recorded in this report.					

2.5 Test Setup Diagram

Test Setup Diagram - Radiated Test				
Operating Mode	Transmit Mode (Below 1GHz)			
	EUT			
Operating Mode	Transmit Mode (Above 1GHz)			
	EUT			

3 Transmitter Test Result

3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit						
Frequency Emission (MHz) Quasi-Peak Average						
0.15-0.5 66 - 56 * 56 - 46 *						
0.5-5	56	46				
5-30 60 50						
Note 1: * Decreases with the logarithm of the frequency.						

3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

Test Method

Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup

3.1.5 Test Result of AC Power-line Conducted Emissions

3.2 6dB Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit

Systems using digital modulation techniques:

 \boxtimes 6 dB bandwidth ≥ 500 kHz.

3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method										
\boxtimes	For	or the emission bandwidth shall be measured using one of the options below:									
	\boxtimes	Ref	er as FCC KDB 558074, clause 5.1.1 Option 1 for 6 dB bandwidth measurement.								
		Refer as FCC KDB 558074, clause 5.1.2 Option 2 for 6 dB bandwidth measurement.									
	Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.										
\bowtie	For	For conducted measurement.									
	\boxtimes	For conducted measurements on devices with multiple transmit chains using options given belo									
			Option 1: Multiple transmit chains measurements need to be performed on one of the active transmit chains (antenna outputs). All measurement had be performed on transmit chains 3.								
			Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains.								
			Option 3: A power splitter/combiner shall be used to combine all the transmit chains (antenna outputs) into a single test point and record a single test point EBW.								
	For radiated measurement. The equipment to be measured and the test antenna shall be oriented to obtain the maximum emitted power level.										

3.2.4 Test Setup

Emission Bandwidth Result									
Power Level		1	Emission Bar	ndwidth (MHz)					
Modulation Mode	N _{TX} Freq. (MHz)		99% Bandwidth	6dB Bandwidth					
11B-20M	1	2412	13.41	8.08					
11B-20M	1	2437	13.49	9.24					
11B-20M	1	2462	13.75	9.06					
11B-20M	1	2467	13.79	9.66					
11B-20M	1	2472	14.03	9.08					
11G-20M	1	2412	16.49	16.04					
11G-20M	1	2437	16.39	16.32					
11G-20M	1	2462	16.37	16.38					
11G-20M	1	2467	16.35	16.34					
11G-20M	1	2472	16.35	16.32					
11N2.4G-20M	1	2412	17.95	17.06					
11N2.4G-20M	1	2437	17.65	17.58					
11N2.4G-20M	1	2462	17.57	17.44					
11N2.4G-20M	1	2467	17.55	17.56					
11N2.4G-20M	1	2472	17.61	17.58					
Lim	it	·	N/A	≥500 kHz					
Resi	ult	i	Com	plied					
Note 1: N_{TX} = Number of Transmit Chains									

3.2.5 Test Result of Emission Bandwidth

3.3 RF Output Power

3.3.1 RF Output Power Limit

	RF Output Power Limit									
Max	Maximum Peak Conducted Output Power or Maximum Conducted Output Power Limit									
\boxtimes	240	2400-2483.5 MHz Band:								
	\boxtimes	If $G_{TX} \le 6 \text{ dBi}$, then $P_{Out} \le 30 \text{ dBm} (1 \text{ W})$								
	\square	Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm								
		Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm								
		Smart antenna system (SAS):								
		Single beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm								
		Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm								
		Aggregate power on all beams: If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6)/3 + 8 \text{dBm}$								
e.i.r	.p. P	ower Limit:								
\square	240	0-2483.5 MHz Band								
	\square	Point-to-multipoint systems (P2M): $P_{eirp} \le 36 \text{ dBm} (4 \text{ W})$								
		Point-to-point systems (P2P): $P_{eirp} \leq MAX(36, [P_{Out} + G_{TX}]) dBm$								
		Smart antenna system (SAS)								
		Single beam: $P_{eirp} \le MAX(36, P_{Out} + G_{TX}) dBm$								
<u> </u>		Overlap beam: $P_{eirp} \leq MAX(36, P_{Out} + G_{TX}) dBm$								
		Aggregate power on all beams: $P_{eirp} \leq MAX(36, [P_{Out} + G_{TX} + 8]) dBm$								
Ρ _{ουτ} G _{TX} Ρ _{eirŗ}	= ma = the _ = e.	aximum peak conducted output power or maximum conducted output power in dBm, e maximum transmitting antenna directional gain in dBi. .i.r.p. Power in dBm.								

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

		Test Method
	Max	imum Peak Conducted Output Power
		Refer as FCC KDB 558074, clause 5.2.1.1 Option 1 (RBW > EBW method).
		Refer as FCC KDB 558074, clause 5.2.1.2 Option 2 (integrated band power method).
		Refer as ANSI C63.10, clause 6.10.2.1 a) for peak power meter.
		Refer as ANSI C63.10, clause 6.10.2.1 a) for spectrum analyzer - (RBW \ge EBW).
		Refer as ANSI C63.10, clause 6.10.2.1 b) for spectrum analyzer - BW correction factor.
\square	Max	imum Conducted Output Power
		Refer as FCC KDB 558074, clause 5.2.2.1 Option 1 (RMS detection with slow sweep speed).
	\square	Refer as FCC KDB 558074, clause 5.2.2.2 Option 2 (spectral trace averaging).
		Refer as ANSI C63.10, clause 6.10.3.1 for spectrum analyzer - Method 1 (trace averaging).
		Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 2 (zero-span averaging).
		Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 3 (band power max-hold).
\boxtimes	Refe	er as FCC KDB 558074, clause 2 for conducted measurement.
		For conducted measurements on devices with multiple transmit chains: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
	\boxtimes	If multiple transmit chains, EIRP calculation could be following as methods:
		$ \begin{array}{ c c c c c c c } \hline Method 1: \\ EIRP_1 = P_1 + G_{ANT1} ; EIRP_2 = P_2 + G_{ANT2} ; EIRP_n = Pn + G_{ANTn} \\ EIRP_{total} = EIRP_1 + EIRP_2 + + EIRP_n \\ (calculated in linear unit [mW] and transfer to log unit [dBm]) \end{array} $
	Refe	er as FCC KDB 558074, clause 2 for radiated measurement.

3.3.4 Test Setup

Maximum Conducted (Average) Output Power										
Power Leve	1									
G _{ANT (dBi)}	G _{ANT (dBi)}			KF Output Power (dBm)						
Modulation Mode N _{TX}		Freq. (MHz)	Chain- Port 1	-	-	-	Sum Chain	Power Limit	EIRP Power	EIRP Limit
11B-20M	1	2412	16.03				16.03	30	16.93	36
11B-20M	1	2437	16.32				16.32	30	17.22	36
11B-20M	1	2462	15.86				15.86	30	16.76	36
11B-20M	1	2467	0.37				0.37	30	1.27	36
11B-20M 1		2472	0.62				0.62	30	1.52	36
Resi				Com	plied					

3.3.5 Test Result of Maximum Conducted Output Power

Maximum Conducted (Average) Output Power										
Power Leve	1	PE Output Power (dPm)								
G _{ANT} (dBi)		0.90		KF Output Power (dBm)						
Modulation Mode N _{TX}		Freq. (MHz)	Chain- Port 1	-	-	-	Sum Chain	Power Limit	EIRP Power	EIRP Limit
11G-20M	1	2412	12.92				12.92	30	13.82	36
11G-20M	1	2437	16.64				16.64	30	17.54	36
11G-20M	1	2462	14.63				14.63	30	18.10	36
11G-20M 1		2467	0.11				0.11	30	1.01	36
11G-20M 1		2472	-1.64				-1.64	30	-0.74	36
Resu				Com	plied					

Maximum Conducted (Average) Output Power											
Power Leve	RE Output Bower (dBm)										
G _{ANT (dBi)}	0.90		KF Output Power (dBm)								
Modulation Mode N _{TX}		Freq. (MHz)	Chain- Port 1	-	-	-	Sum Chain	Power Limit	EIRP Power	EIRP Limit	
11N2.4G-20M	1	2412	12.76				12.76	30	13.66	36	
11N2.4G-20M	1	2437	16.50				16.50	30	17.40	36	
11N2.4G-20M	1	2462	14.04				14.04	30	14.94	36	
11N2.4G-20M 1		2467	0.19				0.19	30	1.09	36	
11N2.4G-20M 1		2472	-3.50				-3.50	30	-2.60	36	
Resi				Com	plied						
		Maxin	num Peak	Condu	cted Outp	out Powe	r Result				
------------------------	------	----------------	-----------------------	-----------------------	-----------	----------	--------------	----------------	---------------	---------------	--
Power Leve	I	1		RF Output Power (dBm)							
G _{ANT (dBi)}	0.90		RF Output Power (dBm)								
Modulation Mode	Ντχ	Freq. (MHz)	Chain- Port 1	-	-	-	Sum Chain	Power Limit	EIRP Power	EIRP Limit	
11B-20M	1	2412	19.06				19.06	30	19.96	36	
11B-20M	1	2437	19.34				19.34	30	20.24	36	
11B-20M	1	2462	18.87				18.87	30	19.77	36	
11B-20M	1	2467	3.39				3.39	30	4.29	36	
11B-20M	1	2472	3.63				3.63	30	4.53	36	
Result						Com	plied				

		Maxin	num Peak	c Condu	cted Outp	out Powe	r Result				
Power Leve		1			DE		Dowor (d	Bm)			
G _{ANT (dBi)}		0.90	RF Output Power (dBm)								
Modulation Mode	Ντχ	Freq. (MHz)	Chain- Port 1	-	-	-	Sum Chain	Power Limit	EIRP Power	EIRP Limit	
11G-20M	1	2412	20.84				20.84	30	21.74	36	
11G-20M	1	2437	24.57				24.57	30	25.47	36	
11G-20M	1	2462	24.22				24.22	30	25.12	36	
11G-20M	1	2467	7.99				7.99	30	8.89	36	
11G-20M	1	2472	6.28				6.28	30	7.18	36	
Res	Result			Complied							

	Maximum Peak Conducted Output Power Result												
Power Leve		1		RE Output Power (dBm)									
G _{ANT} (dBi)		0.90	KF Output Fower (dBm)										
Modulation Mode	Ντχ	Freq. (MHz)	Chain- Port 1	-	-	-	Sum Chain	Power Limit	EIRP Power	EIRP Limit			
11N2.4G-20M	1	2412	20.88				20.88	30	21.78	36			
11N2.4G-20M	1	2437	24.60				24.60	30	25.50	36			
11N2.4G-20M	1	2462	22.18				22.18	30	23.08	36			
11N2.4G-20M	1	2467	8.29				8.29	30	9.19	36			
11N2.4G-20M	1	2472	4.29				4.29	30	5.19	36			
Resi				Com	plied								

٦

Power Spectral Density 3.4

3.4.1 **Power Spectral Density Limit**

Power Spectral Density Limit

 \boxtimes Power Spectral Density (PSD) ≤ 8 dBm/3kHz

3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

Г

		Test Method
\boxtimes	Pow pow proc whe dem mea	er spectral density procedures that the same method as used to determine the conducted output er shall be used to determine the power spectral density. In addition, the use of a peak PSD redure will always result in a "worst-case" measured level for comparison to the limit. Therefore, never the DTS bandwidth exceeds 500 kHz, it is acceptable to utilize the peak PSD procedure to constrate compliance to the PSD limit, regardless of how the fundamental output power was usured. For the power spectral density shall be measured using below options:
		Refer as FCC KDB 558074, clause 5.3.1 Option 1 (peak PSD; BWCF=-15.2dB).
	\boxtimes	Refer as FCC KDB 558074, clause 5.3.2 Option 2 (average PSD; BWCF=-15.2dB).
		Refer as ANSI C63.10, clause 6.11.2.3 for PSD for DTS - (RBW=3kHz; sweep=100s).
		Refer as ANSI C63.10, clause 6.11.2.4 for Alternative PSD for DTS - (RBW=3kHz; average=100)
\square	Refe	er as FCC KDB 558074, clause 2 for conducted measurement.
	\boxtimes	For conducted measurements on devices with multiple transmit chains using options given below:
		□ Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the N _{TX} output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace. The new data trace samples added 100 kHz segment and found the highest value of each 100 kHz segments. Add the bandwidth correction factor (BWCF) [-15.2 dB] adjusting in power spectral density per 3kHz.
		Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.
	Refe	er as FCC KDB 558074, clause 2 for radiated measurement.

Test Setup 3.4.4

	Power Spectral Density Result										
Power Leve		1	Power Spectral Density (dBm/3kHz)								
Modulation Mode	Ντχ	Freq. (MHz)	Chain- Port 1	PSD Limit							
11B-20M	1	2412	-9.09	8							
11B-20M	1	2437	-8.50	8							
11B-20M	1	2462	-11.78	8							
11B-20M	1	2467	-24.44	8							
11B-20M	1	2472	-23.76	8							
Res	ult		Complied								
Note 1: PSD [dBm	n/3kHz]	= each tr	ansmit chains PSD [dBm/100kHz] + E	3WFC [-15.2 dB] + 10logN _{TX}							

3.4.5 Test Result of Power Spectral Density

	Power Spectral Density Result											
Power Leve	Power Level 1		Power Spectral Density (dBm/3kHz)									
Modulation Mode	Ντχ	Freq. (MHz)	Chain- Port 1	PSD Limit								
11G-20M	1	2412	-13.66	8								
11G-20M	1	2437	-12.09	8								
11G-20M	1	2462	-14.39	8								
11G-20M	1	2467	-28.76	8								
11G-20M	1	2472	-30.60	8								
Resi	ult		Complied									
Note 1: PSD [dBm	/3kHz]	= each tr	ansmit chains PSD [dBm/100kHz] + E	3WFC [-15.2 dB] + 10logN _{TX}								

	Power Spectral Density Result										
Power Leve		1	Power Spectral Density (dBm/3kHz)								
Modulation Mode	Ντχ	Freq. (MHz)	Chain- Port 1	PSD Limit							
11N2.4G-20M	1	2412	-15.22	8							
11N2.4G-20M	1	2437	-11.15	8							
11N2.4G-20M	1	2462	-14.01	8							
11N2.4G-20M	1	2467	-28.03	8							
11N2.4G-20M	1	2472	-31.06	8							
Resi	ılt		Complied								
Note 1: PSD [dBm	/3kHz]	= each tr	ansmit chains PSD [dBm/100kHz] + I	BWFC [-15.2 dB] + 10logN _{TX}							

3.5 Transmitter Radiated Bandedge Emissions

3.5.1 Transmitter Radiated Bandedge Emissions Limit

3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

		Test Method – General Information
\bowtie	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
	Refe cha	er as ANSI C63.10, clause 6.9.2.2 bandedge testing shall be performed at the lowest frequency neel and highest frequency channel within the allowed operating band.
\square	For	the transmitter unwanted emissions shall be measured using following options below:
	\boxtimes	Refer as FCC KDB 558074, clause 5.4.1 for unwanted emissions into non-restricted bands.
	\boxtimes	Refer as FCC KDB 558074, clause 5.4.2 for unwanted emissions into restricted bands.
		Refer as FCC KDB 558074, clause 5.4.2.2.2.1 Option 1 (Power Averaging).
		Refer as FCC KDB 558074, clause 5.4.2.2.2.2 Option 2 (Trace Averaging).
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). – Duty cycle ≥ 98%.
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
		Refer as FCC KDB 558074, clause 5.4.2.2.3 measurement procedure peak limit.
		Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peak limit.
\boxtimes	For	the transmitter bandedge emissions shall be measured using following options below:
	\boxtimes	Refer as ANSI C63.10, clause 6.9.2 for band-edge testing.
		Refer as ANSI C63.10, clause 6.9.3 for marker-delta method for band-edge measurements.

			Test Method									
	Refe	er as	FCC KDB 558074, clause 2 for conducted measurement.									
		For	unwanted emissions into non-restricted bands (relative emission limits).									
			For conducted measurements on devices with multiple transmit chains: Refer as FCC KDB 662911, when testing out-of-band and spurious emissions against relative emission limits, tests may be performed on each output individually without summing or adding 10 log(N) if the measurements are made relative to the in-band emissions on the individual outputs.									
		For the	unwanted emissions into restricted bands. Test conducted spurious emissions and radiated by cabinet with the antenna connector(s) terminated by a specified load (cabinet radiation).									
			Refer as FCC KDB 558074, clause 5.4.2.2.1 unwanted emissions in restricted bands on frequencies \leq 1000 MHz									
			Refer as FCC KDB 558074, clause 5.4.2.2.2 unwanted emissions in restricted bands on frequencies > 1000 MHz									
			For conducted measurements on devices with multiple transmit chains using options given below:									
			Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, out-of-band and spurious emission measurement. The trace data for each transmit chain has to be individually recorded and each transmit chain trace data shall be added and compared with the limit.									
			Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.									
\boxtimes	Refe	er as	FCC KDB 558074, clause 2 for radiated measurement.									
	\boxtimes	Ref	er as ANSI C63.10, clause 6.5 for radiated emissions from above 1 GHz.									

3.5.4 Test Setup

		Transm	nitter Radiate	ed Bandedg	e Emission	s Result					
Power Level	1	Ant. No.	1		Non-rostri	ctod Band I	Emission				
Modulation		11B-2	.0M								
Non-restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol. note 1		
2390-2400	1	2412	107.44	2397.58	67.09	40.35	20	PK	Н		
2500-2690	1	2472	94.47	2501.80	64.00	30.47	20	PK	Н		
	Lc	w Band				Up Ban	ıd				
Level (dBuV m) 120 60 0 2310 2322.4	23	1 ver. desce. ver. desce ober 154.8 2377,2 Frequency (Mil2)	Picc cLat Picc cLat 2399.6	012-07-13 120 12LASS-0 55.B-AV 2422 0	Level (dBuV/m)	2492. Frequency (2512. MHz)	FCC CL	2-07-13 ASS-8 		

3.5.5 Test Result of Transmitter Radiated Bandedge Emissions

		Transm	nitter Radiat	ed Bandedg	e Emissior	s Result				
Power Level	1	Ant. No.	1	Postricted Pand Emissions						
Modulation		11B-2	0M		Resulci		115510115			
Restricted Band (MHz)	Ντχ	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	RBE Freq. (MHz)	Measure Distance (m)	Out-Band Level (dBuV/m)	Limit (dBuV/m)	Level Type	Pol. note 1	
2310-2390	1	2412	112.18	2388.29	3	61.72	74	PK	Н	
2310-2390	1	2412	107.85	2385.15	3	50.60	54	AV	Н	
2483.5-2500	1	2472	98.48	2483.50	3	61.56	74	PK	Н	
2483.5-2500	1	2472	94.12	2483.50	3	48.75	54	AV	Н	
Note 1: Measurem	ent v	vorst emissi	ions of receiv	ve antenna po	plarization:	H (Horizontal) or V (Ve	rtical).		

		Transm	nitter Radiate	ed Banded	ge Emission	s Result				
Power Level	1	Ant. No.	1		Non rootri	oted Dand	Emission	•		
Modulation		11G-2	OM	Non-restricted Dana Linissions						
Non-restricted Band (MHz)	Ντχ	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE Freq (MHz)	Out-band PSD [0] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol. note 1	
2390-2400	1	2412	104.65	2399.82	73.84	30.81	20	PK	н	
2500-2690	1	2472	89.81	2500.70	63.57	26.24	20	PK	н	
	Lo	w Band				Up Bar	nd			
		1	FCC C	3 MANA CLASS-B	20 Joseph Mad	and a second second	Marriel Constant of Constant of Constant	FCC C	CLASS-B	
0 ₂₃₁₀ 2332.4	23	54.8 2317.2 Frequency (MHz)	2399.6	2422	0 2452 2472.	2492. Frequency	2512. (MHz)	PGC CLA	2552	

		Transm	nitter Radiat	ed Bandedg	e Emissior	is Result			
Power Level	1	Ant. No.	1		Postriot	od Bond Em	viscione		
Modulation		11G-2	0M		Result		115510115		
Restricted Band (MHz)	Ντχ	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	RBE Freq. (MHz)	Measure Distance (m)	Out-Band Level (dBuV/m)	Limit (dBuV/m)	Level Type	Pol. note 1
2310-2390	1	2412	112.17	2387.28	3	72.93	74	PK	Н
2310-2390	1	2412	101.46	2390.00	3	52.07	54	AV	Н
2483.5-2500	1	2472	96.76	2483.50	3	69.92	74	PK	Н
2483.5-2500	1	2472	86.55	2483.50	3	50.67	54	AV	Н
Note 1: Measurem	ent v	vorst emissi	ons of receiv	ve antenna po	plarization:	H (Horizontal) or V (Ve	rtical).	

		Transm	nitter Radiate	ed Bar	ndedg	e Emission	s Result			
ower Level	1	Ant. No.	1				atad Dand	F miasian		
Modulation		11N2.4G	i-20M			non-restri	cteu banu	Emission	5	
on-restricted Band (MHz)	Ντχ	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE (Mł	Freq. Iz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol. note 1
2390-2400	1	2412	105.31	2399	9.82	74.67	30.64	20	PK	Н
2500-2690	1	2472	85.79	2538	3.20	63.19	22.60	20	PK	Н
	Lc	w Band					Up Ba	nd		
			2 FCC C	3 HANLIA LASS-B	120		un		FCC C	LASS-B
60 menos and the formation		es automotion and the second second	2 FCC CI	LASS-B IS-B-AV	60	maria	martiner 2	Hurmon	FCC C	LASS-B SS-B-AV

		Transm	nitter Radiat	ed Bandedg	e Emissior	is Result			
Power Level	1	Ant. No.	1		Postriot	od Bond Em	viscione		
Modulation		11N2.4G	6-20M		Resulti		115510115		
Restricted Band (MHz)	Ντχ	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	RBE Freq. (MHz)	Measure Distance (m)	Out-Band Level (dBuV/m)	Limit (dBuV/m)	Level Type	Pol. note 1
2310-2390	1	2412	113.30	2390.00	3	72.08	74	PK	Н
2310-2390	1	2412	101.80	2390.00	3	52.73	54	AV	Н
2483.5-2500	1	2472	95.48	2483.50	3	68.47	74	PK	Н
2483.5-2500	1	2472	83.21	2483.50	3	50.15	54	AV	Н
Note 1: Measurem	ent v	vorst emissi	ons of receiv	ve antenna po	plarization:	H (Horizontal) or V (Ve	rtical).	

3.6 Transmitter Radiated Unwanted Emissions

3.6.1 Transmitter Radiated Unwanted Emissions Limit

	Restricted Band	Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

Un-restricted Ban	d Emissions Limit
RF output power procedure	Limit (dB)
Peak output power procedure	20
Average output power procedure	30
Note 1: If the peak output power procedure is used to demonstrate compliance to requirements, the any 100 kHz outside the authorized frequency the maximum measured in-band peak PSD le Note 2: If the average output power procedure is used demonstrate compliance to requirements, the frequency band shall be attenuated by at leas	measure the fundamental emission power to n the peak conducted output power measured within v band shall be attenuated by at least 20 dB relative to vel. I to measure the fundamental emission power to n the power in any 100 kHz outside of the authorized t 30 dB relative to the maximum measured in-band

3.6.2 Measuring Instruments

average PSD level.

Refer a test equipment and calibration data table in this test report.

3.6.3 Test Procedures

		Test Method – General Information
\boxtimes	Mea perf equi extra dista mea	surements may be performed at a distance other than the limit distance provided they are not ormed in the near field and the emissions to be measured can be detected by the measurement pment. When performing measurements at a distance other than that specified, the results shall be apolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear ance for field-strength measurements, inverse of linear distance-squared for power-density isurements).
	\boxtimes	Measurements in the frequency range 10 GHz - 18GHz are typically made at a closer distance 1m, because the instrumentation noise floor is typically close to the radiated emission limit.
	\boxtimes	Measurements in the frequency range above 18 GHz - 25GHz are typically made at a closer distance 0.5m, because the instrumentation noise floor is typically close to the radiated emission limit.
\boxtimes	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
\boxtimes	For	the transmitter unwanted emissions shall be measured using following options below:
	\square	Refer as FCC KDB 558074, clause 5.4.1 for unwanted emissions into non-restricted bands.
	\square	Refer as FCC KDB 558074, clause 5.4.2 for unwanted emissions into restricted bands.
		Refer as FCC KDB 558074, clause 5.4.2.2.2.1 Option 1 (Power Averaging).
		Refer as FCC KDB 558074, clause 5.4.2.2.2 Option 2 (Trace Averaging).
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW) – Duty cycle ≥ 98%.
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
		Refer as FCC KDB 558074, clause 5.4.2.2.3 measurement procedure peak limit.
		Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peak limit.

			Test Method
	Refe	er as F	CC KDB 558074, clause 2 for conducted measurement.
		For u	nwanted emissions into non-restricted bands (relative emission limits).
		F F e i	For conducted measurements on devices with multiple transmit chains: Refer as FCC KDB 662911, when testing out-of-band and spurious emissions against relative emission limits, tests may be performed on each output individually without summing or adding 10 log(N) if the measurements are made relative to the in-band emissions on the ndividual outputs.
		For u the ca	nwanted emissions into restricted bands. Test conducted spurious emissions and radiated by abinet with the antenna connector(s) terminated by a specified load (cabinet radiation).
		F I	Refer as FCC KDB 558074, clause 5.4.2.2.1 unwanted emissions in restricted bands on requencies \leq 1000 MHz
		□ F f	Refer as FCC KDB 558074, clause 5.4.2.2.2 unwanted emissions in restricted bands on requencies > 1000 MHz
			For conducted measurements on devices with multiple transmit chains using options given below:
		[Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, out-of-band and spurious emission measurement. The trace data for each transmit chain has to be individually recorded and each transmit chain trace data shall be added and compared with the limit.
		[Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.
\square	For	radiate	ed measurement.
	\boxtimes	Refer	as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz.
	\square	Refer	as ANSI C63.10, clause 6.5 for radiated emissions from 30 MHz to 1000 MHz.
	\square	Refer	as ANSI C63.10, clause 6.5 for radiated emissions from above 1 GHz.

3.6.4 Test Setup

ulatio	n Mode	111	12.4G-2	20M	Pow	er Level	1		Tes	st Freq. (FX)	F2
rating	Mode	1			Ant.	No.	1		Pol	arization	V
rating	Functio	n No	rmal Lir	nk							•
5	Level (d	BuV/m)								Date: 20	12-07-11
										FCC C	LASS-B -3dB
		_									
			-								
	30							4		5	6
-2	20 30		224.		411	3. Frequenc	y (MHz)	612.		806.	100
-2	20 30		0ver	Limit	411 Readi), Frequenc	y (MHz) Cable	Preamp		806. Ant T	able
-2	Freq	Level	224. Over Limit	Limit Line	411 Readi Level	3. Frequenc Antenna Factor	y (MHz) Cable Loss	Preamp Factor	Remark	806. Ant T. Pos	able Pos
-3	Freq MHz	Level 1BuV/m	224. Over Limit dB	Limit Line dBuV/m	Readi Level dBuV	3, Frequenc Antenna Factor dB/m	y (MHz) Cable Loss dB	Preamp Factor dB	Remark	806. Ant T. Pos	able Pos deg
-2	Freq MHz 32.910 55 220	Level 1BuV/m 28.46 21 19	224. Over Limit dB -11.54 -18 81	Limit Line dBuV/m 40.00	411 Readi Level dBuV 40.36 39 52	Antenna Factor dB/m 15.11 8.27	y (MHz) Cable Loss dB 0.93	Preamp Factor dB 27.94	Remark Peak Peak	806. Rnt T. Pos	able Pos deg
-2 -2 1 2 3	Ereq MHz 32.910 55.220 83.350	Level 1BuV/m 28.46 21.19 20.65	224. Over Limit dB -11.54 -18.81 -19.35	Limit Line dBuV/m 40.00 40.00 40.00	411 Readi Level dBuV 40.36 39.52 38.82	Antenna Factor dB/m 15.11 8.27 8.14	y (MHz) Cable Loss dB 0.93 1.25 1.54	Preamp Factor dB 27.94 27.85 27.85	Remark Peak Peak Peak	806. 806. Ant T. Pos 	able Pos deg
-2 -2 1 2 3 4 6	Ereq MHz 32.910 55.220 83.350 603.270	Level 1BuV/m 28.46 21.19 20.65 24.45	224. Over Limit dB -11.54 -18.81 -19.35 -21.55	Limit Line dBuV/m 40.00 40.00 40.00 40.00	411 Readi Level dBuV 40.36 39.52 38.82 28.51	Antenna Frequenc Antenna Factor dB/m 15.11 8.27 8.14 20.14	y (MHz) Cable Loss dB 0.93 1.25 1.54 4.25	Preamp Factor dB 27.94 27.85 27.85 28.45	Remark Peak Peak Peak Peak	806. Rnt T Pos Cm 	able Pos deg
-2 1 2 3 4 6 5 8	Ereq MHz 32.910 55.220 83.350 603.270 551.590	Level 1BuV/m 28.46 21.19 20.65 24.45 25.41	224. Over Limit dB -11.54 -18.81 -19.35 -21.55 -20.59	Limit Line dBuV/m 40.00 40.00 40.00 46.00 46.00	411 Readi Level dBuV 40.36 39.52 38.82 28.51 27.98	Antenna Frequenc dB/m 15.11 8.27 8.14 20.14 20.15	y (MHz) Cable Loss dB 0.93 1.25 1.54 4.25 5.05	Preamp Factor dB 27.94 27.85 27.85 28.45 27.77	Remark Peak Peak Peak Peak Peak Peak	806. Rnt T. Pos 	able Pos deg

3.6.5 Test Result of Transmitter Radiated Unwanted Emissions (Below 1GHz)

	1 woae	111	B-20M		Powe	er Level	1		Test Fr	eq. (FX)	F1
Operating	Function	Tra	ansmit		Ant. I	No.	1		Polariz	ation	V
420	_evel (dBu	V/m)								Dat	te: 2012-07-13
120		1.10			2.1						
		_						_			
										F	CC CLASS-B
60											
00		_	_	2	3			_		FCC	CLASS-B-AV
		1		1							
	<u>. </u>										
0	1000		6100.		1120	0. Frequenc	1 sy (MHz)	6300.	2	1400.	2650
0	1000		6100.	Limit	1120 ReadA	0. Frequend	1 :y(MHz) Cable	6300.	2		265(
0	Freq Le	vel	6100. Over Limit	Limit Line	1120 ReadA Level	0. Frequend Intenna Factor	1 :y (MHz) Cable Loss	6300. Preamp Factor	2 Remark	1400. Ant Pos	2650 t Table s Pos
0	Freq Le	vel V/m	6100. Over Limit dB	Limit Line dBuV/m	1120 ReadA Level dBuV	0. Frequenc Intenna Factor dB/m	1 cy (MHz) Cable Loss dB	6300. Factor dB	2 Remark	1400. Ant Pos	2650 zefo s Pos m deg
1 4824	Freq Le MKz dBu	vel V/m .92	Over Limit dB -7.08	Limit Line dBuV/m 54.00	1120 ReadA Level dBuV 42.01	0. Frequend Intenna Factor dB/m 35.13	topic for the second se	6300. Preamp Factor dB 34.80	2 Remark PK	Ant Pos 	2650 Table S Pos n deg

3.6.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11B-20M

	n Mode	110	G-20M		Powe	er Level	1		Test Fr	eq. (FX)	F1
Operating	Function	Tra	ansmit		Ant. I	No.	1		Polariz	ation	V
	Level (dBu	V/m)								Dat	e: 2012-07-11
120											
										100	
										F	CC CLASS-B
60		-			3					FCC	CLASS-B-AV
		1		1	1						anne e
		_									
		_	_		-						
0	1000		6100.		1120	0. Frequend	1 cy (MHz)	6300.	2	21400.	2650
	1000		6100. Over	Limit	1120 ReadA	0. Frequend	1 cy (MHz) Cable	6300.	2	21400. Ant	2650
0	freq Le	vel	6100. Over Limit	Limit Line	ReadA Level	0. Frequend Intenna Factor	1 cy (MHz) Cable Loss	6300. Preamp Factor	Remark	21400. Ant Pos	2650 2650 2650 2650
	Ereq Le MHz dBu	vel V/m	6100. Over Limit dB	Limit Line dBuV/m	ReadA Level dBuV	0. Frequend Intenna Factor dB/m	1 cy (MHz) Cable Loss dB	6300. Preamp Factor dB	Remark	21400. Ant Pos 	2650 2650 s Pos n deg
1 4824	Ereq Le MHz dBu 4.000 47		6100. Over Limit dB -6.63	Limit Line dBuV/m 54.00	ReadA Level dBuV 42.46	0. Frequend Intenna Factor dB/m 35.13	table Cable Loss dB 4.58	Preamp Factor dB 34.80	Remark PK	Ant Pos 	2650 2650 s Pos n deg
0 1 4824 2 7236	Ereq Le MHz dBu 4.000 47 6.000 50	vel 	6100. Over Limit dB -6.63 -23.43	Limit Line dBuV/m 54.00 74.00	1120 ReadA Level dBuV 42.46 43.12	0. Frequent Intenna Factor dB/m 35.13 36.90 20 50	1 cy (MHz) Cable Loss dB 4.58 5.63	6300. Preamp Factor dB 34.80 35.08 25.43	Remark PK Peak	Ant Pos 	2650 Table s Pos n deg

3.6.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11G-20M

Modulation Mode 11N2.4G-20M				Pow	Power Level 1			Test Freg. (FX)		F1	
Operating Function			Transmit		Ant.	Ant. No.			Polarization		V
	Level (d	IBuV/m)								Date	: 2012-07-11
	120										
										FC	C CLASS-B
	60			2	3					FCC C	LASS-B-AV
					i.						
	0 1000		6100.		1120)0. Frequenc	1 y (MHz)	6300.	2'	1400.	2650
57/1020148	0 1000	Level	6100. Over Limit	Limit Line	1120 Readi Level	00. Frequenc Antenna Factor	1 :y(MHz) Cable Loss	6300. Preamp Factor	2º Remark	1400. Ant Pos	26500 Table Pos
200000.00 	0 1000 Freq MHz	Level dBuV/m	6100. Over Limit dB	Limit Line dBuV/m	ReadJ Level dBuV	00. Frequenc Antenna Factor dB/m	1 :y (MHz) Cable Loss dB	6300. Preamp Factor dB	2º Remark	Ant Pos 	26500 Table Pos deg
- 1 -	0 1000 Freq MHz 4824.000	Level dBuV/m 47.06	0ver Limit 	Limit Line dBuV/m 54.00 24.00	1120 ReadJ Level dBuV 42.15 42.39	00. Frequence Antenna Factor dB/m 35.13 36.90	1 :y (MHz) Cable Loss dB 4.58 5.63	6300. 6300. Factor dB 34.80 35.08	2º Remark PK Beak	Ant Pos 	Table Pos deg

3.6.8 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11N2.4G-20M

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Test Dessiver	540	5000.00	000054/004		F.1. 00.0040	Conduction
lest Receiver	R&S	ESCS 30	838251/004	9 KHZ ~ 2.75 GHZ	Feb. 02, 2012	(CO01-LK)
	D *0		00004		1	Conduction
LISIN	R&S	NNB-2/16Z	99081	9 KHZ ~ 30 MHZ	Apr. 11, 2012	(CO01-LK)
	Suhner	BC222/U	CP017		Nov. 04, 2011	Conduction
RF Cable-CON	Switzerland	RG223/U	CB017	9 KHZ ~ 30 MHZ		(CO01-LK)
	D 40	FOUR 70	00.0400		May 10, 0010	Conduction
PULSE LIMIER	K&S	ESH3-22	20-6120	9 кнz ~ 30 MHZ	way 16. 2012	(CO01-LK)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP 40	100305	9 KHz ~ 40 GHz	Feb. 21, 2012	Conducted (TH01-HY)
AC Power Source	HPC	HPA-500W	HPA-9100024	AC 0 ~ 300V	Jun. 09, 2011*	Conducted (TH01-HY)
DC Power Source	G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Jun. 19, 2012	Conducted (TH01-HY)
Temp. and Humidity Chamber	Giant Force	GTH-225-20-SP-SD	MAA1112-007	-20~100 ℃	Dec. 07, 2011	Conducted (TH01-HY)
Signal Generator	R&S	SMR40	100302	10MHz ~ 40GHz	Nov. 22, 2011	Conducted (TH01-HY)
Power Sensor	Anritsu	MA2411B	1027452	300MHz ~ 40GHz	Jan. 12, 2012	Conducted (TH01-HY)
Power Meter	Anritsu	ML2495A	1124009	300MHz ~ 40GHz	Jan. 12, 2012	Conducted (TH01-HY)
RF Cable-1m	Jye Bao	RG142	CB034-1m	20 MHz ~ 7 GHz	Dec. 03, 2011	Conducted (TH01-HY)
RF Cable-2m	Jye Bao	RG142	CB035-2m	20 MHz ~ 1 GHz	Dec. 03, 2011	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is one year.

Report No. : FR270520

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP40	100593	9kHz ~ 40GHz	Sep. 01, 2011	Radiation (03CH02-HY)
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH02-HY	30MHz ~ 1GHz 3m	May 10, 2012	Radiation (03CH02-HY)
Amplifier	Agilent	8447D	2944A11146	100kHz ~ 1.3GHz	Jul. 25, 2011	Radiation (03CH02-HY)
Amplifier	Agilent	8449B	3008A02373	1GHz ~ 26.5GHz	Aug. 08, 2011	Radiation (03CH02-HY)
Horn Antenna	ETS-LINDGREN	3117	00091920	1GHz ~ 18GHz	Nov. 15, 2011	Radiation (03CH02-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	30MHz ~ 1GHz	Nov. 11, 2011	Radiation (03CH02-HY)
RF Cable-high	SUHNER	SUCOFLEX106	03CH02-HY	1GHz ~ 40GHz	Mar. 06, 2012	Radiation (03CH02-HY)
Bilog Antenna	SCHAFFNER	CBL61128	2723	30MHz ~ 2GHz	Oct. 22, 2011	Radiation (03CH02-HY)
Turn Table	HD	DS 420	420/649/00	0~ 360 degree	N/A	Radiation (03CH02-HY)
Antenna Mast	HD	MA 240	240/559/00	1 ~ 4 m	N/A	Radiation (03CH02-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Loop Antenna	Teseq	HLA 6120	24155	9 kHz - 30 MHz	Sep. 09, 2010*	Radiation

Note: Calibration Interval of instruments listed above is two year.

Certification of TAF Accreditation 5 Certificate No. : L1190-120405 財團法人全國認證基金會 **Taiwan Accreditation Foundation Certificate of Accreditation** This is to certify that **Sporton International Inc. EMC & Wireless Communications Laboratory** No.52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. is accredited in respect of laboratory Accreditation Criteria : ISO/IEC 17025:2005 Accreditation Number : 1190 **Originally Accredited** : December 15, 2003 **Effective Period** : January 10, 2010 to January 09, 2013 Accredited Scope Testing Field, see described in the Appendix . Specific Accreditation Accreditation Program for Designated Testing Laboratory : Program for Commodities Inspection Accreditation Program for Telecommunication Equipment Testing Laboratory Accreditation Program for BSMI Mutual Recognition Arrangment with Foreign Authorities Chen - San Jay-San Chen President, Taiwan Accreditation Foundation Date:April 05, 2012 P1, total 24 pages