

Report No. : FR922214D

FCC RADIO TEST REPORT

FCC ID	:	UZ7RTL10B1
Equipment	:	Tablet
Brand Name	:	Zebra
Model Name	:	RTL10B1
Applicant	:	Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Manufacturer	:	Zebra Technologies Corporation 1 Zebra Plaza, Holtsville, NY 11742
Standard	:	FCC Part 15 Subpart C §15.225

The product was received on Feb. 22, 2019 and testing was started from Mar. 29, 2019 and completed on Apr. 16, 2019. We, SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Reviewed by: Jones Tsai SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

History	of this test report	3
Summa	ary of Test Result	4
1. Gene	eral Description	5
1.1	Product Feature of Equipment Under Test	5
1.2	Product Specification of Equipment Under Test	7
1.3	Modification of EUT	7
1.4	Testing Location	7
1.5	Applicable Standards	7
2. Test	Configuration of Equipment Under Test	8
2.1	Descriptions of Test Mode	
2.2	Connection Diagram of Test System	9
2.3	Table for Supporting Units	
2.4	EUT Operation Test Setup	
3. Test	Results	
3.1	AC Power Line Conducted Emissions Measurement	
3.2	20dB and 99% OBW Spectrum Bandwidth Measurement	
3.3	Frequency Stability Measurement	
3.4	Field Strength of Fundamental Emissions and Mask Measurement	
3.5	Radiated Emissions Measurement	
3.6	Antenna Requirements	
4. List o	of Measuring Equipment	
5. Unce	ertainty of Evaluation	
A	dia A Tant Deputte of Orandusted Emission Test	

Appendix A. Test Results of Conducted Emission Test

Appendix B. Test Results of Conducted Test Items

- B1. Test Result of 20dB Spectrum Bandwidth
- B2. Test Result of Frequency Stability

Appendix C. Test Results of Radiated Test Items

- C1. Test Result of Field Strength of Fundamental Emissions
- C2. Results of Radiated Emissions (9 kHz~30MHz)
- C3. Results of Radiated Emissions (30MHz~1GHz)

Appendix D. Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FR922214D	01	Initial issue of report	May 17, 2019

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.207	AC Power Line Conducted Emissions	Pass	Under limit 8.49 dB at 13.560MHz
2.2	15.215(c)	20dB Spectrum Bandwidth	Pass	-
3.2	2.1049	99% OBW Spectrum Bandwidth	Reporting only	-
3.3	15.225(e)	Frequency Stability	Pass	-
3.4	15.225(a)(b)(c)	Field Strength of Fundamental Emissions	Pass	Max level 54.88 dBµV/m at 13.560 MHz
3.5	15.225(d) 15.209	Radiated Spurious Emissions	Pass	Under limit 6.48 dB at 40.800MHz
3.6	15.203	Antenna Requirements	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang

Report Producer: Maggie Chiang

1. General Description

1.1 Product Feature of Equipment Under Test

	Product Feature	
Equipment	Tablet	
Brand Name	Zebra	
Model Name	RTL10B1	
FCC ID	UZ7RTL10B1	
Sample 1	EUT with SKU 1 + Keyboard	
Sample 2	EUT with SKU 1	
Sample 3	EUT with SKU 2	
Sample 4	EUT with SKU 3	
Sample 5	EUT with SKU 4	
	WCDMA/HSPA/LTE/NFC/GNSS	
FUT supports Radios application	WLAN 11a/b/g/n HT20/HT40	
	WLAN 11ac VHT20/VHT40/VHT80	
	Bluetooth BR/EDR/LE	
HW Version	DV0	
SW Version	Android version 8.1.0	
FW Version - Xpad	01-17-09.00-OG-U00-PLT	
FW Version - Xslate	01-17-05.00-OG-U00-PRD	
FW Version - Xbook	01-17-05.00-OG-U00-PRD	
MFD - Xpad	19MAR01	
MFD - Xslate	19MAR01	
MFD - Xbook	19MAR01	
EUT Stage	Identical Prototype	

Remark: The above EUT's information was declared by manufacturer.

Specification of Accessories						
AC Adapter	Brand Name	Delta	Model Name	ADP-65JH HB		
Spare Standard Battery 36Whr	Brand Name	XPLORE	Model Name	XLBM1		
Keyboard dock	Brand Name	XPLORE	Model Name	LX-KB		
Touch Pen	Brand Name	WACOM	Model Name	CP-903-05B-2		
Touch Pen	Brand Name	EMPIA	Model Name	EPNB-8C1000-0000 40820A01		
Touch Pen	Brand Name	HAO SHUAN	Model Name	440007		

<Sample Information>

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
DV0	SKU 1+ Keyboard	L10A - SKU1	L10A - SKU2	L10A - SKU3	L10A - SKU4
ID	Xbook	XSLATE	XPAD	XPAD	XPAD
OS		Android O	Android O	Android O	Android O
CPU		Qualcomm SDM660	Qualcomm SDM660	Qualcomm SDM660	Qualcomm SDM660
		Panasonic	Panasonic	Panasonic	Panasonic
Display with		EP101R1912N50 0TG	EP101R1912N50 0TG	EP101R1912N50 0TG	EP101R1912N50 0TG
touch		10.1" LCD (500nits)	10.1" LCD (500nits)	10.1" LCD (1000nits)	10.1" LCD (1000nits) with digitizer
Memory		Samsung LPDDR4 4GB	Samsung LPDDR4 4GB	Samsung LPDDR4 4GB	Samsung LPDDR4 4GB
momory	Rofor Xslato	Hynix LPDD4 4 GB	Hynix LPDD4 4 GB	Micron LPDD4 4 GB	Micron LPDD4 4 GB
eMMC	Neice Asiate	TOSHIBA 64GB	TOSHIBA 64GB	TOSHIBA 64GB	TOSHIBA 64GB
GPS		Qualcomm	Qualcomm	Qualcomm	Qualcomm
WWAN		Qualcomm	Qualcomm	Qualcomm	Qualcomm
WLAN		Qualcomm WCN3990	Qualcomm WCN3990	Qualcomm WCN3990	Qualcomm WCN3990
Antonno		WLAN*2/NFC	WLAN*2/NFC	WLAN*2/NFC	WLAN*2/NFC
Antenna		/GPS/WWAN*2	/GPS/WWAN*2	/GPS/WWAN*2	/GPS/WWAN*2
Barcode Reader		No	Yes	Yes	Yes
HDMI		No	No	Yes	No
Serial Port		No	Yes	No	No

1.2 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range	13.553 ~ 13.567MHz		
Channel Number	1		
20dBW	2.66 KHz		
99%OBW	2.24 KHz		
Antenna Type	Loop Antenna		
Type of Modulation	ASK		

Remark: The above EUT's information was declared by manufacturer.

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Testing Location

Test Site	SPORTON INTERNATIC	SPORTON INTERNATIONAL INC.			
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456				
Toot Site No	Sporton Site No.				
Test Site No.	TH03-HY	CO05-HY 03CH07-HY			
Test Engineer	George Chen	nen Eric Jeng Jesse Wang and Stan Hsieh			
Temperature	22~24°C	22~25°C	21~23°C		
Relative Humidity	53~55%	52~55%	51~53%		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190

1.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.225
- FCC KDB 414788 D01 Radiated Test Site v01r01
- + ANSI C63.10-2013

2. Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

Investigation has been done on all the possible configurations.

The following table is a list of the test modes shown in this test report.

Test Items				
AC Power Line Conducted Emissions	Field Strength of Fundamental Emissions			
20dB Spectrum Bandwidth	Frequency Stability			
Radiated Emissions 9kHz~30MHz	Radiated Emissions 30MHz~1GHz			

The EUT pre-scanned in four NFC type, A, B, F, V. The worst type (type F) was recorded in this report. Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (Y plane as worst plane) from all possible combinations.

Test Cases					
٨٥	Mode 1: LTE Band 12 Idle + WLAN Idle + Bluetooth Idle + RFID Idle + NFC Link +				
AC	AC Adapter + USB (Type C) with LCD monitor + SD Card (Data Link)				
Emission	(eMMC to SD Card) + RJ45 link with AP + Touch Pen + HDMI in with				
Emission	Notebook for Sample 4				
Remark: For Radiated Test Cases, the tests were performed with Sample 2 and Sample 5					

2.2 Connection Diagram of Test System

<Radiated Emission Mode>

<AC Conducted Emission Mode>

FCC RADIO TEST REPORT

2.3 Table for Supporting Units

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
3.	WLAN AP	TP-Link	ArcherC7	N/A	N/A	Unshielded, 1.8 m
4.	iPod Earphone	Apple	N/A	Verification	Unshielded, 1.0 m	N/A
5.	iPod	Apple	A1285	FCC DoC	Shielded, 1.0 m	N/A
6.	Notebook	DELL	Latitude E3340	FCC DoC/ Contains FCC ID: PD97260NGU	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
7.	LCD Monitor	DELL	U2715Qt	FCC DoC	Shielded, 1.6 m	Unshielded, 1.8 m
8.	USB HD	Lenovo	F310S	FCC DoC	N/A	Shielded, 0.5 m
9.	NFC Card	N/A	N/A	N/A	N/A	N/A
10.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A

2.4 EUT Operation Test Setup

The EUT was programmed to be in continuously transmitting mode.

The ancillary equipment, NFC card, is used to make the EUT (NFC) continuously transmit at 13.56MHz and is placed around 0 cm gap to the EUT.

3. Test Results

3.1 AC Power Line Conducted Emissions Measurement

3.1.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBµV)				
(MHz)	Quasi-Peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

For terminal test result, the testing follows FCC KDB 174176.

3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.1.4 Test setup

3.1.5 Test Result of AC Conducted Emission

Please refer to Appendix A.

Note:

(1) with antenna

Remark: 13.560MHz is the NFC RF fundamental signal.

(2) with dummy load

Remark: Only the fundamental NFC signal needs to be retested per C63.4.

3.2 20dB and 99% OBW Spectrum Bandwidth Measurement

3.2.1 Limit

Intentional radiators must be designed to ensure that the 20dB and 99% emission bandwidth in the specific band 13.553~13.567MHz.

3.2.2 Measuring Instruments

See list of measuring instruments of this test report.

3.2.3 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT in peak Max hold mode.
- 2. The resolution bandwidth of 1 kHz and the video bandwidth of 3 kHz were used.
- 3. Measured the spectrum width with power higher than 20dB below carrier.
- 4. Measured the 99% OBW.

3.2.4 Test Setup

Spectrum Analyzer

3.2.5 Test Result of Conducted Test Items

Please refer to Appendix B.

3.3 Frequency Stability Measurement

3.3.1 Limit

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

3.3.2 Measuring Instruments

See list of measuring instruments of this test report.

3.3.3 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT.
- 2. EUT have transmitted signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire emissions bandwidth.
- 4. Set RBW = 1 kHz, VBW = 3 kHz with peak detector and maxhold settings.
- 5. The fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ±100ppm.
- 6. Extreme temperature rule is -20°C~50°C.

3.3.4 Test Setup

3.3.5 Test Result of Conducted Test Items

Please refer to Appendix B.

3.4 Field Strength of Fundamental Emissions and Mask Measurement

3.4.1 Limit

Rules and specifications	FCC CFR 47 Part 15 section 15.225					
Description	Compliance with the spectrum mask is tested with RBW set to 9kHz.					
Free of Emission (MHz)	Field Strength	Field Strength	Field Strength	Field Strength		
	(µV/m) at 30m	(dBµV/m) at 30m	(dBµV/m) at 10m	(dBµV/m) at 3m		
1.705~13.110	30	29.5	48.58	69.5		
13.110~13.410	106	40.5	59.58	80.5		
13.410~13.553	334	50.5	69.58	90.5		
13.553~13.567	15848	84.0	103.08	124.0		
13.567~13.710	334	50.5	69.58	90.5		
13.710~14.010	106	40.5	59.58	80.5		
14.010~30.000	30	29.5	48.58	69.5		

3.4.2 Measuring Instruments

See list of measuring instruments of this test report.

3.4.3 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the receiving antenna was fixed at one meter above ground to find the maximum emissions field strength.
- 4. For Fundamental emissions, use the receiver to measure QP reading.
- 5. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 6. Compliance with the spectrum mask is tested with RBW set to 9kHz. Note: Emission level (dB μ V/m) = 20 log Emission level (μ V/m).

3.4.4 Test Setup

For radiated emissions below 30MHz

3.4.5 Test Result of Field Strength of Fundamental Emissions and Mask

Please refer to Appendix C.

3.5 Radiated Emissions Measurement

3.5.1 Limit

The field strength of any emissions which appear outside of 13.110 ~14.010MHz band shall not exceed the general radiated emissions limits.

Frequencies	Field Strength	Measurement Distance
(MHz)	(μV/m)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

See list of measuring instruments of this test report.

3.5.3 Measuring Instrument Setting

The following table is the setting of receiver:

Receiver Parameter	Setting
Attenuation	Auto
Frequency Range: 9kHz~150kHz	RBW 200Hz for QP
Frequency Range: 150kHz~30MHz	RBW 9kHz for QP
Frequency Range: 30MHz~1000MHz	RBW 120kHz for Peak

Note: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz and 110-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.

3.5.4 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver.

3.5.5 Test Setup

For radiated emissions below 30MHz

For radiated emissions above 30MHz

3.5.6 Test Result of Radiated Emissions Measurement

Please refer to Appendix C.

Remark: There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.6 Antenna Requirements

3.6.1 Standard Applicable

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited.

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.6.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	AC POWER	AFC-500W	F104070011	50Hz~60Hz	Apr. 21, 2018	Apr. 03, 2018	Apr. 20, 2019	Conducted (TH03-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP30	101329	9kHz~30GHz	Jun. 29, 2018	Apr. 03, 2018	Jun. 28, 2019	Conducted (TH03-HY)
Temperature Chamber	ESPEC	SU-641	92013721	-30° ℃ ~70°℃	Dec. 06, 2017	Apr. 03, 2018	Dec. 05, 2019	Conducted (TH03-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Apr. 16, 2019	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9KHz~3.6GHz	Nov. 12, 2018	Apr. 16, 2019	Nov. 11, 2019	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 14, 2018	Apr. 16, 2019	Nov. 13, 2019	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 09, 2018	Apr. 16, 2019	Nov. 08, 2019	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Apr. 16, 2019	N/A	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Dec. 31, 2018	Apr. 16, 2019	Dec. 30, 2019	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Dec. 31, 2018	Apr. 16, 2019	Dec. 30, 2019	Conduction (CO05-HY)
Bilog Antenna	Schaffner	CBL6111C&N- 6-06	2725&AT- N0601	30MHz~1GHz	Jan. 10, 2019	Mar. 29, 2019	Jan. 09, 2020	Radiation (03CH07-HY)
EMI Test Receiver	Agilent	N9038A (MXE)	MY53290053	20Hz to 26.5GHz	Jan. 23, 2019	Mar. 29, 2019	Jan. 22, 2020	Radiation (03CH07-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Jan. 11, 2019	Mar. 29, 2019	Jan. 10, 2020	Radiation (03CH07-HY)
Preamplifier	COM-POWER	PA-103A	161241	10MHz-1GHz	May 21, 2018	Mar. 29, 2019	May 20, 2019	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24971/4,MY 28655/4	9KHz~30MHz	Feb. 26, 2019	Mar. 29, 2019	Feb. 25, 2020	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY28655/4, MY24971/4, MY15682/4	30MHz~1GHz	Feb. 26, 2019	Mar. 29, 2019	Feb. 25, 2020	Radiation (03CH07-HY)
Software	Audix	E3 6.2009-8-24	80504004656H	N/A	N/A	Mar. 29, 2019	N/A	Radiation (03CH07-HY)
Antenna Mast	Max-Full	MFA520BS	N/A	1m~4m	N/A	Mar. 29, 2019	N/A	Radiation (03CH07-HY)
Turn Table	ChainTek	Chaintek 3000	N/A	0~360 Degree	N/A	Mar. 29, 2019	N/A	Radiation (03CH07-HY)

5. Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.2
of 95% (U = 2Uc(y))	Ζ.Ζ

Uncertainty of Radiated Emission Measurement (9 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.4
of 95% (U = 2Uc(y))	5.4

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.7
of 95% (U = 2Uc(y))	5.7

Appendix A. Test Results of Conducted Emission Test

st Engineer ·	ngineer : Eric Jeng					Temperature :		
st Lingilieer .		9			Rela	tive Hu	imidity :	52~55%
est Voltage :	120Vac	/ 60Hz			Phas	Phase :		Line
1	°9							
	90 <u>T</u>							
	80-							
	-							
	70+							
	+							
	60+					<u>CISPR-</u>	<u>JP Lmita</u>	<u>it Ma</u> m Port
dB						TSPR-4	ve Limits	at Main Por
, 크. 	50-					<u>, av a av 70</u>		<u>, , , , , , , , , , , , , , , , , , , </u>
Lev			مسمعها معاميهم المدر المسر					
	+ 0							
	30-	VVV					_	
	<u> </u>	• '						
	20+							
	20							
	2 0 - - 1 0 -							
	20 10-							
	20 10 0 150k	300400500	8001 M	2M 31	M 4M5M6	5 8 10	M 20	
	20 10 0 150k	300400500	8001 M	2M 31 equency i	M 4M5M6 in Hz	+ + + + 5 8 10	M 20	IM 30M
	20 10 0 150k	300400500	8001 M	2M 3I equency i	M 4M5M6	5 8 10		
Final	20 10 0 150k Result	300400500	8001 M Fr	2M 3I equency i	M 4M5M6 in Hz	5 8 10	M 20	ім зом
Final Free	20 10 0 150k Result quency MHz)	300 40 05 00 QuasiPeak	8001 M Fr	2M 31 equency i	Margin (dB)	5 8 10	M 20	Corr.
Final Fre	20 10 0 150k Result quency MHz) 0.152250	300400500 QuasiPeak (dBuV)	8001 M Fr CAverage (dBuV) 22.10	2M 31 equency i Limit (dBuV) 55.88	M 4M5M6 in Hz Margin (dB) 33.78	Line	M 20 Filter OFF	Corr. (dB) 19.5
Final I Fre	20 10 150k Result quency MHz) 0.152250 0.152250	QuasiPeak (dBuV) 39.51	8001 M Fr CAverage (dBuV) 22.10	2M 31 equency i (dBuV) 55.88 65.88	Margin (dB) 33.78 26.37	Line L1 L1	Filter OFF OFF	Corr. (dB) 19.5
Final I	20 10 150k Result quency MHz) 0.152250 0.152250 0.199500	QuasiPeak (dBuV) 39.51	CAverage (dBuV) 22.10 37.14	2M 31 equency i 55.88 65.88 53.63	Margin (dB) 33.78 26.37 16.49	Line	Filter OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5
Final I	20 10 150k Result quency MHz) 0.152250 0.152250 0.199500 0.199500	QuasiPeak (dBuV) 39.51 47.12	CAverage (dBuV) 22.10 37.14	2M 31 equency i 55.88 65.88 53.63 63.63	Margin (dB) 33.78 26.37 16.49 16.51	Line L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5
Final I	20 10 0 150k Result quency MHz) 0.152250 0.199500 0.199500 1.585500	QuasiPeak (dBuV) 39.51 47.12 38.96	8001 M Fr CAverage (dBuV) 22.10 37.14 37.14 	2M 31 equency i 55.88 65.88 53.63 63.63 46.00 56 00	Margin (dB) 33.78 26.37 16.49 16.51 18.70 17.04	Line L1 L1 L1 L1 L1 L1 L1 L1 L1	M 20 Filter OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.6
Final I Fre	20 10 150k Result quency MHz) 0.152250 0.199500 1.585500 1.585500 3.273000	QuasiPeak (dBuV) 39.51 47.12 38.96 	CAverage (dBuV) 22.10 37.14 27.30 29.71	2M 31 equency i 55.88 65.88 53.63 65.88 65.88 65.88 65.88 65.88 65.88 65.88 65.85 65	Margin (dB) 33.78 26.37 16.49 16.51 18.70 17.04 16.29	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	M 20 Filter OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.6 19.6 19.6
Final I	20 10 150k Result quency MHz) 0.152250 0.152250 0.199500 1.585500 1.585500 3.273000 3.273000	QuasiPeak (dBuV) 39.51 47.12 38.96 39.38	8001 M Fr (dBuV) 22.10 37.14 27.30 29.71 	2 M 31 equency i 55.88 65.88 53.63 63.63 46.00 56.00 46.00 56.00	M 4M5M6 in Hz Margin (dB) 33.78 26.37 16.49 16.51 18.70 17.04 16.29 16.62	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	M 20 Filter OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.6 19.6 19.6 19.6
Final I Fre	20 10 0 150k Result quency MHz) 0.152250 0.152250 0.199500 0.199500 1.585500 1.585500 3.273000 3.273000 3.383250	QuasiPeak (dBuV) 39.51 47.12 38.96 39.38 	8001 M Fr CAverage (dBuV) 22.10 37.14 27.30 29.71 30.50	2 M 31 equency i 55.88 65.88 65.88 53.63 63.63 46.00 56.00 46.00 56.00 46.00	Margin (dB) 33.78 26.37 16.49 16.51 18.70 17.04 16.29 16.62 15.50	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	M 20 Filter OFF OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.6
Final I	20 10 0 150k Result quency MHz) 0.152250 0.152250 0.152500 0.199500 1.585500 1.585500 3.273000 3.383250 3.383250	QuasiPeak (dBuV) 39.51 47.12 38.96 39.38 39.38	8001 M Fr CAverage (dBuV) 22.10 37.14 27.30 29.71 30.50 	2 M 31 equency i 55.88 65.88 65.88 63.63 63.63 46.00 56.00 46.00 56.00 46.00 56.00	Margin (dB) 33.78 26.37 16.49 16.51 18.70 17.04 16.29 16.62 15.50 16.62	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	M 20 Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.6 19.6
Final I Free (1	20 10 0 150k Result quency MHz) 0.152250 0.152250 0.152500 1.585500 1.585500 1.585500 3.273000 3.273000 3.383250 3.383250	QuasiPeak (dBuV) 39.51 47.12 38.96 39.38 39.38 39.74 	CAverage (dBuV) 22.10 37.14 29.71 30.50 31.90	2M 31 equency i 55.88 65.88 53.63 63.63 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	Margin (dB) 33.78 26.37 16.49 16.51 18.70 17.04 16.29 16.62 15.50 16.26 14.10	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	M 20 Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	Corr. (dB) 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
Final I	20 10 150k Result quency MHz) 0.152250 0.152250 0.199500 1.585500 1.585500 1.585500 3.273000 3.273000 3.383250 3.383250 3.534000 3.678000	QuasiPeak (dBuV) 39.51 47.12 38.96 39.38 39.38 39.74 39.74 	CAverage (dBuV) 22.10 37.14 29.71 30.50 31.90 31.90	2M 31 equency i 55.88 65.88 53.63 63.63 46.00 56.00 46.00 56.00 46.00 56.00 46.00	Margin (dB) 33.78 26.37 16.49 16.51 18.70 17.04 16.29 16.62 15.50 16.26 14.10 14.70 14.50	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	Corr. (dB) 19.5 19.5 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6

<Original Test Result>

<Terminal Test Result>

st Engineer · Frictleng		a			Tem	peratur	re :	22~25 ℃	
Lingineer :		У			Rela	tive Hu	midity :	52~55%	
Voltage :	120Vac	/ 60Hz			Phas	se :		Line	
Level in dBuV	100 90 80 70 60 50 40 30 20 10						OP Limit	a <u>t Ma</u> in Ports	
	0+		• • •	-	- 1 1	+ + + +		i	
Final	Result	300 40 05 0 0 QuasiPeak	8001 M Fr CAverage (dBuV)	2M 31 equency i	M 4M5M(in Hz Margin (dB)	6 8 10	M 20	Corr.	
Final	0 150k Result equency (MHz) 0.192750	300400500 QuasiPeak (dBuV)	8001 M Fr CAverage (dBuV) 31.49	2M 31 equency i Limit (dBuV) 53.92	M 4M 5M 6 in H z Margin (dB) 22.43	Line	Filter OFF	Corr. (dB) 19.5	
Final	0 150k Result equency (MHz) 0.192750 0.192750	QuasiPeak (dBuV) 51.75	8001 M Fr CAverage (dBuV) 31.49 	2M 31 equency i (dBuV) 53.92 63.92	M 4M 5M 0 in H z Margin (dB) 22.43 12.17	Line	M 20 Filter OFF OFF	Corr. (dB) 19.5 19.5	
Final	0 150k Result equency (MHz) 0.192750 0.192750 0.201750	QuasiPeak (dBuV) 51.75 	8001 M Fr CAverage (dBuV) 31.49 36.55	2 M 31 equency (dBuV) 53.92 63.92 53.54	M 4M 5M (in Hz (dB) 22.43 12.17 16.99	Line L1 L1	Filter OFF OFF	Corr. (dB) 19.5 19.5 19.5	
Final	0 150k Result equency (MHz) 0.192750 0.201750 0.201750 0.201750	QuasiPeak (dBuV) 51.75 52.34	8001 M Fr CAverage (dBuV) 31.49 36.55 	2 M 31 equency (dBuV) 53.92 63.92 53.54 63.54	M 4M 5M 6 in H z Margin (dB) 22.43 12.17 16.99 11.20 40.77	Line L1 L1 L1 L1 L1	M 20 Filter OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5	
Final	0 150k Result equency (MHz) 0.192750 0.201750 0.201750 0.210750 0.210750	QuasiPeak (dBuV) 51.75 52.34 50 50	8001 M Fr CAverage (dBuV) 31.49 36.55 33.39	2 M 31 equency (dBuV) 53.92 63.92 53.54 63.54 63.54 53.18	M 4M 5M 6 in H z Margin (dB) 22.43 12.17 16.99 11.20 19.79 22.5	Line L1 L1 L1 L1 L1 L1 L1	M 20 Filter OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5	
Final	0 150k Result equency (MHz) 0.192750 0.192750 0.201750 0.210750 0.210750 0.220750	QuasiPeak (dBuV) 51.75 52.34 50.59	8001 M Fr CAverage (dBuV) 31.49 36.55 33.39 24.54	2 M 31 equency (dBuV) 53.92 63.92 53.54 63.54 53.18 63.18 63.18	M 4M 5M 6 in H z Margin (dB) 22.43 12.17 16.99 11.20 19.79 12.59 26 90	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	M 20 Filter OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	
Final	0 150k Result equency (MHz) 0.192750 0.192750 0.201750 0.210750 0.210750 0.210750 0.258000 0 258000	QuasiPeak (dBuV) 51.75 52.34 50.59 	8001 M Fr CAverage (dBuV) 31.49 36.55 33.39 24.61	2 M 31 equency (dBuV) 53.92 63.92 53.54 63.54 53.18 63.18 51.50 64 50	M 4M 5M 6 in H z Margin (dB) 22.43 12.17 16.99 11.20 19.79 12.59 26.89 27.45	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	M 20 Filter OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	
Final	0 150k Result equency (MHz) 0.192750 0.201750 0.201750 0.210750 0.210750 0.258000 0.321000	QuasiPeak (dBuV) 51.75 52.34 50.59 44.05	CAverage (dBuV) 31.49 36.55 33.39 24.61 18.44	2 M 31 equency (dBuV) 53.92 63.92 53.54 63.54 53.18 63.18 51.50 61.50 61.50	M 4M 5M 6 in H z Margin (dB) 22.43 12.17 16.99 11.20 19.79 12.59 26.89 17.45 31 24	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	M 20 Filter OFF OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	
	0 150k 150k Result equency (MHz) 0.192750 0.192750 0.201750 0.201750 0.210750 0.210750 0.210750 0.258000 0.258000 0.321000 0.321000	QuasiPeak (dBuV) 51.75 52.34 50.59 44.05 37.08	CAverage (dBuV) 31.49 36.55 33.39 24.61 18.44	2 M 31 equency (dBuV) 53.92 63.92 53.54 63.54 53.18 63.18 51.50 61.50 61.50 49.68	M 4M 5M 0 in H z Margin (dB) 22.43 12.17 16.99 11.20 19.79 12.59 26.89 17.45 31.24 22.60	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	M 20 Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	
	0 150k 150k Result equency (MHz) 0.192750 0.192750 0.201750 0.210750 0.210750 0.210750 0.258000 0.258000 0.321000 0.321000 3.720750	QuasiPeak (dBuV) 51.75 52.34 50.59 44.05 37.08	CAverage (dBuV) 31.49 36.55 33.39 24.61 18.44 26.03	2 M 31 equency (dBuV) 53.92 63.92 53.54 63.54 53.18 63.18 51.50 61.50 49.68 59.68	M 4M 5M 0 in H z Margin (dB) 22.43 12.17 16.99 11.20 19.79 12.59 26.89 17.45 31.24 22.60 19.97	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	M 20 Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	
Final	Result equency (MHz) 0.192750 0.201750 0.201750 0.210750 0.210750 0.210750 0.210750 0.210750 0.210750 0.210750 0.210750 0.210750 0.258000 0.321000 3.720750	QuasiPeak (dBuV) 51.75 52.34 50.59 44.05 37.08 34.56	CAverage (dBuV) 31.49 36.55 33.39 24.61 18.44 26.03	2 M 31 equency (dBuV) 53.92 63.92 53.54 63.54 53.18 63.18 51.50 61.50 49.68 59.68 59.68 46.00 56 00	M 4M 5M 0 in H z Margin (dB) 22.43 12.17 16.99 11.20 19.79 12.59 26.89 17.45 31.24 22.60 19.97 21.44	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	M 20 Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	
Final	0 150k 150k Result equency (MHz) 0.192750 0.192750 0.201750 0.201750 0.210750 0.210750 0.210750 0.258000 0.321000 0.321000 3.720750 11 622750 11 622750	QuasiPeak (dBuV) 51.75 52.34 50.59 44.05 37.08 334.56	CAverage (dBuV) 31.49 36.55 33.39 24.61 18.44 26.03 29.10	2 M 31 equency (dBuV) 53.92 63.92 53.54 63.54 53.18 63.18 51.50 61.50 49.68 59.68 46.00 56.00 50.00	M 4M 5M 6 in H z Margin (dB) 22.43 12.17 16.99 11.20 19.79 12.59 26.89 17.45 31.24 22.60 19.97 21.44 20.90	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	M 20 Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	
Final	0 150k 150k Result equency (MHz) 0.192750 0.192750 0.201750 0.201750 0.210750 0.210750 0.210750 0.258000 0.321000 0.321000 3.720750 3.720750 11.622750	QuasiPeak (dBuV) 51.75 52.34 50.59 50.59 44.05 37.08 37.08 34.56 37.49	CAverage (dBuV) 31.49 36.55 33.39 24.61 18.44 26.03 29.10	2 M 31 equency (dBuV) 53.92 63.92 53.54 63.54 53.18 63.18 51.50 61.50 49.68 59.68 46.00 56.00 50.00 60.00	M 4M 5M 6 in H z Margin (dB) 22.43 12.17 16.99 11.20 19.79 12.59 26.89 17.45 31.24 22.60 19.97 21.44 20.90 22.51	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	M 20 Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	
Final	0 150k 150k Result equency (MHz) 0.192750 0.192750 0.201750 0.201750 0.210750 0.210750 0.210750 0.210750 0.258000 0.321000 3.720750 3.720750 11.622750 11.622750 13.560000	QuasiPeak (dBuV) 51.75 52.34 50.59 50.59 37.08 37.08 334.56 37.49 	CAverage (dBuV) 31.49 36.55 33.39 24.61 24.61 24.61 24.61 24.61 24.61 24.61 24.61 29.10 41.51	2 M 31 equency (dBuV) 53.92 63.92 53.54 63.54 53.18 63.18 51.50 61.50 49.68 59.68 46.00 59.68 46.00 50.00 50.00 60.00	M 4M 5M 6 in H z Margin (dB) 22.43 12.17 16.99 11.20 19.79 12.59 26.89 17.45 31.24 22.60 19.97 21.44 20.90 22.51 8.49	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	M 20 Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	
Final	0 150k 150k 150k equency 0.192750 0.192750 0.201750 0.201750 0.210750 0.210750 0.210750 0.210750 0.210750 0.210750 0.210750 0.210750 0.210750 0.258000 0.321000 3.720750 3.720750 11.622750 11.622750 13.560000 13.560000	QuasiPeak (dBuV) 51.75 52.34 50.59 50.59 37.08 37.08 37.49 37.49 41.89	CAverage (dBuV) 31.49 36.55 33.39 24.61 18.44 26.03 29.10 29.10 	2 M 31 equency (dBuV) 53.92 63.92 53.54 63.54 53.18 63.18 51.50 61.50 49.68 59.68 46.00 59.68 46.00 50.00 60.00 60.00	M 4M 5M 6 in H z Margin (dB) 22.43 12.17 16.99 11.20 19.79 12.59 26.89 17.45 31.24 22.60 19.97 21.44 20.90 22.51 8.49 18.11	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	M 20 Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	
Final	0 150k 150k 150k Result equency (MHz) 0.192750 0.192750 0.201750 0.201750 0.210750 0.210750 0.210750 0.210750 0.210750 0.258000 0.321000 3.720750 3.720750 11.622750 11.622750 13.560000 13.560000 17.751750	300400500 QuasiPeak (dBuV) 51.75 52.34 50.59 50.59 37.08 37.08 34.56 37.49 41.89 	CAverage (dBuV) 31.49 36.55 33.39 24.61 24.61 26.03 29.10 41.51 29.21	2 M 31 equency (dBuV) 53.92 63.92 53.54 63.54 53.18 63.18 51.50 61.50 49.68 59.68 46.00 56.00 50.00 60.00 50.00 60.00	M 4M 5M 6 in H z Margin (dB) 22.43 12.17 16.99 11.20 19.79 12.59 26.89 17.45 31.24 22.60 19.97 21.44 20.90 22.51 8.49 18.11 20.79	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	M 20 Filter OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	Corr. (dB) 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	

Appendix B. Test Results of Conducted Test Items

B1. Test Result of 20dB Spectrum Bandwidth

Remark: Because the measured signal is CW adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW.

B2. Test Result of Frequency Stability

B3. Voltage vs. Frequency Stability		Tempe	Temperature vs. Frequency Stability			
	Measurement	Tommorotuno (°C)	Time	Measurement		
voltage (vac)	Frequency (MHz)	remperature (C)	Time	Frequency (MHz)		
120	13.560070	-20	0	13.560120		
102	13.560080		2	13.560120		
138	13.560080		5	13.560120		
			10	13.560130		
		-10	0	13.560140		
			2	13.560160		
			5	13.560160		
			10	13.560160		
		0	0	13.560160		
			2	13.560160		
			5	13.560160		
			10	13.559940		
		10	0	13.560160		
			2	13.560160		
			5	13.560160		
			10	13.560160		
		20	0	13.560070		
			2	13.560080		
			5	13.560080		
			10	13.560080		
		30	0	13.560140		
			2	13.560140		
			5	13.560140		
			10	13.560140		
		40	0	13.560120		
			2	13.560120		
			5	13.560120		
			10	13.560120		

Voltage vs. Frequ	ency Stability	Tempe	ency Stability	
Voltage (Vac)	Measurement Frequency (MHz)	Temperature (°C) Time		Measurement Frequency (MHz)
		50 0		13.560080
			2	13.560080
		5		13.560080
			10	
Max.Deviation (MHz)	0.000080	Max.Deviati	on (MHz)	0.000160
Max.Deviation (ppm)	5.8997	Max.Deviation (ppm)		11.7994
Limit	FS < ±100 ppm	Limit		FS < ±100 ppm
Test Result	PASS	Test Re	esult	PASS

Appendix C. Test Results of Radiated Test Items

C1. Test Result of Field Strength of Fundamental Emissions

Test Mode	NFC	Tx for Sa	mple 2	Polariz	ation :	Но	Horizontal					
130 Date: 2019-03-29												
1	20.6											
1	111.3											
1	92.5											
	83.1											
	73.8							1!	5.209 LIMIT L	NE		
	55.0				8							
	45.6 6									10		
	36.3							9				
	17.5											
	8.1											
	-1.3											
	-200.0	00 3	5	7 9 11	13 1	5 17 1	9 21	23 25	27 2	9 30		
	0.0				Frequen	cy (MHz)	5. 21.	23. 23.	21. 2			
Frequency	Le	evel	Over	Limit	Read	Antenna	Cable	Ant	Table	Remark		
(MHz)	(dBi	uV/m)	Limit (dB)	Line (dBuV/m)	Level (dBuV)	Factor (dB)	Loss (dB)	Pos (cm)	Pos (deg)			
0.0091	50).61	-77.81	128.42	30.04	20.01	0.56	-	-	Average		
0.07197	50).97	-59.49	110.46	30.51	19.9	0.56	-	-	Average		
0.09122	22 50.22		-58.18	108.4	29.77	19.89	0.56	-	-	QP		
0.11256	11256 50.13		-56.45	106.58	29.68	19.89	0.56	-	-	Average		
0.15	0.15 49.98		-54.1	104.08	29.58	19.84	0.56	-	-	Average		
0.5651	0.5651 39.77		-32.79	72.56	19.42	19.79	0.56	-	-	QP		
10.168	0.168 35.33		-34.17	69.5	15.03	19.74	0.56	-	-	QP		
13.56	13.56 54.12		-15.38	69.5	33.76	19.8	0.56	-	-	QP		
24.442	4.442 36.28		-33.22	69.5	14.68	20.41	1.19	-	-	QP		
29.49	37	7.02	-32.48	69.5	15.64	20.19	1.19	100	0	QP		

C2. Results of Radiated Spurious Emissions (9 kHz~30MHz)

Note:

1. 13.56 MHz is fundamental signal which can be ignored.

2. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

- 3. Distance extrapolation factor = 40 log (specific distance / test distance) (dB);
- 4. Limit line = specific limits (dBµV) + distance extrapolation factor.

Test Mode : NFC Tx for Sample 5				Ро	Polarization :					Horizontal						
130 Date: 2019-03-29																
1	20.6															
	111.3													_		
1	01.9															
	92.5															
83.1																
73.8													15.20		LINE	
	55.0						7									
45.6													a 1	0		
	36.3						8					`				
	26.9															
	8.1															
	-1.3														_	
	-10.6														_	
	-200.00	09 3	. 5.	7. 9.	. 11.	. 13. Fr	1 equen	5. 1 cy (MHz	7. 1 :)	9. 2	1.	23. 2	25.	27.	29. 3	0
Frequency	Le	vel	Over	Lir	nit	Rea	ad	Ante	enna	Cal	ole	Ant		Table	F	lemark
		Limit		Liı	Line		Level		Factor		oss Pos		s	Pos		
(MHz)	(dBµ	ıV/m)	(dB)	(dBµ	V/m)	(dB	μV)	(d	B)	(dl	3)	(cm) (deg)	
0.01017	50	.69	-76.77	127.46		30.	30.12 20		.01	0.56		-		-	А	verage
0.06627	48	.09	-63.09	111.18		27.	27.63 19.9		9.9	0.5	.56 -			-	А	verage
0.09236	50	.98	-57.31	108	8.29	30.	53	19	.89	0.5	56	-		-		QP
0.11204	49	.63	-56.99	106	6.62	29.	18	19	.89	0.5	56	-		-	A	verage
0.15	50	.19	-53.89	104	.08	29.	79	19	.84	0.5	6	-		-	А	verage
0.49	40	.21	-33.59	73	.8	19.	84	19	.81	0.5	6	-		-		QP
13.56	54.88		-14.62	69.5		34.	34.52		19.8		56 -			-		QP
14.824	.824 35.36		-34.14	69	69.5		14.99 19.8		.81	0.5	0.56 -			-		QP
24.892	36	.98	-32.52	69	.5	15.	34	20	.45	1.1	9	-		-		QP

Note:

1. 13.56 MHz is fundamental signal which can be ignored.

2. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

- 3. Distance extrapolation factor = 40 log (specific distance / test distance) (dB);
- 4. Limit line = specific limits $(dB\mu V)$ + distance extrapolation factor.

Test Mode	:	NFC T	x for	Sample 2	2	Polar	ization	:	Horizontal				
BO Level (dBuV/m) Date: 2019-03-29													
	75.0												
	70.0												
	65.0												
	60.0												
	55.0										QP		
	50.0												
	45.0												
	40.0												
	35.0								4	5	6		
	30.0			. I w		1 1		السياب ا	when how along	- Antonia word	MARK I		
	25.0	3	.	America	Mark Mark	Humah	Annon Making	www.www.www.www.www.www.w	1700 C				
	20.0	T. M	n M										
	15.0	WWW -		r									
	10.0	w-											
	5.0												
	0 <mark>30</mark>	100.	200). 300.	400.	5	00. 6	00. 70	0. 800	. 90	0. 100	0	
						Frequ	ency (MHz)	-		-	-	-	
Frequency	Leve	el C	Over	Limit	Rea	nd A	ntenna	Cable	Preamp	Ant	Table	Remark	
		L	imit	Line	Lev	el	Factor	Loss	Factor	Pos	Pos		
(MHz)	(dBµV	//m)(dB)	(dBµV/m) (dB	IV)	(dB)	(dB)	(dB)	(cm)	(deg)		
31.35	22.6	3 -1	7.37	40	27.5	53	24.09	1.19	30.18	-	-	Peak	
40.8	25.8	2 -1	4.18	40	35.9	99	18.81	1.19	30.17	-	-	Peak	
132.06	23.8	3 -1	9.67	43.5	34.6	62	17.42	1.83	30.04	-	-	Peak	
755.7	30.9	94 -1	5.06	46	28.4	14	27.8	4.18	29.48	-	-	Peak	
862.8	32.4	6 -1	3.54	46	27.8	39	29.01	4.63	29.07	-	-	Peak	
953.8	34.0)1 -1	1.99	46	27.2	27	30.54	4.74	28.54	100	0	Peak	

C3. Results of Radiated Spurious Emissions (30MHz~1GHz)

Note:

- 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 2. Emission level (dB μ V/m) = 20 log Emission level (μ V/m).
- 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor= Level.

Note:

- 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 2. Emission level (dB μ V/m) = 20 log Emission level (μ V/m).
- 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor= Level.